0-Clusters: Capturing Subspace Correlation in a Large Data Set

Jiong Yang, Wei Wang, Haixun Wang, and Philip Yu
IBM T. J. Watson Research Center
{jiyang, ww1, haixun, psyu} @us.ibm.com

Abstract

Clustering has been an active research area of great prac-
tical importance for recent years. Most previous clustering
models have focused on grouping objects with similar val-
ues on a (sub)set of dimensions (e.g., subspace cluster) and
assumed that every object has an associated value on ev-
ery dimension (e.g., bicluster). These existing cluster models
may not always be adequate in capturing coherence exhibited
among objects. Strong coherence may still exist among a set
of objects (on a subset of attributes) even if they take quite
different values on each attribute and the attribute values are
not fully specified. This is very common in many applica-
tions including bio-informatics analysis as well as collabora-
tive filtering analysis, where the data may be incomplete and
subject to biases. In bio-informatics, a bicluster model has
recently been proposed to capture coherence among a subset
of the attributes. Here, we introduce a more general model,
referred to as the §-cluster model, to capture coherence ex-
hibited by a subset of objects on a subset of attributes, while
allowing absent attribute values. A move-based algorithm
(FLOC) is devised to efficiently produce a near-optimal clus-
tering results. The §-cluster model takes the bicluster model
as a special case, where the FLOC algorithm performs far
superior to the bicluster algorithm. We demonstrate the cor-
rectness and efficiency of the d-cluster model and the FLOC
algorithm on a number of real and synthetic data sets.

1 Introduction

Clustering has become an active research area in recent
years. Many clustering algorithms [4] have been proposed
to efficiently cluster data in multi-dimensional space. An
important advance in this area is the introduction of the
subspace clustering. This is particularly useful in cluster-
ing high dimensional data since not every dimension may
be relevant to a cluster. A subspace cluster consists of a
(sub)set of dimensions and a (sub)set of points/vectors such
that these points/vectors are close to each other in the sub-
space defined by these dimensions. However, the model

of subspace cluster may not be adequate either to capture
correlation among vectors/points/objects in the sense that it
still only takes into account the physical distance between
points/vectors. In fact, strong correlation may exist among
a set of points/vectors/objects even if they are far apart
from each other. Let’s consider three data points/vectors,
dy = (1,5,23,12,20), ds = 11 ,15,33,22,30), and d3 =
(111,115,133,122,130) They may not be considered in the
same cluster by any traditional (subspace) cluster model be-
cause the distance between any two of them is large. Let’s
take a closer look on these vectors. Each data point/vector is
shown as a curve in Figure 1. The attribute values from each
vector are connected. The difference between d; and d» is
(10,10, 10, 10, 10) while the difference between d» and d3 is
(100,100, 100,100, 100) We can see that these vectors have
strong coherence on these five attributes because, given any
one vector, the other two can be perfectly derived by shifting
each entry (of the given vector) by a certain offset. In other
words, the corresponding vectors show the same (or similar)
tendency, but with some offsets. The offset can be viewed as
bias of each object/vector. Note that the order of attributes
is inconsequential. If we change the order of these five at-
tributes, the vectors (represented by curves) would also show
strong coherence. Although in the example, the three vec-
tors are coherent on all five attributes, the coherent attributes
may be buried in a large set of attributes in real applications.
Identifying these coherent attributes can be a very challeng-
ing process. This type of coherence is very common in many
applications where each object may naturally bear a certain
degree of bias.

e E-commerce: Recommendation systems and target mar-
keting are important applications in the E-commerce
area. In these applications, sets of customers/clients
with similar behavior need to be identified so that we
can predict customer interest and make proper rec-
ommendations. Let’s consider the following example.
Three viewers rank four movies as (1, 2, 3, 5), (2, 3,
4, 6), and (3, 4, 5, 7), where 1 is the lowest and 10 is
the highest score. Although the individual ranks are dif-
ferent, these three viewers have coherent opinions on
these four movies. In the future, if the first two viewers

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE

8 —— vector 1
] + vector2
s

B - vector 3

3
Attributes

Figure 1. Example of coherent objects

ranked a new movie as 2 and 3, respectively, then we
may think that the ranks of the new movie also follow
the same coherence! and we can project that the third
viewer may rank this movies as 4.

e DNA microarray analysis: Microarrays are one of the
latest breakthroughs in experimental molecular biology,
which provide a powerful tool by which the expression
patterns of thousands of genes can be monitored simul-
taneously and are already producing huge amount of
valuable data. Analysis of such data is becoming one
of the major bottlenecks in the utilization of the tech-
nology. The gene expression data are organized as ma-
trices — tables where rows represent genes, columns
represent various samples such as tissues or experimen-
tal conditions, and numbers in each cell characterize the
expression level of the particular gene in the particular
sample. Investigations show that more often than not,
several genes contribute to a disease, which motivates
researchers to identify a subset of genes whose expres-
sion levels rise and fall coherently under a subset of con-
ditions, that is, they exhibit fluctuation of a similar shape
when conditions change. Discovery of such clusters of
genes is essential in revealing the significant connec-
tions in gene regulatory networks [13]. The model of
bicluster [3] was recently proposed for this purpose un-
der the assumption that the microarray matrix is fully
specified, which can be regarded as a special case of our
model.

From the above examples, we can see that users are in-
terested in finding cluster of points/objects that have coher-
ent behaviors rather than points/objects that are physically
close to each other. To address this issue, we introduce a
new model — §-clusters. The main objective of d-clusters is
to capture a set of objects and a set of dimensions/attributes
such that the objects exhibit strong coherence on the set of
dimensions/attributes despite the fact that each object may
bear a nonzero bias/offset. In this sense, the traditional sub-
space cluster can be viewed as a cluster of objects with zero

Mt is true for the first two viewers at least.

2

bias. Thus, the subspace cluster is a degenerated case of the
d-cluster model.

How to measure the coherence among objects (i.e., vec-
tors) while allowing the existence of individual bias is essen-
tial to our model. One choice is the PearsonR correlation
[9]. The Pearson R correlation of two objects/vectors/points

> (01—61)(02—02)

\/2(01—51)2X2(02—52)2
and o, are the mean of all attribute values in o; and o», re-
spectively. From this formula, we can see that the Pearson
R correlation measures the correlation between two objects
with respect to all attribute values. A large positive value
indicates a strong positive correlation while a large negative
value indicates a strong negative correlation. However, some
strong coherence may only exist on a subset of dimensions.
For example, there are six movies, the first three are the ac-
tion movies while the next three are the family movies. Two
viewers rank the movies as (8, 7, 9, 2, 2, 3) and (2, 1, 3, 8,
8, 9). The viewers’ ranking can be grouped into two clus-
ters, the first three movies can be in one cluster while the
remainder movies can be grouped into another cluster. It is
clear that the two viewers have consistent bias within each
cluster. However, the Pearson R value is small because
there is not much global bias held by the ranks of the two
viewers. Thus, we propose a new concept, base, to represent
the potential bias of each object or dimension in a d-cluster.
While a § cluster essentially corresponds to a data submatrix
defined by the involved objects and attributes, a new measure
called residue is introduced to capture the difference between
the actual value of each entry (in this submatrix) and the ex-
pected value based on the the object and attribute bias within
the cluster. The residue is a measurement of the degradation
to the coherence of the d-cluster that an entry brings. The
average residue across every entry in the submatrix can be
used to measure the residue of the §-cluster. The smaller the
residue, the stronger the coherence. Our objective is then to
find d-clusters that minimize the residue value. In addition,
in the application domain that we are interested in, missing
attributes are a common place, e.g., a viewer does not give a
rating on a movie. The J-cluster model can also handle the
null values seamlessly.

01 and oy is defined as where 01

The generality of the §-cluster model creates great chal-
lenges to the mining process. One possible solution is to map
the §-cluster problem to the subspace cluster problem by con-
sidering the set of derived attributes that capture the differ-
ences between every pair of (original) attributes. This, how-
ever, increases the dimensionality quadratically and yields a
very inefficient algorithm. The problem is in fact NP-hard.
Thus, we devise a move-based algorithm FLOC to discover
the § clusters. Starting from a set of seeds (initial clusters),
an iterative procedure is invoked to successively improve the
cluster quality. During each iteration, each object and at-
tribute is examined sequentially. The best action of each ob-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE

ject or attribute towards improving the clustering quality is
decided and performed. The best clustering obtained during
each iteration is used as the stating point of the next round.
This procedure terminates when no further improvement can
be made in an iteration. In many applications, users may be
interested in finding clusters with various constraints, e.g.,
overlapping or non-overlapping clusters. Our basic §-cluster
algorithm can easily be modified to accommodate these con-
straints. In summary, this paper has the following contribu-
tions.

e We propose a new clustering model, namely §-clusters,
to capture the points/objects that have similar trend (i.e.,
strong coherence) rather than close to each other on
a subset of dimensions/attributes. The J-cluster can
be viewed as a generalization of the subspace clus-
ter model. The §-cluster model can seamlessly handle
missing attribute values.

e The metric of residue is introduced to measure the co-
herency of among points/objects in a given cluster.

e Due to the NP-hard nature of this problem, we de-
vice a new move-based algorithm (FLOC) that can ef-
ficiently approximate the clusters with high accuracy.
This algorithm can be easily modified to discover clus-
ters with different constraints, e.g. overlapping or non-
overlapping clusters, etc..

The remainder of this paper is organized as follows. Some
related work is discussed in Section 2. We present the 4-
cluster model in Section 3. Section 4 and 5 present our basic
move-based algorithm and some improvements, respectively.
Experimental results are shown in Section 6 and we draw the
conclusion in Section 7.

2 Related Work

Recent efforts in data mining have studied methods for ef-
ficient and effective cluster analysis in large databases [4].
Much active research focuses on the scalability of clustering
methods and high dimensional clustering techniques. Clus-
tering in high dimensional spaces is problematic as theoreti-
cal results [2] questioned the meaning of closest matching in
high dimensional spaces. Recent research work has focused
on discovering clusters embedded in the subspaces of a high
dimensional data set. This problem is known as subspace
clustering. CLIQUE [1] is the first to address the subspace
clustering problem. It is a density and grid based clustering
method. It discretizes the data space into non-overlapping
rectangular cells by partitioning each dimension to a fixed
number of bins of equal length. A bin is dense if the frac-
tion of total data points contained in the bin is greater than
a threshold. The algorithm is similar to the Apriori algo-
rithm for association rule mining in that it finds dense cells

in lower dimensional spaces and merge them to form clusters
in higher dimensional spaces. The computation complexity
and the quality of clustering is heavily dependent on the size
of the grid and the density threshold of clusters.

In [3], a so-called bicluster model is proposed. The bi-
cluster model is proposed in the bioinformatics field and is to
capture a set of genes showing striking similarity under a set
of conditions. Mean square residue score is used to qualify a
bicluster. However, the bicluster model does not address the
problem of missing attribute values. Thus, it can be viewed
as a special case of our proposed d-cluster model. The algo-
rithms presented in [3] identify biclusters in a data matrix in
a greedy manner. After identifying the first cluster, each suc-
cessive bicluster is mined on an altered matrix by replacing
entries in the discovered biclusters with random data. We will
show later that this approach no only produces less accurate
result but also bears an inefficient performance.

Also in the information retrieval area, researchers are
studying document clustering based on word appearances. In
[10], authors proposed a two-stage method that first clusters
words for each document and then cluster documents based
on the word clusters of each document. Despite other differ-
ences in the problem formation, this approach significantly
differs from our model on the following aspect: our model
clusters the attributes (words) and objects (documents) si-
multaneously while [10] clusters the attributes (words) and
objects (documents) sequentially. As a result, the cluster in
our model consists of a subset of objects and a subset of at-
tributes while the cluster in [10] is only a subset of objects.

3 The Model of §-cluster

To address the potential limitation inherit to the traditional
models of cluster, we propose a so-called §-cluster model to
provide a more powerful means to capture potential coher-
ence among (a subset of) objects and attributes. There are
two forms of coherent in many applications, shifting (or ad-
dition) and amplification (or production). In the case of am-
plification coherence, the value in one object can be twice
as much as that in the first object, and we still consider they
are coherent. The problem of finding amplification coherent
d-cluster can be easily transformed to the problem of finding
shifting coherent §-cluster by applying logarithm function to
each entry in the data matrix. Thus, we only focus on find-
ing shifting coherent d-clusters in this paper. In contrast to
a cluster (or subspace cluster) of the traditional meaning, a
d-cluster does not require the involved objects share similar
values on each (relevant) attribute. As a more general con-
cept, a set of objects may belong to a d-cluster if these ob-
jects exhibit similar trends on a (sub)set of attributes. This
generality is very important in many applications, such as
collaborative filtering, analysis of gene expression data, in
the sense that potential object/attribute bias can be perfectly

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE

accommodated.
Let & = {A;, As,..., Ap} be the set of attributes? and
R ={01,0,,...,0n} be the set of objects. The data can be

viewed as an M x N matrix D. Each entry d;; in this matrix
corresponds to the value of object O; on attribute A;. Fig-
ure 2 illustrates the general format of the matrix. Depending
on the application domain, this matrix can be either sparse or
dense.

attributes
A1AzA; A;

Figure 2. The Data Matrix

A §-cluster essentially corresponds to a submatrix that ex-
hibits some coherent tendency. Formally, each d-cluster can
be uniquely identified by the set of relevant objects and at-
tributes. Note that a J-cluster is similar to a subspace cluster
in this respect, with the exception that the J-cluster also al-
lows missing values. Even though allowing missing values
brings great flexibility to the J-cluster model, the amount of
missing entries in a d-cluster should be limited to some extent
to avoid trivial cases. The rule of the thumb is that, despite
the missing values, there should still be sufficient evidence to
demonstrate the coherency. In Figure 3 (a), many values are
missing, which prevents any potential coherence from being
observed, even though there is no sign that contradicts the
existence of coherence either. To exclude this kind of sit-
uation from being considered as a meaningful J-cluster, we
introduce a parameter o (which is a positive number less than
or equal to 1) to limit the amount of missing values for each
object and attribute in a cluster.

attr 1 attr 2 attr3 attr4 attr 1 attr 2 attr3 attr4

object1| 1 3 object1| 1 3 3
object 2 4 5 object2| 3 4 5
object 3 3 4 object 3 3 4 4

(a) not a J -cluster (b) a § -cluster

Figure 3. Missing Values in /-clusters

2In general, the attributes can take either numerical or categorical values.
In this paper, we assume numerical attributes unless specified otherwise. The
scenario of having categorical attributes or even hybrid attribute types is left
to the full version of this paper.

genes

Definition 3.1 For a given matrix & X R and an occupancy
threshold o, a d-cluster (of o occupancy) can be represented
by a pair (I,J) where I C {1,..., M} is a subset of object
IDs and J C {1,...,N} is a subset of attribute IDs. For
eachobjecti € 1, |“§’!‘| > awhere |J!| and | J| are the number
of specified attributes for object i in the §-cluster and the

number of attributes in the §-cluster, respectively. Similarly,
;) I
for each attribute j € J, L1 S o where |I;| and || are the

i
T

number of specified objects in attribute j in the §-cluster and

the number of objects in the §-cluster, respectively.

Let a = 0.6, the submatrix in Figure 3 (a) is not a §-cluster
while the submatrix in Figure 3 (b) is a §-cluster. The num-
ber of specified (non-missing) entries in the corresponding
submatrix is referred to as the volume of the d-cluster.

Definition 3.2 The volume of a §-cluster (I,J) (vry) is de-
fined as the number of specified entries d;; such thati € I
andj € J.

In the case that all entries are specified, vry = |I] x |J|
where |I| and |.J| are the number of attributes and the num-
ber of objects participating in the §-cluster, respectively. Fig-
ure 4(a) shows a micro-array matrix with ten genes (one for
each rows) under five experiment conditions (one for each
column). This example is a portion of microarry data that
can be found in [13]. In this example, each object is a gene
and each attribute corresponds to a condition. Each entry
in the data matrix measures the strength of the gene under
the corresponding experiment condition. The J-cluster de-
fined by picking I = {VPS8, EFB1,CYS3} and J =
{CH1I,CH1D,CH?2B} is shown in Figure 4(b). The vol-
ume of this d-clusteris 3 x 3 = 9.

conditions
CH1I CH1B CH1D CH2I CH2B

conditions
CH1I CH1B CH1D CH2I CH2B

CTFC3 | 4392| 284 | 4108| 280 | 228 CTFC3

VPS8 401 | 281 | 120 | 275| 298 VPS8 401 120 298
EFB1 318 | 280 | 37 277 | 215 EFB1 318 37 215
SSA1 401 | 292 | 109 | 580 | 238 SSA1

FUN14 | 2857| 285 | 2576 271 | 226 § FUN14

SPO7 228 | 290 | 48 285 | 224 & SP07

MDMI10 | 538 | 272 | 266 | 277 | 236 MDM10

CYS3 322 288 | 41 278 | 219 CYS3 322 41 219
DEP1 312 | 272 | 40 273 | 232 DEP1

NTG1 329 | 296 | 33 274 | 228 NTG1

(a) a data matrix (b) a 3-cluster

Figure 4. An Example of §-cluster

The fundamental difference between a J-cluster and a sub-
space cluster is the measure of cluster quality. In order to
properly accommodate the object/attribute biases within a §-
cluster, we introduce a concept — base to represent the bias
of an object or attribute within a §-cluster.

“
Proceedings of the 18th International Conference on Data Engineering (ICDE’02) CSFK/[PUQTER
1063-6382/02 $17.00 © 2002 IEEE SOCIETY

Definition 3.3 For a given d-cluster (I,J), the base of an
object O is defined as the average value of O; for all spec-

o dij
ified attributes in J, d;j =]‘Ejif‘J where J| C J is
the set of specified attributes in J for object O;. Similarly,
the base of an attribute A; is the average specified value of

Zie[’. di;

A; taken by all objects in I, ie., di; = W where
I]'~ C [is the set of objects whose value is specified in at-
tribute A;. The base of the 0-cluster is the average value of
all specified entries of the submatrix defined by (1,J), ie.,

d.
ZiEI.j€J *

o where vy j is the volume of the §-cluster.

dry

For example, we have dv psg,; = 273, dgrp1,7 = 190,
dcyss,y = 194, and drcmir = 347, dr,cmp = 66,
dr,cmep = 244, and dry = 219 in Figure 4(b). While
d;y and dj; take care of the potential bias that may associate
with each individual object or attribute, the value of d; set
the base point of the entire §-cluster. In a perfect §-cluster
where each object and attribute exhibits an absolutely con-
sistent bias®, the value of each entry d;; can be uniquely de-
termined by its object base d; s, its attribute base dr;, and the
cluster base dy;. The difference d;; — drs is essentially the
relative bias held by attribute A; in contrast to other attributes
in the d-cluster. This bias should hold exactly on the entry d;;
as well in a perfect § cluster. Thatis, d;; — d;y = drj — dry.
Consequently, we have d;; = d;5 + dr; — drj. Figure 4(b)
is a perfect d-cluster even though the values are quite far
apart (which may produce poor quality cluster(s) of the tra-
ditional meaning). For example, the entry dy pss,cHir =
dvpg&J —dI,CHU"‘d]J = 273347+ 219 = 401 and this
property holds for every entry in Figure 4(b). This demon-
strates that the model of d-cluster can successfully handle
potential object (and/or attribute) bias in the form of shifting.
Note that the d-cluster is different from many previous mod-
els (e.g., the Pearson R correlation [9]) that applies global
normalization to each object or each attribute of the entire
data matrix. Normalizing the value of an entire row or col-
umn (by subtracting its mean value) would not help much
to accommodate the bias because such bias typically local-
izes to each d-cluster and do not hold true across all objects
and/or attributes. In Figure 4(a), we may observe that the
gene V' PS8 has a positive bias compared to EFF' B1 within
the d-cluster in Figure 4(b) but such bias does not preserve
on the remaining two conditions CH1B and CH2I.

Unfortunately, the d-cluster may not always be perfect.
The concept of residue is thus introduced to quantify the dif-
ference between the actual value of an entry and the expected
value of an entry predicted from the corresponding object
base, attribute base, and the cluster base.

Definition 3.4 The residue of an entry d;; in a §-cluster is

3The entries of each object (or attribute) can be exactly generated by
shifting the entries of other objects (or attributes) by a common offset.

rij = dij
Tij = 0.

—diy — drj + dyy if di; is specified. Otherwise,

Itis obvious that every entry in Figure 4(b) has a zero residue.
The residue indeed serves as an indicator of the degree of
coherence of an entry with the remaining entries in the -
cluster given the biases of the relevant object and the relevant
attribute. The lower the residue, the stronger the coherence.
To assess the overall quality of a d-cluster, the residue of the
d-cluster can be defined as the mean residue of all specified
entries. The mean can be in the form of either arithmetic,
geometric, or square mean as in [3]. In this paper, we use the
arithmetic mean in the assessment of the cluster residue, but
the model is applicable to other types of means.

Definition 3.5 The residue of a d-cluster (I,J) is ry; =

ZiEI.jGJ |7is |

P where r;; is the residue of the entry d;; and
vy is the volume of the 6-cluster.

In the above example, the residue of the d-cluster in Fig-
ure 4(b) is 0. The lower the residue, the stronger the co-
herence exhibited by the d-cluster, and the better the quality
of the d-cluster. In the remainder of this paper, we also re-
fer to a d-cluster (I, J) as a r-residue J-cluster if its residue
r;; < r where r is a constant number.

The basic d-cluster model can be easily extended to sup-
port some additional constraints that may be very useful in
many applications.

e The amount of overlap allowed between a pair of
clusters Cons,. Some application may require non-
overlapping among clusters while others may allow
some degree of overlap. The user can control the
amount of overlap by specifying some threshold.

e The coverage of the clusters C'ons,.: the number of ob-
jects/attributes should be covered by any of the clus-
ters. In some application (e.g., collaborative filtering),
the user may want every object (e.g., customer) to be
covered by some cluster.

e The volume of the final clusters Cons,. The user can
also control the volume of the final cluster. This can be
useful in the application where certain statistical signif-
icance needs to be warranted.

We shall see later in this paper that our proposed algorithm
can be applied with minor modification to suit the above pur-
poses and to produce promising results.

4 Basic FLOC Algorithm

4.1 Algorithm Description

In general, the d-cluster problem is NP-hard [3]. Thus,
finding an exactly solution could be time consuming. In

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE

this section, we present a new randomized move-based algo-
rithm, FLOC?, which can efficiently and accurately approx-
imate the k d-clusters with the lowest average residue. The
data is represented in the form of a matrix as shown in Fig-
ure 4(a) where the rows correspond to the objects and the
columns correspond to the attributes. The FLOC algorithm
starts from a set of seeds (initial clusters) and carries out an
iterative process to improve the overall quality of the cluster-
ing. At each iteration, each row and column is moved among
clusters to produce a better clustering in terms of a lower av-
erage residue®. The best clustering obtained during each iter-
ation will serve as the initial clustering for the next iteration.
The algorithm terminates when the current iteration fails to
improve the overall clustering quality.

The FLOC algorithm has two phases (Figure 5). In the
first phase, k initial clusters are constructed. As we presented
in the previous section, a §-cluster contains a set of objects
(rows) and a set of attributes (columns). A parameter p is
introduced to control the size of a d-cluster. For each initial
cluster, a random switch is employed to determine whether
a row or column should be included. Each row and column
is included in the cluster with probability p. Consequently,
each initial cluster is expected to contain M X p rows and
N x p columns. (We will discuss how to choose p in the next
section.)

ined to determine its best action towards reducing the average
residue. These actions are then performed successively to im-
prove the clustering. An action is defined with respect to a
row (or column) and a cluster. There are k actions associated
with each row (or column), one for each cluster. For a given
row (or column) z and a cluster ¢, the action Action(z,c)
is defined as the change of membership of x with respect to
c. Note that this action is uniquely defined at any stage. If
x is already included in ¢, then Action(z, c) represents the
removal x from the cluster ¢. Otherwise, Action(x,c) de-
notes the addition of z to the cluster c. Figure 6 shows a data
matrix with 3 rows and 4 columns. Assume that we want to
find two clusters and their current statuses are indicated by
the dashed lines. Cluster 1 contains row 1, 2 and column 1,
2; whereas cluster 2 contains row 2, 3 and column 1, 2, 3.
Each row (or column) in Figure 6 is then associated with two
actions, one for each cluster. For example, the actions asso-
ciated with column 3 are (1) inserting into cluster 1, and (2)
deleting from cluster 2. The better action among these two
need to be identified and performed. In general, if the data
matrix contains N rows and M columns, then N + M ac-
tions will be performed during each iteration, one for each
row (or column). We will discuss shortly that sometimes an
action may be blocked temporarily during an iteration due to
the violation of some constraints (by the action).

cluster 1

generating initial clusters Phase 1 1 :'37 1 ‘T} 2 2
| |
777 2 117177775737772—: 3
L B 1
determine the best action for each 3 |4 2 0| 4
row and each column P
cluster 2
form the best action of Phase 2
erform the best action of ever: . .
P ey Figure 6. An example of the Actions
row and column sequentially
Since there are k clusters, the number of potential actions

improved?

Figure 5. The Flowchart of the FLOC Algorithm

The second phase is an iterative process to improve the
quality of the clusters continuously. During each iteration
in the second phase, each row and each column is exam-

4FLOC stands for FLexible Overlapped Clustering.

5There are many ways to assess whether one clustering is better than
another. In this paper, we adopt the average residue as the measurement and
aim at finding & clusters with the smallest average residue.

6

associated with the row (or column) z is k. Among these
k actions, the action that brings most improvement needs to
be identified. To assess the amount of improvement that can
be brought by an action, we introduce a new concept called
gain. Since our objective is to find clusters with the low-
est average residue, the gain of an action Action(x,c) is
defined as the reduction of c’s residue incurred by perform-
ing Action(x,c). A positive gain indicates that performing
Action(x,c) can produce a better cluster while a negative
gain suggests that such an action would degrade the cluster
quality. The goal is that, for each row (or column) z, we want
to find the action with the highest gain. In the above exam-
ple, the residue of cluster 1 and cluster 2 are + and 2, re-
spectively. Consider the two actions associated with column
3: (1) inserting into cluster 1 and (2) deleting from cluster

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE

2. The gain of the first action is the difference between the
current residue of cluster 1 and the residue of the new cluster
obtained by inserting column 3 into cluster 1. In this exam-
ple, the resulting cluster after inserting column 3 into cluster
1 would contain row 1,2 and column 1,2,3, and its residue is
L. Therefore, the gain of inserting column 3 into cluster 1 is
% — % = —11—2. Via similar computation, the gain of delet-
ing column 3 from cluster 2 is —%. Consequently, the first
action is chosen as the best action for column 3. Note that
the best action for this particular column is negative, which
means that the average residue would increase if this action
is taken. Such negative gain action(s) will still be performed.
The rationale is that the (temporary) degradation of the clus-
ter quality may lead to an ultimate (bigger) improvement. We
will explain shortly that such action will not take into effect if
the cluster quality fails to improve by the end of the iteration.
Nevertheless, the highest gain of any action associated with
a given row (or column) is positive in many cases and will
directly contribute to the improvement of the cluster quality.
For example, the highest gain of any action associated with
column 1 is 2.

To compute the gain of a particular action, the resulting
residue of the associated cluster (if the action was taken)
needs to be computed. The straightforward way to compute
the residue after each action is to recompute from scratch.
This involves the computation of each object base, each at-
tribute base, and cluster base, and finally the cluster residue.
The complexity of computing the new reside is O(n x m)
where n and m are the number of rows and columns in a
cluster.

After the best action is identified for every row (or col-
umn), these N + M actions are then performed sequentially.
The best clustering obtained during the last iteration, denoted
by best_clustering, is used as the initial clustering of the
current iteration. Let Clustering; be the set of clusters af-
ter applying the first ¢ actions. After applying all actions, we
would obtain M + N sets of clusterings. Among them, if
the clustering with the minimum average residue has a lower
average residue than that of best_clustering, then there is
an improvement in the current iteration. The clustering with
the minimum average residue is stored in best_clustering
and the process continues to the next iteration. Otherwise,
there is no improvement in the current iteration and the pro-
cess terminates. The clustering stored in best_clustering is
then returned as the final result. It is obvious that the order to
perform these actions plays an important role in this process.
The simplest way to decide the order is to assume a fixed
order among all actions, e.g., row 1 to row N followed by
column 1 to column M. We will explain in the next section
that the fixed ordering suffers from some inherit drawback
that may be overcome by employing a dynamic ordering.

4.2 Complexity Analysis

In the first phase, a set of k clusters (seeds) are gen-
erated. Thus, the time complexity of the first phase is
O(kx(N+M)) where N and M are the number of rows and
columns of the matrix D while & is the number of the clus-
ters. The second phase is a series of iterations. During each
iteration, each possible action of each row (or column) needs
to be considered. There are k possible actions for a given row
(or column). Thus, (N 4+ M) X k actions have to be consid-
ered. In turn, the overall time complexity to evaluate all of
these actions is O((N+M) x N x M x k). The time complex-
ity to perform an action is the same as to compute the gain of
that action which is O(NN x M). There are (N + M) actions
to perform. Thus, the overall time complexity for an iteration
is O((N+M)x N x M x k), which implies that the complex-
ity of the FLOC algorithm is O((N + M) x N x M X k X p)
where p is the number of iterations till termination. In the
experimental result section, we can see that p is in the order
of 10 with various conditions. If the number of columns (at-
tributes) and the number of rows (objects) are of the same
order of magnitude, then the complexity of the FLOC algo-
rithm is O(|D|? x k x p).

4.3 Additional Feature

As mentioned previously, the d-cluster model can support
many optional constraints specified by the user. In order to
enforce these constraints, the basic FLOC algorithm needs
to be modified. In the first phase where the set of initial
clusters are generated, the produced clusters have to com-
ply with the specified constraints 5. During the second phase
where the iterative improvement is carried out, some action
may be “blocked” temporarily (e.g., the gain is assigned to
—o0) during an iteration if it will result in the violation of
some constraint. Only those actions that fully comply with
the constraints will be performed. It is obvious that the result
produced by this modified version of the FLOC algorithm is
guaranteed to satisfy the specified constraints.

4.4 Alternative Algorithm

Another way to find the J-clusters is to map it to the tra-
ditional (subspace) clustering problem and apply an exist-
ing clustering algorithm (e.g., CLIQUE [1]). This can be
achieved in three steps. (1) For each pair of attributes A;;
and Aj>, a new attribute A;q ;> is derived to store the differ-
ence Aj1 — Aj». If there are M attributes, then w
derived attributes will be introduced. Given the data matrix
shown in Figure 4(a), Figure 7 shows derived attributes. (2)
Given the set of derived attributes, some existing subspace

6This is easy to achieve since an initial cluster is not required have low
residue.

7
Proceedings of the 18th International Conference on Data Engineering (ICDE’02) CSFK/[PUQTER
1063-6382/02 $17.00 © 2002 IEEE SOCIETY

clustering algorithm can be applied to find all subspace clus-
ters on the derived data matrix. (3) Finally, for each dis-
covered subspace cluster CP from the derived data, the §-
clusters (from the original data) can be determined with the
following method. Let C¥ = O¢ x AL where O¢ and A2
are the set of involved objects and the set of involved derived
attributes, respectively. (The shaded entries in Figure 7(a)
form a subspace cluster in the derived matrix.) A graph can
be constructed from AL, where each vertex corresponds to
an original attribute and there is an edge between two ver-
tices A;; and Aj» if the derived attributes Aj ;o is in Ag .
(For the subspace cluster formed by the shaded entries, the
corresponding graph is shown in Figure 7(b)). Any clique in
this graph indicates the existence of a §-cluster on the corre-
sponding attributes and the set of objects O¢. (Since condi-
tion 21, 2D, and 2B form a clique in Figure 7(b), there exists
a d-cluster involving these three conditions.) As a result, in
Figure 7(a), the gene VPS8, EFB1, and CYS3 form a perfect
subspace cluster on the dimension 111D (difference between
condition CH1I and CH1D), 112B, and 1D2B. From this sub-
space cluster, we can find the §-cluster (shown in Figure 4(b))
at the original matrix.

difference
1I1B 1B1D 1D2I 2I2B 111D 1B2I 1D2B 1I2I 1B2B 1I2B

CTFC3 | 4108| -3824| 3828 | 52 | 284 4 |3880 (4112 | 56 | 4164

VPS8 120 | 161 | -155| 410 | 281 6 -178 | 126 | -17 | 103

EFB1 38 | 243 | -240| 62 | 281 3 -178 | 41 65 | 103

SSA1 109 | 183 | 471 | 342 | 292 | -288 | -129| -179| 54 | 163

FUNI14 | 2572| -2291| 2305| 45 | 281 14 | 2350| 2586 | 59 | 2631

genes

SP07 -62 | 242 | -237| 61 180 5 |-176 | -57 | 66 | 4

MDMI10 | 266 6 |-11 41 272 | -5 30 | 261 36 | 302

CYS3 34 | 247 | -237| 59 | 281 | 10 | -178| 64 59 | 103

DEP1 40 | 232 | -233| 41 | 272 | -1 -192| 39 40 | 80

NTG1 33 | 263 | -241| 46 | 296 | 22 | -195| 55 68 | 101

()

@

(b)

Figure 7. Subspace Cluster on Derived At-
tributes

The major disadvantage of this approach is that the sec-
ond step (i.e., subspace clustering on the derived data) could
be very costly. The dimensionality of the derived data is
w. In addition, in order to find a §-cluster with m
attributes, the subspace cluster on the derived data has to

consist of at least ™X(=1)

5 dimensions. For instance, if the
original data has 100 attributes (dimensions) and a J-cluster
consists of 10 attributes (dimensions), then the subspace clus-
tering algorithm is applied to determine a 45-dimension sub-
space cluster from a data set of 4950 dimensions. This could
be a very expensive process. As a result, a more efficient

algorithm is needed to discover the d-clusters.

S Improvement of Basic FLOC Algorithm

In the previous section, we presented the basic algorithm
that still has room for improvement. In this section, we
present the further optimization on two aspects of the FLOC
algorithm.

5.1 Initial Size of a Cluster

As mentioned before, the parameter p is used to control
the size of a cluster in the initial assignment phase. The av-
erage number of rows and columns in a cluster is p X N and
p x M, respectively. We experiment with different value of
p. If the optimal cluster size is very different from the ini-
tial (seed) cluster size, then it would take more iterations (it-
erations) to reach the optimal cluster and the response time
could be prolonged. In order to expedite the response time,
it is beneficial to make the initial seed as close to the optimal
cluster size as possible.

The optimal cluster size is usually unknown in advance
and may be significant disparate for different clusters. There-
fore, we generate initial clusters of different sizes, i.e., differ-
ent p values for different clusters. In our experiments, we
explore the effects of mixed p values and find that the FLOC
algorithm can well adjust the cluster size and discover both
large and small clusters. Table 5 in the experimental results
section shows the recall and precision of the FLOC algorithm
with the mixed initial clustering technique.

5.2 Order of Action

In the previous section, we assume the same order to per-
form actions at all iterations. This implies that for the set of
rows and columns which are at the beginning of the order,
their membership always has a higher priority to be changed
than the rows and columns at the end of the order. This ap-
proach has one drawback. If a large number of actions with
negative gain proceed a small number of actions with positive
gain at the end of the performance list, then the set of actions
with positive gain may never be given a full play. To solve
the problem, we need to deploy a dynamic ordering among
all actions. In this section, we discuss two possible ways to
determine the action order.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE

5.2.1 Random Order of Actions

In this approach, the order of actions are randomly deter- cluster volume | 2111 | 1998 | 2755
mined at the beginning of each iteration. This means that number of movies | 72 36 63
the membership of all columns and rows has the same pri- number of viewers | 48 88 65
ority to be changed. There are many algorithms to produce .re51due 0.51 | 047] 0.56
a random ordered sequence. Here we present one algorithm diameter | 1037 | 1822 | 1533

that can produce such a sequence. Assume that these actions
are stored in an array. A series of action swapping is then
performed, where each time two actions are randomly cho-
sen and their positions are swapped. This random swapping
procedure repeats g times. We experiment with various value
of g. We found that the randomness of the list is satisfactory
where g > 2 x (M + N). Thus, we chose g = 2 x (M + N)
to generate a random sequence in this paper.

An action may be performed first at one iteration, and per-
formed very late at another iteration. With this technique, the
problem mentioned above can be avoided since the positive
actions at the end of one iteration may be at a very early posi-
tion of the next iteration. Table 4 in the experimental results
section shows the benefit of this improvement. On average,
the quality of the final clustering (i.e., recall and precision)
can be improved by a wide margin, e.g., 10%.

5.2.2 Weighted Random Order of Actions

In the above random order scheme, each action has the same
probability to be assigned as the first action, the second ac-
tion, and so on, regardless its gain. It means that a positive
action has the same chance to be scheduled as the first ac-
tion as a negative action. Intuitively, it is more desirable to
perform actions with greater positive gain early so that its
effect can be brought into play early. However, if we sort
the actions in descending order of their gains and perform
them accordingly, then we may only find the local optimal
clustering, but not the global optimal clustering. As a re-
sult, we propose a weighted random order scheme to provide
better ordering. Informally, this algorithm is very similar to
the random order algorithm. The only difference is whether
a swap would occur for two randomly picked actions. The
rule of thumb is that if the action in the front has a larger
gain than the one in the back, then the swap is less likely
to occur. Let’s consider two actions a; and a; and a; is in
front of a;. The gain of the two actions are g; and g;, re-
spectively. The probability p(i, j) of swapping of a; and a;
is proportional to g; — g;. Let I be the difference between
the maximum gain and minimum gain of all actions. Then
p(i,7) = 0.5+ %4 When a; has the maximum gain and
a; has the minimum gain, then the probability of swapping
a; and a; is 1. On the other hand, if g; is the minimum gain
and g; is the maximum gain, then p(i,j) = 0. In the case
that g; = g;, p(i,j) = 0.5. Table 4 shows the improve-
ment of the weighted random order algorithm. The weighted
approach produces about 5% improvement in the quality of

9

Table 1. Statistics of Discovered Clusters

the final clustering over the random ordering due to the fact
that more positive actions are performed. In other words, the
priority of membership migration favors the row or column
whose gain is largest. As a result, the weighted ordering can
provide the best final clustering.

6 Experimental Results

We experimented the FLOC algorithm with both synthet-
ically generated and real data sets. The algorithm is imple-
mented with C programming language and is executed on an
IBM AIX machine with a 333 MHz CPU and 128 MB main
memory. In addition, we also implement an alternative algo-
rithm that first transforms the matrix, then applies the sub-
space clustering algorithm on the transformed matrix, and fi-
nally discover d-cluster from the subspace clusters. There are
many subspace clustering algorithms, CLIQUE [1] is chosen
for the implementation.

6.1 Real Data Sets

We experiment the FLOC algorithm with two real data
sets, one is the MovieLens data set and the other is a mi-
croarray of gene expression of a certain type of yeast under
various conditions.

6.1.1 MovieLens Data Set

The MovieLens data set [8] were collected by the GroupLens
Research Project at the University of Minnesota. The data set
consists of 100,000 rates, 943 users and 1682 movies. Each
user has rated at lease 20 movies. A user is considered as an
object while a movie is regarded as an attribute. In the data
set, many entries are empty since a user only rated less than
10% movies on average. We choose oz = 0.6 for this exper-
iment. In this test, we choose the initial number of clusters
as 5, 10, and 20. It takes less than one minute (6 iterations)
to complete the clustering process in all three cases. Table 1
shows the statistics of some discovered clusters. A viewer’s
rating can be regarded as a point in high dimension space. A
0-cluster is a set of such points. The diameter of a cluster is
defined as the diameter of the minimum bounding box for the
cluster.

From this experiment, we found some interesting &-
clusters. Let’s take a closer look on some discovered clus-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th International Conference on Data Engineering (ICDE’02)
1063-6382/02 $17.00 © 2002 IEEE

ters. For example, there exists a cluster whose attributes con-
sists of two types of movie, family movies (e.g., First Wives
Club, Adam Family Values, etc.) and the action movies (e.g.,

Golden Eye, Rumble in the Bronx, etc.). Also the rating Num of Matrix volume

given by the viewers in this cluster is quite different, how- cluster | 100 x 20 | 500 x 50 | 1000 x 50 | 3000 x 100
ever, they share a common phenomenon: the rating of the 10 5 7 7 9
action movies is about 2 points higher than that of the fam- 20 5 8 9 10

ily movies. This cluster can be discovered in the §-cluster 50 6 8 9 10
model. For example, two viewer’s rating for the same four 100 7 9 10 11

movies as (3, 3, 4, 5) and (1, 1, 2, 3). Although the abso-
lute distance between the two rankings are large, i.e., 4, but
the d-cluster model groups them together because they are
coherent. However, this type of coherence can not be dis-
covered by the traditional clustering algorithm because the

. . Num of Matrix volume
ratings are too disparate. cluster | 100 x 20 | 500 x 50 | 1000 x 50 | 3000 x 100
10 12 58 134 335
6.1.2 Micro Array 20 20 98 209 602
50 40 192 399 1170
The yeast micro array contains 2884 genes under 17 condi- 100 78 376 721 1950

tions [13]. This data set is in the form of a matrix. Each
row corresponds to a gene while a column represents a con-
dition under which the gene is developed. Each entry in the
matrix is the logarithm of the ratio of the actual strength of
the gene under the test condition and the expected strength
of the gene. Biologists want to find clusters of genes and
conditions such that the set genes whose expression levels
rise and fall coherently under the set of conditions [3]. For-
tunately, the d-cluster model can serve for this purpose. In
[3], 100 clusters are presented based on the data set in [13].
The average residue of each cluster is 12.54. We also exper-
iment the FLOC algorithm on the same data set to find the
100 clusters. The average residue of clusters discovered by
the FLOC algorithm is 10.34. This means that the FLOC al-
gorithm can find better d-clusters than that presented in [3].
Also the aggregated volume of all clusters discovered by the
FLOC algorithm is almost 20% greater than that in [3] which
means that our §-clusters cover more genes and conditions.
Moreover, the response time of the FLOC algorithm is an or-
der of magnitude less than that of the algorithm described in

[3].
6.2 Synthetic Data

To better understand the FLOC algorithm, several large
data sets are synthetically generated. We investigate in both
the performance and the quality of the FLOC algorithm.

6.2.1 Performance

Data Matrix size

In the first experiment, we study the effect of the data ma-
trix size on the performance of the FLOC and the alternative
algorithms. In this test, we choose the number of clusters that

Table 2. Number of iterations with respect to
the matrix size and number of clusters

Table 3. Response time (sec.) with respect to
the matrix size and number of clusters

we are interested in (K) to 10, 20, 50, and 100, and the aver-
age initial volume of each cluster is 0.05 x N and 0.2 x M
where IV and M are the number of objects and number of at-
tributes, respectively. Table 2 shows the number of iterations
with various matrix size and number of clusters. The matrix
is generated in the following matter. Fifty d-clusters are em-
bedded in each data set. The average volume of a cluster is
(0.04 x N) x (0.1 x M). Itis clear that the number of itera-
tions depends on the size of the input matrix and the number
of clusters. However, the increase of the number of iterations
is at a very slow pace. For the matrix with 300,000 entries,
it only takes 11 iterations to determine 100 d-clusters. This
leads to a very efficient algorithm. Table 3 illustrates the re-
sponse time to discover d-clusters with various data sets. In
the most expensive case, i.e., 100 clusters in a matrix with
3000 x 100 entries, the response time is about 33 minutes.
From Table 3, the response time of the FLOC algorithm is
roughly linearly proportional to the volume of the matrix and
the number of clusters. This coincides with the complexity
analysis of the FLOC algorithm in the previous section.

Initial Cluster Volume

Now we are studying the effects of initial cluster volume
on the number of iterations in the FLOC algorithm. In this
test, we embed 100 clusters with volume 100 in a matrix of
3000 x 100. The expected initial cluster volume is set to
(¢x3000) x (¢x 100). When ¢ = 0.0033, the initial clusters
and the embedded clusters have similar volume. Figure 8(a)
and (b) shows the number of iterations and the response time
of the FLOC algorithm, respectively. The x axis is V"t’i‘/g”"b
where V;,,; and V,,,;, are the average volume of the ‘nitial
cluster and the embedded cluster, respectively. From this fig-

i
Proceedings of the 18th International Conference on Data Engineering (ICDE’02) CSFK/[PUQTER
1063-6382/02 $17.00 © 2002 IEEE SOCIETY

ure, we can see that the number of iterations is minimized if
the initial cluster volume is similar to that of the final clus-
ter volume (i.e., the ratio is 0) because less number of moves
is required, and in turn leads to the efficient response time.
Notice that the two curves in Figure 8(a) and (b) have a very
similar shape because the response time is highly correlated

to the number of iterations.

1

2500
1
2 5 20

Response time (sec.

05 1 s i
(@ Normalized ratio (6) Difference ratio

Figure 8. Effects of the initial cluster volume

In the previous experiment, the embedded clusters have
the similar volume. However, in a real data set, the clusters
usually have different volumes, e.g., one cluster may have 20
entries while another may have 200 entries. We now study
the effects of different cluster volumes on the FLOC algo-
rithm. First, clusters with various volumes are embedded in a
Matrix of 3000 x 100 entries. The volume of embedded clus-
ters follows an Erlang distribution[7]. When the variance
of the embedded clusters increases, the volume of the em-
bedded clusters becomes more different. On the other hand,
the volume becomes more homogeneous with smaller vari-
ance. All clusters have the same volume if the variance is
0. In addition, four sets of initial clusters are also generated.
The volume of a set of initial clusters also follows an Erlang
distribution. The average volume of the embedded clusters
and the initial clusters is the same, 300. Figure 9(a) and (b)
show the number of iterations and the response time of the
FLOC algorithm with various embedded cluster volume dis-
tribution. Each curve in the figure indicates a distinct set of
initial clusters whose volume has the given variance. The
algorithm yields the best performance when the embedded
cluster volume is the same as the initial cluster volume. This
could happen if we can correctly guess the volume of the tar-
geted clusters. However, in many situations, users may not
have a clear idea of the embedded clusters volume. In the
case that the initial cluster volume is different from that of
the embedded clusters, the algorithm that employs the most
divergent initial cluster volumes can tolerate the most dispar-
ity among the embedded cluster volume.

Comparison with Alternative Algorithm

We also compare the FLOC algorithm with the alterna-
tive algorithm (subspace clustering). Figure 10 illustrates the
performance of the alternative algorithm and the FLOC algo-

Number of iterations
Response Time (sec.)
g

@ Variance of Embedded Cluster Volume ® Variance of Embedded Cluster Volume

Figure 9. Effects of the various initial cluster
volume

rithm. (Note that due to the scale, we are only able to plot
part of the curve for the subspace clustering algorithm, up to
100 attributes in the figure.) We fix the number of clusters
to 100 and the number of objects to 3000. When the number
of attributes increases, the response time of the alternative
algorithm increases at a much faster pace than ours.

—— 3 clustering
- alternative algorithm

Average Response Time (sec.)

o 50 100 150 30 400 450 500

Nu?;ber oinAmibS\flues
Figure 10. Comparison with the alternative al-
gorithm

6.2.2 Quality of the FLOC Algorithm

In this section, we analyze the quality of our FLOC algorithm
with respect to the order of actions and the initial volume of
the clusters.

Order of Actions

One of the improvements that we made to the FLOC al-
gorithm is the action reordering at the beginning of each iter-
ation. Table 4 shows the effects of action reordering. There
are three ordering methods: fixed, random, and weighted.
The quality of results are measured by three measurements:
residue, precision, and recall. Let U be the set of entries
in the embedded clusters and V' be the set of entries in the
clusters discovered by our algorithm. The recall of our algo-
rithm is defined as Y0V and the precision is @ We test
the algorithm with various matrix sizes and embedded clus-
ter volumes, and the average results are reported. In this test,

) @
Proceedings of the 18th International Conference on Data Engineering (ICDE’02) CSFK/[PUQTER
1063-6382/02 $17.00 © 2002 IEEE SOCIETY

Table 4. Quality of the FLOC algorithm with re-
spect to action orders

Table 5. Quality of the FLOC algorithm with re-
spect to various embedded cluster volume

the initial volume cluster follows an Erlang distribution with
variance 3. It is clear that the random ordering outperforms
the fixed ordering due to the fact that positive gain actions
will not always be blocked by the preceding negative gain
actions. In addition, the weighted order outperforms the ran-
dom order because the weighted order favors actions with
large gains while still allow enough room for the algorithm
to surpass local optimum.

Initial Cluster Volume

In this experiment, we embedded 100 clusters with vari-
ous volume in a matrix with 3000 x 100 entries. The average
residue and average volume of these clusters are 5 and 300,
respectively. The volume of the embedded clusters follows
an Erlang distribution. Table 5 shows the quality of the our
FLOC algorithm with respect to the variance of the Erlang
distribution. In this test, the weighted order technique is em-
ployed. In the algorithm, the volume of initial clusters also
follows an Erlang distribution with variance 3. The quality of
the clustering (in terms of average residue, recall, and preci-
sion), is similar with respect to the variance of the distribution
of embedded cluster volume. We, thus, can conclude that the
various cluster volume has more impact on the efficiency of
our algorithm rather than the quality of the results because,
even if the initial clusters are far from the optimal ones, our
FLOC algorithm can still “reshape” the clusters into good
quality.

7 Conclusion

In this paper, we proposed a new model called d-cluster to
capture the coherent objects. In many applications, e.g., col-
laborative filtering and bioinformatics, the objects may have
a certain degree of bias which can conceal the true coherence
among objects. To address this issue, we introduce the con-
cept of base to represent potential bias an object or attribute

might hold in a cluster and employ a new measurement —
residue to assess the degradation of the coherency among a
set of objects on a set of attributes. Our model also can ac-

fixed order | random order | weighted order commodate many additional features, e.g., minimum cover-

residue 125 115 T age, maximum overlap, etc.. In addition, due to the com-
recall 075 0.82 0.86 plexity of the problem, we devised a move-based algorithm
precision 077 0.84 0.88 (FLOC) that can efficiently and effectively discover near op-

timal § clusters. This algorithm can also be easily modified to
support the additional feature of our model. Last but not least,
several real and synthetic data sets are employed to show that
the performance of the FLOC algorithm is far superior to al-
ternative algorithms.

variance 0 1 2 3 4 5
residue 109 | 11.1 | 11.0 | 109 | 11.0 | 11.1
recall | 0.87 | 0.87 | 0.86 | 0.87 | 0.87 | 0.86 References
precision | 0.87 | 0.88 | 0.90 | 0.89 | 0.89 | 0.88

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Au-
thomatic subspace clustering of high dimensional data for data
mining applications, Proc. ACM SIGMOD, pp. 94-105, 1998.

[2] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, When is
nearest neighbors meaningful, Proc. ICDT, pp. 217-235, 1999.

[3] Y. Cheng and G. Church, Biclustering of expression data, Proc.
8th ISMB, 2000.

[4] J. Han and M. Kamber. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann Publishers, 2001.

[5] H. V. Jagadish, J. Madar, and R. T. Ng. Semantic compression
and pattern extraction with fascicles. Proc. 25th VLDB, pp. 186-
198, 1999.

[6] L. Kaufmann and P. Rousseuw, Finding groups in data — an
introduction to cluster analysis, Wiley series in Probability and
Mathematical Statistics, 1990.

[7] L. Kleinrock, Queueing Systems, John Wiley & Sons, 1975.

[8] MovieLens Data Set, available at

http:/fwww.cs.umn.edu/Research/GroupLens.

[9] U. Shardanand and P. Maes, Social information filtering: algo-
rithms for authomating “word of mouth”, Proc. ACM SIGCHI,
pp. 210-217, 1995.

[10] N. Slonim and N. Tishby, Document clustering using word
clusters via the information bottleneck, Proc. ACM SIGIR, pp.
208-215, 2000.

[11] W.Wang,J. Yang, and R. Muntz, STING: a statistical informa-
tion grid approach to spatial data mining, Proc. VLDB, pp. 186-
195, 1997.

[12] J. Yang, W. Wang, and R. Muntz, Collaborative web caching
based on proxy affinity, Proc. ACM SIGMETRICS, pp. 78-89,
2000.

[13] Yeast Micro Data Set, available
http://arep.med.harvard.edu/network_discovery, 2000.

at

. @
Proceedings of the 18th International Conference on Data Engineering (ICDE’02) CSFK/[PUQTER
1063-6382/02 $17.00 © 2002 IEEE SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

