ENTROPY-BASED SUBSPACE CLUSTERING
FOR MINING NUMERICAL DATA

By
CHENG, CHUN-HUNG

SUPERVISED BY :

Pror. Apa WAI-cHEE Fu

SUBMITTED TO THE DIVISION OF DEPARTMENT OF COMPUTER SCIENCE &
ENGINEERING
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF PHILOSOPHY
AT THE
CHINESE UNIVERSITY OF HONG KoNG

1999

Entropy-based Subspace Clustering for
Mining Numerical Data

submitted by
CHENG, Chun-hung

for the degree of Master of Philosophy

at the Chinese University of Hong Kong

Abstract

Mining numerical data is a relatively difficult problem in data mining. Clustering
is one of the techniques. We consider a database with numerical attributes, in
which each transaction is viewed as a multi-dimensional vector. By studying
the clusters formed by these vectors, we can discover certain behaviours hidden
in the data. Traditional clustering algorithms find clusters in the full space
of the data sets. This results in high dimensional clusters, which are poorly
comprehensible to human. One important task in this setting is the ability
to discover clusters embedded in the subspaces of a high-dimensional data set.
This problem is known as subspace clustering. We follow the basic assumptions of
previous work CLIQUE. It is found that the number of subspaces with clustering
is very large, and a criterion called the coverage is proposed in CLIQUE for
the pruning. In addition to coverage, we identify new useful criteria for this
problem and propose an entropy-based method called ENCLUS to handle the
criteria. Our major contributions are: (1) identify new meaningful criteria of high
density and correlation of dimensions for goodness of clustering in subspaces,
(2) introduce the use of entropy and provide evidence to support its use, (3)
make use of two closure properties based on entropy to prune away insignificant

subspaces efficiently (ENCLUS_SIG), (4) propose a mechanism to mine non-

1

minimal correlated subspaces which are of interest because of strong clustering
(ENCLUS_INT), (5) experiments are carried out to show the effectiveness of the

proposed method.

1l

Acknowledgments

First of all, I would like to thank Prof. Ada W. C. Fu, my supervisor, for her
guidance and patience. My research could not have been done reasonably without
the insightful advice from her, for I know little about research at the beginning.
In the past three years under her guidance, which covered an undergraduate
final year project in addition to this dissertation, she improved my research and

writing skills significantly, which I firmly believe is invaluable to the rest of my

life.

I would like to thank Prof. M. H. Wong and Prof. Raymond W. H. Yeung,
who have marked my term papers and taught me some very useful courses. T also
thank Prof. Yi Zhang for helping me in working out the mathematical proofs of

my algorithms.

My gratitude goes to the members of my research groups, Chun-hing Cai,
Kin-pong Chan, Wang-wai Kwong, Po-shan Kam, Wai-ching Wong and Wai-
chiu Wong. They have shared with me their experiences on doing research and
given me a lot of inspiration. My research will not be nearly as successful without

their help.

Finally, I wish to express my thanks to my colleagues, Kam-wing Chu, Yuk-
chung Wong, Chi-wing Fu, Yuen Tsui, Hong-ki Chu and Yiu-fai Fung. They
made a lot of useful suggestions on the technical problems I encountered during

these years of research. They are all very intelligent and capable people.

v

Contents

Abstract
Acknowledgments

1 Introduction

1.1 Six Tasks of Data Mining
1.1.1 Classification
1.1.2 Estimation. oo
1.1.3 Predictiono oo
1.1.4 Market Basket Analysis
1.1.5 Clustering
1.1.6 Description

1.2 Problem Description

1.3 Motivation

1.4 Terminology

1.5 Outline of the Thesis

il

iv

2 Survey on Previous Work
2.1 Data Mining
2.1.1 Association Rules and its Variations
2.1.2 Rules Containing Numerical Attributes
2.2 Clustering

2.2.1 The CLIQUE Algorithm

3 Entropy and Subspace Clustering
3.1 Criteria of Subspace Clustering
3.1.1 Criterion of High Density
3.1.2 Correlation of Dimensions
3.2 Entropy in a Numerical Database
3.2.1 Calculation of Entropy
3.3 Entropy and the Clustering Criteria
3.3.1 Entropy and the Coverage Criterion
3.3.2 Entropy and the Density Criterion

3.3.3 Entropy and Dimensional Correlation

4 The ENCLUS Algorithms
4.1 Framework of the Algorithms
4.2 Closure Propertieso L

4.3 Complexity Analysis oo

vi

17

20

24

24

25

25

27

27

29

29

31

33

35

4.4 Mining Significant Subspaceso 40

4.5 Mining Interesting Subspaces oL 42
4.6 Example 44
Experiments 49
5.1 SyntheticData o000 49
5.1.1 Data Generation — Hyper-rectangular Data 49
5.1.2 Data Generation — Linearly Dependent Data 50
5.1.3 Effect of Changing the Thresholds 51
5.1.4 Effectiveness of the Pruning Strategies 53
5.1.5 Scalability Test 53
5.1.6 Accuracy 55
5.2 Real-life Data o o 55
5.2.1 Census Data o 55
5.2.2 Stock Data oo 56
5.3 Comparison with CLIQUE 58
5.3.1 Subspaces with Uniform Projections 60
5.4 Problems with Hyper-rectangular Data 62
Miscellaneous Enhancements 64
6.1 ExtraPruning o 64
6.2 Multi-resolution Approach 0oL 65

Vil

6.3 Multi-threshold Approach

7 Conclusion

Bibliography

Appendix

A Differential Entropy vs Discrete Entropy

A.1 Relation of Differential Entropy to Discrete Entropy

B Mining Quantitative Association Rules

B.1 Approaches .
B.2 Performance .

B.3 Final Remarks

viil

70

71

(i

(i

78

80

List of Tables

2.1

3.1

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

3.5

5.6

5.7

Comparison of clustering algorithms. 19

Notations used in the discussion of entropy and clustering criteria. 29

Notation for the complexity analysis. 39
Notations used in the algorithm. 40
Setting of synthetic data. 47

The values of entropy, interest and interest gain of the subspaces

intheexample. oo oo 48
Default parameters for the experiments. 51
Subspaces of highest interest at three dimensions (Census database). 56
Subspaces of lowest interest at three dimensions (Census database). 56
Mnemonic used in the census data sets. 57
Subspaces of highest interest at three dimensions (Stock database). 58
Subspaces of lowest interest at three dimensions (Stock database). 58

Parameters used in the comparison experiment. 59

X

5.8 Example illustrating the problem of hyper-rectangular data.

List of Figures

1.1

2.1

2.2

3.1

3.2

3.3

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

Example of a cluster., 4
The Apriori Algorithm. oL 10
MDL-based pruning. o 21
Example of two data sets with equal coverage but different densities. 25

Problem with independent dimensions. 26
Area of Cluster vs Entropy. 28
A lattice for 4 variables. o000 40
Algorithm for mining significant subspaces. 41
Algorithm for mining interesting subspaces. 43
The example illustrated in a lattice. 46
Entropy threshold vs running time. 51
Interest threshold vs running time (ENCLUSSIG). 52
Pass no vs percentage of subspaces pruned. 53
Scalability test on dimensionality of data set.. 54

xi

3.5

5.6

5.7

5.8

5.9

6.1

6.2

6.3

6.4

Scalability test on the number of transactions of the data set.
Performance of CLIQUE under different thresholds.
Comparison of our algorithms with CLIQUE.

The stock price of Cheung Kong and HSBC (normalized to [0,1]).

Example illustrating the problem of hyper-rectangular data.

The performance of the algorithms with and without extra pruning.

Two data sets with equal coverage and density but different num-

ber of clusters.
An example explaining how multi-resolution method works.

Two correlated variables X and Y.

xii

54

59

60

61

66

67

Chapter 1

Introduction

Modern technology provides efficient and low-cost methods for data collection.
However, raw data are rarely of direct benefit for higher level management, deci-
sion making or more intelligent analysis. Data mining, or knowledge discovery in
databases, is the exploration and analysis of large data sets to discover meaningful
patterns and rules. It aims at the construction of automatic or semi-automatic

tools for the analysis of such data sets.

Contrary to top-down processes like hypothesis testing where the past be-
haviour is used to verify or disprove preconceived ideas, data mining is a bottom-
up process in which priori assumptions on the data are not made. [17] describes
knowledge discovery as a non-trivial process of extraction of implicit, previously

unknown and potentially useful information from databases.

1.1 Six Tasks of Data Mining

According to [6], most tasks of data mining can be phrased in terms of six tasks,
namely, classification, estimation, prediction, market basket analysis, clustering
and description. No single algorithm is equally applicable to all these tasks. We

need different tools and techniques to deal with different tasks. These tasks are

1

Chapter 1 Introduction 2

briefly described in this section.

1.1.1 Classification

Classification is a task of examining features of each object and assigning it
to one of a predefined set of classes, e.g., classifying a group of animals into
fishes, birds and mammals. The major characteristics of classification is that
there is a well-defined definition of the classes. A training set, which consists of
preclassified examples, is given. That is why classification is sometimes referred

to as supervised learning.

1.1.2 Estimation

Estimation is similar to classification. Classification deals with discrete out-
comes, but estimation deals with continuously valued outcomes. The estimation
approach has the advantage that the individual record is rank ordered. For in-
stance, a company with limited advertising budget can target at the customers
who are most likely to use its services. Neural networks are well-suited to the

task of estimation.

1.1.3 Prediction

Prediction is different from classification and estimation in that the objects are
classified according to some predicted future behaviours or estimated future val-
ues. Historical data are used to build a model that predicts the future behaviours.

We can only wait to see the accuracy of the created model.

Chapter 1 Introduction 3

1.1.4 Market Basket Analysis

One classical problem in data mining is the mining of binary association rule.
Large amount of research on data mining went into this problem. It is originated
from the analysis of buying patterns in supermarkets. That is why it is called
market basket analysis. The following is an example of the binary association

rule:

BuyApple = BuyOrange [0.9,0.2]

This rule says that with high probability people buying apples will also buy
oranges. A rule is associated with a pair of values, namely the confidence factor
and support, which are 0.9 and 0.2 respectively in the above example. The
confidence factor is the probability that the rule is true and the support is the
fraction of the transactions in the database that contains all the items in the

rule.

1.1.5 Clustering

Clustering is a task of segmenting a heterogeneous population into a number of
more homogeneous groups of objects. Clustering is different from classification
in that it does not depend on a predefined set of classes. There is no training set

so it is sometimes called unsupervised learning.

1.1.6 Description

Description is a task of describing what happens in a complicated database.

The description should help to understand the people, processes or products of

Chapter 1 Introduction 4

saary

age

Figure 1.1: Example of a cluster.

the database. It hopefully gives an explanation for the behaviours of them. A
good description can often convey important insights and directions to look for

explanations.

1.2 Problem Description

In this thesis, we attempt to mine numerical data using clustering techniques. In
particular, we work on the subspace clustering problem. We consider a database
consisting of numerical attributes. Fach transaction of this database is viewed
as a multi-dimensional vector. Clustering is to discover homogeneous groups of
objects based on the values of these vectors. Hence, we can study the behaviour
of the objects by looking at the shapes and number of clusters. See Figure 1.1
for an example. The cluster in this figure describes the relationship between age

and salary.

Not all clustering algorithms are suitable for our problem. They must satisfy
some special requirements in order to be useful to us. One important requirement
is the ability to discover clusters embedded in subspaces of high dimensional
data. Given a space X with dimensions formed from a set of attributes S5, a

space Y with dimensions formed from a subset of S is called a subspace of

Chapter 1 Introduction 5

X. Conversely, X will be called a superspace of Y. For instance, suppose
there are three attributes A, B and C'. Clusters may exist inside the subspace
formed by A and B, while C' is independent of A and B. In such case, C' is
a noise variable. Since high dimensional information is hard to interpret, it is
more desirable if the clustering algorithm can present the cluster in the subspace
AB rather than the full space ABC'. Real-life databases usually contain many
attributes so that either there is no proper cluster in the full space, or knowing
the existence of a cluster in the full space is of little use to the user. Therefore,
the ability to discover embedded clusters is important. This problem is called

subspace clustering in [2].

1.3 Motivation

The mining of binary association rule has been extensively studied in recent years,
but databases in the real world usually have numerical attributes in addition
to binary attributes. Unfortunately, mining numerical data is a more difficult
problem and relatively little work has been done on this topic. Some previous

work includes [20, 18, 19].

The mining of clusters is preferable to that of multi-dimensional quantitative
association rules, because association rules consist of antecedent and consequent
parts. We learn from statistics that it is possible to find correlation among differ-
ent factors from raw data, but we cannot find the direction of implication and it
can be risky to conclude any causal relationship from raw data [21]. Clustering

is a method that finds correlations while not inferring any causal relationship.

Our most important requirement is, as mentioned in the previous section, the
ability to discover embedded cluster. Also, data mining by definition deals with

huge amount of data, which are often measured in gigabytes or even terabytes.

Chapter 1 Introduction 6

Although some traditional clustering algorithms are elegant and accurate, they
involve too many complicated mathematical computations. These methods are
shown to handle problem sizes of several hundreds to several thousands trans-
actions, which is far from sufficient for data mining applications ([11] and [28]).
Some algorithms, such as K-means [23, 8], assume that the whole data sets can
be placed in main memory. These algorithms would require tremendous amount
of disk accesses when the assumption does not hold. We need an algorithm that

gives reasonable performance even on high dimensionality and large data sets.

We prefer clustering algorithms that do not assume some restrictive shapes
for the clusters. Some clustering algorithms (e.g. CLARANS [29], BIRCH [37]
and ScaleKM [7]) assume that the clusters are convex in shape. We would adopt
a definition of cluster that does not have the above limitation. A good algorithm
should also not make assumptions about the distribution of the data and not be
sensitive to the existence of outliers. It should not require the user to specify some
parameters on which the user would have difficulty to decide. For instance, the
K-means algorithm requires the user to specify the number of clusters, which is
often not known to the user. So in practice, we need to repeat the algorithm with
different guesses to obtain the best result. Finally there should be a meaningful
and effective way to convey the resulting clusters to the user for the purpose of

data mining.

A solution to the above problem would consist of the following steps: (1)
Find the subspaces with good clustering. (2) Identify the clusters in the selected
subspaces. (3) Present the result to the user. We shall focus on Step (1). We

propose an entropy-based approach to tackle this problem.

Chapter 1 Introduction 7

1.4 Terminology

Despite a lot of efforts to keep the terminology consistent in this thesis, there
are cases that we have to resort to using different terms for the same meaning.
Throughout the whole thesis, we use the terms attribute, variable and dimen-
ston interchangeably. These three terms sound more natural in the context of

database, information theory and clustering respectively.

1.5 Outline of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we discuss some
related work on similar problems. Chapter 3 points out some new criteria for
good clustering and explains why they are needed. We also define the measure
entropy for a numerical database, and discuss why it is a suitable measure for the
listed criteria. Chapter 4 describes the proposed method ENCLUS (ENtropy-
based CLUStering) in details. There are two variations of the algorithm, namely
ENCLUS_SIG and ENCLUS_INT. Their common framework is discussed and the
complexity is derived. In Chapter 5, we would look at some experimental results.
Both synthetic and real-life data are used for experiments. A comparison to the
previous work CLIQUE is also given. Chapter 6 discusses some miscellaneous

enhancements applicable on ENCLUS. Chapter 7 gives a conclusion.

Part of the result of this thesis was published on Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining 1999 (KDD-
99) [25].

Chapter 2

Survey on Previous Work

In this chapter, we introduce some previous work related to our problem. In
Section 2.1, we go through recent research on data mining. We cover the recent
research on clustering in Section 2.2. Although clustering is one of the techniques
in data mining, this problem has been studied by people from different disciplines.

We focus on methods proposed by the database research community.

2.1 Data Mining

We give a brief review on the research of data mining. Mining association rules
is one of the hottest topics in the field of data mining. Here we explain the
meaning of the association rules and its variations, as well as some rules con-
taining numerical attributes. We introduce the famous Apriori [1] algorithm for
mining binary association rules, and a variation of association rule that incorpo-
rates a statistical measure correlation. After that, we move to study implication
rules. Implication rule changes the definition of association rules to give more

“meaningful” rules.

Chapter 2 Survey on Previous Work 9

2.1.1 Association Rules and its Variations

Most of the recent research on association rules have extended or modified the
definition of association rules to introduce new types of rules. Apriori [1] is the

classical algorithm for mining association rules.

The Apriori Algorithm

The problem of mining association rules is first introduced in [3]. The original
form of association rules consists of binary attributes only. Newer studies often
extend the association rules to contain non-binary attributes, so the original
association rule is also known as binary association rule. An example of such
rule is given at Section 1.1.4. Before the introduction of the Apriori algorithm,
two other algorithms AIS [3] and SETM [24] are introduced for this problem,

but they are not as efficient as Apriori.

The formal statement of the problem in [3] is as follows. The Apriori algo-
rithm shares the same setting. Let Z be a set of literals, called items. Let D
be a set of transactions, where each transaction 7' is a set of items such that
T C I. Associated with each transaction is a unique identifier, called its T'1D.
We say that a transaction 7' contains X, a set of some items in Z,if X CT. An
association rule is an implication of the form X = Y, where X C I, Y C I, and
XNY = . Therule X = Y has support s in the transaction set D if s% of trans-
actions in D contain X UY. Its confidence is support(X UY')/support(X). The
task is to discover all rules with support and confidence exceeding the predefined

thresholds.

The problem of mining association rules can be divided into two subproblems.

1. Find all sets of item (itemsets) that have transaction support above a

predefined threshold called minimum support. These items are known as

Chapter 2 Survey on Previous Work 10

Algorithm 2.1 Apriori

1 Ly = {large 1-itemsets};

2 for (k=2; Lr_1 # 0; k++) do begin

3 C, = apriori-gen(Lg_1); // New candidates

4 forall transaction ¢ € D do begin

5 Cy = subset(Cy, t); // Candidate contained in ¢
6 forall candidates ¢ € C; do

7 c.count++;

8 end

9 Ly = {c € Cy | c.count < minsup }

10 end

11 Answer = J;, Lg;

Figure 2.1: The Apriori Algorithm.

large itemsets.

2. Use the large item sets to generate the association rules. The rules must
have a confidence level above another predefined threshold called minimum

conference.

Step 2 is straightforward and trivial in terms of computational time. We
focus on Step 1. The Apriori algorithm for solving Step 1 is given in Figure 2.1.
Apriori is an iterative algorithm. The first pass simply scans the database to
find the large 1-itemsets (L;). In any subsequent pass k, the apriori-gen function
is involved to generate the candidate itemsets C using the large itemsets of the
previous pass Li_;. The apriori-gen function has a join and prune step. In the

join step, Li_; self-joins to form Cf:

insert into C}

select p.atemq, patemsy, ..., patemy, g.itemy,

from Ly_1p, Lyo1 g

where p.atem; = g.atemy, ..., p.atemy_q = q.itemy_o,
patemy_q < g.atemy_q

In the prune step, all k-itemsets having a (k — 1)-subset not in Li_; are

deleted.

Chapter 2 Survey on Previous Work 11

The function subset(Cy,t) returns all the candidate itemsets contained in the
transaction ¢. The subset function can be implemented efficiently by storing
the candidate itemsets (' in a hash-tree and traversing the hash-tree when the

subset function is involved.

The Apriori algorithm is shown to outperform AIS and SETM. Two similar
algorithm AprioriTid and AprioriHybrid are also proposed in [1]. AprioriTid
has better performance at higher passes. AprioriHybrid combines Apriori and
AprioriTid. It uses Apriori at earlier passes and switches to AprioriTid at later

passes.

Generalizing Association Rules to Correlation

[9] identifies a problem on the original definition of association rules and proposes
the use of correlation in rule mining. They also generalize the association rules to
consider both the presence and absence of items. They measure the significance
of association via the y2-test for correlation from classical statistics. Correlation

is upward closed in the itemset lattice, which gives us a useful pruning criteria.

Here is an example illustrating the problem of the original definition of asso-
ciation rules from [9]. In the following table, rows ¢ and ¢ represent buying and
not buying tea respectively. Similarly, columns ¢ and ¢ represent buying and not

buying coffee respectively.

c ¢ | > row

t 20 5 25
l 0 5 75
Socol || 90 10 100

The support of the rule t = ¢ is 0.2, which is fairly high. The confidence,
Ple|t] = 0.8, is quite high too. Therefore, we may conclude that this rule is valid.

Chapter 2 Survey on Previous Work 12

However, since the a priori probability that a customer buys coffee is 0.9,
a customer who is known to buy tea is actually less likely to buy coffee than
the general population. By calculating the correlation P[t A ¢]/(P[t] x Ple]) =
0.2/(0.25 x 0.9) = 0.89 < 1, we know there is actually a negative correlation

between ¢ and ¢. The rule { = ¢ is misleading.

The solution to this problem is to employ the y2-test for correlation in classical
statistics. The test is capable for testing both positive and negative correlations.
Before the introduction of the chi*-test, we look at the proof on the closure

property of correlated items.

Let P(A) be the probability that event A occurs and P(A) = 1 — P(A) be
the probability that event A does not occur. We want to show that if any two
items are correlated, the superset of the items must also be correlated. Hence,

correlation is upward closed in the itemset lattice. The proof is by contradiction.

Proof Suppose A and B are correlated but A, B and ' are not.

P(AB) = P(ABC)+ P(ABC)
= P(A)P(B)P(C) + P(A)P(B)P(C)
= P(A)P(B)

We can derive similar formulae for P(AB), P(AB) and P(AB). They imply A

and B are independent, which is a contradiction. O

Because of the closure property, the itemsets of interest form a border in
the itemset lattice. This border encodes all the useful information about the
interesting itemsets. The algorithm on [9] uses this closure property to prune
away the itemsets above the border in the itemset lattice as they do not provide

extra information. The algorithm is based on Apriori but replaces the test for

Chapter 2 Survey on Previous Work 13

confidence with a y%-test for correlation and adds the pruning criteria from the

border property.

Here we introduce the y*-test for independence. Let I = {7y, ..., i1} be a set
of k items. If we have a series of n trials, we denote the number of times item ¢;
occurs as O,(i;). Let R be {i1,11} x ... x {ig,ix} and r =ry...r; € R. R is the
set of all possible transaction values, which forms a k-dimensional table called a
contingency table. The value r denotes a cell in R. Let O(r) denote the number
of transactions falling into cell r. The expectation F[i;] is calculated under the

assumption of independence. Thus,

Eli;] = 0,(1;) for a single item
Elij] = n—0a(i)
Elr] = nx E[r]/nx ... x E[rg]/n

Then we can calculate the y? statistic:

r) = Blr])?
Elr]

oy @

If all variables were really independent, the x? value would be 0. If it is higher
than a cutoff value, which can be obtained from a y? distribution table given the

required significance, then we would reject the independence assumption.

That paper also proposes the measure of interest. The interest of A and B

is defined as

P[AA B]
P[A]P[B]

Interest allows the detection of negative correlation. To illustrate this, con-

Chapter 2 Survey on Previous Work 14

sider an example with the following interest values.

iy io
iy || 1.07 0.44
77 | 0.89 1.91

The cell 7175 has the most extreme interest, indicating not having the property
of 75 1s correlated with not having the property of 7;. This kind of negative

association is not usually mined in the classical framework.

The experiment in that paper shows the use of correlation gives more mean-
ingful rules and the new pruning criteria causes an improvement in performance

by reducing the number of candidate itemsets.

Implication Rules

The insufficiency of the measures used in association rules is identified by [10]. In
that paper, a new measure, conviction is proposed as a replacement of confidence.

The rules measured in conviction is called implication rules.

The definition of conviction for A = B is

P(A)P(~B)/P(A,~B).

The measure has the following advantages:

e It does not have the flaw of confidence as mentioned in [9].

e [nterest is only a measure of departure from independence. It does not
measure implication since its definition, P(A, B)/P(A)P(B), is completely

symmetrical. Conviction does not have this problem.

Chapter 2 Survey on Previous Work 15

e For rules which hold 100% of time, the rules have the highest possible
conviction value of co. Such rules may have an interest value only slight

larger than 1.

2.1.2 Rules Containing Numerical Attributes

The studies on association rules focus on a database of binary or categorical
attributes. [20, 18, 19] are among the earliest work on extending association
rules to contain numerical attributes. In [20], we consider association rules of

the form

(Balance € 1) = (CardLoan = yes)

which implies that bank customers whose balances fall in a range [tend to use

card loan with a high probability.

This kind of rule is one-dimensional because there can be only one numerical
attribute in the rule. A follow-up work [18] goes further by extending the rule

to the following form

((Age, Balance) € P) = (CardLoan = Yes)

which is two-dimensional since two numerical attributes are involved. It implies
that bank customers whose ages and balances fall in a planar region P tend to

use card loan with a high probability.

One application of the two-dimensional association rule is the construction
of a decision tree [19]. In each node of the decision tree, we consider a family R

of grid-regions in the plane associated with a pair of attributes. For R € R, the

Chapter 2 Survey on Previous Work 16

data can be split into two classes: data inside R and data outside R.

The detailed algorithms for the generation for these rules and decision trees

are based on geometry. We would give only the basic idea.

To mine one-dimensional association rule, we first divide the data in equi-
depth buckets Bj, ..., By according to the numerical attribute (e.g. 0 <
Balance < 1000 in the first bucket, 1000 < Balance < 2500 in the second
bucket... etc.) Now we only consider rules whose ranges are combinations of
consecutive buckets. Denote the size of B; by u; and the number of tuples in

B; satisfying the objective condition C' by v;. Consider a sequence of points

Qr = (Zle U, Zle v;). In the rule,

A € (range of Byy1...B,) = C

The slope of Q,,Q), gives the confidence of the rule and x-coordinate of @,,
minus x-coordinate of @), gives the support of the rule. Hence, we can apply

methods in geometry to find out the rules with sufficient support and confidence.

Now we move to two-dimensional association rule. To simplify the problem,
only two classes of regions, rectangle and admissible region, are considered. Ad-
missible regions are connected z-monotone regions, whose intersection with any
vertical line is undivided. Like one-dimensional rule, the data are divided into
equi-depth buckets. Suppose there are two numeric attributes A and B. We
would distribute the values of A into NV equal-depth buckets and do the same for
the values of B. Hence we can image there are N x N cells in a two-dimensional
plane. Now only regions which are union of cells are considered. Again, we
employ methods in geometry to find out the regions with sufficient support and

confidence.

In [19], the two-dimensional association rule is applied to the construction

Chapter 2 Survey on Previous Work 17

of the decision tree to reduce the size of the tree. In each node of the decision
tree, the data are split into two sets, namely inside a region R and outside
R. The choice of region R is different from that in a sole two-dimension rule
because the goal of optimization is no longer confidence or support, but the
entropy of splitting. The algorithm applies the method in geometry to perform

the optimization.

2.2 Clustering

In this section, we describe some previous work done on the clustering problem.
We focus on the work by the database research community since clustering has
been extensively studied by people from different disciplines. To have a general

overview on the clustering problem, please refer to the books on clustering [23,

26, 5, 28].

CLARANS [29] is based on randomized search to reduce the search space in
the K-means approach. DBSCAN [16] relies on a density-based notion of clus-
ters which is designed to discover clusters of arbitrary shape. It makes use of
some spatial data structure for efficient retrieval of the data sets. DBCLASD
[35] is based on the assumption that the points inside a cluster are uniformly
distributed. The algorithm employs the y%-test from statistics to verify the dis-
tribution of the clusters. CLARANS, DBSCAN and DBCLASD are all targeted

on spatial data.

Incremental DBSCAN [15] improves the DBSCAN algorithm to handle the
update of the database efficiently. It takes advantage of the density-based nature
of DBSCAN where insertion and deletion of an object only affects the cluster

membership of the neighborhood of this object. This algorithm is considerably
faster than DBSCAN when the database is updated frequently. GRIDCLUS [33]

Chapter 2 Survey on Previous Work 18

uses a multidimensional grid structure, which is a variation of Grid File [30],
to organize the value space surrounding the pattern values. The patterns are
grouped into blocks and clustered with respect to the blocks by a topological

neighbour search algorithm.

Traditional methods like K-means or K-medoid use one point (the mean or
medoid) to represent the cluster when calculating the distance between a point
and the cluster. CURE [22] extends them by representing each cluster by a
certain fixed number of points. A parameter can be set to adjust the representa-
tive points so that K-means and the graph theory algorithm based on minimum
spanning tree (MST) [23] become two special cases of CURE. The result is an
algorithm that recognizes non-spherical clusters while not particularly sensitive

to outliers.

BIRCH [37] is a dynamical and incremental method to cluster the incoming
points. An important idea of BIRCH is to summarize a cluster of points into
a clustering feature vector. This summary uses much less storage than stor-
ing all data points in the cluster. A CF-tree is built which splits dynamically.
Clusters are stored in the leaf nodes. ScaleKM [7] makes use of a scalable clus-
tering framework and applies it to the K-means algorithm. The clusters found
are compressed using sufficient statistics, which is identical to the clustering fea-
ture vector in BIRCH. This resolves huge memory requirement of K-means so

ScaleKM is suitable for large data sets.

None of the above algorithms satisfies our most important requirement —
the ability to identify clusters embedded in subspaces of high-dimensional data.
CLIQUE [2] is the only published algorithm we are aware of that satisfies this
requirement. Since we follow closely the problem setting of CLIQUE, we shall
describe it in more details. Before introducing CLIQUE, we give a comparison

of the features of the clustering algorithms at Table 2.2.

Chapter 2 Survey on Previous Work

19

Name of algorithm Spherical | Sensitive | Affected | Discover
clusters to out- | by input | embedded
only liers order clusters

MST N Y N N

K-means Y Y N N

CLARANS Y Y Y N

DBSCAN N N N N

DBCLASD N N N N

Incremental DBSCAN || N N Y N

GRIDCLUS N Y Y N

BIRCH Y N N N

ScaleKM Y Y N N

CURE N N N N

CLIQUE N N N Y

Table 2.1: Comparison of clustering algorithms.

Chapter 2 Survey on Previous Work 20

2.2.1 The CLIQUE Algorithm

First we introduce the target problem and assumptions of CLIQUE [2]. A set
of data points and two parameters, ¢ and 7, are given. We discretize the data
space & into non-overlapping rectangular units, which is obtained by partitioning
every dimension into £ intervals of equal length. A unit is dense if the fraction of
total data points contained in the unit is greater than the threshold 7. Clusters
are unions of connected dense units within a subspace. We need to identify the
dense units in different subspaces. The CLIQUE algorithm can be divided into
the following three steps: (1) Find dense units and identify subspaces containing
clusters. (2) Identify clusters in the selected subspace. (3) Generate minimal

description for the clusters in disjunctive normal form.

Although it is theoretically possible to create a histogram in all spaces to
identify the dense units. This method would be computationally infeasible when
the number of dimensions is large. To reduce the search space, a bottom-up
algorithm is used that exploits the monotonicity of the clustering criterion with
respect to dimensionality: if a collection of points S is a cluster in a k-dimensional
space, then S is also part of a cluster in any (k — 1)-dimensional projections of
the space. The algorithm is iterative: First find 1-dimensional dense units by
making a pass over the data. Having determined (k — 1)-dimensional dense
units, Dj_1, the candidate k-dimensional units, (', are determined using the
candidate generation procedures. A pass is made over the data to determine
those candidate units that are dense, Dy. The algorithm iterates the above with

increasing dimensionality, and terminates if no new candidates are found.

The candidate generation procedure is similar to the one adopted in the well-
known Apriori algorithm [1] for mining association rules. It self-joins Dy, to form
(C'x. The join condition is that the units share the first £ —2 dimensions. Let u.a;

represents an identifier for the ¢th dimension of the unit u and w.[l;, h;) represents

Chapter 2 Survey on Previous Work 21

coverage

average(pruned subspaces)

-

subspace

pruned
subspaces subspaces

Figure 2.2: MDI-based pruning.

its interval in the ith dimension.

insert into (C},
select ul.[ll, hl), Ul.[lg, hg), ey Ul.[lk_l,hk_l), u?-[lk—17hk—1)
from Dk—l U1, Dk—l U9
where Uyp.a1 = Ug.dq, Ul.ll = UQ.ll, ul.hl = UQ.hl,
Uq.dy = Ug.d7, ul.lg = UQ.ZQ, ul.hg = UQ.hQ, ceey
Uy.Ap—g = Ug.Ap—2, Ur.lp_o = ug.lp_o, uy.hp_g = ug.hy_o,
Up.Ap—1 < U.0k_1

We then discard those dense units from Cj which have a projection in (k—1)-

dimensions that is not included in Cj_;.

As the number of dimensions increases, the above method may still produce
a large amount of dense units in the subspace and the pruning above may not
be effective enough. CLIQUE uses a new criteria for the pruning of subspace
which is based on the coverage. The coverage zs; of a subspace S;: x5, =
2ues, count(u;) is the fraction of the database that is covered by the dense units,
where count(u;) is the number of points that fall inside u,;. Subspaces with high

coverages are selected and those with low coverages are pruned away. A minimal

Chapter 2 Survey on Previous Work 22

code length method chooses subspaces which is likely to contain clusters. The
subspaces Sy,...,95, are sorted descendingly according to their coverage. We
want to divide the subspaces into the selected set I and the prune set P so that
the subspaces with high coverages are selected and those with low coverages are

pruned away (see Figure 2.2). The code length is calculated as follows:

pr(i) = F:lsjg xsj-‘ s pp(l) = F:HIS]S?? xsj-‘

4 n—1

CL(z) = logy(pr(i)) + Xi<j<ilogy(lzs, — pr(i)]) +

logy(pp (7)) + Zi+1§j$n 10%2(|1’S] — pr(1)])

We choose the value of ¢ whose code length is minimized as the optimal cut
point. Hence, 51,...,5; belong to I and S;44,...,5; belong to J. [is the set of
subspaces likely to contain clusters while the dense units in the set of subspaces
J are discarded to save memory. Note that it is possible to miss some legitimate

clusters by using the minimal code length method.

When the subspaces containing clusters are identified, the clusters in each
subspace are to be determined. Recall that clusters are connected dense units.
We can simply use a depth-first search algorithm [4] to find the connected compo-
nents. The final step is to generate minimal cluster descriptions. The description
is given in the form of DNF expression, e.g. ((30 < age < 50) A (4 < salary <
8)) V ((40 < age < 60) A (2 < salary < 6)). This is equivalent to a union of
some hyper-rectangular regions. The regions can be found by a greedy growth
method. We start with any dense unit and greedily grow a maximal region in
each dimension. The process is repeated until the union of all regions cover the
whole cluster. Then, we need to remove the redundant regions. This is achieved

by repeatedly removing the smallest redundant region until no maximal region

Chapter 2 Survey on Previous Work 23

can be removed. Break ties arbitrarily in the process of removing redundant

region. This would give us the DNF expression describing the clusters.

Chapter 3

Entropy and Subspace Clustering

In this chapter, we discuss the properties of the subspaces of good clustering and
define the criteria for subspace clustering. We propose to use entropy, which
originates from information theory, as a measure of the quality of clustering. We
support the use of entropy as the measure by showing it can handle our proposed

subspace clustering criteria.

3.1 Criteria of Subspace Clustering

There are many factors to be considered for a clustering algorithm in data min-
ing. We mentioned some of these in the introduction: efficiency, shape of clusters,
sensitivity to outliers, and the requirements of parameters. A clustering algo-
rithm assume a certain set of criteria for a cluster, as well as criteria for what is

a good clustering given a set of data.

In addition to the clustering problem, we would like to handle the problem of
determining subspaces that have “good clustering”. We therefore need addition
criteria for determining which of two clustering for two different sets of data is
better. For CLIQUE there is the definition of the coverage, which is used as the

measurement of the goodness of a clustering. This is a reasonable criterion since

24

Chapter 3 FEntropy and Subspace Clustering 25

density density

=
I

@

Figure 3.1: Example of two data sets with equal coverage but different densities.

a subspace with more distinguished clusters will have high coverage, whereas a
subspace with close to random data distribution will have low coverage. However,
we believe that other criteria are also needed. The first criterion that we add is

the criterion of high density.

3.1.1 Criterion of High Density

Suppose we use only the coverage for measurement of goodness. A problem case
is illustrated in Figure 3.1. It shows the probability density function of a random
variable X. The value of coverage can be represented by the area of the shade
portion since coverage is the fraction of the database that is covered by the dense
units. In this example, both cases (a) and (b) have the same coverage. However,
this contradicts with our intuition, because the points in case (b) is more closely

packed and more qualified as a cluster.

3.1.2 Correlation of Dimensions

The third criterion that we consider is related to the correlation of dimensions.
We note that finding subspaces with good clustering may not be always be help-

ful, we also want the dimensions of the subspace to be correlated. The reason is

Chapter 3 FEntropy and Subspace Clustering 26

Y

y2[-

yl ””””” hl

Figure 3.2: Problem with independent dimensions.

that although a subspace may contain clusters, this may not be interesting to us
if the dimensions are independent to each other. For example, Figure 3.2 shows
such a scenario in 2D. In this example, since all the data points projected on
X lies on [z1,22) and projected on Y lies on [yl,y2), the data objects must be
distributed at [z1,22) x [yl,42) in the joint space. If the points are uniformly
distributed at [z1,22) X [y1,y2), although there is a cluster, looking at the joint
space gives us no more knowledge than looking at each of the dimensions inde-

pendently.

Hence, we also require the dimensions of the subspace to be correlated. Note
that when we say correlated here, we mean the dimensions are not completely

independent but it need not mean there is a very strong correlation.

Having identified a number of criteria for clustering, we shall find a metric
that can measure all the criteria simultaneously. A subspace which has good
clustering by the criteria will have high score in this metric. Then we can set a
threshold on this measurement and find subspaces which exceed this threshold.

The metric that we use is the entropy, which we shall discuss in the next section.

Chapter 3 FEntropy and Subspace Clustering 27

3.2 Entropy in a Numerical Database

We propose to use an entropy-based method. The method is motivated by the
fact that a subspace with clusters typically has lower entropy than a subspace

without clusters.

Here we introduce the concept of entropy. Entropy is a measure of uncertainty
of a random variable. Let X be a discrete random variable, X be the set of
possible outcomes of X and p(z) be the probability mass function of the random

variable X. The entropy H(X) is defined by the following expression [13].

H(X)=—=>_ p(z)logp()

reX

If the base of log is 2, the unit for entropy is bit. If the natural log is used, the unit
for entropy is nat. Note that 1 nat = 1.44 bits [34]. When there are more than

one variable, we can calculate the joint entropy to measure their uncertainty.

H(Xy,..., X)) == > ... Y plar,...,z0)logp(zr,...,2,)

1 €X zn€Xn

When the probability is uniformly distributed, we are most uncertain about the
outcome. The entropy is the highest in this case. On the other hand, when the
data points have a highly skewed probability mass function, we know that the
variable is likely to fall within a small set of outcomes so the uncertainty and the

entropy are low.

3.2.1 Calculation of Entropy

Similar to CLIQUE, we divide each dimension into intervals of equal length A,
so the high-dimensional space is partitioned to form a grid. Suppose the data

set is scanned once to count the number of points contained in each cell of the

Chapter 3 FEntropy and Subspace Clustering 28

Area vs Entropy
T

Entropy/nats

L L L L
0 0.2 0.4 0.6 0.8 1
Area

Figure 3.3: Area of Cluster vs Entropy.

grid. The density of each cell can thus be found. Let X be the set of all cells,
and d(z) be the density of a cell z in terms of the percentage of data contained

in . We define the entropy of the data set to be:

H(X) =~ Y d(z)log d(z)

reX

When the data points are uniformly distributed, we are most uncertain where a
particular point would lie on. The entropy is the highest. When the data points
are closely packed in a small cluster, we know that a particular point is likely to
fall within the small area of the cluster, and so the uncertainty and entropy will

be low.

Figure 3.3 shows the result of an experiment studying the relationship be-
tween the area of cluster in a two dimensional space [0,1) x [0,1). The smaller
the area of the cluster, the more closely packed the points and the lower the

entropy.

The size of interval A must be carefully selected. If the interval size is too
small, there will be many cells so that the average number of points in each cell
can be too small. On the other hand, if the interval size is too large, we may
not be able to capture the differences in density in different regions of the space.

Unfortunately, without knowing the distribution of the data sets, it is difficult

Chapter 3 FEntropy and Subspace Clustering 29

to estimate the minimal average number of points required in each cell to have
the correct result. It is inappropriate to assume any distribution because that
is exactly what we are studying. We suggest that there should be at least 35
points in each cell on the average since 35 is often considered as the minimum
sample size for large sample procedures [14]. The size of interval A should be

set accordingly.

3.3 Entropy and the Clustering Criteria

In Section 3.1, we propose the use of 3 criteria for the goodness of clustering: high
coverage', high density and dimensional correlation. In this section, we discuss
how the use of entropy can relate to the criteria we have chosen for the selection

of subspaces. First we list the symbols used in the discussion in Table 3.1.

n the total number of units

k the total number of dense units

T the threshold on the density of a dense unit (in percentage of
the data)

c coverage (percentage of data covered by all dense units)

Plyeeos Dk the densities of the dense units

Pk+1,--+>Pn | the densities of the non-dense units

Table 3.1: Notations used in the discussion of entropy and clustering criteria.

3.3.1 Entropy and the Coverage Criterion

To investigate the relationship between entropy and the coverage, we consider
the following case. By assuming that the ratio of the densities of any two units

pi © pj, where 1 < 1,7 < n, are constant, the densities of the units py,...,p,

1Coverage is the percentage of data covered by all dense units in a particular subspace. The
original authors of CLIQUE define it as the number of objects covered by all dense units. Our
definition is slightly different here.

Chapter 3 FEntropy and Subspace Clustering 30

become differientiable by ¢. It follows that

pr+...+p = c

Phyr + ... +p, = 1—c
dpy dpy
— + ...+ =— =1
dc+ + de
dprt1 dp,
e+ — = -1
de + + de

We want to establish the relationship that, under certain conditions, the entropy

. . dH(X
decreases as the coverage increases, i.e. # <0.

dpy dpn

Theorem 1 %}l < 0 if and only if p,*™ ...ps* > 1.

Proof

H(X) = _Zpilogpi
=1

k n
= =Y plogpi— > pjlogp;

Let us differentiate the entropy with respect to the coverage.

dH(X) E [dp; dp; " [dp, dp;
- log p; _ @Pi 4 4p;
de ;_d o8Pt jzzk;ld &Pt
k —dp' n dp.
S Clogpi| — 1 — 4P 4 1
k dp; n dp
= -2 |7 10gpz] > ld—Jlogp]]
=1 L 7=k+1
[dp1 dpn
= —log|p* Pndc]

The result follows and the proof is completed. O

Chapter 3 FEntropy and Subspace Clustering 31

Now we have the necessary and sufficient condition for our desirable prop-
erty to hold. However, the condition is complicated and difficult to understand.

Further investigation is needed to make it more comprehensive.

Theorem 2 Suppose that C;ii > 0for: = 1,...,kand% <O0forj=k+1,...,n

and minj <<y (p;) > maxgii<j<n (pj). Then we have

dH(X) <0
de —
Proof
dpy dpn
P pe®
dp dp 4Pk 41 dpn
> [oin 0] = [,)] ¢
= li<i<k k+1<;<k
o mim<ick (pi)
~ maxXgpigica (p))
> 1

Then, Theorem 1 applies and the proof is completed. O

The conditions of Theorem 2 hold when the coverage is increased by increasing
the densities of some denser units and decreasing the densities of some non-dense
units. Although it is not true for all conditions, this is a supportive evidence of

the use of entropy to reflect the coverage of clustering for a subspace.

3.3.2 Entropy and the Density Criterion

In the example shown in Figure 3.1, the entropy of case (b) is lower than that
of case (a), which suggests case (b) is a better cluster. We see that entropy can
better capture our intuition of good clustering as compared to the mere use of

metric of coverage. To examine the relationship between entropy and density, we

Chapter 3 FEntropy and Subspace Clustering 32

consider the following case again. Assume that the density of dense units are all
equal to a, the density of non-dense units are all equal to 3. The total number
of dense units is k and thus the total number of non-dense units is n — k. Then

we have

k
H(X) = =) pilogp;

=1

k n
= — (Zpilogpﬁr > pjlogpj)

= —lkaloga+ (n — k)Glog 3]

By assuming that « and change continuously, the entropy becomes a dif-

ferentiable function of density.

Theorem 3 %(X) < 0 if and only if a > 3.

a

Proof Note that
ka+(n—k)g=1

So
ap _

=0
do

k4 (n—k)

Differential the entropy with respect to the density «a, then we have

dH(X) dg
7o = — kloga—l—k—l—(n—k)ﬁ(logﬁ—l—l)
= —k[loga — log 3]
= klogé
o

This shows that %‘(IX) < 0 if and only if @ > 3. The proof is completed. O

Since the above value is also negative, the entropy decreases as « increases.

Chapter 3 FEntropy and Subspace Clustering 33

Hence entropy can relate to the measurement of density in the clustering of a

subspace.

3.3.3 Entropy and Dimensional Correlation

The problem of correlated dimensions can be easily handled by entropy because
the independence and dependence of the dimensions can be detected using the

following relationships in entropy [12].
H(Xy,...,X,)=H(X))+ ...+ HX,) iff X;,...X, are independent (3.1)

H(Xy,...,X,,Y)=H(Xy,...,X,) iff Y isa function of Xy,..., X, (3.2)

Traditionally, the correlation between two numerical variables can be measured
using the correlation coefficient, but we can also detect correlation by entropy.
Since we are already using entropy in the algorithm, using entropy to detect
correlation introduces a negligible computational overhead. A set of variables
Xi,..., X, are correlated if Equation 3.1 is not satisfied. To express it more

precisely, we define the term interest? as below.

n

interest({Xy,...,X,,}) = Z H(X;)—H(Xy,...,X,)
i=1
Equation 3.1 is not satisfied when interest is greater than 0. In this thesis, we
define the degree of correlation by interest. The higher the interest, the stronger
the correlation. To avoid the correlation occurred by random, we consider the
variables to be correlated if and only if the interest exceeds a predefined threshold.
So in this thesis, the correlation in a subspace is defined in terms of interest. The

interests of one-dimensional subspaces are always 0.

2The definition of interest is equivalent to the mutual information between all individual
dimensions of a subspace [(Xi; Xa;...;Xp,). We use the term interest instead of ‘mutual
information between all individual dimensions” to simplify our terminology.

Chapter 3 FEntropy and Subspace Clustering 34

This is one of the advantage of using entropy over coverage, because we cannot
discover correlation by coverage. Relationships like Equation 3.1 and 3.2 do not
exist in coverage. We also propose another measure interest gain, which measures
the increase in the correlation by adding a new dimension to a subspace. It is

further discussed in Section 4.5.

Chapter 4

The ENCLUS Algorithms

In this chapter, we introduce the proposed method ENCLUS in more details.
There are two variations of ENCLUS, namely ENCLUS_SIG and ENCLUS_INT,
which are discussed in Section 4.4 and 4.5 respectively. The overall strategy for

solving subspace clustering consists of three main steps:
1. Find out the subspaces with good clustering by an entropy-based method.
2. Identify the clusters in the subspace found.
3. Present the result to the users.

In Step 2 and Step 3, we can adopt the method in CLIQUE or some of the existing

clustering algorithms. We examine Step 1 since there has been less research on

it.

4.1 Framework of the Algorithms

The proposed algorithms have a framework similar to [9] which introduces an

algorithm for mining correlation rules. It is based on the Apriori algorithm [1]

35

Chapter / The ENCLUS Algorithms 36

for mining association rule. In Apriori, we start with finding large 1-itemsets.
Then, we use the results to generate the candidate 2-itemsets, which are checked
against the database to determine large 2-itemsets. The process is repeated with

increasing itemset sizes until no more large itemset is found.

The algorithm for mining correlation rules [9] extends the framework of Apri-
ori by using a pair of downward and upward closure properties. In contrast, only
the downward closure property is adopted in Apriori. For a downward closure
property, if a subspace S satisfies the property, all the subspaces of S also do.
For an upward closure property, if a subspace S satisfies the property, all the

superspaces of S also do.

Downward closure property is a pruning property. If a subspace does not
satisfy this property, we can cross out all its superspaces because we know they
cannot satisfy the property either. Upward closure property, by contrast, is a
constructive property. If a subspace satisfies the property, all its superspaces
also satisfy this property. However, upward closure property is also useful for
pruning. The trick is that we only find minimal correlated subspaces. If we
know a subspace is correlated, all its superspaces must not be minimal correlated.

Therefore, upward closure becomes a pruning property.

Suppose we have a downward closure property D and an upward closure

property U. The outline of our algorithm is as follows.

1. We start with finding all one-dimensional subspaces satisfying D. They

enter the one-dimensional candidate set.

2. Then for each subsequent pass k, we form a candidate set of k-dimensional
subspaces. This set contains any subspace with all its (k — 1)-dimensional

projections satisfying D but not U.

3. Fach candidate is examined. Those satisfying D and U go into the result

Chapter / The ENCLUS Algorithms 37

set.

4. Go back to Step 2 unless we have an empty candidate sets.

Our method has two variations. The algorithm ENCLUS_SIG follows the
above framework. In one of the variation ENCLUS_INT, only the downward clo-
sure is utilized. We do not consider the upward closure property U, so everything
about the upward closure property U can be removed from the above outline of

the algorithm.

4.2 Closure Properties

We propose the closure properties in this section. Previously we use the term
good clustering to indicate that a subspace contains a good set of clusters in an
intuitive sense. Here we shall give the term a more concrete definition by means
of entropy. We need to set a threshold w. A subspace whose entropy is below w
is considered to have good clustering. Similarly, we define a subspace whose

interest (deﬁned in Section 3.3.3) is above another threshold € to be correlated.

We note a downward closure property for entropy. This is given by the
non-negativity of Shannon’s information measures' [12]. The correctness of the

bottom-up approach is based on this property.

Lemma 1 (Downward closure) If a k-dimensional subspace X, ..., X} has good

clustering, so do all (k — 1)-dimensional projections of this space.

Proof Since the subspace Xi,..., X} has good clustering, H(Xy,..., X}) < w.

IThe values of entropy, conditional entropy, mutual information and conditional mutual
information are always non-negative. This is not true to differential entropy because the value
of differential entropy may be either positive or negative.

Chapter / The ENCLUS Algorithms 38

H(Xy, . Xet)
< H(Xy,...,Xk—1)+ H(Xg| X1, ..., Xk—1) (non-negativity)

= H(X1,...,Xp)
< w
Hence, the (k — 1)-dimensional projection Xi,..., X} also has good clustering.

The above proof can be repeated for other (k — 1)-dimensional projections. O

In Section 3.1.2 we discuss the criterion of dimensional correlation. In Section
3.3.3 we examine how entropy can be used to measure dimensional correlation.

Here we show the upward closure property of this criterion.

Lemma 2 (Upward closure) If a set of dimensions S is correlated, so is every

superspace of 9.

Proof Suppose Xy, ..., X} are correlated, and Xy, ..., Xi, ..., X, is a superset

of it where n > k. Recall we define correlation of a subspace by interest so

interest(Xy,..., Xg) > €

interest(Xy,...,X,)

= (EH)— (Xy,...,X,)
i=1

_ (EH)— (Xitts e os XulX1s oo Xp) — H(X1s-o o, X3)
=1
%)

=1
k

Z (Z) - (Xla"'vXk)
i=1

= nterest(Xy, ..., Xz)

k3

n

(X1, Xe) + (3 H(XZ-)) — H(X1, Xo| X1, .o, X0

(Xi)) - H
(Xi)) - H
H(X;)))| —H >
H(X;)| —H

> €

Chapter / The ENCLUS Algorithms 39

Hence, the subspace Xy,..., X, is also correlated. O

4.3 Complexity Analysis

In this section, we examine the worst case complexity of our algorithm. Note
that the target problem of Apriori is NP-hard [27], so an algorithm based on the
same framework is unlikely to run in polynomial time theoretically. However, we
hope the algorithm would run faster than its theoretical bound in practice. The

performance evaluation of the algorithm by experiment is presented in Chapter 5.

First, we present the notation used for this analysis in Table 4.1.

N | Number of transactions in the database
D | Total dimensionality of the database

m | Number of intervals each dimension divided into

Table 4.1: Notation for the complexity analysis.

In each pass, the database is scanned for the calculation of entropy. This
requires O(N). According to Section 3.2.1, each calculation of entropy requires
summing up m* terms for the pass k. In the worst case, there can be pCy
candidate subspaces. Therefore, pass k requires O(N + pCj - m*). There can
be totally D passes. So,

D D
Z(N—I—DC’k-mk) = ND—I—ZDOk-mk

k=1 k=1
= ND+(m4+1)P -1

Hence, the overall worst-case complexity is O(N D + mP). Practically, the

number of passes and candidate subspaces generated by our algorithms are often

Chapter / The ENCLUS Algorithms 40

X, XXX,

Figure 4.1: A lattice for 4 variables.

much smaller than the values used above. The complexity derived here only

represents a worst-case scenario.

4.4 Mining Significant Subspaces

k | Current number of iterations

Ck | Set of k-dimensional candidate subspaces

Sk | Set of k-dimensional significant subspaces
NSy | Set of k-dimensional subspaces with good clustering
but not minimal correlated

Table 4.2: Notations used in the algorithm.

We call the subspaces with good clustering and minimal correlated to be
significant subspaces. Due to the upward closure property, the subspaces we
are interested in form a border. The border stores all the necessary information.
Refer to Figure 4.1 for an example. In this figure, the subspaces below the dotted
lines all have good clustering (downward closed). Subspaces above the solid line
are all correlated (upward closed). The border {X; X35, X5 X3, X1 X4} stores all

the significant subspaces, i.e. minimal correlated subspaces with good clustering.

Chapter / The ENCLUS Algorithms

41

Algorithm 4.1 ENCLUS_SIG(w, ¢)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

k=1
Let Cj be all one-dimensional subspaces.
For each subspace ¢ € C}, do
fe(+) = cal_density(c)
H (c) = cal_entropy(fe())
If H(c) < w then
If interest(c) > ¢ then
S =SLUc.
else
NS, =NS,Uc.
End For
Cry1 = candidate_gen(N Sy)
If Cry1 =0, go to step 16.
k=k+1
Go to step 3.
Result = Uy, Sk

Figure 4.2: Algorithm for mining significant subspaces.

Chapter / The ENCLUS Algorithms 42

The details of the algorithm, called ENCLUS_SIG, are given in Figure 4.2.
Table 4.2 lists the notations used. The description of the procedures used in the

algorithm is given as follows.

cal_density(c¢) Build a grid to count number of points that fall in each cell of
the grid as described in section 3.2.1. The density of each cell can thus be

estimated.

cal_entropy(f.(-)) Calculate the entropy using the density information obtained

from scanning the data set.

candidate_gen(NS;) Generate the candidate subspaces for (k+ 1) dimensions
using N Sj. There is a join step and a prune step in the candidate generate
function. The join step can be expressed by the following pseudo-code. It

joins two subspaces having common first (K — 1) dimensions.

insert into Cpyq

select p.dimq, p.dimg, ..., p.dimyg, q.dimy
from NSy p, NSk ¢
where p.dim; = q.dimq,...,p.dimy_1 = q.dimy_q,

p.dimy < q.dimy,

In the prune step, any subspace having k-dimensional projection outside

N S}, 1s removed.

4.5 Mining Interesting Subspaces

Since correlation can usually be detected at low dimension, the mining of high
dimensional clusters is often avoided. This is good because low dimensional
clusters are easier to interpret and the time for mining high dimensional clusters

can be saved. However, [9] did not consider that sometimes we are interested

Chapter / The ENCLUS Algorithms

43

Algorithm 4.2 ENCLUS_INT(w, ¢')
1 k=1

2 Let C} be all one-dimensional subspaces.
3 For each subspace ¢ € ('}, do

4 fe(+) = cal_density(c)

5 H (c) = cal_entropy(fe())

6 If H(c) < w then

7 If interest_gain(c) > ¢ then

8 Iy =1 Uec.

9 else

10 NI, = NI, Ue.

11 End For

12 Ci41 = candidate_gen(/; U N Ij)

13 1f Cry1 = 0, go to step 16.

14 k=k+1

15 Go to step 3.

16 Result = Uy, Ix

Figure 4.3: Algorithm for mining interesting subspaces.

Chapter / The ENCLUS Algorithms 44

in non-minimal correlated subspaces. For instance, A and B are correlated, but
we may be interested in the subspace ABC if ABC' are more strongly correlated
than A and B alone. To measure the increase in correlation, we define the term

interest gain®. The interest gain for subspace Xi,..., X, is defined as follows.

interest_gain({X1,...,X,}) = interest({X1,...,X,}) —

max {interest({X1,..., X} —{Xi})}

The interest gain for one dimensional subspace is defined to be 0. The interest
gain of a k-dimensional subspace is the interest of the given subspace minus the
maximum interest of its (k — 1)-dimensional projections. In other words, it is

the increase in interest for adding an extra dimension.

Our new goal becomes mining subspaces whose entropy exceeds w and in-
terest gain exceeds a new threshold ¢/. We call such subspaces to be interesting
subspaces. The mining of significant subspace algorithm can be modified slightly
to mine interesting subspaces. Figure 4.3 shows the modified algorithm EN-
CLUS_INT. Since we relax one of the pruning criteria, more candidates and a
longer running time are expected. The worst-case complexity of ENCLUS_INT is
the same as ENCLUS_SIG, because the computation of interest gain is negligible
and we consider the extra-pruning capacity of ENCLUS_SIG in the worst case.

4.6 Example

Here we give an example to illustrate how our algorithm works. In this example,

some clusters and noise are generated at predefined positions of the space. The

2The definition of interest gain is equivalent to the mutual information between the original
subspace X;,,..., X and a new dimension X; , ie. I(X;,...,X; _,;Xi). We use the
term interest gain instead of “mutual information between the original subspace and the new
dimension” to simplify our terminology.

tn—1

Chapter / The ENCLUS Algorithms 45

generated data have 4-dimensions X, X3, X3 and X4. The points are uniformly
distributed inside each cluster. There are four clusters of 500000 points each
plus noise data of 300000 points. The values of the dimension X, are always
uniformly distributed along [0.0,1.0), so it is independent of all other dimensions
and can be regarded as a noise attribute. The positions of the clusters are
shown in Table 4.3. There are clusters in the subspaces X;X; and X;X;X5.
The parameters w, ¢, ¢ and A are set at 12, 0.01, 0.01 and 0.01 respectively.
Since we know where the clusters are located, the result of the algorithms can

be compared with the setting.

We mine the significant subspaces first. In the initial iteration, all one-
dimensional subspaces are added to the candidate set (';. By the definition

of interest, all one-dimensional subspaces go to N 5.

Cl — {X17X27X37X4}
Sl — @

NSI - {X17X27X37X4}

In the second iteration, the candidate set (3 is generated by the candidate gener-
ation procedure, which self-joins N .5;. From Table 4.4, we see that all subspaces
in Cy satisfy the entropy threshold w but only {X; X5, X; X3, X3 X3} satisfies the
interest threshold e. These subspaces go to Sy while the rest goes to N.Ss.

CQ - {X1X27X1X37X1X47X2X37X2X47X3X4}
SQ - {X1X27X1X37X2X3}
NSQ - {X1X47X2X47X3X4}

The candidate generation function gives an empty candidate set (5, because

no two subspaces in NS; have common first dimension. The algorithm thus

Chapter / The ENCLUS Algorithms 46

X X, XX

12 34

e

-
—————

Figure 4.4: The example illustrated in a lattice.

terminates here. The result is all the significant subspaces discovered so far.

03 — @
result = {X1X27X1X3,X2X3}

The result set correctly tells us there are clusters at the subspaces X; X3,
X; X5 and X3 X5. The dimension X4 is a noise attribute. It does not form clus-
ters with any dimension. This example is illustrated by a lattice in Figure 4.4.
All subspaces below the dotted lines have good clustering (downward closure)
and subspaces above the solid line are all correlated (upward closure). The sub-
spaces marked by the boxes form the border. They are the significant subspaces.
Other subspaces that lie between the two borders have good clustering and are
correlated too, but they are not included in the result because they are not

minimal correlated.

However, in the setting of this example, clusters are contained in the sub-
space X1 X3X3. This is not found by ENCLUS_SIG because this subspace is not
minimal correlated. We need to use the ENCLUS_INT algorithm if we wish to

Chapter / The ENCLUS Algorithms 47

‘ Cluster no. ‘ X ‘ X ‘ X3 ‘ X4 ‘ Number of points ‘
1 [0.2,0.3) | [0.7,0.8) | [0.9,1.0) | [0.0,1.0) 500000
2 [0.2,0.3) | [0.2,0.4) | [0.0,1.0) | [0.0,1.0) 500000
3 [0.8,0.9) | [0.5,0.6) | [0.0,0.5) | [0.0,1.0) 500000
4 [0.5,0.6) | [0.7,0.9) | [0.0,0.2) | [0.0,1.0) 500000
noise [0.0,1.0) | [0.0,1.0) | [0.0,1.0) | [0.0,1.0) 300000

Table 4.3: Setting of synthetic data.

find this cluster. We set the parameter ¢ to be 0.2. The first two iterations are

identical to mining sequential subspaces.

Ci = {X1, X X3, X4}

L =0

NI = {X1, X X3, X4}

Cy = {X1Xa, X1 X3, X1 X4, X2 X5, Xa X1, X3 X4}
I = {X1X2 X1 X3, X5 X5}

N[Q — {X1X4,X2X4,X3X4}

Among the three dimensional candidate sets, only X; X3 X3 qualifies as interesting
subspace. X;X3X,4 does not qualify because interest gain does not exceed the
threshold €. X;X3X4 and X3;X3X, are pruned away because both the entropy
and interest gain do not exceed the thresholds. The candidate set Cy is empty
so the algorithm terminates here. The subspaces found in the result set are
consistent with our initial setting. Notice that the result still lies within the
two borders of the lattice. It means that the interesting spaces also have good

clustering and are correlated.

03 - {X1X2X37 X1X2X47 X1X3X47 X2X3X4}

[3 — {XlXQXg}

Chapter / The ENCLUS Algorithms 48

Subspace | Entropy/nats | Interest/nats | Interest
gain /nats
Xy 4.1740 0 0
X 4.2712 0 0
X3 4.4185 0 0
X4 4.6051 0 0
X1 X 7.5466 0.8986 0.8986
X1 X3 7.9121 0.6804 0.6804
X1Xy 8.7773 0.0018 0.0018
X2 X3 8.8062 0.6035 0.6035
Xo Xy 8.8746 0.0017 0.0017
X3Xy 9.0219 0.0017 0.0017
X1 X X5 10.8887 1.9750 1.0781
X1 XXy 11.9996 1.0507 0.1521
X1 X3X, 12.3617 0.8359 0.1555
X X5X, 12.5334 0.7614 0.1579

Table 4.4: The values of entropy, interest and interest gain of the subspaces in
the example.

N[g - {X1X2X4}
04 - (Z)
result = {XlXQ,Xng,XQXg,XlXQXg}

From this example, we can see that ENCLUS_INT discovers more subspaces, but
it generates more candidates so the running time is longer. Which algorithm to

use depends on whether we are interested in non-minimal correlated subspaces.

Chapter 5

Experiments

To evaluate the performance and accuracy of the algorithms, we implemented
our algorithms on Sun Ultra 5/270 workstation using GNU C++ compiler. Both
synthetic data and real-life data are used for experiments. Our goal is to analyse
the performance and accuracy of our algorithms under different settings. We

also compare our algorithms against CLIQUE.

5.1 Synthetic Data

In this set of experiments, high dimensional synthetic data are generated which
contains clusters embedded in the subspaces. We generate two kinds of synthetic

data, namely hyper-rectangular data and linearly dependent data.

5.1.1 Data Generation — Hyper-rectangular Data

Our data generator allows the user to specify the dimensionality of data, the num-
ber of subspaces containing clusters, the dimensionality of clusters, the number
of clusters in each subspace and the number of transactions supporting each clus-

ter. Table 4.3 is an example of the input to our data generator. This method

49

Chapter 5 Fzxperiments 50

of data generation is also used in [2, 36] and the design of our data generator
resembles that in these works. We do not use hyper-rectangular data in most of
the tests below, because some problems may arise. These problems are discussed

in Section H.4.

For each subspace containing clusters, we insert more than one hyper-rectangular
clusters. If there is only one uniform hyper-rectangular cluster inserted in the

subspace, it would be pruned away due to independence (see Section 3.1.2).

5.1.2 Data Generation — Linearly Dependent Data

Our experiments focus on linearly dependent data. This kind of data contains
linearly dependent variables. Linearly dependent variables are a set of variables,
in which at least one of them is the linear combination of the other variables.

The following is an example.

Example 1 Let A, B and C be a set of linearly dependent variables. Variables
A and B are random variables uniformly distributed along [0,1], and C' = 0.4A
+ 0.685.

Ideally, a subspace clustering algorithm should report the subspace ABC
to the user. In our experiments below, we see that not all subspace clustering
algorithms do this successfully. Unless otherwise specified, we use data of 10
dimensions and 300,000 transactions in the experiments. Sets of linearly depen-
dent variables contain in five-dimensional subspaces. The default parameters are
shown at Table 5.1.2. This set of parameters are obtained from trial and error.

They are suitable for the discovery of five-dimensional clusters.

Chapter 5 Fzxperiments 51

‘ Parameter ‘ Value ‘

A 0.1
w 8.5
€ 0.1
e 0.1

Table 5.1: Default parameters for the experiments.

4000

T T
ENCLUS_SIG (epsilon = 1.0) ~—
ENCLUS_INT -+

3500 |-
3000 s
2500 |-

2000 - /’f“

Time/secs

1500

1000 -~

500 -

I
10

4 6
Entropy Threshold (omega)/nats

Figure 5.1: Entropy threshold vs running time.

5.1.3 Effect of Changing the Thresholds

Figure 5.1 shows the performance of the algorithms under different values of w.
We do not have a smooth curve here, because when w increases to a certain
value, candidates of a higher dimension are introduced which impose a consid-
erable amount of extra computation. Five dimensional subspaces are discovered
when w > 8.5. From the figure, we can see the running time of the algorithm EN-
CLUS_SIG ceases to increase when w is high enough, because after that point,
the pruning power of entropy is negligible and most pruning is attributed to
the upward closure property which is independent of w. As for the algorithm
ENCLUS_INT, the running time keeps on increasing with w because only the
entropy is utilized for pruning. At w = 8.5, ENCLUS_INT recovers the five-

Chapter 5 Fzxperiments 52

2500 T
omega =85 <—

2000 -

1500 -

Time/secs

1000 -~

500

I
1 15 2 25 3
Interest Threshold (epsilon)/nats

Figure 5.2: Interest threshold vs running time (ENCLUS_SIG).

dimension clusters we have embedded. ENCLUS_SIG represents the correlated

variables in a number of two and three dimensional subspaces.

Figure 5.2 shows the performance of the ENCLUS_SIG under different values
of €. Again, the running time ceases to increase after a certain point. This is
because the pruning power of the upward closure property is negligible and most
pruning is done by entropy. As € increases, the clusters are expressed in higher
dimensional subspaces, but the performance suffers because less pruning is done.
Only five-dimensional subspaces are discovered when ¢ reaches 3. Obviously,
when ¢ is set too large, no subspace can be discovered because there does not
exist a set of variables having such high correlation. Therefore, the use of high

interest threshold € is not recommended.

We have also performed a similar set of experiments for ENCLUS_INT with
w = 8.5. The performance of the ENCLUS_INT under different values of ¢ is

nearly identical, since only the entropy is used for pruning.

Chapter 5 Fzxperiments 53

100

DENCLUS_SIG
WENCLUS INT

med

Pru

centage of Subspaces

Per:

Figure 5.3: Pass no vs percentage of subspaces pruned.

5.1.4 Effectiveness of the Pruning Strategies

The pruning power of the algorithm is illustrated in Figure 5.3. Our methods are
compared to the naive algorithm which examines all possible subspaces. From
the result, we can see our methods achieve significant reduction on the num-
ber of candidates in the later passes. ENCLUS_SIG always prunes more can-
didates than ENCLUS_INT. This explains why ENCLUS_SIG runs faster than
ENCLUS_INT. The experiment is carried out with a 20-dimensional data set.

5.1.5 Scalability Test

The result of the scalability test is shown in Figure 5.4. As expected, EN-
CLUS_SIG outperforms ENCLUS_INT because ENCLUS_SIG only finds mini-
mal correlated subspaces while ENCLUS_INT has to spend extra time to mine
the non-minimal correlated subspaces. The gap between ENCLUS_SIG and EN-
CLUS_INT increases with the dimensionality, which suggests the pruning power
of the upward closure is more significant there. We run the experiment up to
30 dimensions. For higher dimensions, the computation time would increase fur-

ther. We suggest some extra pruning strategies to improve the performance in

Chapter 5 Fzxperiments 54

80000 T

ENCLUS_SIG —<—
ENCLUS_INT -+--

70000 | A
60000 |-
50000 |-

40000 -

Time/secs

30000 -

20000

10000

o dz
10

20
Dimensionality

Figure 5.4: Scalability test on dimensionality of data set.

T T T
ENCLUS_SIG (epsilon = 1.0) ~—
1000 L ENCLUS INT -]
4’*/,
800 |-
& 600 -
8
3
£
E
400 L 4
o ! ! ! ! ! ! !
100 150 200 250 300 350 400 450 500

Number of Transactions/1000

Figure 5.5: Scalability test on the number of transactions of the data set.

Section 6.1.

Figure 5.5 shows the scalability of our algorithms under databases of 100,000
to 500,000 transactions. From the experiment, our algorithm scales linearly with
the number of transactions, because the sole effect of changing the number of
transactions is on the time reading the database. The number of passes remains
constant and the time reading the database increases linearly with the number

of transactions.

This result is consistent with the complexity analysis done in Section 4.3,

Chapter 5 Fzxperiments 55

which points out that the worst case complexity is O(ND + mP). In both the
complexity and experimental analysis, our algorithms scale linearly with N and

exponentially with .

5.1.6 Accuracy

To investigate the accuracy of the algorithms, we performed an experiment using
a data set containing some 5-dimensional clusters in five disjoint subspaces. The
total dimensionality of the data set is 25. ENCLUS_INT successfully discovers
the five 5-dimensional subspaces that contains our embedded clusters without
reporting false alarms of other 5-dimensional subspaces. ENCLUS_SIG, again,
expresses the correlated variables using a number of two-dimensional subspaces.
It does not examine higher dimensional subspaces because they are not minimal

correlated.

5.2 Real-life Data

In this section, we apply our algorithms to the real-life data sets in order to verify
the validity of the results of the algorithms. Two sets of data are used, namely

the US 1990 census data and Hong Kong stock price data during 1993-1996.

5.2.1 Census Data

The US census database is available at the web site IPUMS-98'. We choose
to work on the person record on the 1990 data. It consists of many kinds of

attributes. Since most of them are categorical, we choose only 24 numerical at-

tributes out of the whole data set for our analysis. The algorithm ENCLUS_INT

!The URL of IPUMS-98 is http://www.ipums.umn.edu/.

Chapter 5 Fzxperiments 56

‘ Subspace ‘
NCHILD ELDCH YNGCH
OCCSCORE SEI UHRSWORK
OCCSCORE SEI WKSWORK1
EDUCREC OCCSCORE SEI
ELDCH YNGCH AGE

Table 5.2: Subspaces of highest interest at three dimensions (Census database).

‘ Subspace ‘
NCHLT5 YRSIMMIG INCTOT
CHBORN YRSIMMIG INCTOT

FAMSIZE YRSIMMIG WRKSWORK1

NCHLT5 INCTOT INCBUS
FAMSIZE NCHLT5 SPEAKENG

Table 5.3: Subspaces of lowest interest at three dimensions (Census database).

rather than ENCLUS_SIG is used because it does not stop at low dimension and
allows us to see more interesting subspaces. We show some three-dimensional
subspaces with highest and lowest interests on Table 5.2 and 5.3 respectively.
The mnemonic used is given on Table 5.4. The subspaces of low interest are
not usually the target of our algorithms. We only use them to contrast with the
subspaces of high interest. From the result, we can see our algorithms discover
meaningful subspaces. The subspaces of high interest are much more likely to

have good clustering than the subspaces of low interest.

5.2.2 Stock Data

In this section, we use our algorithm to study the stock price of Hong Kong
stock market during 1993-1996. Our study is limited to 29 stocks out of 33 Hang

Seng Index constituent stocks. The remaining 4 stocks are omitted because of

Chapter 5 Fzxperiments 57

‘ Mnemonic ‘ Variable Name ‘

FAMSIZE Number of own family members in household
NCHILD Number of own children in household
NCHLT5 Number of own children under age 5 in household
ELDCH Age of eldest own child in household
YNGCH Age of youngest own child in household

AGE Age
CHBORN Number of Children ever born
YRSIMMIG | Year of immigration
SPEAKENG | Speaks English
EDUCREC Education attainment recode
OCCSCORE | Occupational income score
SEI Duncan Socioeconomic Index
WRKSWORKI1 | Weeks worked last year
UHRSWORK | Usual hours worked per week

INCTOT Total personal income

INCBUS Non-farm business income

Table 5.4: Mnemonic used in the census data sets.

missing data. A high interest threshold € (1.0) is used because we expect price

movements of the stocks are highly correlated.

The subspaces of highest and lowest interests are shown at Table 5.5 and 5.6
respectively. Again, our algorithm produces meaningful results. For instance,
the subspace Cheung Kong, Henderson Land and SHK PPT is likely to have
good clustering because they are all real estate stocks. The price movement of
each of these stocks is likely to affect the others. Similarly, the subspace Cheung
Kong, HSBC and Henderson Land contains the leading stocks. In contrast, the

subspaces with low interest contain stocks from different industries.

From the experiments on these two sets of real-life data, we can conclude that

the results produced by our algorithms are valid and meaningful.

Chapter 5 Fzxperiments 58

‘ Stock name ‘

Cheung Kong, Henderson Land, SHK PPT
Cheung Kong, HSBC, Henderson Land
Cheung Kong, Hutchison, SHK PPT
HSBC, Hutchison, First Pacific

Table 5.5: Subspaces of highest interest at three dimensions (Stock database).

‘ Stock name ‘

HK Electric, Sino Land, TVB
HK Electric, Bank of East Asia, TVB
HK Telecom, Sino Land, TVB
HK Telecom, Bank of East Asia, Cathay Pacific

Table 5.6: Subspaces of lowest interest at three dimensions (Stock database).

5.3 Comparison with CLIQUE

In this section, our algorithms are compared to the CLIQUE algorithm. The
CLIQUE algorithm is implemented on the same platform as ENCLUS. Recall
that there are three steps in CLIQUE. For fair comparison, we only use CLIQUE
to discover the subspaces with good clustering (Step 1). We do not discover the
actual position of the clusters (Step 2 and 3). It is explained in Section 5.1.3 that
the performance of our algorithm depends on the values of the thresholds. The
result of a similar evaluation on CLIQUE is shown on Figure 5.6, from which
we see that the performance of CLIQUE also varies greatly with its threshold
7. Hence, special attention on setting the thresholds has been paid to the com-
parison experiment. In this experiment, the threshold values are set in a way
such that the target subspaces are discovered by the algorithms. Also, since the
running time is implementation dependent, it is advised we look at the growth

rate of the running time rather than at the absolute value.

Chapter 5 Fzxperiments 59

700

T
CLIQUE ~—

600 -
500 -

400 -

Time/secs

300

200 -

100 -

0 L L s T

4
0 0.05 0.1 0.15 0.2 0.25 0.3
Tau

Figure 5.6: Performance of CLIQUE under different thresholds.

Algorithm Thresholds
ENCLUSSIG | w=4.0, e =0.1
ENCLUS_INT | w =4.0, ¢ = 0.1

CLIQUE r=0.1,¢£ =10

Table 5.7: Parameters used in the comparison experiment.

The threshold values used are listed at Table 5.7. The data set of this ex-
periment is 100,000 transactions of synthetic data at different dimensionality.
Because of the reasons described in Section 5.3.1 and Section 5.4, only simple
hyper-rectangular data are generated for this experiment. Only one subspace is
chosen and three dimensional clusters are embedded in this subspace. All algo-
rithms discover the subspace successfully. Figure 5.7 shows the performance of
them. They all scales non-linearly with the dimensionality. The running time of
the 50-dimensional case is 25.0, 18.4 and 31.40 times of the running time of the
10-dimensional case for ENCLUS_SIG, ENCLUS_INT and CLIQUE respectively.
This suggests our algorithms have better scalability than CLIQUE.

We suspect that the ENCLUS algorithms run faster than CLIQUE because
the candidate sets in ENCLUS are based on subspaces rather than on units
in CLIQUE. Since the potential number of dense units is much larger than the

Chapter 5 Fzxperiments 60

T T
ENCLUS_SIG —~— 1

1600 - ENCLUS_INT -
CLIQUE -5

1400

1200

1000 -~

Time/secs

800 -

600

400 -

200 -

—— L L L L L L L
10 15 20 25 30 35 40 45 50
Dimensionality

Figure 5.7: Comparison of our algorithms with CLIQUE.

potential number of subspaces, ENCLUS can have much fewer candidates at high
dimensions. Also, ENCLUS_SIG uses two closure properties for pruning, which
is more effective than one closure property in CLIQUE. A comparsion of the
pruning power, rather than just the running time, of ENCLUS and CLIQUE can
be a topic of further research. However, special attention must be paid to ensure
the fairness of the comparsion. As the number of dense units is much larger than
the potential number of subspaces, the base for the calculation of the pruning
ratio in CLIQUE is larger. The result can be misleading because CLIQUE may
have more candidates despite better pruning ratio. Also, MDL-based pruning in
CLIQUE sacrifices the accuracy for better pruning. The ENCLUS algorithms
do not sacrifice the accuracy. Therefore, their pruning ratios are not directly

comparable.

5.3.1 Subspaces with Uniform Projections

In [2], CLIQUE is studied through hyper-rectangular synthetic data. From our
experiments, we observe that CLIQUE is not very capable of dealing with some

data sets in which some subspaces have good clustering but their projections

Chapter 5 Fzxperiments 61

1

HSBC

0.4 0.
Cheung Kong

Figure 5.8: The stock price of Cheung Kong and HSBC (normalized to [0,1]).

look uniform. These subspaces would be missed by CLIQUE. One kind of such

data sets is linearly dependent data.

In Example 1 on Section 5.1.2, the variables A and B as well as the subspace
AB are uniform. They are likely to be pruned away by CLIQUE since they
have low coverages due to their uniform distribution. Unfortunately, this would

inhibit the discovery of the subspace ABC.

We test CLIQUE on linearly dependent data. We generate a data set con-
taining two sets of linearly dependent variables. CLIQUE is unable to discover
them even though different values of the threshold 7 are tried. On the other
hand, ENCLUS_SIG and ENCLUS_INT can handle them successfully, because
a subspace containing linearly dependent variables would give high interest. Al-
though the uniform distribution in the lower subspaces give high entropy, these
subspaces would not be pruned away by our algorithms, because the downward
closure property keeps all the potential subspaces until their entropy exceeds the
threshold w. When the entropy of a subspace exceeds the threshold w, their

superspaces are impossible to have good clustering.

We also try CLIQUE on the stock data set, because this data set most closely

Chapter 5 Fzxperiments 62

‘ Cluster no. ‘ X ‘ Xo ‘ X3 ‘ X4 ‘ Number of points ‘
1 [0.2,0.3) | [0.2,0.3) | [0.0,1.0) | [0.0,1.0) 500000
2 [0.0,1.0) | [0.0,1.0) | [0.8,0.9) | [0.8,0.9) 500000

Table 5.8: Example illustrating the problem of hyper-rectangular data.

Cluster 2
Cluster 2 Cluster 1

\

Cluster 2

Cluster 1

\4%/////////////

N
Cluster 1 (a) (

1

©

Figure 5.9: Example illustrating the problem of hyper-rectangular data.

resembles the linearly dependent data. For example, Figure 5.8 shows the stock
price of Cheung Kong against that of HSBC. It shows a close relationship between
their stock prices. Their one-dimensional projection, though not strictly uniform,
does not show particular clusters. We run CLIQUE with the stock data set. The
three-dimensional subspace with the highest coverage is HSBC, HK Electric and
Hang Seng. Their interest (1.69) only ranks 1763th out of the 3654 candidate
three-dimensional subspaces. The highest interest is 2.54. Many high-interest

subspaces according to our algorithm are missed by CLIQUE.

5.4 Problems with Hyper-rectangular Data

Although the method of generating hyper-rectangular data is used in previous
work such as [2, 36], we do not use it for most of our experiments. This manip-

ulation of such data is awkward because one cluster can cross many subspaces.

Chapter 5 Fzxperiments 63

Let us look at the setting of Table 5.8 for an example. In this example, we intend
to embed clusters at the subspaces X; X, and X5X, only. However, clusters may
also arise at other subspaces such as X7 X5, X1 X4, Xy X5 and X3 X,. Figure 5.9
gives an graphical illustration. Cluster 1 is a cluster at subspace X; X5, but it is
uniform in subspace X3X,. Similar argument holds for Cluster 2. The entropy
of subspaces X;X; and X3X,; would not be particular low because one of the
clusters looks uniform. On the other hand, in other subspaces, say X, X3, each
cluster looks like a bar. As a result, it seems to contain clusters although that
is not what we intended. Because of this phenomenon, a subspace clustering

algorithm often discovers more subspaces than we expected.

We tested ENCLUS and CLIQUE in a set of hyper-rectangular data. A set
of 10-dimensional data with 300,000 transactions are generated. We embed some
clusters at three 5-dimensional subspaces. Both ENCLUS and CLIQUE do not
give satisfactory accuracy in hyper-rectangular data. ENCLUS_INT recovers the
3 target subspaces at five dimensions but also introduces 9 other subspaces. The
result of CLIQUE deviates too much from our expected result for a detailed
analysis. It cannot recover our target subspaces but introduces a lot of other

subspaces. It also stops before any 5-dimensional subspace is discovered.

This result is confusing because CLIQUE is tested by hyper-rectangular data
in [2] and is reported to have good accuracy. However, we cannot replicate such
result unless some very simple hyper-rectangular data sets (having low number
of subspaces containing clusters), like those used in the experiment of previous

section, are used.

Chapter 6

Miscellaneous Enhancements

In the previous chapter, we discuss the details of the algorithm ENCLUS. In this
chapter, we go further to look at some miscellaneous enhancements applicable
to ENCLUS. These include some extra pruning strategies and adjustment to
the clustering criteria. Our target is to provide better performance or more

meaningful and comprehensible results.

6.1 Extra Pruning

Here we attempt to propose a new pruning method for improving the perfor-
mance. In the experiments, we notice that many useless subspaces are not pruned
away until the late passes. This suggests there are rooms for further reduction
of the number of candidate subspaces. One way of doing this is by making the

following assumption.

Assumption 1 If a subspace S is significant or interesting, any projection of S

with two or more dimensions has at least interest €, which is less than e.

In the above assumption, we set a new threshold €. The rationale for the

above assumption is based on the observation that in many data sets, when a set

64

Chapter 6 Miscellaneous Enhancements 65

of variables is correlated, its subset also shows some degree of correlation. We
have verified this with the two real-life data sets used in our experiments. When
a subspace is correlated, its projections are never independent. This assumption
is, however, not always true. For instance, it does not hold on linearly dependent

data.

With this assumption, any subspace with interest less than € can be pruned
away. We make simple modification to our algorithm to incorporate this prun-
ing techniques. The line 6 of Figure 4.2 (ENCLUS_SIG) or Figure 4.3 (EN-
CLUS_INT) should be replaced as follows.

If H(¢) <w and (k =1 or interest(c) > €) then

We examine the performance of our algorithm with this extra pruning tech-
nique using hyper-rectangular synthetic data. Owing to the problems described
in Section 5.4, the clusters are only embedded in two five-dimensional subspaces.
We generate 300,000 transactions at different dimensionality. The parameters
€ is set at 0.05. The result of this experiment is shown at Figure 6.1. We can
observe that the algorithms with extra pruning outperforms those without by a

large margin.

For this data set, the target subspaces are successfully recovered by the al-
gorithms. This accuracy cannot be achieved when Assumption 1 does not hold
on the data set. Therefore, the extra pruning cannot be applied on linearly

dependent data, where the assumption does not hold.

6.2 Multi-resolution Approach

Another possible improvement on ENCLUS is the consideration of the number

of clusters. Recall that the K-means method has a problem in determining the

Chapter 6 Miscellaneous Enhancements 66

T —
ENCLUS-SIG <— |
__-—-—ENCLUS_INT -+--
__ENCLUS_SIG (extra pruning) -8-
~~7" ENCLUS_INT (extra prunil

100000 |

10000 +

1000 £

Time/secs

100

10

I I I
10 15 20 25 30
Dimensionality

Figure 6.1: The performance of the algorithms with and without extra pruning.

Y Y

X X

Figure 6.2: Two data sets with equal coverage and density but different number
of clusters.

number of clusters: generally a large number of clusters will lower the average
distance of points from their cluster centroids, giving the dilemma that forming
one cluster for each point will give an optimal distance measurement. We can
see that the number of clusters is a valid consideration in the determination of

goodness of clustering.

For two data sets, it is possible that the coverage and density of the two sets
are the same, but one set contains a large number of clusters while the other set
contains a small number of clusters. Figure 6.2 shows such an example. It is

intuitive that the set with a smaller number of clusters should be considered the

Chapter 6 Miscellaneous Enhancements 67

The clusters fall on different grids. The entropy is The clusters fall on the same grid. The entropy is
higher. lower.
Entropy = 1.38 nats Entropy =0

Figure 6.3: An example explaining how multi-resolution method works.

set with better clustering. Unfortunately, our algorithm does not take this into

account.

We can handle this criterion by using a multi-resolution approach in calculat-
ing the entropy. We repeat calculating the entropy again using different values
of the size of interval A. In a coarse resolution, the entropy value favours small
number of clusters. The data points fall on the same cells in a subspace with
small number of clusters but they fall on different cells in a subspace with large
number of clusters. Therefore, the entropy value is lower for smaller number of

clusters. See Figure 6.3 for an illustration.

We cannot just use a coarse resolution, however, because it cannot capture
the difference in the densities of different regions. Therefore, we use a multi-
resolution approach. We extend our algorithm by having various entropy thresh-
olds for the entropy in different resolutions. In other words, we have multiple

downward closure properties.

Chapter 6 Miscellaneous Enhancements 68

(a) (b)

Figure 6.4: Two correlated variables X and Y.

6.3 Multi-threshold Approach

In the multi-threshold approach, we use different thresholds at difference passes.
The multi-threshold approach is useful in both CLIQUE and ENCLUS. Let us
first look at the case in CLIQUE.

Figure 6.4(a) shows a problem case in CLIQUE. The variables X and Y are
correlated. The distribution of X and Y is uniform when considered individually,
but their joint distribution is not. Depending on the threshold 7, all or no units
will be considered dense. For the latter case, the cluster in the two-dimensional
space will be missed by CLIQUE. To avoid this situation, the threshold 7 must
be set low enough. A similar problem occurs when the values of the variables
X and Y distribute like the setting in the N-queen problem (see Figure 6.4(Db)).
Again 7 must be set low enough to avoid missing the two-dimensional clusters.
However, setting 7 too low would create other problems. Firstly, this would
generate a tremendous amount of dense units, which introduces a large memory
overhead and hampers the performance greatly. For a k-dimensional subspace,
the memory requirement for storing the count of dense units is O(N*). Secondly,
this would produce 100% coverages for uniformly distributed subspaces. This is

undesirable because we intend to have lower coverage for uniformly distributed

Chapter 6 Miscellaneous Enhancements 69

subspaces.

This problem can be solved if multiple thresholds are allowed. Although
multiple thresholds are not explicitly set in CLIQUE. the minimal description
length (MDL) method in CLIQUE effectively assigns different thresholds for

different dimensionalities.

The multi-threshold approach is useful in ENCLUS too. To maintain the
downward closure property, the same entropy threshold is used in all pass. Nev-
ertheless, low dimension subspace tends to have low entropy. As a result, a
low-dimensional subspace with entropy below the threshold may not be useful
to the users. This can be avoided if we give a lower threshold at lower passes.
However, this would violate the downward closure property which is essential
to ENCLUS. We, therefore, propose to use a post-processing method. Multi-
ple entropy thresholds are set, but we run ENCLUS using the highest entropy
threshold. Before we present the result to the users, it is checked against the
threshold for each level. Those subspaces that do not satisfy the threshold for

their corresponding level are removed.

However, it is clumsy to set multiple thresholds by human. We may also use
the MDI-based pruning method in CLIQUE which is based on entropy instead
of coverage. The effect of MDIL-based pruning on ENCLUS is not studied yet

and is left as future work.

Chapter 7

Conclusion

We propose to tackle the problem of mining numerical data using clustering tech-
niques since each transaction with & attributes can be seen as a data point in
a k-dimensional space. However, for large databases, there are typically a large
number of attributes and the patterns that occur in subsets of these attributes
are important. Mining for clusters in subspaces becomes an important problem.
The proposed solution consists of three steps, namely the identification of sub-
spaces containing clusters, the discovery of clusters in selected subspaces and
presentation to the users. We concentrate on the subproblem of identifying sub-

spaces containing clusters, because few works have been done on it, one better

known previous method is CLIQUE [2].

We propose using three criteria for the goodness of clustering in subspaces:
coverage, density and correlation. Our proposed method is based on the measure
of entropy from information theory, which typically gives a lower value for a
subspace with good clustering. Although entropy has been used in decision trees
for data mining [31, 32], to our knowledge, no previous work has used it for the
problem of subspace clustering. We also justify the approach by establishing

some relationship between entropy and the three criteria.

Our algorithm ENCLUS_SIG also incorporates the idea of using a pair of

70

downward and upward closure properties, which is first used by [9] in the problem
of mining correlation rules. This approach was shown effective in the reduction
of the search space. In our problem, the downward closure property is given by
entropy while the upward closure property is given by the dimensional correlation
which is also based on entropy. By the use of the two closure properties, the
algorithm has good pruning power. Another algorithm ENCLUS_INT relaxes
the upward closure property so that the non-minimal correlated subspaces are
also mined. Experiments have been carried out to show the proposed algorithm
can successfully identify the significant/interesting subspaces and the pruning
is effective and efficient. The algorithms are compared to CLIQUE [2] and are
found to have better performance. The accuracy of ENCLUS is also higher
in some forms of data. We also propose some miscellaneous enhancements to

ENCLUS that can make it more powerful.

71

Bibliography

1]

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In

Proceedings of the 20th VLDB Conference, pages 487-499, 1994.

Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar
Raghavan. Automatic subspace clustering of high dimensional data for data
mining applications. In Proceedings of the ACM SIGMOD Conference on
Management of Data, Montreal, Canada, 1998.

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association
rules between sets of items in large databases. In ACM SIGMOD, Wash-
ington, DC, USA, pages 207-216, 1993.

A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Welsley, 1974.

E. Backer. Computer-assisted reasoning in cluster analysis. Prentice Hall,

1995.

Michael J. A. Berry and Gordon Linoff. Data Mining Techniques for Mar-
keting, Sales and Customer Support. Wiley, 1997.

P. S. Bradley, Usama Fayyad, and Cory Reina. Scaling clustering algorithms
to large databases. In Proceedings of International Conference on Knowledge

Discovery and Data Mining KDD-98, AAAT Press, 1998.

72

8]

[10]

[11]

[12]

[13]

[16]

P. S. Bradley, O. L.. Mangasarian, and W. Nick Street. Clustering via con-
cave minimization. In M. C. Mozer, M. 1. Jordan, and T. Petsche, edi-

tors, Advances in Neural Information Processing Systems -9-, pages 368—

374, Cambridge, MA, 1997. MIT Press.

Sergey Brin, Rajeev Motwani, and Craig Silverstein. Beyond market baskets:
Generalizing association rules to correlations. In Proceedings of the ACM

SIGMOD Conference on Management of Data, 1997.

Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dy-
namic itemset counting and implication rules. In Proceedings of the ACM

SIGMOD Conference on Management of Data, 1997.

David K. Y. Chiu and Andrew K. C. Wong. Synthesizing knowledge: A
cluster analysis approach using event covering. In IFEFE Transaclions on
Sytems, Man, and Cybernetics, Vol. SMC-16, No. 2, March/April 1986,
pages 251-259, 1986.

Thomas M. Cover and Joy A. Thomas. Flements of Information Theory.

Wiley Series in Telecommunications, 1991.

I. Csiszar and J. Korner. Information Theory: Coding Theorems for Discrete

Memoryless System. Academic Press, 1981.

Jay L. Devore. Probability and Statistics for Engineering and the Sciences.
Duxbury Press, 4th edition, 1995.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Michael Wimmer, and Xi-
aowei Xu. Incremental clustering for mining in a data warehousing envi-
ronment. In Proceedings of the 24th VL.DB Conference, New York, USA,
1998.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-

based algorithm for discovering clusters in large spatial databases with noise.

73

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

In Proceedings of International Conference on Knowledge Discovery and

Data Mining KDD-98, AAAI Press, pages 226-231, 1996.

U. Fayyad, G. Piatetsky-Shapiro, and P. Symth. Advances in Knowledge
Discovery and Data Mining. AAAT/MIT Press, 1996.

Takeshi Fukuda, Yasuhiki Morimoto, Shinichi Morishita, and Takeshi
Tokuyama. Data mining using two-dimensional optimized association rules:
Scheme, algorithms, and visualization. In Proceedings of the ACM SIGMOD
Conference on Management of Data, 1996.

Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi
Tokuyama. Constructing efficient decision trees by using optimized nu-

meric association rules. In Proceedings of the 22nd VLDB Conference, Mum-
bai(Bombay), India, 1996.

Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi
Tokuyama. Mining optimized association rules for numeric attributes. In
Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 1996.

Clark Glymour, David Madigan, Daryl Pregibon, and Padhraic Smyth. Sta-
tistical themes and lessons for data mining. Data Mining and Knowledge

Discovery, 1:11-28, 1997.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An efficient clus-
tering algorithm for large databases. In Proceedings of the ACM SIGMOD

Conference on Management of Data, Montreal, Canada, June 1996.
John A. Hartigan. Clustering algorithms. Wiley, 1975.

M. Houtsma and A. Swami. Set-oriented mining of assocation rules. Tech-
nical Report RJ 9567, IBM Almaden Research Center, San Joe, California,
1993.

74

[25]

[30]

31]

32]

33]

Chun hung Cheng, Ada W. Fu, and Yi Zhang. Entropy-based subspace
clustering for mining numerical data. In Proceedings of ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD-
99), San Diego, 1999.

Leonard Kaufman and Peter J. Rousseeuw. Finding groups in data: an

introduction to cluster analysis. Wiley, 1990.

Heikki Mannila and Hannu Toivonen. On an algorithm for finding all in-
teresting sentences extended abstract. In Proceedings of the 6th Internation

Conference on Database Theory, pages 215-229, 1996.

Pierre Michaud. Clustering techniques. In Fulure Generation Computer

Systems 13, pages 135-147, 1997.

Raymond T. Ng and Jiawei Han. Efficient and effective clustering meth-
ods for spatial data mining. In Proceedings of the 20th VLDB Conference,
Santiago, Chile, 1994.

J. Nievergelt and H. Hinterberger. The grid file: An adaptable, symmetric
multikey file structure. In ACM transactions on Database System, pages
38-71, 1984.

J.R. Quinlan. Induction of decision trees. In Machine Learning, pages 81—

106. Kluwer Academic Publishers, 1986.

J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

Erich Schikuta. Grid-clustering: An efficient hierarchical clustering method
for very large data sets. In Proceedings of Internation Conference on Pattern

Recognition (ICPR), pages 101-105, 1996.

75

[34]

[35]

Jan C A van der Lubbe. Information Theory. Cambridge University Press,
1997.

Xiaowei Xu, Martin Ester, Hans-Peter Kriegel, and Jorg Sander. A
distribution-based clustering algorithm for mining in large spatial databases.

In Proceedings of 14th International Conference on Data Fngineering

(ICDE’98), 1998.

Mohamed Zait and Hammou Messatfa. A comparative study of clustering

methods. In Future Generation Computer Systems 13, pages 149-159, 1997.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An efficient
data clustering method for very large databases. In Proceedings of the ACM
SIGMOD Conference on Management of Data, Montreal, Canada, pages
103-114, June 1996.

76

Appendix A

Differential Entropy vs Discrete
Entropy

The entropy introduced in Chapter 3 is designed for discrete variables. Differential
entropy is a continuous version of entropy. Let S be the support set of the random
variable and f(z) be the probability density function of the random variable X. The
differential entropy h(X) is defined as follows:

WX) = = [J(z) log(f(2))da

When there are more than one variable, we define the joint differential entropy to

measure their uncertainty.

h(Xl,...,Xn):—/S / F(@ry e zn) log(f (21, s an))da .2y

In the ideal case, it seems more natural to use differential entropy rather than
discrete entropy in our criteria since we focus on mining knowledge from numerical

data. However, our decision is not to use differential entropy because:

1. Differential entropy does not have the non-negativity property. The important

77

downward closure property given by Lemma 1 would not hold if we had chosen

to use differential entropy instead.

2. The calculation of differential entropy requires the probability density function
f(z1,...,2,), which is not available to us. What we have is only the raw data,
and to construct the probability density function from high-dimensional data

would be computationally expensive.

Although it is undesirable to use differential entropy in our algorithm, we need to
justify the use of discrete entropy in place of differential entropy, which we handle in

the next section.

A.1 Relation of Differential Entropy to Discrete

Entropy

As described in Section 3.2.1, we calculate the entropy of the data by partitioning it
into a grid. When we are dealing with only one dimension, this effectively converts
the random variable X into its quantized version X2. It is proven in [12] the entropy

of the X relates to the differential entropy in the following manner.

Theorem If the density f(z) of the random variable X is Riemann integrable, then
H(X®) 4 logA — h(f) = h(X), as A = 0

Thus, the entropy of an m-bit quantization of a continuous random variable X is

approximately A(X)+n. O

Since H(X*?) and h(X) differ approximately by a constant log A, we can compare
the values of the entropy of the quantized variables instead of comparing the values of

differential entropy. Similar argument applies for higher dimensions. The interval size

78

A must be carefully chosen so that H(X?) gives us good approximation of 2(X). See

Section 3.2.1 for further discussion on this topic.

79

Appendix B

Mining Quantitative Association

Rules

In this chapter, we discuss the mining of quantitative association rules. This is the
work we have done before switching to the subspace clustering problem. We would

briefly describe the work in this chapter.

In the problem of mining quantitative association rule, we consider a database D
with one or more numerical attributes Ay, ..., A, and one Boolean attribute C'. We

want to find the rules in the form of
(Ai17 ey Azk) eER=C

where k < n, A;, ..., A;, are k numerical attribute and C'is the Boolean attribute. The
k numerical attributes span a k-dimensional space. R is a region in this k-dimensional
space. Each transaction can be mapped to a point in this space. We call the right
side of the arrow to be the presumptive condition and C' to be the objective condition.
The meaning of the above rule denotes that if (4;,,..., A;,) € R is satisfied, then it

also satisfies the objective condition C' with a certain probability. For example,

(Age, E'ducation, Length-of-service € R) = Income-more-than-50k

80

As in binary association rules, each rule is associated with a support and confidence
values. Their definitions are similar to their counterpart in binary association rules.
The dimensionality of a rule is the number of attributes contained in the presumptive
condition. Previous work has proposed algorithms for finding quantitative association
rules of one dimension [20] or two dimensions [18]. The region in two-dimension rules
are restricted to some special forms, namely rectangles and admissible regions. We
propose algorithms for solving this problem in higher dimensionality. The types of

regions are less restrictive as well. Four types of regions are considered.

Unrestrictive This is the most flexible form of regions and the mining of this

kind of region is efficient. However, it is not very meaningful to

human.

Path This is a form of region that can be joined up with a line without
branches.

Connected The region must be connected. It is more flexible than path

because a path is a special case of it.
Clusters Clusters are defined to be one or more connected regions in this

work.

B.1 Approaches

We assume we are going to mine a k-dimensional rule and we already have chosen k
numerical attributes and an objective condition C'. We discretize the space spanned
by the k attributes and store the support and confidence of each cell into a multi-

dimensional array.

Unrestrictive regions can be mined using greedy approaches. We pick the cells one
by one. Each time we pick an unchosen cell with the highest confidence. Since the
overall confidence is a weighted average of the confidence of the individual cells, the
overall confidence of the region monotonically decreases as we add new cells. Mean-
while, the support increases. We stop adding new cells when we have sufficient support

and confidence.

81

Path can be mined using a depth-first search. We use depth-first search to try all
possible paths. Those with sufficient support and confidence go into the result set.
Since an exhaustive search is time consuming, we propose two pruning techniques.
First, we calculate a confidence bound. When the current confidence drops below the
bound, we know a valid path is impossible so we can terminate the tree search. Second,
since we may visit the same configuration more than once in the tree search, we record

the visited configurations to avoid repeated visits.

Connected regions are mined with a more complicated algorithm. Since there are
too many configurations for connected regions, an exhaustive search is out of question.
We propose an iterative approximate algorithm. It chooses several seeds from all the
cells at the beginning. Then in each subsequent pass, it tries to grow into neighbour-
ing cells. The overall confidence improves in each pass until further improvement on
confidence is impossible. If a region have enough support and confidence, it goes into
the result set. However, if a region have enough confidence but not support, it tries to

gather enough support from the neighbouring cells.

Clusters are mined by combining the method of unrestrictive and connected regions.
Since each cluster is a connected region, we use the algorithm for connected regions
to discover all possible clusters. Then, a greedy approach is adopted. We add each
cluster to the result set in decreasing order of confidence and stop when there is enough

support and confidence.

B.2 Performance

The performance of the proposed algorithms are studied through experiments. The
greedy algorithm uses trivial computational time so only the algorithms for path and
connected regions are worth studying. Both algorithms scale exponentially with the
number of cells, but the running time for the algorithm of mining path rises much
faster than that of connected regions. This is because the algorithm for mining path

is an exhaustive search algorithm if we do not take the two pruning strategies into

82

account. The algorithm for mining connected regions does not only run faster but also
produce regions of higher support and confidence. This can be attributed to the fact
that the connected region is a less restrictive form of region than a path. This also

suggests the connected region algorithm produces good approximate solutions.

B.3 Final Remarks

The major problem of these algorithms is that we must first have the target £ numerical
attributes and an objective condition C' in mind before applying the algorithms. In a
real database, there are many different attributes and we do not know which attributes
should go together in a rule. The same problem exists in previous work that studies
quantitative association rules [20, 18]. Also, as discussed in the Section 1.3, clusters are
a better representation of knowledge than an association rule. Therefore, we switch to
study the subspace clustering problem, which helps us to find out the useful subspaces

for further processes.

83

