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Abstract 

Mining numerical data is a relatively difficult problem in 
data mining. Clustering is one of the techniques. We 
consider a database with numerical attributes, in which 
each transaction is viewed as a multi-dimensional vector. 

By studying the clusters formed by these vectors, we can 
discover certain behaviors hidden in the data. Traditional 

clustering algorithms find clusters in the full space of the 
data sets. This results in high dimensional clusters, which 

are poorly comprehensible to human. One important task 

in this setting is the ability to discover clusters embedded 

in the subspaces of a high-dimensional data set. This 
problem is known as subspace clustering. We follow the 

basic assumptions of previous work CLIQUE. It is found 
that the number of subspaces with clustering is very large, 
and a criterion called the coverage is proposed in CLIQUE 

for the pruning. In addition to coverage, we identify new 
useful criteria for this problem and propose an entropy- 
based algorithm called ENCLUS to handle the criteria. Our 

major contributions are: (1) identify new meaningful criteria 
of high density and correlation of dimensions for goodness 
of clustering in subspaces, (2) introduce the use of entropy 

and provide evidence to support its use, (3) make use of 

two closure properties based on entropy to prune away 
uninteresting subspaces efficiently, (4) propose a mechanism 
to mine non-minimally correlated subspaces which are of 

interest because of strong clustering, (5) experiments are 
carried out to show the effectiveness of the proposed method. 

1 Introduction 

Modern technology provides efficient and low-cost meth- 
ods for data collection. However, raw data is rarely 
of direct benefit for higher level management, decision 
making or more intelligent analysis. Data mining aims 
at the construction of semi-automatic tools for the anal- 
ysis of large data sets. The mining of binary associa- 
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tion rules has been extensively studied in recent years, 
but databases in the real world usually have numer- 
ical attributes in addition to binary attributes. Un- 
fortunately, mining numerical data is a more difficult 
problem and relatively few works have been done on 
this topic. Some previous works include [15, 13, 141. 
Here we attempt to mine numerical data using cluster- 
ing techniques. We consider a database consisting of 
numerical attributes. We can view each transaction of 
this database as a multi-dimensional vector. Clustering 
is to discover homogeneous groups of objects based on 
the values of these vectors. Hence, we can study the 
behaviour of the objects by looking at the shapes and 
locations of clusters. See Figure 1 for an example. 

We learn from statistics that it is possible to find 
correlation among different factors from raw data, but 
we cannot find the direction of implication and it can 
be risky to conclude any causal relationship from raw 
data [16]. Clustering is a method that finds correlations 
while not infering any causal relationship. 

Not all clustering algorithms are suitable for our 
problem. They must satisfy some special requirements 
in order to be useful to us. One important requirement 
is the ability to discover clusters embedded in subspaces 
of high dimensional data. Given a space X with 
dimensions formed from a set of attributes S, a space 
Y with dimensions formed from a subset of S is called 
a subspace of X. Conversely, X will be called a 
superspace of Y. For instance, suppose there are three 
attributes A, B and C. Clusters may exist inside the 
subspace formed by A and B, while C is independent 
of A and B. In such case, C is a noise variable. Since 
high dimensional information is hard to interpret, it is 
more desirable if the clustering algorithm can present 
the cluster in the subspace AB rather than in the full 
space ABC. Real-life databases usually contain many 
attributes so that either there is no proper cluster in 
the full space, or knowing the existence of a cluster in 
the full space is of little use to the user. Therefore, the 
ability to discover embedded clusters is important. This 
problem is called subspace clustering in [2]. 

Data mining by definition deals with huge amount 
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2 Related Work 

There are quite a number of previous works on the clus- 
tering problem by the database research community. 
Some examples are CLARANS [ZO], DBSCAN [12], DB- 
CLASD [24], Incremental DBSCAN [ll], GRIDCLUS 
[23], CURE [17], BIRCH [25], and ScaleKM [4]. None 
of the above algorithms satisfies our most important re- 
quirement - the ability to identify clusters embedded 
in subspaces of high-dimensional data. CLIQUE [2] is 
the only published algorithm we are aware of that satis- 
fies this requirement. Since we follow closely the prob- 
lem setting of CLIQUE, we shall describe it in more 
details. 

First we introduce the target problem and assump- 
tions of CLIQUE [2]. A set of data points and two 
parameters, < and r, are given. We discretize the data 
space S into non-overlapping rectangular units, which 
is obtained by partitioning every dimension into < inter- 
vals of equal length. A unit is dense if the fraction of to- 
tal data points contained in the unit is greater than the 
threshold T. Clusters are unions of connected dense 
units within a subspace. We need to identify the dense 
units in different subspaces. The CLIQUE algorithm 
can be divided into the following three steps: (1) Find 
dense units and identify subspaces containing clusters. 
(2) Identify clusters in the selected subspace. (3) Gen- 
erate minimal description for the clusters in disjunctive 
normal form. 

Although it is theoretically possible to create a 
histogram in all spaces to identify the dense units, this 
method would be computationally infeasible when the 
number of dimensions is large. To reduce the search 
space, a bottom-up algorithm is used that exploits the 
monotonicity of the clustering criterion with respect 
to dimensionality: if a collection of points S is a 
cluster in a k-dimensional space, then S is also part 
of a cluster in any (k - I)-dimensional projections of 
the space. The algorithm is iterative: First find l- 
dimensional dense units by making a pass over the 
data. Having determined (k - 1)-dimensional dense 
units, Dk-1, the candidate k-dimensional units, Cr,, are 
determined using the candidate generation procedures. 
A pass is made over the data to determine those 
candidate units that are dense, Dk. The algorithm 
iterates the above with increasing dimensionality, and 
terminates if no candidates are found. The candidate 
generation procedure is similar to the one adopted in the 
well-known Apriori algorithm [l] for mining association 
rules. 

As the number of dimensions increases, the above 
method may produce a large amount of dense units in 
the subspace and the pruning above may not be effective 
enough. CLIQUE uses a new criteria for the pruning 
of subspace which is based on the coverage. The 
coverage of a subspace is the fraction of the database 

Figure 1: Example of a cluster. 

of data, which are often measured in gigabytes or 
even terabytes. Although some traditional clustering 
algorithms are elegant and accurate, they involve too 
many complicated mathematical operations. These 
methods are shown to handle problem sizes of several 
hundreds to several thousands transactions, which is far 
from sufficient for data mining applications [7, 191. We 
need an algorithm that gives reasonable performance 
even on high dimensionality and large data sets. 

We prefer clustering algorithms that do not assume 
some restrictive shapes for the clusters. Some clustering 
algorithms (e.g. K-means [18, 51, CLARANS [20], 
BIRCH [25] and ScaleKM [4]) assume that the clusters 
are concave in shape. We would adopt a definition of 
cluster that does not have the above limitation. A good 
algorithm should also not make assumptions about the 
distribution of the data and not be sensitive to the 
existence of outliers. It should not require the users 
to specify some parameters on which the users would 
have difficulty to decide. For instance, the K-means 
algorithm requires the user to specify the number of 
clusters, which is often not known to the user. Finally 
there should be a meaningful and effective way to 
convey the resulting clusters to the users for the purpose 
of data mining. 

A solution to the above problem would consist of 
the following-steps: (1) Find the subspaces with good 
clustering. (2) Identify the clusters in the selected 
subspaces. (3) P resent the result to the users. We shall 
focus on Step (1). The rest of this paper is organized as 
follows. In Section 2, we discuss the related work done 
on similar problems. Section 3 points out some new 
criteria for good clustering and explains why they are 
needed. In Section 4, we introduce the entropy-based 
method for locating subspaces with good clustering. In 
Section 5 we discuss how the entropy-based method is 
suitable for the listed criteria. Section 6 describes the 
proposed algorithm. In Section 7, we would look at 
some experimental results. Section 8 is a conclusion. 
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that is covered by the dense units. Subspaces with high 
coverages are selected and those with low coverages are 
pruned away. 

When the subspaces containing clusters are identi- 
fied, the clusters in each subspace are to be determined. 
Recall that clusters are connected dense units. We can 
simply use a depth-first search algorithm [3] to find the 
connected components. The final step is to generate 
minimal cluster descriptions. The description is given 
in form of DNF expression, e.g. ((30 < age < 50) A (4 
2 salary < 8)) V ((40 5 age < 60) A (2 < salary < 6)). 
This is equivalent to a union of some hyper-rectangular 
regions. The regions can be found by a greedy growth 
method. We start with any dense unit and greedily 
grow a maximal region in each dimension. The pro- 
cess is repeated until the union of all regions cover the 
whole cluster. Then we need to remove the redundant 
regions. This is achieved by repeatedly removing the 
smallest redundant region until no maximal region can 
be removed. 

3 Criteria of Subspace Clustering 

There are many factors to be considered for a cluster- 
ing algorithm in data mining. We mentioned some of 
these in the introduction: efficiency, shape of clusters, 
sensitivity to outliers, and the requirements of param- 
eters. A clustering algorithm will assume a certain set 
of criteria for a cluster, as well as criteria for what is a 
good clustering given a set of data. 

In addition to the clustering problem, we would like 
to handle the problem of determining subspaces that 
have “good clustering”. We therefore need addition 
criteria for determining which of two clustering for two 
different sets of data is better. In the following we 
introduce a number of such criteria. 

3.1 Criterion of High Coverage 

The first criterion that we use for goodness of clustering 
is the coverage as defined for CLIQUE. This is 
a reasonable criterion since a subspace with more 
distinguished clusters will have high coverage, whereas 
a subspace with close to random data distribution will 
have low coverage. 

3.2 Criterion of high density 

Other than coverage, we believe that other criteria are 
also needed. The first criterion that we add is the 
criterion of high density. 

Suppose we use only the coverage for measurement 
of goodness. A problem case is illustrated in Figure 2. 
It shows the probability density function of a random 
variable X. The value of coverage can be represented 
by the area of the shade portion since coverage is the 
fraction of the database that is covered by the dense 
units. In this example, both cases (a) and (b) have 

(a) (b) 

Figure 2: Example of two data sets with equal coverage 
but different densities. The area of the shaded portion 
is the value of coverage. 

I j 
Xl x “2 

Figure 3: Problem with independent dimensions 

the same coverage. However, this contradicts with our 
intuition, because the points in case (b) is more closely 
packed and more qualified as a cluster. 

3.3 Correlation of dimensions 

The third criterion that we consider is related to 
the correlation of dimensions. We note that finding 
subspaces with good clustering may not always be 
helpful, we also want the dimensions of the subspace to 
be correlated. The reason is that although a subspace 
may contain clusters, this may not be interesting to us 
if the dimensions are independent to each other. For 
example, Figure 3 shows such a scenario in 2D. In this 
example, since all the data points projected on X lies 
on [zl, ~2) and projected on Y lies on [yl, y2), the data 
objects must be distributed at [xl, ~2) x [yl, y2) in the 
joint space. If the points are uniformly distributed at 
[cl, ~2) x [yl, y2), although there is a cluster, looking at 
the joint space gives us no more knowledge than looking 
at each of the dimensions independently. 

Hence, we also require the dimensions of the subspace 
to be correlated. Note that when we say correlated 
here, we mean the dimensions are not completely 
independent but it need not exist a very strong 
correlation. 

Having identified a number of criteria for clustering, 
we shall find a metric that can measure all the criteria 
simultaneously. A subspace which has good clustering 
by the criteria will have high score in this metric. Then 
we can set a threshold on this measurement and find 
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Figure 4: Area of Cluster vs Entropy 

subspaces which exceed this threshold. The metric that 
we use is the entropy, which we shall discuss in the next 
section. 

4 Entropy-based Method 

We propose to use an entropy-based method. The 
method is motivated by the fact that a subspace with 
clusters typically has lower entropy than a subspace 
without clusters. Entropy is a measure of uncertainty of 
a random variable. Let X be a discrete random variable, 
X be the set of possible outcomes of X and p(z) be 
the probability mass function of the random variable 
X. The entropy H(X) is defined by the following 
expression [9]. 

H(X) = - c P(X) l%P(X) 
XEX 

If the base of log is 2, the unit for entropy is bit. When 
there are more than one variable, we can calculate the 
joint entropy to measure their uncertainty. 

H(Xl,...,Xn) 

= - c . . . c p(21,...,2n)logP(21,...,~~) 

ZlEXl ZnEK, 

When the probability is uniformly distributed, we are 
most uncertain about the outcome. Entropy is the 
highest in this case. On the other hand, when the data 
points have a highly skewed probability mass function, 
we know that the variable is likely to fall within a small 
set of outcomes so the uncertainty and the entropy are 
low. 

4.1 Calculation of Entropy 

Similar to CLIQUE, we divide each dimension into 
intervals of equal length A, so the high-dimensional 
space is partitioned to form a grid. Suppose the data set 
is scanned once to count the number of points contained 
in each cell of the grid. The density of each cell can thus 
be found. Let X be the set of all cells, and d(x) be the 
density of a cell 2 in terms of the percentage of data 
contained in x. We define the entropy of the data set 
to be: 

H(X) = - c d(x) logd(x) 

When the data points are uniformly distributed, we 
are most uncertain where a particular point would lie 
on. The entropy is the highest. When the data points 
are closely packed in a small cluster, we know that a 
particular point is likely to fall within the small area 
of the cluster, and so the uncertainty and entropy will 
be low. Figure 4 shows the result of an experiment 
studying the relationship between the area of cluster in 
a two dimensional space [O,l) x [O,l). The smaller the 
area of the cluster, the more closely packed the points 
and the lower the entropy. 

The size of interval A must be carefully selected. If 
the interval size is too small, there will be many cells 
so that the average number of points in each cell can 
be too small. On the other hand, if the interval size is 
too large, we may not able to capture the differences 
in density in different regions of the space. We suggest 
the use of at least 35 points in each cell on the average 
since 35 is often considered as the minimum sample size 
for large sample procedures [lo]. The size of interval A 
can be set accordingly. 

5 Entropy vs the Clustering Criteria 

In Section 3, we propose the use of three criteria for the 
goodness of clustering: high coverage’, high density and 
dimensional correlation. In this section, we discuss how 
the use of entropy can relate to the criteria we have 
chosen for the selection of subspaces. First we list the 
symbols used in the discussion in Table 1. 

the total number of dense units 

coverage (percentage of data covered 

the densities of the non-dense units 

Table 1: Notations used 

5.1 Entropy and the coverage criterion 

To investigate the relationship between entropy and the 
coverage, we consider the following case. By assuming 
there are k dense units out of n total units, it follows 
that 

pl+...+pk = C 

Pk+l+...+pn = l-c 

‘Coverage is the percentage of data covered by all dense units 
in a particular subspace. The original authors of CLIQUE define 
it as the number of objects covered by all dense units. OW 

definition is slightly different here. SEX 
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.+2 = 1 

dPk+l T+...+% = -1 

We want to estabish the relationship that, under certain 
conditions, the entropy decreases as the coverage 
increases, i.e. qQ < 0. - 

iF3L 
Theorem 1 v <Oifandonlyifp~...pndc 2 1. 

Proof 

H(X) = -&logpi 
i=l 

k 

= -CPilogPi- 2 pj1ogpj 
i=l j=k+l 

Let us differentiate the entropy with respect to the 
coverage. 

dH(4 - = -~[~logpi + ~]-~[~logp, + $y 
dc 

i=l j=k+l 

k 

= - 
CL 

$40gpi] - 1- 2 [~lOPPj] + 1 

i=l j=k+l 

k 

= - 
CL 
i=l j=k+l 

= -log [$+ . ..$q 

The result follows and the proof is completed. •I 
Now we have the necessary and suflicient condition 

for our desirable property to hold. However, the condi- 
tion is complicated and difficult to understand. Further 
investigation is needed to make it more comprehensive. 

Theorem 2 Suppose that % 2 0 for i = 1, . . , k and 

% < Oforj = k+l,... ,n and minl<i<k (Pi) 2 

maayl<j<, (pj). Then we have 
-- 

-- 

dH(X) < 0 
dc - 

Proof 

2- z!l?.Q. dc 
P, ...Pn 

mh<i<k (Pi) 

= maxk+ysJ<n (Pj) 

> 1 - 

Then, Theorem 1 applies and the proof is completed. q 

The conditions of Theorem 2 hold when the coverage 
is increased by increasing the densities of some denser 
units and decreasing the densities of some non-dense 
units. Although it is not true for all conditions, this is 
a supportive evidence of the use of entropy to reflect 
the coverage of clustering for a subspace. 

5.2 Entropy and the density criterion 

In the example shown in Figure 2, entropy of case (b) 
is lower than that of case (a), which suggests case (b) 
is a better cluster. We see that entropy can better 
capture our intuition of good clustering as compared to 
the mere use of coverage. To examine the relationship 
between entropy and density, we consider the following 
case. Assume that the density of dense units are all 
equal to o, the density of non-dense units are all equal 
to p. The total number of dense units is k and thus the 
total number of non-dense units is n - k. Then we have 

k 

H(X) = -CPi lOgPi 
i=l 

k 

= - CPilOgPi + 2 pj 1OgPj 
i=l j=k+l 

= -[kaloga + (n - k)/3log/3] 

By assuming that cr and /3 change continuously, the 
entropy becomes a differentiable function of density. 

Theorem 3 _ q<Oifandonlyifa>p. 

Proof Note that 

ka + (n - k)p = 1 

so 

Differential the entropy with respect to the density cr, 
then we have 

dH(X)= 
da 

klogo+k++k)g(log/3+1) 1 
= -k[log o - log /3] 

= klog; 

This shows that F 5 0 if and only if (Y > @. The 
proof is completed. 0 

This says that as the density of the dense units 
increases, the entropy decreases. Hence entropy can 
relate to the measurement of density in the clustering 
of a subspace. 
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5.3 Entropy and variable correlation 

The problem of correlated variables can be easily 
handled by entropy because the independence and 
dependence of the variables can be detected using the 
following relationships in entropy [8]. 

ff(Xl,..., X,) = H(X1) +. . . + H(X,) 

iff Xl,.. . , X, are independent (1) 

H(Xl, . . . I Xn,Y)=~(X1,...,Xn) 

iffYisafunctionofXi,...,X, (2) 

We shall make use of the above property in the following 
section. 

6 Algorithm 

In this section, we introduce the proposed algorithm 
ENCLUS in more details. There are two variations of 
ENCLUS, which are discussed at Section 6.2 and 6.3. 
The overall strategy consists of three main steps: 

1. Find out the subspaces with good clustering by an 
entropy-based method. 

2. Identify the clusters in the subspace found. 

3. Present the result to the users. 

In Step 2 and Step 3, we can adopt the method in 
CLIQUE or some of the existing clustering algorithms. 
We examine Step 1. Previously we use the term good 
clustering to indicate that a subspace contains a good 
set of clusters in an intuitive sense. Here we shall give 
the term a more concrete definition by means of entropy. 
We need to set a threshold w. A subspace whose entropy 
is below w is considered to have good clustering. The 
proposed algorithm uses a bottom-up approach similar 
to the Apriori algorithm [l] for mining association rule. 
In Apriori, we start with finding large 1-itemsets. It 
is used to generate the candidate 2-itemsets, which 
are checked against the database to determine large 
2-itemsets. The process is repeated with increasing 
itemset sizes until no more large itemset is found. 

Similarly, our bottom-up algorithm starts with find- 
ing one-dimensional subspaces with good clustering. 
Then we use them to generate the candidate two- 
dimensional subspaces and check them against the raw 
data to determine those that actually have good clus- 
tering. The process is repeated with increasing dimen- 
sionalities until no more subspaces with good cluster- 
ing is found. We note a downward closure property for 
entropy. This is given by the non-negativity of Shan- 
non’s information measures2 [8]. The correctness of the’ 
bottom-up approach is based on this property. 

2The values’of entropy, conditional entropy, mutual informa- 
tion and conditional mutual information are always non-negative. 
This is not true to differential entropy because the value of dif- 
ferential entropy may be either positive or negative. 

Lemma 1 (Downward closure) If a k-dimensional sub- 
spacexl,... , X,+ has good clustering, so do all (k - l)- 
dimensional projections of this space. 

Proof Since the subspace Xi, . , Xk has good cluster- 
ing, H(Xr, . . .,X,) < w. 

H(X1,. . .,Xk-1) 

< H(Xl,..., Xk-1) + H(Xk(Xl,. . .,xk-1) 

= H(Xl,. . .,xk) 

< w 

Hence, the (k - 1)-dimensional projection X1, . . . , Xk 
also has good clustering. The above proof can be 
repeated for other (k - 1)-dimensional projections. 0 

6.1 Dimensions Correlation 

In Section 3.3 we discuss the criterion of dimensional 
correlation. In Section 5.3 we examine how entropy 
can be related to dimensional correlation. Here we 
show the upward closure property of this criterion. Let 

P(Zl, 22, “‘, xi) be the joint probability mass function 
of variables Xi, X2, . . . . Xi. In the following lemma, 

variables Xi, X2, . . . . X, are considered not correlation 

iff p(xl, 22, . . . . XVI) = P(34P(~z)...P(4. 

Lemma 2 (Upward closure) If a set of dimensions S 
is correlated, so is every superset of S. 

Proof We proof by contradiction. Suppose Xi and X2 
are correlated, but X1, X2 and Xs are not. 

P(Xl,22) = 
s 

~(~19 x2, a)dx3 
X3 

= 
.I p(xMx:2)p(4dx3 X3 

= P(XlJP(22) 
.I 

p(+x3 
X3 

= P(4P(~2) 

Hence Xr and X2 are not correlated, which is a 
contradiction. 0 

Traditionally, the correlation between two numerical 
variables can be measured using the correlation coeffi- 
cient. However, we can also detect correlation by en- 
tropy. Since we are already using entropy in the algo- 
rithm, using entropy to detect correlation introduces a 
negligible computational overhead. A set of variables 

Xl,..., X, are correlated if Equation 1 of Section 5.3 
is not satisfied. To express it more precisely, we define 
the term interest3 as below. 

interest((X1,. . . , X,))=~H(Xi)-H(xl,...,X,) 
i=l 

3The definition of interest is equivalent to the mutual in- 
formation between all individual dimensions of a subspace 
1(X1 ; X2; . ; X,). We use the term interest instead of “mutual 
information between all individual dimensions” to simplify our 

terminology. 
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Figure 5: A lattice for 4 variables. 

k Current number of iterations 

ck Set of k-dimensional candidate subspaces 

Sk Set of k-dimensional significant subspaces 

NSk Set of k-dimensional subspaces with good 

1 clustering but not minimally correlated 

Table 2: Notations used in the algorithm 

The higher the interest, the stronger the correlation. 
We consider the variables to be correlated if and only 
if the interest exceeds a predefined threshold E. The 
interests of one-dimensional subspaces are always 0. 

6.2 Mining Significant Subspaces 

A pair of downward and upward closure properties is 
used in [6], which proposes an algorithm for mining 
correlation rules. It is pointed out that downward 
closure is a pruning property. If a subspace does not 
satisfy this property, we can cross out all its superspaces 
because we know they cannot satisfy this property 
either. Upward closure, by contrast, is a constructive 
property. If a subspace satisfies the property, all its 
superspaces also satisfy this property. However, upward 
closure property is also useful for pruning. The trick is 
that we only find minimally correlated subspaces. If we 
know a subspace is correlated, all its superspaces must 
not be minimally correlated. Therefore, upward closure 
becomes a pruning property. 

Now we call the subspaces with good clustering and 
minimally correlated to be significant subspaces. Due 
to the upward closure property, the subspaces we are 
interested in form a border. The border stores all 
the necessary information. Refer to Figure 5 for an 
example. In this figure, the subspaces below the dotted 
lines all have good clustering (downward closed) and 
the subspaces above the solid lines are all correlated 

Algorithm 1 ENCLUS-SIG (w , E) 
1 
2 

3 

4 
5 
6 

7 
8 

9 

10 
11 
12 

13 
14 

15 

16 

k=l 

Let Ck be ail one-dimensional subspaces. 
For each subspace c E Ck do 

fc(.) = &-density(c) 
H(c) = cd-entropy(f,(.)) 
If H(c) < w then 

If interest(c) > L then 
Sk = Sk u C. 

else 
NSk = NSk U C. 

End For 
Ck+ 1 = candidate-gen( NSk) 
If Ck+l = 0, go to step 16. 
k=k+1 

Go to step 3. 
Result = U,, Sk 

Figure 6: Algorithm for mining significant subspaces 

(upward closed). The border {XiXs, XsXs, X1X4) 
stores all the significant subspaces, i.e. minimally 
correlated subspaces with good clustering. 

The details of the algorithm, called ENCLUSSIG, 
are given in Figure 6. Table 2 lists the notations used. 
The description of the procedures used in the algorithm 
is given as follows. 

Cal-density(c) Build a grid to count number of points 
that fall in each cell of the grid as described in 
Section 4.1. The density of each cell can thus be 
estimated. 

Cal-entropy(f,(.)) Calculate the entropy using the 
density information obtained from scanning the data 
set. 

candidategen(l\r&) Generate the candidate sub- 
spaces for (k + 1) dimensions using NSk. There 
is a join step and a prune step in the candidate gen- 
eration function. The join step can be expressed by 
the following pseudo-code. It joins two subspaces 
having common first (k - 1) dimensions. 

insert into ck+l 
select p.diml,p.dim2,...,p.dimk,q.dimk 
from NSk P, NSk 4 
where p.diml = q.diml, . . . ,p.dimk-1 = 

q.dimk-l,p.dimk < q.dimk 

In the prune step, any subspace having a k- 
dimensional projection outside N& is removed. 

6.3 Mining Interesting Subspaces 

Since correlation can usually be detected at low dimen- 
sion, the mining of high dimensional clusters is often 
avoided. This is good because low dimensional clus- 
ters are easier to interpret and the time for mining high 
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Algorithm 2 ENCLUSINT(w, E’) 
1 k=l 

2 Let Cr, be ah one-dimensional subspaces. 
3 For each subspace c E ck do 
4 fc(.) = Cal-density(c) 
5 H(c) = cal-entropy(f,(.)) 
6 If H(c) < w then 
7 If interest-gain(c) > E’ then 
8 Ik = tk u C. 
9 else 
10 NIk = Ntk UC. 

11 End For 
12 Ck+l = candidate-gen(lk U Nlk) 

13 If ck+l = 8, go to step 16. 

14 Ic=lc+1 

15 Go to step 3. 

16 Result = U,, Ik 

Figure 7: Algorithm for mining interesting subspaces 

dimensional clusters can be saved. However, [6] did 
not consider that sometimes we are interested in non- 
minimally correlated subspaces. For instance, A and 
B are correlated, but we may be interested in the sub- 
space ABC if ABC are more strongly correlated than 
A and B alone. To measure the increase in correlation, 
we define the term interest gain4. The interest gain for 
subspace Xi, . . . , X, is defined as follows. 

interest-gain((X1, . . . , X,}) 

= interest({XI, . . . , Xn}) - 

m;x{interest({Xi, . . . , Xn} - {Xi})} 

The interest gain for one dimensional subspace is 
defined to be 0. The interest gain of a k-dimensional 
subspace is the interest of the given subspace minus the 
maximum interest of its (k - 1)-dimensional projections. 
In other words, it is the increase in interest for adding 
an extra dimension. 

Our new goal becomes mining subspaces whose 
entropy exceeds w and interest gain exceeds a new 
threshold et. We call such subspaces to be interesting 
subspaces. The mining of significant subspace algorithm 
can be modified slightly to mine interesting subspaces. 
Figure 7 shows the modified algorithm ENCLUS-INT. 
Since we relax one of the pruning criteria, we expect 
more candidates and a longer running time. 

4The definition of interest gain is equivalent to the mutual 
information between the original subspace X;, , . . , xi,-1 and 
a new dimension Xi,, i.e. 1(X;, , . . , XiRml i Xi,). We use 
the term interest gain instead of “mutual information between 
the original subspace and the new dimension” to simplify our 
terminology. 

Figure 8: Entropy Threshold vs Running Time 

Figure 9: Interest Threshold vs Running Time (EN- 
CLUSSIG) 

-7 Experiments 

To evaluate the performance of the algorithms, we im- 
plemented our algorithms on Sun Ultra 5/270 work- 
station using GNU C++ compiler. High dimensional 
synthetic data were generated which contains clusters 
embedded in the subspaces. Our data generator allows 
the user to specify the dimensionality of data, the num- 
ber of subspaces containing clusters, the dimensionality 
of clusters, the number of clusters in each subspace and 
the number of transactions supporting each cluster. Un- 
less otherwise specified, we use data of 10 dimensions 
and 300,000 transactions in the experiments. Some five- 
dimensional clusters are embedded in the subspaces. 

Figure 8 shows the performance of the algorithms 
under different values of w. We do not have a smooth 
curve here, because when w increases to a certain value, 
candidates of a higher dimension are introduced which 
impose a considerable amount of extra computation. 
From the figure, we can see the running time of the 
algorithm ENCLUS-SIG ceases to increase when w is 
high enough, because after that point, the pruning 
power of entropy is negligible and most pruning is 
attributed to the upward closure property which is 
independent of w. As for the algorithm ENCLUS-INT, 
the running time keeps on increasing with w because 
only the entropy is utilized for pruning. 
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Figure 10: Pass No vs Percentage of Subspaces Pruned 

Figure 11: Scalability Test on Dimensionality of Data 
Set 

Figure 9 shows the performance of the ENCLUS-SIG 
under different values of 6. Again, the running 
time ceases to increase after the a certain point. 
This is because the pruning power of interest is 
negligible and most pruning is done by entropy. We 
have also performed a similar set of experiments for 
ENCLUS-INT with w = 8.5. The performance of the 
ENCLUS-INT under different values of E’ is nearly 
identical, since only the entropy is used for pruning. 

The pruning power of the algorithm is illustrated in 
Figure 10. Our methods are compared to the naive 
algorithm which examines all possible subspaces. From 
the result, we can see our methods give significant 
reduction on number of candidates in later passes. 
ENCLUS-SIG always prunes more candidates than 
ENCLUS-INT. This experiment is carried out with a 
20-dimensional data set. 

The result of the scalability test is shown in Figure 11, 
As expected, ENCLUSSIG outperforms ENCLUSlNT 
because ENCLUSSIG only finds minimally correlated 
subspaces while ENCLUS-INT has to pay extra time to 
mine the non-minimally correlated subspaces. The gap 
between ENCLUS-SIG and ENCLUS-INT increases 
with the dimensionality, which suggests the pruning 
power of the upward closure is more significant there. 
We have experimented with up to 30 dimensions. 
For higher dimensions, the computation time would 

increase further. We suggest that an approach similar 
to the minimal code length method in CLIQUE can be 
used which is based on entropy instead of coverage. 

To investigate the accuracy of the algorithms, we per- 
formed an experiment using a data set containing five 
5-dimensional clusters in five subspaces. ENCLUSlNT 
successfully discovers the five 5-dimensional subspaces 
that contains our embedded clusters without report- 
ing false alarms of other 5-dimensional subspaces. EN- 
CLUS-SIG expresses the correlated variables using a 
number of two-dimensional subspaces. It does not ex- 
amine higher dimensional subspaces because they are 
not minimally correlated. 

8 Conclusion 

We propose to tackle the problem of mining numerical 
data using clustering techniques since each transaction 
with k attributes can be seen as a data point in a 
k-dimensional space. However, for large databases, 
there are typically a large number of attributes and the 
patterns that occur in subsets of these attributes are 
important. Mining for clusters in subspaces is therefore 
an important problem. The proposed solution consists 
of three steps, namely the identification of subspaces 
containing clusters, the discovery of clusters in selected 
subspaces and the presentation to the users. We 
concentrate on the subproblem of identifying subspaces 
containing clusters because few works have been done 
on it, one better known previous method is CLIQUE 

PI. 
We propose using three criteria for the goodness 

of clustering in subspaces: coverage, density and 
correlation. Our proposed method is based on the 
measure of entropy from information theory, which 
typically gives a lower value for a subspace with good 
clustering. Although entropy has been used in decision 
trees for data mining [21, 221, to our knowledge, 
no previous work has used it for the problem of 
subspace clustering. We also justify the approach by 
establishing some relationship between entropy and the 
three criteria. 

Our algorithm incorporates the idea of using a pair 
of downward and upward closure properties, which are 
first used by [6] in the problem of mining correlation 
rules. This approach is shown effective in the reduc- 
tion of the search space. In our problem, the downward 
closure property is given by entropy while the upward 
closure property is given by the dimensional correla- 
tion. By the use of the two closure properties, the algo- 
rithm is expected to have good pruning power. Experi- 
ments have been carried out to show the proposed algo- 
rithm can correctly identify the significant/interesting 
subspaces and the pruning is effective and efficient. 
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