
Discovery of Order Preserving Subspace Clusters in Large Data Sets

Tao Tao, Hui Fang, ChengXiang Zhai, and Jiong Yang
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

Email: {taotao,hfang,czhai}@uiuc.edu, jioyang@cs.uiuc.edu

Abstract

In many experimental situations, notably gene microar-
ray experiments, we observe matrix data where every ob-
ject achieves an expression value under every experimental
condition. Subspace clustering on such data is to discover a
set of objects, which display similar patterns of expression
values under a set of conditions. The quality of clustering
results highly depends on the definition of clusters. In this
paper, we propose a novel definition of subspace clusters
based on a combination of two existing constraints – order
constraint and fluctuation constraint. The order constraint
guarantees that the relative ranks of the expression values
under all the conditions in a cluster will be the same for any
object, while the fluctuation constraint restricts the fluctu-
ation of changes of expression values from one condition
to another. Combining them together leads to clusters with
more consistent and coherent patterns of the expression val-
ues. It is computationally challenging to discover such clus-
ters in large data sets since subspace clustering is NP-hard
in general. In order to discover all the qualified clusters
efficiently, we propose a novel deterministic algorithm that
iteratively refines the cluster space through data projection
and cluster space splitting. The experiments on both real
data and synthetic data demonstrate the effectiveness and
efficiency of our algorithm.

1 Introduction

Data clustering is a traditional unsupervised learning
topic. It has been extensively studied for many years [5, 9]
and has many applications. Traditional clustering algo-
rithms rely on a distance measure between different objects
to minimize the intra-cluster distances and maximize the
inter-cluster distances at the same time. A cluster is a col-
lection of objects that share similar properties.

In many experimental situations, notably gene microar-
ray experiments, we observe matrix data where everyobject

achieves anexpression valueunder every experimentalcon-
dition. Unlike traditional clustering problems, clustering
such data is to discover the clusters embedded in the sub-
space of a high dimensional data set. The following infor-
mation retrieval example illustrates the difference. Table 1
shows different people’s interests in different topics. There
are four people and eight topics. Everybody gives a score
for every topic. For example, Jane gives4 to movie. In or-
der to cluster such data, traditional methods use two differ-
ent approaches. One is to treat different topics as different
attributes. In this example, each object has8 attributes, so
they are8-dimensional data. A distance is defined in this
8-dimensional space to measure the similarity between dif-
ferent people. Unfortunately, it is hard to find several people
that share similar interests inall 8 topics. Instead, several
people may share similar interests in sports, but not in oth-
ers. In this example, Jane, Tommy and John all like bas-
ketball more than tennis, and tennis more than football, but
their interests in other topics are not similar. Another com-
mon clustering approach is to consider the triplet: (name,
attribute, score), and convert this table into4 × 8 = 32
triplets. However, this approach can generate “undesirable
shape” cluster in the table. For example, it might group only
(Jane, movie,4) and (John, music,4) into a cluster, which is
not the “rectangle shape” that we want. A cluster should
include several objects , several attributes and all the scores
at the crossing points. In the example above, if a cluster
includes (Jane, movie) and (John, music), it should include
(Jane, music) and (John, movie) as well.

The example above shows how the subspace clustering
problem is different from traditional clustering problems. A
major challenge here is to define appropriate criteria to find
coherent subspace clusters, rather than define an appropri-
ate similarity function as in a traditional clustering method.
A major research question is what is an effective measure to
judge whether a subspace is a qualified cluster. In general,
we considerpattern similarityfor this judgement. Again,
we use the examples in Table 1. We plot these values in
Figure 1. There is no obvious similarity between objects.

movie book video basketball food football tennis music
Jane 4 3 4 6 5 8 7 3

Tommy 3 4 2 5 6 7 6 1
John 6 7 5 8 3 10 9 4
Ali 8 5 1 2 7 9 10 7

Table 1. An information retrieval example.

0

2

4

6

8

10

movie book video basketball food football tennis music

S
co

re
s

Topics

Jane
Tommy

John
Ali

Figure 1. Matrix data.

4

5

6

7

8

9

10

11

basketball football tennis

S
co

re
s

Topics

Jane
Tommy

John

Figure 2. Similar patterns.

However, if we focus on only three attributes: (basketball,
football, and tennis) and three objects: (Jane, Tommy, and
John), and plot them in Figure 2, they look very similar now
with only difference being the shift values. In reality, such
shift values can be caused by personality or other unimpor-
tant experimental factors. Our purpose is to extract these
similar patterns without being distracted by their shift val-
ues.

However, this “similarity” is still a vague concept. In re-
ality, due to noise and other factors, it is almost impossible
that different objects would generate exactly identical pat-
terns with just difference in shift values. Thus our criteria
should allow some small fluctuation in values. Of course, if
the fluctuation is too dramatic, it should not be considered

as noise.
Intuitively, a qualified cluster should satisfy two con-

straints:

1. Similar patterns should share the same relative ranks
in terms of conditions/attributes. For example, if Jane,
Tommy and John are in the same cluster, they should
share the same relative ranks of interests under the con-
ditions in this cluster. In the example above, they all
like basketball more than tennis, and tennis more than
football.

2. The fluctuation should be under control. Jane’s inter-
ests in basketball and football differ by2, while the
difference for Ali is7. They should probably not be
in the same cluster even though they both like football
more than basketball.

Each of these two constraints is studied in previous
works, but none of them has considered both constraints
together. The need for applying both constraints in clusters
can be seen from Figure 3. Figure 3 is a real example ex-
tracted from some yeast microarray data [14]. Using only
the fluctuation constraint will partition the three genes into
a single cluster, or separate gene3 from gene1 and gene2.
However, gene1 is different from gene2 and gene3 in terms
of their pattern shapes. A constraint on their relative or-
der of expression values can avoid this situation effectively.
Also, using only one constraint, existing algorithms gener-
ate a large number of loose clusters making the further anal-
ysis difficult. It is reasonable to use more strict constraints
to reduce the result space. Driven by these observations, we
combine the two constraints together, and develop an effi-
cient algorithm to find clusters based on the two constraints.

The contributions of this paper are 3-fold:

1. We propose a new subspace clustering model by comb-
ing two constraints, which are more appropriate for
many subspace clustering problems. The two con-
straints restrict the pattern trend as well as pattern mag-
nitude. As we can see later in this paper, the objects in
such a cluster show consistent patterns.

2. We propose a novel algorithm with two properties:

(a) It is a top-down depth-first searching algorithm.
It has much smaller memory cost for large data

200

220

240

260

280

300

320

340

1 2 3 4

E
xp

re
ss

io
n

V
al

ue
s

Conditions

Gene 1
Gene 2
Gene 3

Figure 3. Problem without constraint on or-
ders.

sets than a bottom-up algorithm, such as the p-
clustering algorithm [15].

(b) It is a deterministic algorithm, thus avoids
the completeness problem in a stochastic algo-
rithm [7].

3. We use Gene Ontology [1] to evaluate our clustering
results on real yeast microarray data.

The rest of this paper is structured as follows. In sec-
tion 2, we review the related works, which motivate our
clustering definition and algorithm. We define our cluster-
ing criteria in section 3, and describe our algorithm in sec-
tion 4. Redundancy elimination is addressed in section 5.
Experiment results are discussed in section 6. Conclusions
and future work are in section 7.

2 Previous Work

The subspace clustering problem has been studied re-
cently [2, 4, 6, 7, 13]. Cheng and Church [7] proposed
bi-clustering algorithm. They designed themean squared
residue scoreas a measure for a qualified cluster. Suppose
C is an experimental condition set andO is an experimental
object set.C ⊆ C andO ⊆ O are subsets.Yo,c is an ex-
pression value that an objecto achieves under a conditionc.
The mean square residue of(O, C) is defined as :

H(O, C) =
1

|O||C|
∑

o∈O,c∈C

(Yo,c − Yo,C − YO,c + YO,C).

where Yo,C = 1
|C|

∑
c∈C Yo,c, YO,c = 1

|O|
∑

o∈O Yo,c,

YO,C = 1
|O||C|

∑
c∈C,o∈O Yo,c are the row and column

means. Bi-clustering can discover more than one qualified

clusters. However, as a stochastic algorithm, it cannot guar-
antee completeness—not every qualified cluster can be dis-
covered. After discovering a cluster, this algorithm replaces
the values in that cluster by random data. Thus, when the
clusters overlap with each other, the random data ruin the
overlapping part. Unfortunately, such overlapping also of-
ten happens in reality. The p-clustering algorithm [15] is
designed to solve this problem. Unlike bi-clustering, it is
deterministic algorithm. It defines apScoreof a 2 × 2 ma-

trix:

(
a b
c d

)
as:

pScore = |(a− b)− (c− d)|

A sub-matrix is a p-cluster if and only if the pScore of
every2 × 2 matrix in the cluster is less than a predefined
thresholdδ. P-clustering algorithm can discover every clus-
ter in a data set, no matter whether the clusters are overlap-
ping or not. However, it only applies the fluctuation con-
straint; order constraint is not addressed at all. Thus it can-
not avoid the problem in Figure 3.

Ben-Dor et al.’s paper [4] uses only the order constraint
and claims that the conditions permutation for each object
is the same in the clusters. The importance of order con-
straint for microarray data is discussed heavily there. They
also prove that the problem is NP-hard. In that paper, they
discuss two methods to discover clusters: a complete model
and a partial model. Its complete model is simply to enu-
merate every combination, which is unacceptable in real-
ity. Its partial model is a stochastic model. Like original
bi-clustering algorithm, it cannot discover every qualified
cluster, either.

In this paper, we extend the previous works by com-
bining the order constraint and fluctuation constraint. The
problem formulation will be discussed in following sec-
tion.

3 Order Preserving Subspace Clusters

As discussed in the previous section, the order constraint
plays an important role in the subspace clustering problem.
In this section, we formally define this problem of clustering
based on both order constraint and fluctuation constraint.

Let us assume that there are a set ofobjects, O, whose
size is|O|, and a set ofconditionsC, whose size is|C|. Each
object has anexpression valueunder each condition. The
data set, therefore, takes the form of a large matrixYoi,cj

(We writeYoi,cj asYi,j when it does not cause confusion.),
i = 1, ..., |O|, j = 1, ..., |C|, whereoi ∈ O indexes|O|
different objects andcj ∈ C indexes|C| different conditions.
Yi,j is the expression value that objectoi achieves under
conditioncj . Table 2 is such a data set. It has conditions
from c1 to c5 and objects fromo1 to o3. The numbers in

the table are the expression values. For example,Y2,1 = 2
means that objecto2 has expression value2 under condition
c1.

c1 c2 c3 c4 c5

o1 1 3 5 2 4
o2 2 3 1 4 7
o3 3 6 7 4 8

Table 2. Matrix data.

We define aclusteron the matrix data asS = (O, C),
whereO ⊆ O is a subset of objects andC ⊆ C is a sub-
set of conditions. As mentioned in section 1, the objects in
a cluster should share the same relative magnitudes under
different conditions, and their fluctuation should also be un-
der control. Formally, different conditions and objects in a
cluster should satisfy the following two conditions.

Definition 1 (Order constraint) For any pair of objects
o1, o2 (o1, o2 ∈ O) and any pair of conditionsc1, c2

(c1, c2 ∈ C) in a clusterS = (O, C), Yo1,c1 ≥ Yo1,c2 <=>
Yo2,c1 ≥ Yo2,c2

Example 1 In table 2,({o1, o2}, {c1, c2}) satisfies the or-
der constraint. However,({o1, o2}, {c1, c3}) does not be-
causeY1,1 < Y1,3 butY2,1 > Y2,3.

Definition 2 (Fluctuation constraint) For any pair of ob-
jectso1, o2 and any pair of conditionsc1, c2 in a clusterS:
|(Yo1,c1 −Yo1,c2)− (Yo2,c1 −Yo2,c2)| < δ, whereδ is a pre-
defined positive threshold. Intuitively, this constraint means
that the change of values on the two conditions between two
objects is confined byδ. This constraint is precisely the
pScore defined in [15].

Example 2 In table 2, supposeδ = 1. ({o1, o2}, {c1, c2})
is qualified. However,({o1, o2}, {c1, c5}) is not qualified
because(Y1,1 − Y1,5)− (Y2,1 − Y2,5) = 2 > δ.

Note that both order constraint and fluctuation constraint
have anti-monotonic property [11],i.e. if a set satisfies a
constraint, all its subsets satisfy that constraints as well. We
will see that this property helps us avoid re-checking con-
straints after a big table is split into small tables.

We call anS = (O, C) order preserving cluster, or just
order cluster for simplification, if and only if it satisfies
both constraints above.

In general, order clusters can be discovered by enumerat-
ing all possible combinations and checking the constraints
on them one by one. However, it is too expensive to be
practical. In the next section, we will develop a novel algo-
rithm to prune the searching space in order to improve the
efficiency.

4 Order Clustering Algorithm

Similar to the p-clustering algorithm, our approach is de-
terministic. We can find all clusters satisfying both order
constraint and fluctuation constraint.

In our algorithm, we use an operation calledprojec-
tion [8, 12] to enforce the order constraint. We enumer-
ate every condition to project the table into a new suffix
table. In each row of the new table, there are only the con-
ditions whose expression values are larger than or equal to
that of the current projected condition. This projection can
be done recursively. During each projection, some objects
are removed because the current condition is not in their
rows (They are deleted during previous projections). We
will show that the clusters, including the conditions on the
projection path and the objects left in the suffix table, sat-
isfy the order constraint. Projection is used to guarantee
the order constraint. The details will be addressed in sec-
tion 4.1. Projection is an efficient operation to shrink the
table size and reduce its search space because it removes
some objects from the table each time. After each projec-
tion, we can check its fluctuation constraint. Usually, not
all entries in the table can satisfy it. A large table there-
fore splits into several smaller tables. Each table is a sub-
set(sub cluster) satisfying the fluctuation constraint. Since
they are subsets, they satisfy the order constraint as well
due to the anti-monotonic property of our constraints. The
splitting operation reduces the searching space more, and
improves the algorithm’s efficiency. This part of algorithm
is calledsplittingand can be found in section 4.2. The main
algorithm outline and a complete example are shown in sec-
tion 4.3.

4.1 Projection

As mentioned in section 3, order clusters need to satisfy
two constraints. In this section, we discuss how to enforce
the first one—order constraint.

In the previous section, like fluctuation constraint, order
constraint is defined on a pair of conditions,i.e. it is de-
fined on every2× 2 matrix. Thus, the order here looks like
a partial order, which only requires the order on a part of
conditions. However, with careful observation, we find this
is, in fact, a complete order. The order constraint is to en-
force a global order on all conditions. Formally, we have
the following lemma.

Lemma 1 Given a clusterS = (O, C), where O =
{o1, ..., o|O|} is an object set andC = {c1, ..., c|C|} is a
condition set, it satisfies the order constraint if and only if
for every objectoi, the expression values under all condi-
tionscj ∈ C have the same order of ranks. In other words,
if an objecto1’s expression values have the ascending or-

der ci1 , ci2 , ..., ci|C| , all other objects inO should have the
same ascending orders.

The correctness of this lemma is easy to see. An example
would be sufficient to show why the lemma is correct.

Example 3 In table 2, let us see({o1, o2, o3}, {c1, c2, c5}).
We extract this3× 3 matrix from our data set:

1, 3, 4
2, 3, 7
3, 6, 8

.
Clearly, every2×2 matrix satisfies the order constraint.

It is also easy to verify that for all objects (o1, o2, and
o3), the ascending order of ranks of expression values is
(c1, c2, c5).

This lemma inspires a new point of view to enforce the
order constraint. To find a cluster, satisfying the order con-
straint, is equivalent to finding a set of objects and a set
of conditions, in which each object has the same order of
ranks under all the conditions. In order to discuss it eas-
ily, we convert our original data format to the transactional
database format. Each object is a tuple including|C| data
pairs. A data pair includes the condition name and its ex-
pression value. For example, we convert Table 2 into Ta-
ble 3. In the original table,Y1,1 = 1, the pair(c1, 1) is put
into the row ofo1. We now call a row following an object a
tuple.

o1 (c1, 1) (c2, 3) (c3, 5) (c4, 2) (c5, 4)
o2 (c1, 2) (c2, 3) (c3, 1) (c4, 4) (c5, 7)
o3 (c1, 3) (c2, 6) (c3, 7) (c4, 4) (c5, 8)

Table 3. Sorted data.

Based on the new data format, we define the following
concepts.

Definition 3 (ci-suffix) Given a tuple S =
{(c1, Yc1), (c2, Yc2), ..., (cn, Ycn)}, a ci-suffix is a subset
Sci (Sci ⊆ S), which includes(cj , Ycj) ((cj , Ycj) ∈ S) if
and only ifYcj ≥ Yci . The reason that we call it “suffix”
is that theci-suffix includes all the pairs behind(ci, Yci) if
we sort them in an ascending order in terms of expression
values. Ifci has the largest expression value withinS, the
ci-suffix isφ. If ci is not inS, its suffix does not exist.

Note thatφ is different from “not existing”;φ means that
the suffix does not include any pair. However,ci itself is in
the original tuple. Thus, during our projection algorithm,
we keep objecto in the new table if itsci-suffix is φ, but
remove it if itsci-suffix does not exist. Since our clusters
include all conditions on the projection path, even if aci-
suffix isφ, its projection path includesci already.

Example 4 In Table 3, the c2-suffix of object o1 is
{(c3, 5), (c5, 4)}.
Definition 4 (ci-suffix table) Given a data set (a table), for
each object in this table, if itsci-suffix set exists, we keep
its ci-suffix in the new table. We call the new tableci-suffix
table. We call the operation to obtain theci-suffix table
projection.

Example 5 Thec2-suffix table of Table 3 is

o1 (c3, 5), (c5, 4)
o2 (c4, 4), (c5, 7)
o3 (c3, 7), (c5, 8)

.
In each line, it has the object name and itsc2-suffix. Be-

causec2 appears in all tuples in original table, every object
has itsc2-suffix. Therefore, thec2-suffix table includes all
objects.

Definition 5 (Path suffix table) Given a table and a se-
quence of conditionsSC = ci1 , ci2 , ..., cij in order, a path
suffix table, or just suffix table for simplification, is obtained
by projectingcik

(1 ≤ k ≤ j) to the table iteratively. We
call SC a projection condition path. For instance, if the
original table isT , we projectci1 to getci1 -suffix tableT1,
then projectci2 on T1 to getci1 , ci2 -suffix tableT2. Itera-
tively, everycik

is projected in order, we can then get the
SC-suffix table. Aci-suffix table is a special case of suffix
tables because its condition path includes only one single
conditionci.

Example 6 In order to obtain the(c2, c3) suffix table of Ta-
ble 3, we projectc2 on the original table to get thec2-suffix
table, and then projectc3 on thec2-suffix table to obtain the
(c2, c3) suffix table. The(c2, c3) suffix table is

o1 (c5, 4)
o3 (c5, 8)

.
Note thato2 does no longer exist in this table becausec3

is not in the tuple ofo2 in c2-suffix table.

Based on Lamma 1, to find a cluster that includes a set
of conditionsSC in order, is equivalent to finding theSC
suffix table, which includes all the conditions inSC and all
objects appearing in theSC suffix table.

In our implementation, in order to find the suffix table
easily, we first sort the expression values of all objects. We
can then use binary search to locateci, and finally gener-
ate its suffix set by copying all the items behindci and the
items beforeci but having the same expression value asci.
The copying operation could be virtual and not necessarily
implemented really. Instead, we can use a pointer to record
current projection position.

Example 7 We sort the data in each tuple of Table 3 based
on its expression values, and obtain

o1 (c1, 1), (c4, 2), (c2, 3), (c5, 4), (c3, 5)
o2 (c3, 1), (c1, 2), (c2, 3), (c4, 4), (c5, 7)
o3 (c1, 3), (c4, 4), (c2, 6), (c3, 7), (c5, 8)

.
If we want to obtainc2-suffix ofo1, we check the expres-

sion value ofc2 (It is 3.), do binary search to locate the
position (c2, 3), and then add(c5, 4) and (c3, 5) into the
new table. Because2 < 3, we do not include(c4, 2). By
the same method, we can get thec2-suffix tuple for every
condition and get thec2-suffix table correspondingly.

It is worthwhile to mention that the projection operation
enumerates all possible projection paths in fact. For exam-
ple, one path could bec1, c2, while another path could be
c2, c1. In general, different paths result in different suffix
tables, which include different objects, but in some special
cases, they do cause redundancy. This problem will be ad-
dressed in section 5.

4.2 Splitting

The projection operation can enforce the order con-
straint, but cannot guarantee fluctuation constraint by itself.
In this section, we develop an operation calledsplitting to
prune the tentative search space more and incorporate fluc-
tuation constraint checking.

As we discussed before, each suffix table is a set that
satisfies order constraint. In order to enforce the fluctuation
constraint, we check it after each projection. This will cause
one table to split into several small tables, which all satisfy
both constraints. We call such a table acondensed suffix
table.

Condensed suffix tables can be obtained from suffix ta-
bles in the following way. Given a projection pathSC =
ci1 , ci2 , ..., cij and one of its condensedSC-suffix tablesT ,

we append a new conditioncij+1 to SC. DenoteŜC =
ci1 , ci2 , ..., cij , cij+1 . After the projection operation onT ,
we get aŜC-suffix table. Since this table comes from
a condensedSC-suffix table, the anti-monotonic property
of our constraints ensures that its fluctuation constraint on
all conditions inSC is automatically satisfied. We only
need to check the fluctuation constraints betweencij+1 and
cik

(1 ≤ k ≤ j). In reality, we iteratively check the con-
straint from (cij+1 andci1) to (cij+1 andcij). After each
checking, the table splits into several small tables. The fol-
lowing procedure of checking will be iteratively applied to
each small table. In our implementation, we use sorting
to make this checking easier. Assume we want to check
the fluctuation constraint betweencij+1 andci1 . We would
compute all the differences between columncij+1 andci1 .

After sorting them, we move a sliding window of sizeδ
from the smallest value to the largest value. All objects
falling into the same window would satisfy the fluctuation
constraint. We use the following example to illustrate the
operation.

Example 8 The original table is

o1 (c1, 1), (c2, 2), (c3, 3), (c4, 5)
o2 (c1, 2), (c2, 2), (c3, 4), (c4, 7)
o3 (c1, 3), (c2, 4), (c3, 8), (c4, 9)
o4 (c1, 3), (c2, 3), (c3, 6), (c4, 8)

.
Assumeδ = 1. The condensed(c1, c2)-suffix table is

o1 (c3, 3), (c4, 5)
o2 (c3, 4), (c4, 7)
o3 (c3, 8), (c4, 9)

.
After extending the path to(c1, c2, c3), its suffix table be-

comes

o1 (c4, 5)
o2 (c4, 7)
o3 (c4, 9)
o4 (c4, 8)

.
We then compute the difference betweenc3 andc1 (c3 −

c1). They are (o1:2, o2:2, o3:5, o4:3). Sorting them, we get
(o1:2, o2:2, o4:3, o3:5). We move a size1 (δ = 1) sliding
window, and generate (o1:2, o2:2, o4:3) and (o3:5). Thus,
we have two tables:

o1 (c4, 5)
o2 (c4, 7)
o4 (c4, 8)

and
o3 (c4, 9)

.
We use the same operation based on the differences be-

tweenc3 and c2 (c3 − c2) on the two tables respectively.
It is easy to check we will get three table finally:{o1, o2},
{o2, o4}, and{o3}. If we require that the size of desired
clusters should be of at least2 objects, table{o3} can be
dropped.

4.3 The Main Algorithm

Figure 4 outlines the main routine of the algorithm. It re-
ceivesY as input matrix data, andδ is the threshold for the
fluctuation constraint.nc andnr are the minimal columns

Require: Data Y , FluctuationThreshold δ, ColumThreshold nc,
RowThresholdnr

1: /*Sort every column and get new array*/
2: SORTCOLUMN(Y)
3: for i = 1 to |C| do
4: conditionPath = (i)
5: T = i-suffix table ofY
6: for j = 1 to |C| do
7: if j 6= i then
8: /*Iteratively Project the data for every condition*/
9: Projection(T , j, conditionPath δ, nc, nr)

10: Removej from conditionPath
11: end if
12: end for
13: end for

Figure 4. Algorithm PatternClustering.

and rows for a final cluster. A qualified cluster needs to sat-
isfy both constraints and its size should be overnc andnr
as well. The algorithm sorts the table first. It then projects
every condition iteratively.conditionPath stores the con-
ditions in the projection path. Since the first level projection
will not lead to splitting operation, we separate it from oth-
ers.

Projection is a recursive routine. It is outlined in Fig-
ure 5. Its parameters include current suffix tableY , current
projection conditioncc, condition pathpp and three other
parameters:δ, nc andnr. It follows three steps. First, it re-
ceives the current conditioncc and data set, and projects the
data set to obtain thecc-suffix table ofY . Second, it obtains
the differences of the expression values between current
condition and previous conditions, and invokes the splitting
routine to partition the suffix table into several small tables.
Since it is easy to understand, we do not show the pseudo
code for the splitting operation. The splitting routine returns
a list of condensed tables. Finally, for each condensed table,
if it has not enough objects or conditions to satisfy thenc or
rc parameters, we drop the table. Otherwise, it invokes the
projectionroutine recursively.

Figure 6 is a complete example. Assume thatδ = 1,
nc = 2, nr = 2. The original data is on the top of the fig-
ure. It is projected iteratively fromc1 to c5. Only thec1 pro-
jection path is shown. Since thec1-suffix table has onlyc1

in the projection path, it is not necessary to check the fluc-
tuation constraint, which requires two conditions as least.
The table is projected iteratively again. Since every condi-
tion appears only once in a tuple, we do not need to project
c1 again. Enumeration is fromc2 now. The(c1, c2) suf-
fix table still includes all objects. The fluctuation constraint
on c1, c2 needs to be checked now. We list the difference
c2 − c1 following every tuple. Notec2 − c1 is always non-
negative. Actually, the new projected condition always has
expression values larger than or equal to those of the con-
ditions projected before. This nonnegative property exists
across the whole algorithm. The difference is(2, 1, 3, 2).

Require: SuffixTableY , CurrentConditioncc, ConditionPathpp Fluctu-
ationThresholdδ, ColumThresholdnc, RowThresholdnr

1: appendcc at the end ofpp
2: /* T is new suffix table */
3: T = NULL
4: /*Projection to get cc-suffix table of Y */
5: for i = 1 to |O| do
6: if cc in tuple ofoi then
7: Obtaincc−suffix: S of oi

8: if left items inS + length ofpp > nc then
9: /*Otherwise, it cannot satisfy nc threshold in the future */

10: addS to new suffix tableT
11: end if
12: end if
13: end for
14: obtain difference tableD betweencc and each of previous conditions.
15: Ts = Split(T ,D,δ,nr) /*Ts is splitting table list*/
16: for Each tableT in Ts and each conditioncn(cn * pp) do
17: Projection(T ,cn,pp,δ,nc,nr)
18: end for
19: Removecc from pp

Figure 5. Algorithm Projection.

We sort the order of objects based on these difference val-
ues. Thus, from top to bottom, they are(o2, o1, o4, o3). A
size = 1 sliding window cuts the table into two smaller ta-
bles, shown on the bottom. Both tables have2 conditions in
the path and3 objects in the table. They are both qualified
order clusters. We continue processing these tables recur-
sively.

Algorithm Complexity: Given a current tableT of m
columns andn rows, a projection operation needs to locate
the current condition, which takesO(log m) time. The lo-
cation operation is applied to every object. So projection
operation has complexityO(n log m). A splitting opera-
tion needs to sort the rows, which takesO(n log n) time. A
sliding window operation costs usO(n) time. So, we have
O(n log n) time complexity for each splitting operation. As
the algorithm continues, bothm and n decrease quickly.
The algorithm, therefore, achieves good efficiency. How-
ever, due to the essential NP-hard property, the worse-case
time complexity for the whole algorithm is exponential.

5 Redundancy Elimination

In general, the projection and splitting operations lead to
different condense suffix tables on different paths. How-
ever, in some special situations, the tables in different
branches are the same. In this section, we discuss the is-
sue of redundancy.

There are two situations that redundancy can be gener-
ated. One is due to the identical expression values under
different conditions for the same object. In the projection
operation to obtain theci-suffix, we find the current pro-
jected condition first and then add the pairsbeforecurrent
pair if they share identical expression values. Redundancy

o1: (c1,1) (c4,2) (c2,3) (c5,4) (c3,5)
o2: (c3,1) (c1,2) (c2,3) (c4,4) (c5,7)
o3: (c1,3) (c4,4) (c2,6) (c3,7) (c5,8)
o4: (c3,1) (c4,3) (c1,5) (c2,7) (c5,8)

o1: (c4,2) (c2,3) (c5,4) (c3,5)
o2: (c2,3) (c4,4) (c5,7)
o3: (c4,4) (c2,6) (c3,7) (c5,8)
o4: (c2,7) (c5,8)

c1 c2 …

o2: (c4,4) (c5,7) 1
o1: (c5,4) (c3,5) 2
o4: (c5,8) 2
o3: (c3,7) (c5,8) 3

c2

Projection

Projection c3 …

o2: (c4,4) (c5,7)
o1: (c5,4) (c3,5)
o4: (c5,8)

o1: (c5,4) (c3,5)
o4: (c5,8)
o3: (c3,7) (c5,8)

Splitting

({o1,o2,o3,o4}, {c1})
satisfies the order
constraint

({o1,o2,o3,o4}, {c1,c2})
satisfies the order
constraint

Projection ({o1,o2,o4}, {c1,c2})
satisfies both
constraints

({o1,o3,o4}, {c1,c2})
satisfies both
constraint

Projection

c2 - c1

Figure 6. A complete example.

could be generated here.

Example 9

o1 (c1, 2), (c2, 2), (c3, 3)
o2 (c1, 3), (c2, 3), (c3, 5)

In this table, the (c1, c2) projection path and
(c2, c1) projection path both lead to the same cluster
({o1, o2}, {c1, c2}). Their suffix table is also identical. It
is

o1 (c3, 3)
o2 (c3, 5)

.

There is another kind of redundancy. It is generated by
splitting operation. When the fluctuation constraint is en-
forced, a single big table splits into several small tables.
These tables could be overlapping, but not identical. How-
ever, when the algorithm continues, these tables could split
again. When the overlapping parts are separated as a con-
densed table, redundancy could be generated. For example,

Example 10 Assume the original table is:

o1 (c1, 1), (c2, 2), (c3, 3)
o2 (c1, 1), (c2, 2), (c3, 3)
o3 (c1, 1), (c2, 3), (c3, 5)
o4 (c1, 1), (c2, 3), (c3, 5)
o5 (c1, 1), (c2, 4), (c3, 7)
o6 (c1, 1), (c2, 4), (c3, 7)

andδ = 1. After checking the fluctuation constraint on
c1 and c2, the table splits into two small tables: (o1, o2,
o3, o4) and (o3, o4, o5, o6). The algorithm then continues
projectingc3. It is easy to check that the first table splits
into two tables: (o1, o2) and (o3, o4). The second table also
splits into two tables: (o3, o4) and (o5, o6). Clearly, (o3, o4)
is redundant.

A general redundancy removal method is to do post-
processing for the final results. After generating all quali-
fied clusters, a hash table is built. The hash key is the condi-
tions and the objects. Whenever there is a hash confliction,
a redundant result is detected and can be dropped.

However, it is desirable to detect and avoid the redun-
dancy in the precess of clustering, since this would further
improve the efficiency. We now show that this is possible
for the first kind of redundancy.

The first kind of redundancy can be eliminated in the
middle of processing. Based on the analysis above, identi-
cal expression values are the primary reason why such kind
of redundancy is generated. Intuitively, if all objects in the
suffix table have identical expression values under two con-
ditions on the path, it means that the two conditions are to-
tally exchangeable and some possible redundancy could be
generated. After we change the order of the two conditions
to make up another path, all objects in the original table will
appear in the new table. Formally, we have the following
lemma.

Lemma 2 Assume a projection path isSC and its suffix
table isT . If there exist two conditions inSC: ci1 andci2 ,
such thatYo,ci1

= Yo,ci2
for every objecto in T . We claim

there should exist another projection patĥSC and its suffix
table T̂ such thatŜC includes exactly the same conditions
asSC (different order) andT̂ includes every object ofT as
well as its suffix tuples.

Proof AssumeSC = αci1βci2 , whereα and β are se-
quences of conditions.SC-suffix table isT . We setŜC =
αci2βci1 . Its suffix table isT̂ . For any objecto in table
T , we knowYo,ci1

= Yo,ci2
. We assume the suffix tuple

of objecto is S. BecauseS exists in tableT , it follows
that for every conditionci ∈ β. Yo,ci = Yo,ci1

= Yo,ci2
.

Therefore, no matter what the order ofci, ci1 , ci2 is, its suf-
fix tuple should be the same asS because we always put

identical values into the new suffix table. The suffix tuple of
objecto underŜC is S. Thus it should exist in tablêT .

Lemma 2 gives us a condition to detect redundancy. If
the situation in Lemma 2 occurs, we know there is another
path includingci2 andci1 ; we only need keep one of them.
In our implementation, ifi1 is smaller thani2, we keep it.
Otherwise, ifi1 is larger thani2, we drop it. For example,
in example 9, we keep the path(c1, c2) and its suffix table
and drop the path(c2, c1).

It is unclear to cope with the second type of redundancy
efficiently. This would be an interesting topic for further
research.

6 Experiments

We tested our algorithm with both synthetic and real data
sets. In section 6.1, we evaluate the quality of our clustering
algorithm results. In section 6.2, we test the scalability and
parameter sensitivity of our algorithm. Throughout this sec-
tion, we useN andM to represent, respectively, the num-
ber of rows and number of columns in a data set.nr is the
minimal number of rows for a qualified order cluster, while
nc is the minimal number of columns for a qualified order
cluster.δ is the threshold for the fluctuation constraint.

6.1 Quality of Clusters

We evaluate the quality of our clustering results with
a real data set—a gene expression data. This yeast mi-
croarray data set contains the expression levels of2884
genes(objects) under17 conditions [7, 14]. The data is orga-
nized into a matrix format. Each row corresponds to a gene
and each column corresponds to a condition. Each entry
represents a relative abundance of mRNA of a gene under a
specific condition. The data range is from0 to 600.

We use Gene Ontology(GO) to evaluate the quality of
discovered clusters. Gene Ontology is a project to provide
controlled vocabulary(GO terms) for describing the molec-
ular function and cellular location of gene products and the
biological process in which they are involved [1]. In gen-
eral, Gene Ontology has a tree structure. There are three
GO trees: molecular function, cellular component, and bi-
ological process. They are used by multiple databases to
annotate gene products, so that this common vocabulary
can be used to compare gene products across species. The
tree structure represents the relationship between different
terms. A parent represents a general function while its chil-
dren have more specific ones. Since genes can be mapped
to GO terms, it provides a valid measure for the goodness
of our clusters.

To see if the combination of the fluctuation constraint
and order constraint helps us to discover more coherent

clusters, we compare our algorithm with the p-clustering
algorithm, which uses only the fluctuation constraint. We
setδ = 10, nc = 4 andnr = 45. We get8 clusters for both
p-clustering algorithm and our order clustering algorithm.
6 out of the8 clusters are identical for both p-clustering
and order clustering, so we focus on comparing the quality
of the two pairs of different clusters. We map all genes in a
cluster to GO terms whenever it is possible and ignore those
to which there are no corresponding GO terms. After map-
ping, we find a nearest common ancestor in the GO tree for
all of them. The depth of the nearest common ancestor from
the tree root is an indicator for the goodness of a cluster; the
deeper the nearest common ancestor is, the better the cluster
is.

Of the two pairs of clusters left, one pair is identical after
mapping to GO terms. So we focus on the other. For this
pair, after mapping to GO tree, the p-cluster includes4 con-
ditions and35 genes while the order cluster includes4 con-
ditions and31 genes—4 genes fewer than the p-cluster. We
use all three GO trees (molecular function, cellular compo-
nent, and biological process) to compare their quality. The
depth of the nearest common ancestors are listed in Table 4.

function component process
order cluster 11 1 11

p cluster 11 1 1

Table 4. The depth of nearest common ances-
tor of all genes in a cluster.

The component tree is a small tree under development. It
is reasonable to see the nearest common ancestor is the root.
In the function tree, both of them have depth11. However,
in the process tree, there is large difference between the or-
dering clustering result and the p-clustering result. We fur-
ther figure out the exact positions of these genes, and show
them in Figure 7. We can see the4 genes are separated from
others in the second level. It is clear that the order cluster-
ing algorithm indeed remove some unrelated genes from the
p-clustering result.

6.2 Algorithm Performance

In order to evaluate the performance of our clustering
algorithm, we use several synthetic data sets. We first ran-
domly generate values ranging from0 to 600 with uniform
sampling probability, and then embed a fixed number of
clusters in the raw data to ensure that there exist enough
qualified clusters in the synthetic data sets. The algorithm is
implemented using C++ on a Linux machine with a2.4GHz
CPU and1G memory.

Biology Process

Meiotic Spindle
Assembly

…
…

…

…Genes: 1238, 1296,
1424, 1512

Level:11

Other Genes

Level:2

…
…

Figure 7. Evaluation of a cluster using a GO
tree.

0

100

200

300

400

500

600

700

2000 3000 4000 5000 6000 7000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

se
c)

Dataset Size(# of objects)

#Conditions = 30

Figure 8. Response time varying # of rows in
data sets.

We first evaluate the scalability on both columns and
rows. The running time is the average time obtained from
10 synthetic data sets. The results are shown in Figure 8 and
Figure 9.

In Figure 8, we fix the number of columns of synthetic
data to30, and change the number of rows from2000 to
7000. We embed30 clusters in each data set. The minimal
number of columns of embedded clusters is6, while the
minimal number of rows is0.01N , whereN is the total
number of rows in the data set. We setδ = 6. The plot
shows the superlinear property.

Figure 9 is designed to test the scalability of the number
of columns. We fix the number of rows to3000, and change
the number of columns from20 to 70. Similarly, we embed
30 clusters in each data set. The minimal number of rows of
embedded clusters is30, and minimal number of columns

0

500

1000

1500

2000

2500

20 25 30 35 40 45 50 55 60 65 70

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

se
c)

Dataset Size(# of Conditions)

#Rows = 3000

Figure 9. Response time varying # of columns
in data sets.

0

10

20

30

40

50

25 30 35 40 45

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

se
c)

Minimum Objects in Clusters

nc = 4
nc = 5
nc = 6
nc = 7

Figure 10. Response time varying different nr
and nc.

is 0.2M , whereM is the number of columns. We again set
δ = 6.

Obviously, the row scalability is better than column scal-
ability. Fortunately, in reality, the number of rows is usually
much larger than the number of columns. Taking gene mi-
croarray for example, a single focus experiment has very
few columns. The yeast microarray data set in our experi-
ment has only17 columns. Even for an experiment with a
large heterogeneous condition set, the number of columns
could only be up to several hundreds [13]. On the other
hand, the number of rows can be up to10 thousand or even
more. Our algorithm favors data sets with large number of
rows.

Next, we consider the influence of parameter setting. We
simulate5 data sets. Each of them has3000 rows and30
columns. We embedded30 clusters in each data set. These
clusters have a minimum of40 rows and10 columns. In
Figure 10, there are four curves fornc = 4, 5, 6, 7 respec-
tively. In general, the biggernc is, the faster the program
runs. At the same time, whennr is increasing, the running

0

50

100

150

200

250

25 30 35 40 45

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

se
c)

Minimum Objects in Clusters

delta = 4
delta = 5
delta = 6
delta = 7
delta = 8
delta = 9

Figure 11. Response time varying different nr
and δ.

time is decreasing quickly. There is a dramatic drop afternr
is larger than40, because the clusters, which we embedded
manually, have the size40. There are6 curves in Figure 11,
corresponding to thatδ is changing from4 to 9. Obviously,
δ has a significant impact on the running time. A biggerδ
can reduce the running time substantially.

Finally, we compare the performance of our algorithm
with another baseline algorithm, which is a revised p-
clustering algorithm. Unlike our algorithm, the p-clustering
algorithm has no order constraint and uses a bottom-up ap-
proach. We revise it to incorporate the order constraint, and
keep its bottom-up search property at the same time. We
take this revision as our baseline.

The baseline algorithm starts with clusters containing
only two conditions. Sorting allows it easily find out all
objects, which can be in the same cluster under the fluctu-
ation constraint. An order constraint filtering is applied to
drop any cluster that does not satisfy the order constraint.
After this step, the system generates many small clusters,
which include two conditions and several objects and satisfy
both constraints. Thereafter, the system iteratively com-
bines small clusters to form bigger clusters. It is easy to see
that qualified clusters satisfy Apriori property [3]. A bigger
cluster is qualified only if all its subsets are qualified. In this
way, a lot of small clusters are pruned. Figure 12 shows this
merging process. A cluster, including{c1, c2, c3, c4}, de-
pends on four three-condition sets:{c1, c2, c3}, {c1, c2, c4},
{c1, c3, c4}, {c2, c3, c4}. Each of them depends on three
two-condition sets. Only if all sets in the lower level satisfy
the constraints, would its upper level satisfy it.

Figure 13 is a comparison between the baseline algo-
rithm and our order clustering algorithm. The data sets have
30 columns. The numbers of rows are from2000 to 6000.
We embedded30 clusters, with at least0.01N rows and
6 columns. We setδ = 6. This figure plots the ratio of
the running time of baseline algorithm to our algorithm. It

1c 2c 1c 3c 1c 4c 2c 3c 2c 4c 3c 4c

321 ccc 421 ccc 431 ccc 432 ccc

4321 cccc

Figure 12. Bottom-up Merging.

20

30

40

50

60

70

80

90

100

2000 3000 4000 5000 6000

R
un

ni
g

T
im

e
R

at
io

Data Size(# of objects)

Figure 13. Running time ration of baseline al-
gorithm and order clustering algorithm.

is easy to see that the order clustering is much faster than
baseline algorithm. With the size of data increasing, the
ratio increase as well. Therefore, the order clustering algo-
rithm has much better scalability.

7 Conclusions and future work

As a main contribution, this paper proposes a novel clus-
tering model. Unlike existing works, this model imposes
two constraints — order constraint and fluctuation con-
straint — upon clusters. A combination of both constraints
restricts both the relative order of conditions for objects
and the fluctuation of expression values. It, therefore, re-
duces the result space and obtains more consistent clusters.
Driven by the model, a novel top-down depth-first algorithm
is proposed to exhaustively discover all the clusters. Ex-
periments on both synthetic data and real life data show its
effectiveness and efficiency.

There are several open issues that warrant further inves-
tigation.

First, a strict order constraint is too strong in some appli-
cations. Sometimes, a more “soft” order constraint may be
more effective. For example, instead of requiring all con-
ditions satisfy the order constraint, we can partition them
into several groups. The order constraint can be applied
within each group. Thus, it generates a partial order con-
straint. How to efficiently formulate this problem and make
the group partition flexible is a challenging problem.

Second, redundancy is generated during the algorithm.
This issue is addressed in section 5. Post-processing is an

easy, general method. However, a simple on-the-fly redun-
dancy removal algorithm can improve much the speed. We
have explored it to some extend in this paper. It is still un-
clear how to efficiently detect and remove both types of re-
dundancy elimination.

Third, true clusters can overlap with each other, and
the values in the overlapping part are likely different from
non-overlapping values. If the difference is small, both
p-clustering algorithm and order clustering algorithm can
recognize them. However, if the difference is substantial,
this problem becomes very difficult to cope with. Plaid
model [10] seems to be the only existing work that has han-
dled this situation. Further investigation in this direction is
worthwhile.

References

[1] Gene ontology consortium (2000) gene ontology: tool for
the unification of biology.Nature Genet, pages 25–29.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.
Automatic subspace clustering of high dimensional data for
data mining applications.SIGMOD, pages 94–105, 1998.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules.Proc. 20th Int. Conf. Very Large Data Bases,
VLDB, pages 487–499, 1994.

[4] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering
local structure in gene expression data: The order-preserving
submatrix problem.Proc. RECOMB, pages 49–57, 2002.

[5] P. Berkhin. Survey of clustering data mining techniques.
2002.

[6] C. H. Cheng, A. W.-C. Fu, and Y. Zhang. Entropy-based
subspace clustering for mining numerical data.Knowledge
Discovery and Data Mining, pages 84–93, 1999.

[7] Y. Cheng and G. M. Church. Biclustering of expression data.
Proc. ISMB, pages 93–103, 2000.

[8] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and
M.-C. Hsu. Freespan: Frequent pattern-projected sequential
pattern mining.KDD, 2000.

[9] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A
review. ACM Computing Surveys, 31(3):264–323, 1999.

[10] L. Lazzeroni and A. Owen. Plaid models for gene expression
data.Statistica Sinica, 12:61–86, January 2000.

[11] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent
item sets with convertible constraints.ICDE, pages 433–
442, 2001.

[12] J. Pei, J. Han, B. Mortazavi-Asl, and H. Pinto. Prefixspan:
Mining sequential patterns efficiently by prefix-projected
pattern growth.ICDE, 2001.

[13] A. Tanay, R. Sharan, and R. Shamir. Discovering statisti-
cally significant biclusters in gene expression data.Bioin-
formatics, 18(suppl.1):S136–S144, 2002.

[14] S. Tavazoie, J. D. Hughes, M. J. Campbell, J. C. Raymond,
and G. M. Church. Systematic determinationof genetic net-
work architecture.Nature Genetics, 22:281–285, 1999.

[15] H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by
pattern similarity in large data sets.SIGMOD, 2002.

