SSDT: A Scalable Subspace-Splitting Classifier for Biased Data

Haixun Wang
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598
haixun @us.ibm.com

Abstract

Decision trees are one of the most extensively used data
mining models. Recently, a number of efficient, scalable
algorithms for constructing decision trees on large disk-
resident dataset have been introduced. In this paper, we
study the problem of learning scalable decision trees from
datasets with biased class distribution. Our objective is to
build decision trees that are more concise and more inter-
pretable while maintaining the scalability of the model. To
achieve this, our approach searches for subspace clusters of
data cases of the biased class to enable multivariate split-
tings based on weighted distances to such clusters. In order
to build concise and interpretable models, other approaches
including multivariate decision trees and association rules,
often introduce scalability and performance issues. The
SSDT algorithm we present achieves the objective without
loss in efficiency, scalability, and accuracy.

1 Introduction

Decision trees are one of the most extensively used data
mining models. Decision tree induction is a greedy algo-
rithm that partitions the data in a top-down, divide-and-
conquer manner. Decision trees are especially attractive
in mining large datasets because i) the decision tree model
is easier to interpret [5] and, ii) the induction process is
more efficient compared to other methods [12, 8]. Recently,
a number of efficient, scalable algorithms for constructing
univariate decision trees from large disk-resident data have
been introduced {12, 8, 7, 14].

Our work focuses on the scenario where the training data
has a highly imbalanced class distribution, i.e., we assume
there are only 2 class labels, positive and negative, and the
positive (target) class accounts for a small fraction (say be-
tween 0.1% and 5%) of the entire dataset. This situation
arises frequently in the data mining environment, such as
in fraud detection, network intrusion detection, and etc. In
this paper, we first discuss several limitations of the deci-

0-7695-1119-8/01 $17.00 © 2001 IEEE

Philip S. Yu
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598
psyu@us.ibm.com

sion tree induction process under this scenario. Then, we
introduce a new technique, SSDT, which aims at overcom-
ing these problems while preserving the efficiency of the
decision tree algorithms.

Representational limitations of univariate decision trees
The decision tree induction process has several deficiencies.
Consider the training set in Figure 1(a), where Play? is the
class label. The C4.5 decision tree is shown in Figure 1(b),
which has only one node. Obviously, it misses the pattern
of (hot, high) that has a strong support of No. The
difficulty is largely due to univariate tests at each node and
it is also compounded by the use of categorical attributes.

Applying multivariate decision tree algorithms, such as
OC1 [11] and LMDT [6], to such datasets may reveal pat-
terns univariate decision tree can not discover. However, it
is computationally expensive to gauge the value of a linear
combination of many variables per node, and is practically
infeasible to use on large disk-resident datasets.

Biased data distribution Training sets of certain data
mining tasks have a very biased data distribution, inasmuch
as the target class accounts for an extremely tiny fraction
(say 0.5%) of the data. Most learning algorithms, such
as decision trees, will generate a trivial model that always
predicts the majority class and reports an accuracy rate of
99.5% [16]. However, data cases of the biased class often
carries more significant meanings and are often the primary
targets of mining.

Decision trees have been shown unsuitable for such
tasks [10]. In Figure 1(c), we show the distribution of a syn-
thetic dataset in a two-dimensional space, where the dark re-
gions represent the data cases of the biased class. Data cases
of the majority class are either clustered at different spots or
simply distributed randomly and are not shown explicitly. A
representative univariate decision tree learned from such a
dataset without pruning is shown in Figure 1(d). The deci-
sion tree induction process keeps on partitioning the space
either horizontally or vertically at each node, and the re-
sulted decision tree often has a very large size. Furthermore,

[Temp [Humid [Play? |
cool high yes
mild high yes
mild normal yes
hot dry yes
hot normal yes
hot normal yes
hot high no
hot high no
hot high no

very hot high yes

(a) Training Set

(b) C4.5 decision tree for (a)

(c) 2-dimensional biased dataset

Figure 1. Limitations of Decision Tree Classifiers

it is easy to see that the size of the tree will grow with the
dimensionality of the data, as in a higher dimensional space
more tests are required to locate the subspace region where
the data cases cluster.

A decision tree that assigns an unknown instance a def-
inite class label (*positive’ or "negative’) or a probability
based merely on the data distribution in the leaf nodes usu-
ally has a low predictive accuracy for instances of the biased
target class. Furthermore, the model can hardly discrimi-
nate among data cases of the majority class on the basis of
their closeness to the target class. For instance, the two 'X’s
in Figure 1(c) are in the same leaf node. Hence, they are
assigned a same probability by the model, although one of
them is much closer to the biased class. This causes prob-
lems in applications such as target marketing: the market-
ing department wants to send out promotions to 20% of the
people in their database while only 1% of the people in the
database are recorded buyers. The rest 19% has to be se-
lected based on their closeness to the buyer class.

2 Our Approach: An Overview

It is clear from the examples in Figure 1 that univariate
splitting conditions often results in undetected patterns or
decision trees of formidable sizes. To build concise mod-
els, it is essential that more than one variables are taken into
consideration in splitting the data. However, scalability re-
quirements forbids us considering all possible combinations
of these variables as OC1 [11] and LMDT [6] do.

We improve the decision tree induction process by pro-
viding an additional splitting criterion which results in more
concise and more interpretable decision trees. The mo-
tivation is that, in datasets with biased class distribution,
while the negative instances are distributed "everywhere’,
instances of the target class tend to form clusters in some
subspaces. These clusters are the foundation of accurate
predictions of unknown instances. The proposed approach,

543

SSDT, uses an efficient multivariate search algorithm to lo-
cate subspace clusters so as to enable (multivariate) splitting
based on weighted distances to the centroid of the clusters.

While it is computationally prohibitive to search for all
the clusters, it is more feasible to search for clusters formed
by points in the biased target class, since they only account
for a small fraction of the data. Our algorithm detects candi-
date clusters from lower dimensions to higher dimensions,
and prunes away all the candidates as soon as we find that
partitions based on these clusters can not offer a better pu-
rity than the univariate splits.

Related Works Much work has focused on how to tackle
the deficiencies of the decision tree discussed in the pre-
vious section. Among them, multivariate decision trees
overcome a representational limitation of univariate deci-
sion trees [13, 4]. However, performing a multivariate par-
tition often leads to a much larger consumption of compu-
tation time and memory, which may be prohibitive for large
datasets.

The target selection problem also attracts lots of atten-
tion [9, 10}. Closeness estimations of an unknown instance
to a certain class can be solved by clustering and nearest
neighbor algorithms. A naive approach searches for clus-
ters of the biased data and scores an unknown sample by its
distance to the closest cluster. Association rule mining [3]
is also used to solve the target selection problem. A po-
tential problem with association rules is the combinatorial
explosion of “frequent itemsets” [9, 10], which can be pro-
hibitive for large datasets with biased data distribution even
after sophisticated pruning.

Contributions of this Paper We use novel splitting cri-
teria in building decision trees. We discover data clustering
in correlated dimensions and partition the data by distance
functions defined in the corresponding subspaces. With our
multivariate splitting condition, decision trees can be built

(d) decision tree for (c)

smaller, and more interpretable. However, unlike other mul-
tivariate decision tree algorithms that are usually prohibitive
for large datasets or high dimensions, our approach is effi-
cient and scalable.

3 Definitions

Let S denote the training set belonging to a node of a
decision tree. Each point in S has n attributes in addition to
the special attribute: class label. Let C = {z1,...,zx} be
a cluster of points where each z; has the same class label.
The centroid of C is the algebraic mean of points in C.

To measure the closeness of a point to a cluster, we
use weighted Euclidean distance function, Dist(d, p, %) =

\/Zi:l w,—(di — P;)2, where disa point, p the centroid of
a cluster, and the weight vector. The Euclidean distance
is indeed defined in a subspace that is specified by a set of
dimensions whose weights are non-zero.

The Euclidean distance only works for numerical at-
tributes. For ordinal attributes, we can map their values to
the range of [0,1]. For categorical attributes, the hetero-
geneous Euclidean metric {15] defines the similarity of two
values by their relative frequency of occurrences in the same
class. However, for attributes with many values and a biased
dataset, certain values may never occur in the training set.
In our algorithm, we use a distance matrix M supplied by
the user, such that the value M (¢,j) € [0,1] denotes the
distance between categorical value 7 and j.

We use the gini index,

gini(S)=1-% p; ¢)
Jj=1

where p; is the relative frequency of class j in S, to measure
the “goodness” of all the potential splits. If S is partitioned
into two subsets S; and S5, the index of the partitioned data
gini(S) can be obtained by:

gini(S) = —gzm(Sl) + gzm(Sg) 2)
where n; and n, are the number of points of S; and S,,
respectively.

4 Scalable Decision Tree Classifiers

A decision tree classifier recursively partitions the train-
ing set until each partition consists entirely, or almost en-
tirely, of records from one class.

The SPRINT algorithm has been proposed to build de-
cision trees for large datasets [12]. The splitting criterion
used by SPRINT is based on the value of a single attribute
(univariate). For a continuous attribute, it has the form of

544

A < C where A is an attribute and C' is a value in the do-
main of attribute A.

SPRINT avoids costly sorting at each node by pre-
sorting continuous attributes only once, at the beginning of
the algorithm. Values of each continuous attribute are main-
tained by a sorted list. Each entry in the list contains 1) a
value of the attribute, ii) its record id (rid), and iii) the class
label of the record. The node is split on the attribute which
yields the least value of the gini index (Gpes:). Based on
the sorted list of the splitting attribute, a hash table is con-
structed to map each record (rid) to one of the subnodes
which the record belongs to after the split. Entries in other
attribute lists are moved to the attribute list of the subnodes
after consulting the hash table as to which subnode this en-
try belongs to. The sorted order is maintained as the entries
are moved in pre-sorted order.

5 The SSDT Algorithm

The core of SSDT lies in detecting subspace clusters of
positive points. However, finding all such clusters is both
time consuming and unnecessary. We are only interested
in clusters that can offer a better split than univariate parti-
tions. In Section 5.1, we prove an important property which
enables us to narrow down our search to those clusters that
have the potential. The actual clustering algorithm is in-
troduced in Section 5.2, where we use an Apriori-like al-
gorithm to find subspace clusters from lower dimensions
spaces to higher dimensional spaces. In Section 5.3, we
compute the exact gint index for cluster-based partitioning
by scanning a small proportion of the data, thus keeping the
overhead of the multivariate partitioning to a minimum.

SSDT is based on the framework of SPRINT, where pre-
sorted attribute lists are maintained at each node. We con-
sider only two class labels, positive and negative,
and the target class (positive)is biased, usually account-
ing for only a small fraction of the data. We normalize the
values on each dimension to the range of [0,1].

The SSDT approach is outlined in Algorithm 1. To par-
tition a dataset, we first compute the gini index on each
of its attributes. While we scan through the pre-sorted at-
tribute list, we also derive 1-dimensional clusters of the
biased data for each dimension (described in detail later).
Next, we locate subspace clusters of the positive data cases.
The minimal gin: index produced by the univariate splits,
Ghest, is passed in as a parameter to Cluster Detect() so
that clusters can not possibly deliver a gini index smaller
than Gypes: are pruned as early as possible. We then com-
pute the gini index of splits based on the distance to each
subspace cluster. The process, DistanceEntropy(), de-
scribed in Algorithm 2, does not require globally reorder-
ing the data according to the distance. If the minimal gini
index is achieved by some subspace cluster, we partition

Algorithm 1 SSDT(Dataset: S)
1: S, < points of the biased class in S;
: for each attribute k do
scan the sorted attribute list of k£ and compute:
— I, : the gini index on attribute k;
— Ly : clusters of points in S, on attribute k;
end for
Ghest = min Ii;

: C « Cluster Detect(Ghpest, Sp, L);
: for each cluster ¢ € C do
10. I «+ DistanceEntropy(c, S);
11: end for
12: if min I < Gpes; then

ceC

13: split S into two subsets S}, Sz based on the distance;

14: else

15: split S into subsets on the attribute with Gpes:;

16: end if

17: call SSDT(S;) on each subset S; if S; does not satisfy
the termination condition;

the dataset based on the distance to such a cluster. More
specifically, given a point d, instead of using a univariate
test d; < v, we use a test in the form of Dist(d,p, &) < v,
where f'is the centroid of the cluster and 0 is a weight vec-
tor of all the dimensions. As in the SPRINT algorithm, the
partition process also keeps the sorted order of the attribute
lists, so that no reordering is required. The partition stops
when a node is composed entirely of negative points (100%)
or almost entirely! of positive points.

5.1 Minimal Support of Subspace Clusters

To find subspace clusters of points (of the biased class),
we need to find: i) the centroid § of the cluster, and ii)
the weight @ which defines the subspace (1; = 0 means
dimension ¢ is irrelevant) of the cluster. Several subspace
clustering algorithms have been introduced in the literature.
The CLIQUE algorithm [2] reports connected dense units
in subspaces but thie centroids of clusters are not detected.
Another method, called PROCLUS [1], uses a hill climb-
ing method to successively improve a set of centroids, and
derives a set of dimensions for each cluster. This algorithm
however, requires that the number of clusters k to be found
is pre-known. Both methods are time consuming since they
aim at discovering all the subspace clusters.

Given a found cluster, Algorithm 1 partitions a dataset
S into 2 datasets,..S; and Sy, such that Sy contains points
close to the centroid of the cluster. Instead of checking all

'We assign a higher weight to each positive point to balance the biased
distribution. In our algorithm, we stop if more than 90% of the points in
the node is positive.

the subspace clusters, we are only interested in those that
can result in partitions with a gini index lower than Gp.s;,
the minimal gini index we get by partitioning the data on
single attributes.

Proposition 1 tells us how to narrow our search on qual-
ified clusters. We define the support of a cluster as P!/ P,
where P’ is the number of (positive) points in the cluster,
and P is the total number of positive points in S. We prove
the following proposition:

Proposition 1. If the gini index of a cluster-based parti-

tion of S is lower than Gyeg, then the cluster must have
2

a support greater than %, where q is the per-
centage of the positive points in S.

Proof. Let N be the total number of points in S. Let P be
the total number of positive points in S. Thus, ¢ = P/N.
Assume S is partitioned into Sy and Ss, and S; contains the
points in the cluster. According to Formula 2, we have:

! ! ! !

gini(8) = T gini($1) + T2 gini(s,)

where P’ and N' are the number of positive points and
negative points in S; respectively. Given N > P’, it can
be shown that the lowest gini(.S) is achieved if S; contains
only positive points, that is, N' = 0 and gini(S;) = 0.
That the partition produces a gini index lower than Gpes;
means:

N-P
—N—gznz(S’g) < Ghest
Expanding gini(S2) using Equation 1, we get:

—2NP' —2P? + 2PP' + 2NP
N(N - P

< Gbest

Substituting P/N with g, we get:

2q - 2‘12 - Gbest

. — p! —
minsup = P'/P > 2q — 292 — qGhpest

©)

The minsup given by Formula 3 is a lower bound, be-
cause the cluster we find usually does not contain only pos-
itive points (i.e., N' > 0). O

5.2 Cluster Detection

To find subspace clusters of points in the biased class,
we use an iterative approach that is very similar to the apri-
ori algorithm [3] for finding frequent itemsets. A clus-
ter whose support is lower than minsup in k-dimensional
space can not have support larger than minsup in (k + 1)-
dimensional space. We first find clusters in 1-dimensional
spaces, then we combine them to form candidate clusters

in 2-dimensional spaces. We count the number of points in
each cluster and eliminate those candidate clusters whose
support does not satisfy the constraint in Proposition 1.
Then we combine clusters in the 2-dimensional spaces to
form candidates in the 3-dimensional spaces, and so on, un-
til no more qualified clusters can be found.

Figure 5.2(a) shows an example where points of the bi-
ased class form two clusters in a 3-dimensional space. We
use a simple approach to detect 1-dimensional clusters. In
Figure 3, the range of each attribute is divided into 10 bins
and we keep the counts of points that fall in each bin. This is
done when we scan through attribute lists to evaluate splits
on single attributes, so there is minimal extra cost intro-
duced. The horizontal line in Figure 3 indicates the average
density and we regard each continuous region above the av-
erage density line as one cluster. Thus, we detect one cluster
around .1 with radius .1 on attribute X, two clusters around
.3 and .7 respectively both with radius .1 on attribute Y, and
one cluster around .2 with radius .1 on attribute Z.

X Y Z
RTAN KA -
A1 7 -
RYA! - 2/.1
- 3.1 0 211
- NIAB PR
(a) Points of biased class (b) Potential centroids
form two clusters of clusters
Figure 2. Cluster detection
_b L g_i_i i javerage _ average
density i density
n i

01234567809 01234567809 7

(a) Density of Points on X (b) Density of Points on Y

_ average
density

01 234567809

(c) Density of Points on Z

Figure 3. Histograms of positive points on
each attribute

Assuming all the 1-dimensional clusters shown in Fig-
ure 3 has support larger than minsup, we then form a list of
potential centroids in the 2-dimensional subspace as shown

546

T4

in Figure 5.2(b). Each centroid is represented by values
on two dimensions only, (...,¢;/r;, ..., ¢ /T, ...), where ¢;
and c; are centers of clusters on dimension ¢ and j re-
spectively, and r; and r; are their radius. Values on the
other dimensions are unknown. Next, we make one scan
through all the points in the biased class: for all points d,
d e C = {dlr; > |d; — ci|,r; > |dj — ¢;|}, we compute
the mean cx = 3 5. di/|C, and the radius 7 on each of
the dimension k.

Algorithm 2 ClusterDetect(Ginilndex: Gyeqt, Biased Data:
S,, Center/Radius Lists: L)

1: minsup + derived by G5 (Formula 3);
221 2,C + O
{Step 1. find clusters in 2-dimensional space}
: for each center/radius ¢; /r; in L; do
for each center/radius c; /r; in Lj, j > i do
add (...,¢;/ri, ..., ¢ /rj,...) to Cy;
end for
: end for
{Step 2. find clusters from lower to higher dimensions}

I AN A

8: while C; # 0 do

9: scan the points in S, and increase the count of cluster
¢ € C; for each point that belongs to c;

10: ecliminate cluster ¢ from Cj if the number of points in
c is less than minsup;

1m: lel+1;

12: C) + combining clusters in dimension | — 1;

13: end while

{Step 3. return the clusters}
return top-k leaf clusters;

After clusters whose support is less than the value given
by Formula 3 are pruned, we explore clusters in higher di-
mensional spaces and repeat this process until no more clus-
ters can be found. Finally, ClusterDetect() returns the
found clusters. We are only interested in leaf clusters, which
are clusters that do not contain other clusters. Among all the
leaf clusters, we return the top K clusters in the higher di-
mensions, where K is a user-specified parameter.

In order to compute the weighted Euclidean distance be-
tween a point and a cluster, we need to find out the weight
on each dimension. For a non-clustered dimension 7, we
set w; = 0; otherwise, we set w; = 1/r7, where r; is the
radius of the points’ distribution on dimension 3. Thus, the
distance is normalized to reflect the span of the points on
each dimension.

5.3 Split by Distance

For each cluster returned by ClusterDetect(), we de-
rived a distance function Dist(d, p, w). The next step is to

-

find the value v so that the split by the test Dist(d, p, W) <
v offers the minimum gini{ index.

A straight-forward approach is to reorder all the points
by their distances to the center j, and compute the gini in-
dex by scanning the ordered points. This is costly for large
datasets. Another approach is to discretize the distance into
intervals and for each interval we keep the counts of posi-
tive/negative cases whose distance to p are in that interval.
One shortcoming of this approach is the loss of accuracy
due to discretization.

Our approach, outlined in Algorithm 3, avoids reorder-
ing all the data and any loss of accuracy. This is achieved by
making the following two observations: i) if point dis close
to centroid p, then d;, the coordinate on the ¢-th dimension,
must also be close to pj; and ii) the best splitting position
should be close to the boundary of the cluster.

Let N be the number of dimensions with non-zero
weights (clustered dimensions). Let D be the set of points
that are within an initial radius 7 = § to p. For any point
d € D, the inequality ;(d; — p;)2 < 72 must hold for
each clustered dimension 7. With the ordered attribute lists,
it is easy to find D’, points that satisfy the inequality on all
the NV clustered dimensions. Obviously D' D D, for D'
can contain points whose distance to §'is up to 7v/N. After
sorting D' by distance, we compute the gini index up to
radius r, and we keep the points in D' — D and discard D.

We then increase the radius r by 4 and repeat the process.
However, we do not have to consider all the points. We
are computing the gini index based on the distance to the
cluster centroid we found. Thus, we expect a good gini
index near the boundaries of the cluster. According to the
weighting scheme discussed in the previous subsection, w;
is set to 1/r2 for each clustered dimension ¢, where r; is
the span of the points on that dimension. Thus, we have
W;(d; — ;)% < 1 for any point 5 that is inside the cluster. In
addition to these points, we consider all points that satisfy
u';',-((i; — ;)% < 2 on each dimension i. Thus, the maximum

radius of r is /E u';’,(d-; —pi)? < V2N.
5.4 SSDT Examples

Let us review the two problems in Section 1. Un-
like the C4.5 decision tree, which fails to detect pattern
(hot,high) and builds a trivial decision tree in Fig-
ure 1(b), the SSDT algorithm accurately captures the pat-
tern and constructs a compact decision tree in Figure 4(a).
The second problem is introduced by datasets with biased
class distribution. The decision tree model shown in Fig-
ure 1(d) used 11 tests to classify a 2-dimensional dataset
shown in Figure 1(c). SSDT, shown in Figure 4(b), uses
only 4 tests. Apparently, such differences tend to be more
significant if the dataset has more than 2 dimensions.

547

Algorithm 3 distance_entropy(Dataset: S, Centroid: p,
Weight:)

1. T+ 6;

2: N <« # of dimensions with non-zero weights;

3. repeat

4: for each relevant dimension ¢ do

5: find instances d that satisfies (r — 6)2 < w;(d; —
P:)? < r? using the ordered attribute lists;

6: d.count « d.count +1;

{check if d satisfies all the inequalities}

7 add d'to the ordered set D' if d.count = N;

: end for
compute gini-index for splits by distance up to r;
remove in tree D' the branch that represents data
cases within distance r to P
1: r4+71+6;
12: until » > \/Q_N;
13: return I' and v;

10:

. D(hot,high)<=0

(a) SSDT of Figure 1(a) (b) SSDT of Figure 1(c)

Figure 4. SSDT for datasets in Section 1

6 Evaluations

We evaluate the SSDT algorithm in various aspects. We
study the size of the decision tree generated by the algo-
rithm, the influence of the biased class distribution, the ac-
curacy of predictions, as well as the efficiency and scalabil-
ity issues. The tests were performed on a 700-MHz Pentium
IIT machine with 256M of memory, running Linux.

Synthetic Data Generation We generate synthetic data
in d-dimensional spaces with two class labels, positive and
negative. Points have coordinates in the range of [0,1] and
positive points account for p = 1% — 10% of the total data.

To generate clustered points in subspaces, we use a
method similar to [1]. The difference is that the number of
positive points is controlled by the biased class ratio. Our
method takes 4 parameters: n, the number of clusters; &, a
Poisson parameter that determines the number of relevant
dimensions in each cluster; p, the percentage (biased ratio)
of positive points, and NV, the total number of points.

First we determine the subspace for each cluster. For a
given cluster i, the number of relevant dimensions, S;, is

picked from a Poisson distribution with mean k. However,
an additional restriction, 2 < S; < d, must be observed.

We generate centroid p; for each cluster ;. We simply
generate a uniformly distributed point in the d-dimensional
space. We then decide the spread (radius) of the cluster on
each dimension. We set 7;; = 0.5 for irrelevant dimension
Jj. For a clustered dimension, we fix a spread parameter s
and choose the radius 7j; € [0, s] uniformly at random. For
our data generation, we use 3 values for s = .1,.2,.5.

We generate positive points in each cluster ¢ in two dif-
ferent ways: i) points are distributed uniformly in the re-
gion; ii) for each dimension j, coordinates of points on the
dimension follow a normal distribution with mean ¢;; and
variance 7%;. We determine the size of each positive cluster
by N; = pN Z":ﬁ’ where v; is the volume of cluster ¢

defined as v; = H?:l (2 745).

Finally, we generate (1 — p)N negative points. The
negative points either i) uniformly distribute at random in
the entire space, or ii) form clusters in subspaces and are
generated by the method described above with parameters
k = 0.8dand s = 0.5. If a negative point is generated inside
one of the positive clusters, it is discarded with a probability
4. For our data generation, we choose § = 0.5.

Experiments: Tree Size and Scalability We generate 6
clusters (Table 1) of positive points out of a training set of
total 100K records and 10 attributes. The total number of
positive cases account for 2% of the training set. The av-
erage radius of the cluster on each clustered dimension is
0.05, and the negative points are uniformly distributed at
random. The split at the root of the decision tree, for exam-
ple, uses the distance function defined for Cluster 6. Total
S clusters are used at different nodes for splitting, resulting
in a tree of 37 leaf nodes before pruning, while the SPRINT
algorithm uses 71 leaf nodes before pruning.

Cluster Centroids [Points |
1 (-,035,-,-,-,0.62,-,077,-,026,027) [87
2 (-,0.74,-,0.11,-,0.85,-,-,-,-) 199
3 (092,0.22,-,-,081,-,-,-,-,5) 204
4 (-,-,0.37,0.12,-,-0.63,-,-,-.-) 212
J (----,-,0.32,0.20,0.14,0.87,0.43) 33
6 -,-.0.37,-,-,-,-,0.66,- - 1211
(Cluster | Centroid Detected by SSDT | Points |
6 -,-,0.37,-,-,-,-,0.66,-,- 1228
4 (-, -, 037,0.11, -,-0.62,- - -,-) 186
2 (-,0.74,-,0.13,-,0.85,-,-,--) 134
3 (092,022, -,-,08T,-,-,-,-,-) 1124
| (-, 034,-,-,-062,-0.74,-,026,027) | &3

Table 1. 5 clusters are detected by SSDT. Un-
clustered dimensions are denoted by ’-’.

548

We compare the size of the decision tree (in terms of
number of leaf nodes) generated by SPRINT and SSDT.
The datasets we use have 10 attributes, and the 5 clusters
of biased points account for 1%, 2% and 5% of the total
data. Figure 6(a) indicates that trees built by SSDT are sig-
nificantly smaller, and the sizes of the trees generally do not
increase as the training sets become larger.

Next, we vary the number of clusters in the training sets
and show the results in Figure 6(b). The datasets are gen-
erated with the same class ratio: 2%. The size of the tree
increases significantly as there are more positive clusters in
the dataset. The trees generated by SSDT are much smaller.

Figure 6(a) shows the scalability of SSDT as the size of
the dataset increases from 0.1 to 2.5 million. The dataset
has 10 attributes, 8 clusters with an average dimensional-
ity of 4, and a biased class ration of 1%. The execution
time increases linearly with the size of the dataset, since
SSDT is able to detect the clusters and the resulted decision
tree has similar heights, which means the number of passes
through the database does not change. Figure 6(b) shows
the scalability of SSDT when the average dimensionality of
the positive clusters is increased from 2 to 12. The dataset
used in the test has 1 million records, 8 clusters, 1% posi-
tive ratio, and a total of 20 attributes. It indicates that cluster
dimensionality has little impact on the performance.

We study the impact of the number of positive clusters on
the scalability. In Figure 6(c), we increase clusters from 4
to 20. The dataset has 1 million records, among which 1%
are positive. There are 10 attributes and the clusters have
an average of 5 dimensions. Since the number of positive
data cases is kept unchanged during the test, each cluster
contains fewer records as more clusters are used. The curve
is steeper than in the previous cases because more scans
of the dataset have to be performed. In Figure 6(d), using
the dataset of the same size, dimensionality, and 8 positive
clusters, we found the performance is stable.

We compare the performance of SSDT with SPRINT
in Figure 6(c). The datasets have 10 attributes, 8 positive
clusters, and a class ratio of 1%. In this case, SSDT has
an advantage over SPRINT because SSDT trees are much
smaller. As we increase the class ratio and the number
of clusters, SPRINT becomes faster than SSDT. Indeed,
SPRINT is 20% faster than SSDT when there are 20 clusters
with a 15% class ratio, which means SSDT works best with
biased class distributions. The association rule algorithm
for mining datasets with biased class distribution does not
scale well. Overall, SSDT is an efficient and scalable algo-
rithm, despite the multivariate search it performs.

7 Conclusion

We presented a novel decision tree algorithm. The key
idea is to take advantage of the subspace clusters formed by

of leat nodes

(a) # of leaf nodes v. training set size

saconds.

2 8 &8 g8 8 8

g

SPRINT
1

5% ——wee

8000 points

SSDT
SSDT 12000 points.

of lesf nodes

‘‘‘‘‘

700 5

Association Rules -
SPRINT

[20000

40000 60000
of records

80000 100000 4 L]

10
of positive clusters

(b) # of leaf nodes v. # of clusters

12

14 16 0 15 2

of records (in millions)
(c) Execution Time

25

Figure 5. Experiments and Comparisons

0 w0 00
SSOT datasat size scaie —o— e SSDT closter dmansionalfy scale = 0 SSOT chsor momborscalg -/ ™ SSOT b ratio scale -
“w /
Y / 00
/ 50 ___\ /
T = / .
E =0 E w / § w0
y 2 £ . %0
1%
20 /// wop Seeee raa
100 P SR
- © L e 100
o o 0
o o5 1 15 2 25 z ¢« 6 8 1 ® 5 0 5 » 0 1 2 3~ 4 5
#0f records (in misions) imensionalty of positive clusters #of chusters of posilive points ‘biasod ciass ratio (% ot positwe poiets)

(a) # of records (b) dimensionality

(c) # of clusters (d) class distribution

Figure 6. Scalability

the data in the biased class. Once these subspace clusters are
efficiently detected, a compact and accurate decision tree
can be constructed by splitting a node based on the distance
to such clusters. Our multivariate decision tree algorithm
has proven to be scalable and efficient. Indeed, it has better
performance over SPRINT for very skewed distributions.

References

(1]

[2]

(3
(41

(51
(6]

7

C. C. Aggarwal, C. Procopiuc, J. Wolf, P. S. Yu, and J. S.
Park. Fast algorithms for projected clustering. In SIGMOD,
1999.

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Au-
thomatic subspace clustering of high dimensional data for
data mining applications. In SIGMOD, 1998.

R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In VLDB, 1994.

J. Bioch, O. van der Meer, and R. Potharst. Bivariate de-
cision trees. In Principles of Data Mining and Knowledge
Discovery, 1997:

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classifi-
cation and Regression Trees. Wadsworth, 1984.

C. E. Brodley and P. E. Utgoff. Multivariate versus uni-
variate decision trees. In Technical Report COINS-CR-92-
8, Dept. of Computer Science, University of Massachusetts,
1992.

J. Gehrke, V. Ganti, R. Ramakrishnan, and W. Loh. Boat-
optimistic decision tree construction. In SIGMOD, 1999.

549

(8]

91

[10]

(11]

[12]

(13]

{14]

[15]

{16]

J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest:
A framework for fast decision tree constructionof large
datasets. In VLDB, 1998.

G. Guiffrida, W. W. Chu, and D. M. Hanssens. Mining clas-
sification rules from datasets with large number of many-
valued attributes. In EDBT, pages 335-349, 2000.

Y. Ma, B. Liuy, C. K. Wong, P. S. Yu, and S. M. Lee. Tar-
geting the right students using data mining. In SIGKDD,
Zurich, Switzerland, August 2000.

S. K. Murthy, S. Kasif, and S. Salzberg. A system for in-
duction of oblique decision trees. In Journal of Artificial
Intelligence Research, pages 1-32, 1994.

C. Shafer, R. Agrawal, and M. Mehta. Sprint: A scalable
parallel classifier for data mining. In VLDB, 1996.

P. E. Utgoff and C. E. Brodley. An incremental method for
finding multivariate splits for decision trees. In ICML, pages
58-65, 1990.

H. Wang and C. Zaniolo. CMP: A fast decision tree classi-
fier using multivariate predictions. In ICDE, pages 449-460,
2000.

D. Wilson and T. Martinez. Improved heterogeneous dis-
tance functions. In Journal of Artificial Intelligence Re-
search, pages 1-34, 1997.

B. Zadrozny and C. Elkan. Learning and making decisions
when costs and probabilities are both unknown. In Technical
Report C52001-0664, Dept. of Computer Sci., UCSD, 2001.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

