Chapter 4

Clustering in Projected Spaces

As mentioned in the previous chapter, clustering in high dimensional spaces has difficulties. In
section 3.3.1 we showed that density estimation in high dimensional spaces degenerates wrt. effec-
tiveness. The reason is the increasing sparsity of the data space, which comes from the exponential
growing volume of the data space without a corresponding growth of the data sets. So from the
statistical point of view we face the situation that we want to estimate a function over a fast
growing attribute space with a nearly constant number of sample points. So it is obvious that the
results loose significance in high dimensional spaces.

We approach the problem of clustering high dimensional data from different directions. In the
first section in this chapter, we examine the behavior of distance metrics and similarity in high
dimensional spaces, which we published in [52]. As a result we found a more general definition for
nearest neighbor search in high dimensional spaces.

Since clustering is very dependent on the applied similarity notion, this leads us to the intu-
ition of projected clusters and provides us with a useful interpretation. We published a preliminary
approach to that problem in [55]. In section 4.3 we explore a new strategy and develop an new
algorithm for mining projections. In contrast to recent approaches to projected clustering which
starts with the high dimensional space, partition the data into subsets and reduce the dimen-
sionality of the subsets, we start with low dimensional projections and combine them to higher
dimensional ones using a frequent item set algorithm like the apriori algorithm. Another question
is how many low dimensional projections are needed to find projected clusters. In the last sections
of this chapter we present experimental results of our new approach to projected clustering and
introduce an extension of our approach to more complex projected clusters.

4.1 Similarity in high dimensional Spaces

In the context of vector data it is a very common concept to use a vector metric as dissimilarity
function. That’s why we focus in this section on nearest neighbor search to find similar objects for
a given query object.

Nearest neighbor search in high dimensional spaces is an interesting and important, but difficult
problem. The traditional nearest neighbor problem of finding the nearest neighbor xyx of a given
query point ¢ € R in the database D C R¢ is defined as

enny = {2’ € DVz € D,z # 2 : dist(z', q) < dist(z,q)}.

Finding the closest matching object is important for a number of applications. Examples include
similarity search in geometric databases [71,81], multimedia databases [34,100], and data mining
applications such as fraud detection [24,49], information retrieval [10,90] among numerous other
domains. Many of these domains contain applications in which the dimensionality of the represen-
tation is very high. For example, a typical feature extraction on an image will result in hundreds
of dimensions.

45

46 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

Nearest neighbor problems are reasonably well solved for low dimensional applications for which
efficient index structures have been proposed. Starting with the work on the R-Tree [43], a wide
variety of multidimensional indexes have been proposed which work well for low dimensional data
(see [40] for a comprehensive overview). These structures can support a wide range of queries such
as point queries, range queries, or similarity queries to a predefined target. Many empirical studies
have shown that traditional indexing methods fail in high dimensional spaces [20,21,110]. In such
cases, almost the entire index is accessed by a single query. In fact, most indexes are handily
beaten by the sequential scan [110] because of the simplicity of the latter.

However, as recent theoretical results [21] show, questions arise if the problem is actually
meaningful for a wide range of data distributions and distance functions. This is an even more
fundamental problem, since it deals with the quality issue of nearest neighbor search, in opposite
to the performance issue. If the nearest neighbor problem is not meaningful to begin with, then
the importance of designing efficient data structures to do the search is secondary. Here we deal
with the quality issue of nearest neighbor search, and examine several theoretical and practical
aspects of performing nearest neighbor queries in high dimensional space.

There can be several reasons for the meaninglessness of nearest neighbor search in high di-
mensional space. One of it is the sparsity of the data objects in the space, which is unavoidable.
Based on that observation it has been shown in [21] that in high dimensional space all pairs of
points are almost equidistant from each other for a wide range of data distributions and distance
functions. In such cases, a nearest neighbor query is said to be unstable. However, the proposition
of [21] is not that the difference between the distance of the nearest and the farthest data point to
a given query point approaches zero with increasing dimensionality, but the authors proved that
this difference does not increase as fast as the distance from the query point to the nearest points
when the dimensionality goes to infinity. It is still an open question whether and when nearest
neighbor search in high dimensional spaces is meaningful. One objective of this work is to qualify
the results reported in [21].

It is useful to understand that high-dimensional nearest neighbor problems often arise in the
context of data mining or other applications, in which the notion of similarity is not firmly pre-
decided by the use of any particular distance function. Often applied metrics are instances of the
L, metric (p = 1, Manhattan; p = 2, euclidian) based on a comparision of all dimensions. In
this context, many interesting questions arise as to whether the current notion of nearest neighbor
search solves the right problem in high dimensions. If not, then what is the nearest neighbor in
high dimensions? What is the meaning of the distance metric used? One of the problems of the
current notion of nearest neighbor search is that it tends to give equal treatment to all features
(dimensions), which however are not of equal importance. Furthermore, the importance of a given
dimension may not even be independent of the query point itself.

In this section, we report some interesting experiments on the impact of different distance
functions on the difference between the nearest and farthest neighbor. As we will see, our findings do
not contradict the findings of [21] but provide interesting new insights. We discuss why the concept
of nearest neighbor search in high dimensional feature spaces may fail to produce meaningful results.
For that purpose, we classify the high dimensional data by their meaning. Based on our discussion
and experiments, we introduce a new generalized notion of nearest neighbor search which does not
treat all dimensions equally but uses a quality criterion to assess the importance of the dimensions
with respect to a given query. We show that this generalized notion of nearest neighbor search,
which we call projected nearest neighbor search, is the actually relevant one for a class of high
dimensional data and develop an efficient and effective algorithm which solves the problem.

The projected nearest neighbor problem is a much more difficult problem than the traditional
nearest neighbor problem because it needs to examine the proximity of the points in the database
with respect to an unknown combination of dimensions. Interesting combinations of dimensions
can be determined based on the inherent properties of the data and the query point which together
provide some specific notion of locality. Note that the projected nearest neighbor problem is closely
related to the problem of projected clustering [3,4] which determines clusters in the database by
examining points and dimensions which also define some specific notion of data locality.

4.1. SIMILARITY IN HIGH DIMENSIONAL SPACES 47

d Dimensionality of the data space

N Number of data points

F 1-dimensional data distribution in (0, 1)

LF Mean of F

Xq Data point from F¢, each coordinate follows F
distq(-,-) Symmetric distance function in [0,1]4,

with distq(-,-) > 0 and triangle inequality

Il Distance of a vector to the origin (0,...,0)
Dmaz; = max{|| X4||} | maximum distance from the origin

Dming = min{||X4||} | minimum distance from the origin

Ple] Probability of event e

E[X], var[X] Expected value and variance of a random
variable X

Yy —pc A sequences of vectors Y7, ... converges

in probability to a constant vector c if:
Ve > 0 limg—,oo Pldistq(Ya,c) <€ =1

Table 4.1: Notations and Basic Definitions

4.1.1 Nearest Neighbor Search in high-dimensional Spaces

The results of [21] show that the relative contrast of the distances between the different points in the
data set decreases with increasing dimensionality. In this section we first present some interesting
theoretical and practical results which extend the results presented in [21]. The outcome is very
interesting since — despite the pessimistic conclusions of [21] — the results show that meaningful
nearest-neighbor search in high dimensions may be possible under certain circumstances.

Theoretical Considerations

Let us first recall the important result discussed in Beyer et. al. [21] which shows that in high
dimensions nearest neighbor queries become unstable. Let Dming be the distance of the query
point to the nearest neighbor and Dmax, the distance of the query point to the farthest neighbor
in d-dimensional space (see table 4.1 for formal definitions).

The theorem by Beyer et. al. states that under certain rather general preconditions the
difference between the distances of the nearest and farthest points (Dmaxy — Dming) does not
increase with dimensionality as fast as Dming. In other words, the ratio of Dmaxy — Dming to
Dming converges to zero with increasing dimensionality. Using the definitions given in table 4.1,
the theorem by Beyer et al. can be formally stated as follows.

Theorem 1

If limg_.o var (El[‘n)ggll“]) =0, then

Dmaxg — Dming

Dming

Proof: See [21]. B

The theorem shows that in high dimensional space the difference of the distances of farthest and
nearest points to some query point! does not increase as fast as the minimum of the two. This is
obviously a problem since it indicates poor discrimination of the nearest and farthest points with
respect to the query point.

IFor our theoretical considerations, we consistently use the origin as the query point. This choice does not affect
the generality of our results, though it simplifies our algebra considerably.

48 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

Metric Dmax — Dmin converges against
L1 Cl * \/(d)

L2 CQ

L, k>310

Table 4.2: Consequences of Theorem 2

It is interesting however to observe that the difference between nearest and farthest neighbor
(Dmazxq — Dming) does not necessarily go to zero. In contrast, the development of (Dmaxy —
Dming) with d largely depends on the distance metric used and may actually grow with the
dimensionality for certain distance metrics. The following theorem summarizes this new insight
and formally states the dependency between (Dmaxy — Dming) and the distance metric used. It
allows to draw conclusions for specific metrics such as the Manhattan distance (L;), Euclidean
metric (Ls), and the general k-norm Ly.

Theorem 2

Let F be an arbitrary distribution of two points and the distance function || - || be an Ly metric.

Then,

Dmazk — Dmink
JL/k—1/2

= Cka

Z’L'md*,OOE

where Cy, is some constant dependent on k.

Proof: see [52]. B
We can easily generalize the result for a database of N uniformly distributed points. The following
theorem provides the result.

Theorem 3
Let F be an arbitrary distribution of n points and the distance function ||| be an Ly metric. Then,
Dmazx® — Dmink

Cr < lima—co B | = G575 =172)

< (n—1)-Cy,

where Cy, is some constant dependent on k.

Proof: If C is the expected difference between the maximum and minimum of two randomly drawn
points, then the same value for n points drawn from the same distribution must be in the range

[C,(n—1)-C]. N

A surprising consequence of theorem 2 is that the value of Dmax g — Dming grows (in absolute
terms) as d(/®)~(1/2) " As a result, Dmaxq — Dming increases with dimensionality as v/d for the
Manhattan metric (L; metric). The L metric is the only metric for which the absolute difference
between nearest and farthest neighbor increases with the dimensionality. It is also surprising that
for the Euclidean metric (Ls metric), Dmaxq — Dming converges to a constant, and for distance
metrics L for k > 3, Dmaxzy — Dming converges to zero with increasing d. These consequences
of theorem 2 are summarized in table 4.2.

Experimental Confirmation

We performed a series of experiments to confirm these theoretical results. For the experiments we
used synthetic (uniform and clustered) as well as real data sets. In figure 4.1, we show the average
Dmax — Dmin of a number of query points plotted over d for different data distributions. Note
that the resulting curves depend on the number of data points in the data set.

Note that these experimental results are no contradiction to the results of [21]. The reason

that even for the L; and Ly metrics Dmagdm%iimmd —p 0 is that Dming grows faster with d than

4.1. SIMILARITY IN HIGH DIMENSIONAL SPACES 49

25 1.9 115
11
20 17 1.05
16 1
15 0.95
14 0.9
13 0.85

p=2 —

15

10

11 0.75

1 0.7
20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

(a) Manhattan (L) (b) Euclid (L2) (¢) LsMetric

Figure 4.1: |Dmaxz — Dmin| depending on d for different L; metrics (uniform data)

Dmazxy — Dming. In case of the Ly metric, Dming grows linearly with d and in case of the Lo
metric, Dming grows as Vd with d. As a result, for the L; metric limdﬂm@ = 0 and for the Lo
metric limdﬁw% =0.

The theoretical and experimental results of this section show that for L metrics with k& > 3,
nearest neighbor search in high dimensional spaces is meaningless while for the L; and Lo metrics
the distances may reveal important properties of the data.

4.1.2 Problems of high dimensional data and meaningful nearest neigh-
bor

In one- or two-dimensional spaces, it is usually rather easy to understand the properties of the data
and identify the data distribution. It is safe to assume that all dimensions are equally relevant and
that a standard (Euclidean) metric provides meaningful results. In general, this is not true in the
high-dimensional case.

To get a deeper understanding of the nature of high dimensional data, it is important to uncover
the meaning of the dimensions. High dimensional data points or feature vectors are typically
derived from complex real world objects like products, images, CAD data, etc. There are three
main methods to derive a high dimensional feature vector from complex real world objects, namely

e enumerating some properties of the objects (irreversible transformation),

e determining histograms which describe some statistical properties of the objects (irreversible
transformation) or

e transforming the full description of the objects into a feature vector (reversible transforma-
tion).

In the following, we examine the impact of the three potential sources of high dimensional data to
the meaningfulness of the nearest neighbor problem.

Enumeration of Properties: We use an example in order to elucidate this case. For our
example we assume that we want to compare cars. Comparing cars is often done by deriving various
properties of the cars such as motor power, equipment, design and so on. Each measurement forms
a dimension which is only related to the other measurements of the same object. When users query
the car data base, they can select or weight the importance of the different properties, and in that
way each user is able to form his own meaningful distance metric. The reason why a user can easily
perform a meaningful nearest neighbor search is that the dimensions are directly interpretable by
the user. By omitting some of the dimensions and by weighting them the user can control the
degree of abstraction for the nearest neighbor search. In our experience, the dimensionality of such
data is in the medium range (10 to 50).

Determination of Histograms: Histograms are often used to produce high dimensional data
because they allow a flexible description of complex properties of real world objects. Examples
are color histograms [44], word counts for document retrieval and text mining [72,90] and census
data [83]. Each bin of the histogram is taken as a single dimension. The information transformation
from the real world object into the histogram is an irreversible process which means that some

50 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

information about the object is lost. The user of a histogram data base has to be aware of this.
The goal of the query has to match the reduced information of the transformed object. On the
other hand the histogram may contain information about aspects (for instance the background in
an image) the user wants to abstract from. In that case, the information in the histogram must
be reduced to the relevant portion. However, in contrast to the enumeration method the users
are generally not able to specify the reduction because they usually do not know the underlying
transformation. Another difference to the previous method is that it is not useful to group the
dimensions independent from the users and the query points. In general all possible groupings
are potentially meaningful. First approaches to deal with that problem of query specification are
reported in [13,34]. In general the connection between the information in the histograms and the
semantic information of the objects is weak. The dimensionality of such data can vary from the
medium to large range (10 to 1000).

Full Feature Description: The third method is to use the description of complex objects
directly as a feature vector. The advantage is that all information about the object is stored in
the feature vector and that the object is reconstructible from the vector. However, often the real
world objects do not allow a representation as a feature vector with fixed length. Examples for
data which allow such a representation are molecular biology data [31]. Like the histogram data,
it is also not meaningful to group the dimensions to sensible units independently from the query
point and/or the user. Due to the possibility of reconstruction, the semantic aspects are strongly
connected to the information stored in the feature vectors.

The three types of high dimensional data relate to different aspects of meaningfulness. In
general there is not a single meaningful nearest neighbor for a query, but the user has to select the
desired aspects. For the first category of high dimensional data, the user is able to specify his/her
notion of ‘meaningfulness’ (the actual relevant aspects) by his knowledge about the real world
objects. To deal with the second and third types of data, the user needs help from the data creator
or the database system to specify the ‘meaningful’ aspects. But how does a specification assistance
for the relevant aspects may look like? For certain applications, there are data dependent methods
which use interaction in the selection process [34]. In this part of the work, we focus on a data
independent method which selects the relevant dimensions automatically by extracting and rating
additional information about the data distributions.

As a second question we investigate how far a single metric can serve as a similarity measure
for the second and third type of data. We already stated that for those types of data the relevant
dimensions (attributes) depend on the query point and the intention of the user. If the meaningful-
ness of a metric depends on the query point, then a metric can not serve as a measure of similarity
between the query object and all other objects. In other words, a metric which is only based on
the relevant attributes (which are assumed to be a subset of all attributes) can only serve as a
criterion for similarity in a local environment of the query point. Objects (or data points) out-
side this environment are incomparable to the query object, because they may have other relevant
attributes. In summary one can say that for the second and third type of data, the relationship
between the metric and the intended similarity measure becomes weaker with increasing distance
to the query point. As a consequence, meaningful metrics for high dimensional data spaces have
to be varied according to the considered query point and data objects under consideration. Our
generalized notion of nearest neighbor search which is presented in the next section provides an
automatic adaptation of the similarity measure in order to allow a meaningful nearest neighbor
search in high dimensional space.

4.1.3 Generalized Nearest Neighbor Search

From the previous sections we have seen, that the problem of finding a meaningful nearest neighbor
in high dimensional spaces consists of the following two steps: First, an appropriate metric has to
be determined, and second, the nearest neighbor with respect to this metric has to be determined.
The first step deals with selecting and weighting the relevant dimensions according to the users
intention and the given query point. This step is obviously rather difficult since it is difficult to
select and weight the relevant dimensions among hundreds of dimensions. The basic idea of our

4.1. SIMILARITY IN HIGH DIMENSIONAL SPACES o1

approach is to automatically determine the relevant dimensions for a given query point based on
the properties of the data distribution. Although our approach can not guess the users intention,
in general the data distribution contains highly relevant information and allows a much better and
more meaningful nearest neighbor search.

Definition

In this section, we propose a generalization of the nearest neighbor search problem which remains
meaningful in high-dimensional spaces. The basic idea of our new notion of nearest neighbor search
is to use a quality criterion to dynamically determine which dimensions are relevant for a given
query point and use those dimensions to determine the nearest neighbor?. The space of all subsets
of dimensions can also be seen as the space of orthogonal projections of the data set, and the
problem can therefore be defined as an optimization problem over the space of projections. In
the following, we formalize our generalized notion of nearest neighbor search. First, we formally
introduce a quality criterion which is used to rate the usefulness of a certain combination of
dimensions (projection).

Let D = {z1,...,2,}, = € R? be a database of d-dimensional feature vectors, z, € R? the
query point, p : R¢ — RY, & <da projection, and dist(+,-) a distance function in the projected
feature space.

Definition 9 (Quality Criterion)

The quality criterion is a function C(p, x4, D,dist) — R, C' > 0 which rates the quality of the
projection with respect to the query point, database, and distance function. In other words, the
quality function rates the meaningfulness of the projection p for the nearest neighbor search.

In section 4.1.4 we develop a useful quality criterion based on the distance distribution of the data
points to the query point within a given projection.

Let P be the space of all possible projections p : R¢ — R?, d’ < d and Vz € R¢ : p(p(x)) = p(x).
To find a meaningful nearest neighbor for a given query point z, we have to optimize the quality
criterion C' over the space of projections P.

Definition 10 (Generalized Nearest Neighbor Search)
A meaningful nearest neighbor for a given query point x, € R? is the point®

INN = {x’ € DIVz € D,z # ' : dist(poest(x'), Ppest(z4)) < dist(pbest(x),pbest(xq))}

where Pyest = {p e Pl MAX { C(p,zq, D, dist) }}
p:RI-RA d/<d

Solving the generalized nearest neighbor problem is a difficult and computation intensive task.
The space of all general projections P is infinite and even the space of all axes-parallel projections
has exponential size. In addition, the quality function C' is a-priori unknown and therefore, it is
difficult to find a general and efficiently computable solution of the problem. In the next section,
we develop an algorithm which provides a very general solution of the problem.

4.1.4 Generalized Nearest Neighbor Algorithm

The most important but difficult task in solving the generalized nearest neighbor problem is to
find the relevant projections. As mentioned in the previous subsections, this decision is in general
query and data dependent which makes the problem computationally difficult. For our following

2Note that the nearest neighbor determined by our approach might be different from the nearest neighbor based
on all dimensions.

3Note that our definition can be easily generalized to solve the k-nearest neighbor problem by fixing the selected
projection and determining the k nearest neighbors.

52 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

considerations, we restrict the projections to the class of axes-parallel projections, which means
that we are searching for meaningful combinations of dimensions (attributes). The restricted search
space has still an exponential size with respect to dimensionality, which makes enumeration impos-
sible for higher dimensionality. In order to keep our algorithm generic and allow different quality
criteria (cf. subsection 4.1.4), our first approach was to use general optimization algorithms such
as random search, genetic and greedy optimization, for which the implementations can be made
largely independent of the specific problem structure. In random search, random combinations of
dimensions are evaluated in terms of the quality criterion, and the best projection is returned. The
genetic algorithm uses multiple populations which are mutated and combined based on the quality
criterion, and the greedy algorithm directly uses the best one-dimensional projections which are
combined into higher-dimensional ones. All three algorithms are sketched in pseudo code (see
figures 6, 7 and 8).

Algorithm 6 Random Optimization

random_search (zq, diar, D, C, dist, no_iter)

Doest-quality < 0
for i <— 0 to no_iter do
p < generate_random_projection(diar)
p.quality — C(p, zq, D, dist)
if Ppest.quality < p.quality then
Pvest < P
end if
end for
return(ppest)

Algorithm 7 Genetic Optimization

genetic_search (zg4, diar, D, C, dist, no_iter)

population — (), pop_size +— 100, elite < 10, child «— 80
for i := 0 to pop_size do
p < generate_random_projection(diar)
p.quality — C(p, zq, D, dist)
population.insert(p)
end for
for i — 0 to no-iter do
new_pop <« 0
insert the elite best projection into new_pop
for j « elite to elite 4 child do
{projections with high quality have higher probability to be selected for cross-over}
parentl <— randomly select a projection from old_pop
parent2 < randomly select a projection from old_pop
child <+ gen. a new proj. by comb. parentl, parent2
child.quality — C(p,zq, D, dist)
new_pop.insert(child)
end for
qualify and insert pop_size — (elite + child) random projections into new_pop
population «— new_pop
end for
select the best projection ppes: and return it

The results of the first experiments showed that none of the three algorithms was able to find the
relevant subset of dimensions. Even for synthetic data, for which the relevant subset of dimensions
is known, only a subset of the relevant dimensions was found. We found that random search had
been only useful to check whether a given quality criterion is effective on a specific data set or
not. If the random search does not find any projection with good quality, both genetic and greedy

4.1. SIMILARITY IN HIGH DIMENSIONAL SPACES 53

Algorithm 8 Greedy Optimization

greedy_search (zq, diar, D, C, dist, Dimp)
set of selected dimensions S «—) or from Dimp
for ¢ «— 0 to dimiq, do
pick the dimension k; ¢ S such that the quality of the projection based on S U {k;} is maximal
S — SuU{ki}
end for
return (ppest(S))

algorithm are likely to fail in finding a good projection as well. However, in cases when random
search does not fail, the genetic search provides much better results. The greedy algorithm assumes
that the influence of a dimension on the quality is independent from other dimensions. In general,
this assumption is not true for real data sets. A crucial problem is that one-dimensional projections
of high dimensional data usually do not contain much information and so the greedy algorithm
picks the first dimensions randomly and is therefore not useful for selecting the first dimensions.
It turned out, however, that the greedy algorithm can be used effectively to refine results from
random or genetic search.

Algorithm 9 Generalized Nearest Neighbor Algorithm
p-nn_search (zq,dtar, D, C, dist)

dimp < between 3 to 5

no_iter « between 10 to 20

DPemp — geneticsearch(zq, dimp, D, C, dist, noiter)
Drest — greedy_search(zq, dtar, D, C, dist, ptmp)
NN — p-nn.search(zq, D, dist, pyest)

return(zynN)

Our algorithm to determine the relevant subset of dimensions is therefore based on a combina-
tion of the genetic and the greedy algorithm. For determining the first three to five dimensions,
we use a genetic algorithm and for extending the result to more dimensions we use a greedy-based
search. Figure 9 shows the pseudocode of the algorithm. For controlling the degree of abstraction
and improving the efficiency, we use the target dimensionality dy,,, = d' < d as a parameter of
the algorithm. If the genetic algorithm determines the first five of the relevant dimensions and the
greedy algorithm the remaining ones, the complexity of our algorithm is

O((5 - #(Iterations) - PopulationSize + d - (diqr — 5)) - O(Quality Determination)).

Distance Distributions

In this section we develop a quality measure based on the distance distribution with respect to
the query point. The distance distribution of a data set D with respect to a query point z, is the
distribution of distances of the data points z € D from z,. More formally, we have to consider the
probability that the distance of a query point x, to another data point is smaller than a threshold
distt:

O (disty) = Pldist(xzq,) < dist],z € D,dist, € R

The corresponding probability density is

Note that ®(dist;) is not continuous and therefore we can only estimate the probability density
f(disty). In this subsection, we use simple histograms showing the distances of the data points
from random query points.

To examine how typical distance distributions look like, we examine the distance distribution in
different dimensionality. Let us first consider the case of high-dimensional uniform data. We know

54 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

- - 8 i 8§ 3

. 8 § B B B B B 8

il LS

(a) 50 Dimensions (b) 10 Dimensions (c¢) 2 Dimensions

Figure 4.2: Distance Distribution of Uniform Data

(a) all Dimensions (b) one non-rel. Dim. (c) two non-rel. Dim.

Figure 4.3: Distance Distribution of Data

that in this case the distances are meaningless. Figure 4.2 shows typical distance distributions® of
a 50-dimensional data set consisting of 100,000 data points uniformly distributed in [0, 1]¢. Figure
4.2 (a)-(c) shows typical projections® onto randomly chosen 50, 10, and 2 dimensions. The distance
distribution has always one peak which means that all data points are basically in one large distance
cluster from the query point. As a consequence from the theorem in [21] the peak gets sharper
as the dimensionality to the query point grows. We avoid this effect for our quality criterion by
estimating the density only in the range [dpin, dmaz], because this effect is common to mostly all
distributions and from section 4.1.1 we conclude that this effect does not necessarily tell something
about the meaningfulness of the nearest neighbor. From the discussion in section 4.1.2 we conclude
that a meaningful distance distribution should show two peaks. The nearer peak is formed by the
points which are comparable to the query point (the metric is related to a type of similarity). The
other peak — in most cases the larger one — is formed by those points which are incomparable to
the query point because other attributes are relevant for those data objects. However, with respect
to the currently used attributes they are assumed to behave like uniformly distributed data.

How to detect a two peak distance distribution? Our idea is to use kernel density estimation
(see [105] for an introduction) to smooth the distribution and suppress random artifacts. To
measure the quality we increase the kernel width (smoothing factor) until the smoothed distribution
yields only two maxima. The obtained kernel width is h;. Then we increase the kernel width until
the distance distribution yields only one maximum. This results in the kernel width hy. We use
the difference between the smoothing factor for one maximum and for two maxima ho — hy as
our quality criterion to measure the similarity of a current distance distribution with a distance
distribution that yields two significant peaks. To get rid of possible disturbances in the distribution,
which may also result in two maxima, we use only the k nearest percent of the data.

Figure 4.3 shows distance distributions of data, which contains uniformly distributed data
and a projected cluster, which means that these points follow a Gaussian distribution in some
dimensions and a uniform distribution in the others. Figure 4.3(a) shows the distance distribution
in a projection where all dimensions are relevant, which means that all selected dimensions are
used in the definition of the projected cluster. In Figure 4.3(b), one relevant dimension is replaced
by a non-relevant and in Figure 4.3(c) two relevant dimensions are replaced by non-relevant ones.
In 4.3(c) the two peak structure is hard to recognize and the quality criterion gives no hint on the
hidden relevant dimensions. From these observations we can conclude that the genetic algorithm
can only optimize projections with a dimensionality of 3-5. If the dimensionality is higher the
quality criterion degenerates to an oracle and the algorithm can only guess a good projection —

4In case of uniform data, the distance distribution is always similar independent of the chosen query point.
5In case of uniform data, the distance distribution always looks the same independent of the chosen projection.

4.2. PROBLEMS OF EXISTING APPROACHES FOR PROJECTED CLUSTERING 95

YT+oT
oT+oT

{1,2,3, ..., d-2,d-1, d}
. —
{1,2,3,.7,d-2,d-1¥1,2,3, ., d-2, d} ... {2,3,...,d-2,d-1,d}

{1,2y {13} {d-2, d} {d-1, d}

{1} {23 {3¢ {d-2} {d-1}{d}y L=
Fal No. of Projections, LOG Scale

Figure 4.4: The space of axes parallel projections forms a lattices of subsets. The plot on the right side
shows the number of projections of a fixed dimensionality d’, which is like (j/). The plot comes from a 50
dimensional space, but the proportions are similar in other spaces.

and the probability to guess a good projection in high dimensional data is rather low.

4.1.5 Summary

In this part of the chapter, we developed a generalized notion of nearest neighbor search in high
dimensional spaces. In [52] we showed that our new notion is highly relevant in practical applica-
tions and improves the effectiveness of the search. The basic idea is to determine a relevant subset
of dimensions depending on the query point and the data distribution by an optimization process
which rates the distance distribution for the selected subset of dimensions according to an elaborate
quality criterion. We also discussed some interesting aspects of using different L,-distance metrics
for finding the nearest neighbor. Our new technique for solving the generalized nearest neighbor
problem is not only valuable for allowing a more meaningful and effective nearest neighbor search
in high dimensional spaces but it also provides a better understanding of the data and the rele-
vant notion of proximity. The ventilations leads us to a better understanding why clustering in
projections can be useful.

4.2 Problems of existing Approaches for Projected Cluster-
ing

From the projected nearest neighbor problem we learned that the similarity between objects is
better rendered by a distance metric in a low dimensional feature space than in a high dimensional
one. So clustering in low dimensional projections of high dimensional spaces may yield several
potentials to discover unknown structure in the data. In the first part of the section we will
examine three general observations on mining projected spaces and draw connections to existing
algorithms.

Firstly, we characterize the space of projections and restrict ourself to axes parallel projections.
This subset of possible projections forms a subset lattice of the set of dimensions, which is sketched
in figure 4.4. The complete enumeration of this space is not possible due its exponential size.
Especially in the middle of the lattice the number of projections is very large, so any search
strategy in this part is helplessly lost. We conclude from the figure that a search strategy has to
focus on the high or low dimensional part of the subspace lattice.

Second, we want to recall the observation from the beginning of the chapter regarding the
number of data points. To estimate the density in the space we can use only a nearly constant

56 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

number of data points, which becomes insignificant when the dimensionality gets higher. Growing
dimensionality means exponential growing of the space volume, which is sampled by a constant
number of data points. So we can expect that only the low dimensional projections yield significant
information.

The last observation is that for projected clustering two tasks are necessary: the finding of the
projections and the grouping of the data into clusters. Both tasks are dependent in the following
way: the choice of the projection determines how similarity is defined and this definition induces
the particular clustering of the data. The assumption for projected clustering is that a projection is
meaningful for only a subset of the data points. Since the associated subsets of different projections
may overlap in general a data point may belong to multiple projected clusters. This is different
from full-dimensional clustering, where due to a global notion of similarity, clusters are found as
partitions or nested partitions (in the hierarchical case) of the data. So algorithms should be able
to assign data points to different clusters without assuming a cluster hierarchy. We argue that this
leads to a fundamental change in the design of clustering algorithms.

Now we shortly review existing algorithms for the problem and draw connections to the general
observations. Here we will focus on the method by which the space of projections is searched and
in which order the two tasks (projection finding and data partitioning) are processed.

The algorithms PROCLUS [3] and ORCLUS [4] start in the full dimensional space and partition
the data into many subgroups (seeds), reduce the dimensionality for the subgroups and join them
if appropriate. So the algorithms mine the projection space top down following a greedy strat-
egy. In each step of the greedy strategy the worst dimensions are removed. The dimensions are
independently rated using statistical properties like variance or singular value. After the reduction
the data points are reassigned to the cluster centers. During an iteration both algorithms use the
following order of the two tasks: first partition the data, then finding of projections. Since the data
points are assigned to exactly one cluster (partitioning) the algorithms can not detect overlapping
clusters.

The CLIQUE algorithm [7] mines the projection space bottom up by searching quantitative
frequent item sets (histogram bins) which are assembled to clusters on a single linkage basis. The
order of tasks is first making the quantitative data discrete by partitioning the data set into regular
histogram bins. Second, projections are searched by determining frequent item sets of the discrete
data. The resulting frequent multidimensional histogram bins are used as building blocks for
clusters. Overlapping clusters are possible here, but the clusters have to be reassembled in the
projections from the frequent histogram bins.

The three algorithms have in common that they first split the data into arbitrary subgroups
and then try to reassemble the subgroups to clusters according to their statistical and geometric
properties. The subgroups are used to find projections with clusters. However, all algorithms have
to deal with the problem to reassemble the previously splitted clusters.

Problems of Cluster Splitting We start with an examination of the impact of splitting the
data first wrt. to high dimensionality as described in [55]. To investigate this issue we discuss
the properties of different data distributions for an increasing number of dimensions. Let us first
consider uniformly distributed data. It is well-known that uniform distributions are very unlikely
in high-dimensional space. From a statistical point of view, it is even impossible to determine a
uniform distribution in high-dimensional space a-posteriori. The reason is that there is no possi-
bility to have enough data points to verify the data distribution by a statistical test with sufficient
significance. Assume we want to characterize the distribution of a 50-dimensional data space by
an grid-based histogram and we split each dimension only once at the center. The resulting space
is cut into 259 ~ 10 cells. If we generate one trillion data points by a uniform random data
generator, we get about 10'2 cells filled with one data point which is about one percent of the
cells. Since the grid is based on a very coarse partitioning (one cutting plane per dimension), it
is impossible to determine a data distribution based on one percent of the cells. The available
information could justify a number of different distributions including a uniform distribution. Sta-
tistically, the number of data points is not high enough to determine the distribution of the data.

4.2. PROBLEMS OF EXISTING APPROACHES FOR PROJECTED CLUSTERING 57

Figure 4.5: Example Scenario for a Normal Distribution, d = 3

The problem is that the number of data points can not grow exponentially with the dimension,
and therefore, in high-dimensional space it is generally impossible to determine the distribution
of the data with sufficient statistical significance. (The only thing which can be verified easily is
that the projections onto the dimensions follow a uniform distribution.) As a result of the sparsely
filled space, it is very unlikely that data points are nearer to each other than the average distance
between data points, and as a consequence, the difference between the distance to the nearest and
the farthest neighbor of a data point goes to zero in high-dimensional space (see [21] for a recent
theoretical proof of this fact).

Now let us look at normally distributed data. A normal distribution is characterized by the
center point (expected value) and the standard deviation (¢). The distance distribution of the
data points to the expected point follows a Gaussian curve but the direction from the expected
point is randomly chosen without any preference. An important observation is that the number
of possible directions from a point grows exponentially in the number of dimensions. As a result,
the distance among the normally distributed data points increases with the number of dimensions
although the distance to the center point still follows the same distribution. If we consider the
density function of the data set, we find that it has a maximum at the center point although there
may be no data points very close to the center point. This results from the fact that it is likely
that the data points slightly vary in the value for one dimension but still the single point densities
add up to the maximal density at the center point. The effect that in high dimensional spaces
the point density can be high in empty areas is called the empty space phenomenon [105], Page 93
and [95].

To illustrate this effect, let us consider normally distributed data points in [0,1]¢ having
(0.5,...,0.5) as center point and a grid based on splitting at 0.5 in each dimension. The number of
directions from the center point now directly corresponds to the number of grid cells which is ex-
ponential in d (2%). As a consequence, most data points will fall into separate grid cells (Figure 4.5
shows an example scenario for d = 3). In high dimensions, it is unlikely that there are any points
in the center and that populated cell are adjacent to each other on a high-dimensional hyperplane
which is again an explanation of the high inter-point distances.

To show the effects of high-dimensional spaces on split-first clustering approaches, we performed
some interesting experiments based on using a simple grid as described and counting the number
of populated grid cells. Figure 4.6 (a) shows the total number of populated cells (containing at
least one data point) depending on the dimensionality. In the experiments, we used three data sets
consisting of 100000 data points generated by a uniform distribution, a normal distribution with
o = 0.1 with a center uniformly distributed in [0,1)¢ and a combination of both (20% of the data
is uniformly distributed)®. Based on the considerations discussed above, it is clear that for the
uniformly distributed data as many cells as possible are populated which is the number of available
cells (for d < 16) and the number of data points (for d > 20). For normally distributed data,
the number of populated grid cells is always lower but still converges against the number of data
points for higher dimensions due to the many directions the points may vary from the center point.
The third data set is a combination of the other two distributions and the speed of convergence

6The data points follows independently generated distributions in the projections.

58 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

100000 e 100 {W Oniform =
90000 | 4 S e Normal -
% 80000 A £ 80 Normal + 20% Noise -
; 70000 |- a by x
5, 60000 f € 60

* # 3 .

B 50000 / /x,/* 5] X

8 40000 | S ¥ € 40+

g ¥ ’J g

g 30000 | A o .

¥ 20000 x Uniform —— 1 2 20 X
y N

10000 | I’ Normal —— ¥ s
0 JNotmal + 20% Noise ---x— o ‘ \ e,
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Dimension Dimension

(a) (b)

Figure 4.6: The figure (a) shows the number of populated grid cells for different data distributions (uni-
form, normal, normal + 20% noise), each sampled with 100000 data points. Figure (b) shows the per-
centage of cells with more than one data point in.

is between uniformly and normally distributed data. Figure 4.6 (b) shows the percentage of grid
cells with more than one data point. The plot shows that for all data distributions the number of
such cell goes towards zero in high dimensional spaces, so grid cells with more than one data point
becomes unlikely in high dimensional spaces.

A general problem of clustering in high-dimensional spaces arises from the fact that the cluster
centers can not be as easily identified as in lower dimensional cases. In grid-based approaches it
is possible that clusters are split by some of the (d-1) dimensional cutting planes and the data
points of the cluster are spread over many grid cells. Let us use a simple example to exemplify this
situation. For simplification, we use a grid where each dimension is split only once. In general,
such a grid is defined by d (d — 1)-dimensional hyperplanes which cut the space into 2% cells. All
cutting planes are parallel to (d — 1) coordinate axes. By cutting the space into cells, the naturally
neighborhood between the data points gets lost. A worst case scenario could be the following case.
Assume the data points are in [0,1]¢ and each dimension is split at 0.5. The data points lie on a
hypersphere with a small radius € > 0 round the split point (0.5,0.5,...,0.5). For d > 40, most
of the points would be in separate grid cells despite the fact that they form a cluster. Note that
there are 2% cells adjacent to the split point. Figure 4.5 tries to show this situation of a worst
case scenario for a three-dimensional data set. In high-dimensional data, this situation is likely to
oceur.

The experiments correspond directly to the CLIQUE approach since it also partitions the data
space by binning the dimensions which results in a grid which probably splits clusters. CLIQUE
connects adjacent grid cells and treat the connected cells as one cluster object. A naive approach to
find the adjacent populated cells is to test all possible neighboring cells of a populated cell whether
they are also populated. This approach however is prohibitively expensive in high-dimensional
spaces because of the exponential number of adjacent neighbor grid cells. The other possibility is
the test all populated grid cells whether they are adjacent to the actual one. However, this approach
has quadratic run time in the number of populated grid cells, which is for high dimensional spaces
in O(n?).

Similar arguments applies to the data splitting used in PROCLUS and ORCLUS. Here the
data is splitted into Voronoi cells defined by centroids. The data points are assigned to a number
of clusters seeds (centroids or medoids) using the nearest neighbor rule. The assumptions here is
that each initial partition induced by a seed is homogenous and comes more or less from the same
cluster. To guarantee this precondition the volumes of the Voronoi cells have to be sufficiently
small. Otherwise the quality of the clustering may decrease. Since the distances between the data
points grow fast in high dimensional spaces, a Voronoi splitting which meets the requirement of
homogeneity ends with about one data point per Voronoi cell. This causes high costs for refining
and merging the cells.

4.2. PROBLEMS OF EXISTING APPROACHES FOR PROJECTED CLUSTERING 59

DS1, 20 Dimensions, Size 20000

1 ; : . . . :
c
O o8|]
c
Nl
IS L
£ 0.6
=]
£ 047¢
QL
g 02}
& 0 Entropie DS1 ——

0 50 100 150 200 250 300
No. of Seeds

Figure 4.7: The diagram shows the entropy depending on the number of randomly chosen seeds for data
set DS1. The data set consists of 20000 data points with 20 dimensions and contains two equally sized
projected clusters. Each axes-parallel projected cluster has 3 relevant and 17 non-relevant dimensions. To
simulate the initialization of ORCLUST we used random sampling to determine the seeds. The figure shows
the entropy of the induced partitioning (using the nearest neighbor rule), which measures the homogeneity
of the subsets. Low entropy (near to zero) indicates that the subsets mostly contain points from a single
cluster. The entropy goes down with increasing the number of seeds, however the runtime of ORCLUS
increases with the number of seeds quadratically. Because of the high computational costs we could not
test an seed set with zero entropy. In cases the zero entropy condition is not met the ORCLUST algorithm
is likely to converge to false relevant dimensions.

To elaborate the splitting issue we simulated the initialization of ORCLUS 7 by picking seeds
randomly from the data as described in the paper [4]. We generated a 20-dimensional data set
(to which is later referred as data set DS1) with two axes-parallel projected clusters of same size,
each with three relevant dimensions (relevant dimensions are normally distributed, non-relevant
dimensions are uniformly distributed). Since the data used has been labelled we could examine
the entropy of the partitioning D1, ..., Dy of the data set D induced by the set of seeds S and the
nearest neighbor rule. The entropy of the partitioning is defined as

k c

D;

entropy(D1,...,Dy) = E ZD ~entropy(D;); entropy(D;) = — E p; logy j
i=1 j=1

with p; denoting the frequency of cluster j in subset D;. The entropy measures the homogeneity of
the partitions according to the cluster labels. The entropy is near zero when the initial partitions
are homogeneous. Figure 4.7 shows the dependence of the entropy from the number of seeds. Since
the clusters in the data have only a few relevant dimensions and many non-relevant dimensions
nearest neighbor rule for the initial partitioning is dominated by the non-relevant information. Note
that ORCLUS’s runtime depends quadratically on the number of seeds. So if the data contains
many non-relevant dimensions, which means a large number of seeds are needed, the algorithm
is not applicable due to the high computational costs. However, when the partitioning is not
homogeneous (only a small number of seed is used) the local dimensionality reduction (principal
component analysis) goes wrong, because the spawning vectors of the relevant subspace of one
cluster are averaged (and so distorted) with the non-relevant dimensions from the other clusters.
This causes, that the algorithm is likely to converge to false relevant dimensions.

As a consequence, any approach which considers the connections for handling the effect of
splitted clusters will not work effectively and efficiently on large databases, and therefore another
solution guaranteeing the effectiveness while preserving the efficiency is necessary for an effective
clustering of high-dimensional data.

"Unfortunately the original ORCLUS algorithm is not available from IBM due to a pending patent.

60 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

L)
[X of

~

(a) general (b) contracting

Figure 4.8: General and Contracting Projections.

4.3 A new projected clustering Algorithm

Our new approach searches first for good low dimensional projections and then groups the data
into clusters. A projection has a high quality when data could be separated without splitting a
cluster. So our approach has not to reassemble previously splitted clusters. Before examining
projected clusters we introduce some general definitions and proof an important lemma. First we
give the definition of contracting projections. The use of such projections avoids distortions of the
projected data. The formal definition is given by:

Definition 11 (Contracting Projection)
A contracting projection for a given d-dimensional data space F and an appropriate metric || -|| is
a linear transformation P defined on all points © € F

P(z) = Az with || A]| = max(”f‘”) 1
ver \ [lyll

Figure 4.8 shows an example for general and contracting projections. An important question is
how to separate clusters in projected spaces and ensure at the same time that no other cluster is
splitted in the original high dimensional space. We proof an important lemma for the correctness
of our non-cluster splitting approach, which states that the density at a point z’ in a contracting
projection of the data is an upper bound for the density at the points x € F with P(x) = 2’ in the
original space.

Lemma 12 (Upper Bound Property)
Let P(x) = Ax with P : R? — R? be a contracting projection, P(D) the projection of the data

set D, and fFP) (') the density for a point 2’ € P(F). Then,
Vo € F with P(z) = 2" : fPP)(2)) > fP(x) .

with

FP(z) = #zz:[((x—hxz) and fPP)(z) = n;d’ iK(M)

i=1
Proof: First, we show that the distance between points becomes smaller by the contracting pro-
jection P. According to the definition of contracting projections, for all x,y € F:

[1P(z) = P(y)ll = Az = y)ll < Al - [l = yl| < [lz =yl

The density function which we assume to be kernel based depends monotonically on the distance
of the data points. Since the distances between the data points in the projection becomes smaller,
the density in the projected space P(F) grows. B

4.3. A NEW PROJECTED CLUSTERING ALGORITHM 61

Clustering in Projections APRIORY PRUNE
= gilscrtete g\ttributtes => Frequent Combinations => Remove redundent

uster-separators of Separator Regions inati

Noise-Separators P g Combinations
Data Find Separators Partial Cluster-Descriptions
Projected Clusters Final Cluster-Descriptions
35
i L %E POOL SIMILARITY MATRIX
- 1 %2 | =>Group Cluster => Determine the Similarity
= Descriptions together between all
50 5104520253035 according to the similarity Partial Cluster Descriptions

Figure 4.9: The first step is to find noise and cluster separators in projections of the data. This can be
seen as a transformation of the continuous vector data into discrete transaction. A transaction consists of
the separator regions which include the original data point. Second, the transactions are mined for frequent
itemsets, which are frequent occurring combinations of separator regions. A frequent combination can be
seen as a partial cluster description. To keep the complexity low redundant combination are pruned. In
the last steps the similarities between the combinations are derived. Similar combinations are pooled to
final cluster descriptions.

The assumption that the density is kernel based is not a real restriction. There are a number
of proofs in the statistical literature that non-kernel based density estimation methods converge on
a kernel based method [98]. Note that Lemma 12 is a generalization of the Monotonicity Lemma
in [7]. Lemma 12 allows to determine clusters in a projection and ensures that the density at the
border of an cluster does not exceed a fixed value.

In the following we characterize axes parallel projected clusters and develop an algorithm to
determine such clusters. An axes parallel projected cluster is defined on a subset of dimensions
(relevant attributes) and undefined on the other dimensions (non-relevant attributes). The points
of such a cluster are assumed to follow independent distributions in all dimensions, that means
there are no dependencies between the attributes. We also assume the non-relevant attributes to
be uniformly distributed on the whole attribute ranges. The relevant attributes are clustered in
sub-intervals of the attribute ranges.

Now we sketch the outline of our new algorithm. The first step is to find noise and cluster
separators in projections of the data. This can be seen as a transformation of the continuous vector
data into discrete transaction. A transaction consists of the separator regions which include the
original data point. Second, the transactions are mined for frequent itemsets, which are frequent
occurring combinations of separator regions. A frequent combination can be seen as a partial
cluster description. To keep the complexity as low as possible redundant combinations are pruned.
In the last steps the similarities between the combinations are derived. Similar combinations are
pooled to final cluster descriptions. A final cluster description captures the properties of a projected
cluster. The main difference is that the multiple cluster descriptions may refer to the same data
point. So non-hierarchic, overlapping clusters may be found. The outline of our algorithm for
projected cluster is sketched in figure 4.9.

4.3.1 Finding Separators

In this section we describe how to the find separators which serve for the discretization of the
continuous vector data without splitting clusters. This step has a strong impact on the whole
method. We propose to find the separators by looking only on the projected data (in a low
dimensional subspace). For simplicity we describe first the case of axes-parallel projected clusters

62 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

and extent this approach to more general projected clusters afterwards.

Since axes parallel projected clusters are assumed to have no dependencies between the at-
tributes the information to decide whether an single dimension is relevant or not can be obtained
from the one dimensional projection onto the examined attribute. The challenge is that in the
projection the distributions of all clusters are jammed and it is difficult to separate them. Two
cases are possible, firstly distributions of two clusters are jammed and overlap each other, secondly
a cluster distribution and non-relevant distributions are mixed. The separation of the distributions
is not perfectly possible in the general case since data points drawn from different distributions
may be projected onto the same position. So the tasks for examining an one dimensional projection
is to separate the clusters from each other and from the non-clustered rest.

Due to the assumed independency of the data our algorithm examines only the one dimensional
axes parallel projections to find good separators. A separator in this context consists of several
d—1 dimensional hyperplanes, each defined by a split point in the same one-dimensional projection.
The split points partition the attribute range into subintervals, however the separator partitions
the feature space F' into the same number of grid cells (or slices). A good split point is required
to have low density in the projection, because this gives a low upper bound for the density on the
d — 1 dimensional hyperplane and minimizes the risk to split a cluster (see lemma 12).

Due to the two separation tasks we introduce two different separators, an one dimensional
cluster separator and a noise separator. First we describe how to find the split points for cluster
separation. Good cluster separating split points are local minima of the one dimensional density
function. The quality of the separator built from a set of split points is the maximal density in
the projection at a split point. The algorithm looks for separating minima of the density function
which e.g. are not at a border of an attribute range and have sufficiently enough data points at
both sides. The separating minima are found by examining the smoothed gradient of the density
function and determining zero points of the gradient function. The density function is estimated
as discrete histogram. The smoothed gradient of the discrete histogram function is defined as

S S

grad(z, fFP)) = i(ZfP(D)(x—ioe)—ZfP(D)(x+i-e)), ecR,seN

i=1 i=1

where ¢ is the bin width of the histogram and s is the smoothing factor describing how many bins
at both sides have to be averaged. The gradient is smoothed to make the procedure robust against
small disturbances. A zero point x of smoothed gradient function is a minimum of the density
function, if and only if z — e < 0 and = 4+ € > 0. The other zero points are maxima. Figure 4.10
(b) shows the smoothed gradient function with the minima of the density function (a). Choosing
a minimum of the density function as split point for a separator reduces also the probability of
cluster splitting. However, not all minima necessarily separate clusters. To make a minimum to
a separating one, the maximum density of both, the left and right neighboring intervals have to
be above the noise threshold. In case of figure 4.10 (b) two of the three minima {2,3,4} have
to be deleted to make the remaining minimum to a separating one. In such a case the remaining
minimum is chosen as the one with the lowest split density. Part (c) of figure 4.10 shows the cluster
separator with the separating minima determined by the smoothed gradient. Algorithm 10 takes a
set of minima M, the histogram density function f and the noise threshold ¢ and shows in pseudo
code how to determine the separating minima.

The intervals between the remaining, separating minima are directly mapped to separator re-
gions using the hyperplanes defined by the split points. Formally the cluster separator for dimension
j is given by an ascending ordered set of split points SC' = {splito, ..., split;;,_1}. The separator
function uses the set of split points SC' and returns for an point x € F' the minimal index of the
split points, which are larger than the projection of the point.

Pmin 1f Jimin = mm{z :1€{0,...,l; —1} and P(z) < spliti}
l; else P(x) > split;, 1

x € F, Sjc(a:):{

For convenience Sfl(F) C F denotes the subset of F with € S]CZ(F) = S9(x) =i.

4.3. A NEW PROJECTED CLUSTERING ALGORITHM 63

Algorithm 10 Determination of Separating Minima

se

parating_min(M, f7() ¢)

Require: M = {z1,..., 245t} a set of ascending ordered minima, fPE) the density function in

projection P and £ the noise threshold.

Ensure: M., contains only separating minima.

1

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

: for all z; € M do
x; IMax +— Determine the maximum density in the left interval [z;_1, 2]
Tmin-rMaz «— Determine the maximum density in the right interval [z;_1, x;]
{The left interval for z is [min, x1] and the right interval for the last minium is [z, ax].}
end for
i 1; Mgey 0
while z; € M and z;.lMaz < £ do
Mgep — Mgy U {xi}; i —i+1
end while
left < 0; right < 0
for i to last do
if z;.lMax > € then
left — i
end if
if x;.rMazx > £ then
right «— i
end if
if left # 0 and right # 0 then
Tremain < Lremain € {x’L : left S { S TZght} and fP(F) (xremain) S fP(F) (xz)
Mdel — Mdel U {xz : left < { < Tlght} - {mremain}
left < 0; right < 0
end if
end for
if left # 0 then
Mge; +— Mge U {xl dleft <i < last}
end if
Msep — M — Mgy
return(M,.,)

64 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

The other task for examining a one dimensional projection is to separate clusters from the
non-clustered rest. A noise separator can be used to separate points following a non-relevant
distribution in the current dimension from other points, which are clustered in the dimension.
Noise separators are only determined when no cluster separator is found.

To determine the noise threshold the methods described in section 3.3.4 could be used or
the threshold is estimated by hand from an example visualization of the density. Due to the
precondition that no separating minimum exists in the projection, a noise separator may consist of
one or two split points, which mark intersections of the noise level with the density function. This
corresponds to the following cases:

1. One split point: only the left or right part of the density function is above the noise level

2. Two split points: a middle part of the density function is completely above the noise level

As a consequence the density in exactly one interval is completely above the noise threshold. This
interval is labeled as cluster interval. The following formula shows how a noise separator labels a
point
¢ ¢P(F
R (T
0 else

A point = with label 0 is marked as noise and with label 1 as cluster. Similar to the cluster
separator SJN”(F) C F denotes the subset of F with = € SJN”(F) = SN (z) = i. Figure 4.10 (d-f)
shows an application of the noise separator.

The whole procedure described in this section is sketched in algorithm 11. To find projected
clusters our algorithm tries to find for each axes parallel projection a cluster separator and, if no
cluster separator exists, a noise separator. Note that for a given noise threshold a cluster separator
or a noise separator do not necessarily exist. The found separators are collected in the sets S¢
and S™V. Both separator algorithms require an histogram of each one-dimensional projection. Such

Algorithm 11 finding of Separators

separation(D, §)

1: Determine histograms for all projections P, ..., Py
2: S¢ « 0, SN «) {Sets of Separators (Cluster, Noise)}
3: for all histograms hq,...,hq do

4. 89 « SC U findClusterSeparator(h;, £)

5 if no Cluster Separator Found then

6 SN « SN U findNoiseSeparator(h;, £)

7 if no Noise Separator found then

8 mark the current dimension as non-relevant
9 end if

10: end if

11: end for

12: return(S¢, SV)

histograms can be determined in one linear scan of the data set. The separator algorithms itself
have also a linear runtime in the size of the histogram. So the runtime of this step is linear in the
number of data points. Please note that our separator finding step has the two important difference
to the CLIQUE approach. Firstly, CLIQUE splits the data using all dimensions and secondly, it
uses equi-distant splits, which do not take the data distribution into account. This makes it very
likely, that clusters are spread over multiple grid cells. As mentioned above, it is very costly to
reassemble the grid cells, which belong to the same cluster.

4.3.2 Determining partial Cluster Descriptions

After determining separators in the projections the question arises how to use the determined
separators. Each separator region can be seen as a primitive cluster description assigning data

4.3. A NEW PROJECTED CLUSTERING ALGORITHM 65

Density —— Smoothed Gradient, s=2
0

Separating Minimum X
Deleted Minimum [J

Density
Gradient
=
=
1]
g
—

Attribute Range Attribute Range
(a) .
Density —— _ Density ——
Splits ;
Noise Threshold ;
2 L L f I .
: | | 1%}
ik]
AL

Attribute Range Attribute Range

(c) (d)

Smoothed Gradient, s=4 - Density ——
0 —— I Noise Threshold -~
Deleted Split Points [L Split Point
5 £
g o o 5
5 == H— 8
Attribute Range Attribute Range

(e) (f)

Figure 4.10: Part (a) shows a density function (histogram) of a one dimensional projection (source:
attribute 5 of the molecular biology data). Part (b) shows the smoothed gradient (s=2) with the zero points
for the minimums. Since not all minimums separates clusters, two of {2,3,4} have to be deleted. The
minimum with the smallest split density remains. Part (c) shows the separator with the three separating
minimums. Part (d-f) shows a case where the noise threshold can be used to find noise splits. All gradient
splits points are deleted since they do not separate clusters (see €). The noise splits are defined by the
intersections of the noise level with the density function (see f).

66 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

points to a clusters. The point groups described by the separator regions may overlap, however, it
is unknown which separator regions correspond to the same projected cluster.

Since the separators are independently determined a naive approach would merge all separators
(see the merge-operation in section 3.2.1). This forms a grid, which partitions the data space F' and
so the data set D. Due to our restriction to one dimensional axes parallel projections the grid is a
regular grid like in figure 4.11(a). Not all grid cells contain clusters, so a simple method to find cells
with clusters is desired. An intuitive approach is to require the grid cells with clusters to contain at
least a given number minsup € N of data points. The problem is that the information from the one
dimensional projections allows no determination of the number of points in the multidimensional
grid cells.

Also the choice of separators with good quality (low split density) is no assurance to find grid
cells with clusters. To illustrate this we describe a short example consisting of a data set D C [0, 1]¢
and each data point in D is near to a different corner of the hypercube. When d = 20 the size
of the data set is 22° = 1048676, which is quite large. Each of the 20 axes parallel projections
may look like figure 4.11(b) and contains a cluster separator of good quality. However, merging all
separators would result into a grid, whose grid cells contain only one data point despite the well
chosen separators.

The problem is how to find combinations of separator regions, which are large with respect
to the number of combined separators and are supported by a sufficiently large number of data
points. Both goals — increasing the number of combined separator regions and maximizing the
number of supporting data points — contradict each other. In terms of grid cells (a combination of
separator regions is a grid cell) this means to find the smallest grid cells which contain more than
minsup data points. It is important to note that after the discretization of the continuous vector
data into separator regions this problem can be transformed into a problem of finding frequent
itemsets. This is done by denoting each separator region containing one or more clusters by an
item. To convert a data point x into a transaction ¢ those items are concatenated, which correspond
to separator regions including z. The noise intervals of the noise separator are not represented
by items, because they mark non-relevant attributes. The set of items I is constructed from the
cluster separators Sjc and the noise separators S jN in the following way:

= |J {c...ciy u | (v

SfeSC SJNESN

with [; is the number of separator regions of the cluster separator for dimension j. The transaction
set is determined from the data set using the separators. Each data point z; € D,l =1,...,N is
transformed into a transaction ¢;, which consists of the following items:

= U {C:8C@) =i} u |J {N}:if $¥(m)=1}

5¢esc SNesN

Figure 4.11(b,c) shows an illustration of the construction. The determination of the frequent
itemset wrt. minsup can be done with any available algorithm like apriori [6], partitioning algo-
rithm [92], sampling based [106] or the using the FP-tree method [46]. The data generated by
the transformation of separators into items differs from typical buying records in the way that the
data is not sparse, that means very frequent items may occur. The handling of such data is an
important research topic. New algorithms have been proposed recently, which can handle dense
datasets and are able to find long frequent itemsets [2]. It is important to note that single items
with very high support (> 80%) have an strong negative impact on the efficiency of the algorithms
but add no substantial new information to the result. Such items come from separators which
produce very unbalanced splits of the data. While the small parts may contain potentially im-
portant information on outliers, the large part simply represents nearly the whole data set again.
Since this significantly increases the size of the result of any frequent set algorithm without adding
new information, such items are removed before running the frequent item set algorithm. In our
experiments we used a very fast implementation of apriori from Christian Borgelt [25].

4.3. A NEW PROJECTED CLUSTERING ALGORITHM 67

Noise Level

min max min ‘ ‘ max

1 1 1
Co C1 N3
Projectionto x ¢ Projectionto x {

(b) (c)

Figure 4.11: Part (a) shows a regular grid determined by separators from axes parallel one dimensional
projections. It shows that clusters in the multidimensional space can not be determined by looking on one
dimensional projections. Part (b) is an illustration for an example that the use of high quality separators
is no assurance for finding good clusters. The example can be generalized to high dimensional spaces and
each projections yields high quality separator. But the merging for all separators leads to a grid with only
one data point in each cell. Part (c) illustrates the construction of the items from the separators.

68 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

The result of all algorithms is a set of frequent itemsets F 1. We propose as a post-processing
step to remove redundant itemsets. A redundant frequent itemset is covered by a frequent superset.
The set of remaining frequent itemsets is denoted with PFI. The pruned frequent itemsets stand
for grid cells which are not included by larger ones and contain a sufficiently large number of data
points. The grid cells can be seen as conjunctions of separator regions from different separators,
which describe projected clusters. We call this cluster descriptions partial ones since also in the
pruned set similar descriptions may occur describing the same cluster.

4.3.3 Final Cluster Descriptions

To make our method more robust against parameter settings we refine the partial cluster descrip-
tions to final ones. For example in case the minsup-parameter in the apriori step has been chosen
to high, different partial cluster descriptions might be found for the same projected cluster. In this
case each found maximal frequent itemset includes only a subset of the relevant attributes. So,
after the pruning, we propose to group similar frequent itemsets.

To explain this step we introduce the geometric interpretation of the frequent itemsets. Each
frequent itemset I € PFI describes a hyper box. The boxes are constructed using the split points
of the separators. The data points in the box G, determined from the frequent itemset SI’, are
given by

G= () S7(F) n () SYMF) n D
ciesr Niesr

Note that the different boxes may intersect others. On the other side it is important to note
that PFI may include different frequent itemsets which describe nearly the same clustered set of
points. Similarity between frequent itemsets can be measured by the similarity of the supporting
data point sets. A common set similarity measure is:

#(G1NGs)

sim(Gl,Gg) = m

with G; and G5 are sets of data point ID’s. Using this formula the similarity matrix between
all pairs of partial cluster descriptions can be determined. Since the number of partial cluster
descriptions is low the runtime of this operation is acceptable.

Using the similarity matrix the grouping of the partial cluster descriptions can be done using
a standard hierarchical clustering algorithm. We used for our experiments the complete linkage
algorithm from the CLUTO package [64]. The output of the algorithm is a dendrogram of the
partial cluster descriptions in combination with the block diagonalized similarity matrix. Each
group of similar cluster descriptions appears as block around the diagonal. The visualization can
be used to find out how many groups are in the data and which cluster description should be left
out. An example of the visualization for synthetic data is shown in figure 4.12.

The last issue is the generation of the final cluster descriptions. After grouping similar partial
cluster descriptions we have to build final ones from the groups. For this we recall the geometric
interpretation of the partial descriptions, which are hyperboxes in the data space. The intersection
of all would not work very well since many data point would be excluded from the cluster, however
the bounding box of all partial boxes might include unwanted data points. We decided to fuse
the boxes which describe the projected clusters as crossing boxes. In logical terms, we use the
disjunction of conjunctions of separator regions as final cluster description. Figure 4.13(a) shows
an example for an projected cluster with its description. The relevant dimensions of a cluster
are those dimensions for which a separator region appears in one of the merged partial cluster
descriptions. The rest are non-relevant dimensions.

Note that also the cluster from the final cluster description may have some overlap. The block
diagonalized similarity matrix is able to show which clusters have some overlap.

The overlapping nature of the boxes (and so of the clusters) makes clear that projected clustering
delivers in general not a definite partitioning of the data, but a set of overlapping clusters. Examples
for the overlapping nature of projected clusters are shown in figure 4.13(b), where points of the

4.3. A NEW PROJECTED CLUSTERING ALGORITHM 69

il m

clustar 2

elustar 1

rowlODED
rowl00Lle
rowdoo13
rowlDOLE
rowiog 14
rowlD016
rowlDOLY
rowlQQ18

elustar 0

il T
i

Figure 4.12: The figure shows a hierarchical clustering (complete linkage) and the block diagonalized
similarity matrix of the partial cluster descriptions. The used data set has 20 dimensions and contains two
projected clusters.

Table 4.3: The table summarizes the facts about the used synthetic data sets. Both data sets have 20
dimensions (0, ...,19). The relevant dimensions are normally distributed, while non-relevant dimensions
are uniformly distributed. Shared relevant dimensions are heavy printed in bold typeface.

[Data Set | Class | Relevant Dimensions | Size |
DS1 Class 1 | 5, 18,19 10000
Class 2 | 9, 14, 15 10000
%2 Class 1| 0, 4, 5, 6, 8,9, 11, 12, 16, 17 | 10000
Class 2 | 1,4, 6,9, 11, 12, 14, 15, 16, 19 | 10000

cluster SV1(F) are also included in the projected cluster S¥!(F). For simplicity, here the final
cluster descriptions consist of only one separator region.
The process of finding axes parallel cluster as explained is summarized in algorithm 12.

4.3.4 Experiments

In this subsection we empirically evaluate the features of our projected clustering algorithm. In
the first part we investigate the effectiveness of the method.

There are two extreme cases for projected clusters. First, the projected clusters do not share
any relevant dimensions. Such projected clusters can only be separated with the noise separator,
because in each one-dimensional axes-parallel projection exists at most one dense interval. In the
opposite extreme case the data contains projected clusters, which share nearly all of their relevant
dimensions. In such a scenario it is likely that in the projections at least two clusters overlap. If
that is the case, the clusters can be separated by the cluster separator.

We demonstrate the effectiveness of our algorithm for the two cases. For this purpose we
generated two 20-dimensional, synthetic data sets each containing two projected clusters. Table
4.3 summarizes the information about the data sets. The clusters of the first data set DS1 do
not share a relevant dimension. Each cluster of this data set has three relevant dimensions. In
section 4.2 we used this data set to show the weakness of ORCLUS in finding projected clusters

70 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

Figure 4.13: Part (a) shows a final projected cluster description consisting of the union of N{ and Nj.
The united partial cluster descriptions are defined in the dimensions xz1 and x2 while dimensions z3 is a
non-relevant one for this cluster. Note that the partial cluster descriptions have such a small size (length
1) only for illustration in the example. The typical length is larger. Part (b) shows a case where two
projected clusters have some overlap. The points in the intersection belong to both clusters.

Algorithm 12 Axes Parallel Clustering
AP _clustering(D, &, minsup)

Require: D = {z1,...,zny} a d dimensional data set, £ > 0 noise level, minsup > 0 minimal
percentage of required data points in a projected cluster.
Ensure: C contains the final cluster descriptions, each with at least minsup points.
1: 8¢ 0, SNV « () {Init separator set}
2: for j=1toddo
3 fPP) determine_density(P;(D))
4 S]C — determine_cluster_separator(f¥i(P))
5. if a Cluster Separator was found then
6 8¢ — S¢u {S]C }
7. else
8 SN — determine_noise_separator(fi(P) €)
9

J
if a Noise Separator was found then

10: SN<—SNU{S]N}
11: end if

12: end if

13: end for

14: if S¢ =0 and SN = () then
15: return(D) {No cluster found, return D as one cluster.}
16: end if{Determine Partial Cluster Descriptions}
17: T « generate_transactions(D, S¢, SN)
18: T" « delete_freq_items(T, maxsup = 80%)
{Delete the items from the transactions with a support larger than mazsup.}
19: FI « determine_freq_itemsets(T’, minsup)
20: if FI = () then
21: return(D) {No cluster found, return D as one cluster.}
22: end if{Delete itemsets which are included by larger ones}
23: PFI <« remove_small_freq_itemsets(F1I)
{Determine Final Cluster Descriptions}
24: SimMatriz — determine_similarity(PFI,T)
25: C' « group_FI(PFI, SimM atriz)
26: label_data(C, D)
27: return(C)

4.3. A NEW PROJECTED CLUSTERING ALGORITHM 71

X X
(a)xAyAz) (zAy)V(zA2)V(yAz) (c)zV(yAz)
, small minsup , medium minsup , large minsup

Figure 4.14: The figure shows how separator regions can be combined using conjunctions and disjunctions.
The labels z, y, z in the logical terms correspond in this example to the separator regions (intervals), which
are defined in the respective dimensions. Conjunctions are frequent itemsets which could be united by
the logical OR~function. The parts (from a to ¢) sketch results for increasing minsup. Higher values for
minsup result in coarser final cluster descriptions.

Table 4.4: The table shows the resulting conformation matrices from the experiments with the DS1 and
DS2 data sets. The DS1 data set has been shown in section 4.2 to be difficult for ORCLUS. Part (a) shows
that our algorithm can find this type of projected clusters very well. The other parts show the results
for the DS2 data set with respect to different values for minsup. For high values the cluster description
includes many false positives. This is due the large volume of the united separator regions. For small
values the cluster description includes only the core part of the particular clusters. The best results are
found for minsup = 35%.

In/Out | C Cy In/Out Ci Cy In/Out | C Cy
Class 1 | 9560 9 Class 1 | 10000 | 1505 Class 1 | 9957 | 726
Class 2 6 9574 Class 2 | 1505 | 9999 Class 2 | 227 | 9977
(a) DS1 (b) DS2, minsup = 45% (c) DS2, minsup = 40%
In/Out Cl CQ In/Out Cl CQ In/Out Cl CQ
Class 1 | 9282 91 Class 1 | 6691 0 Class 1 | 6691 0
Class 2 1 9870 Class 2 0 9181 Class 2 0 5113

(d) DS2, minsup = 35% (e) DS2, minsup = 30% (f) DS2, minsup = 25%

with many non-relevant dimensions. As shown in table 4.4 (a) our new approach can find such
projected clusters very well.

The other data set DS2 also contains two clusters. Here the clusters share many of their
relevant dimensions. In the context of this experiment we want to explain the influence of the
minsup parameter. This parameter determines the minimum frequency of an frequent itemset and
implicitly the length of the maximal frequent itemsets (itemsets without frequent superset). A
lower minsup allows larger frequent itemsets. However, long frequent itemsets can occur only if
there are projected clusters in the data with many relevant dimensions. The extreme case is when
all separator regions of relevant dimensions are covered by a single frequent itemset. So, the final
cluster description consists of only one partial cluster description, which is a hyperbox with bounds
in each relevant dimension. When higher values for minsup are chosen only smaller subsets of the
full set of separator regions of relevant dimensions can become frequent. These partial cluster
descriptions are similar to each other and are united (logical OR) in the following step to a final
cluster description. So minsup parameter controls implicitly the structure of the final cluster
descriptions. Low minsup produces hyperboxes of high dimensionality and higher minsup unions
of hyperboxes with lower dimensionality. Figure 4.14 illustrates the different cluster descriptions.

We examine the data set DS2 with different values for minsup and show the results as confusion
matrices in table 4.4 (b-f). The minsup parameter is varied from 45% to 25%. In all experiments
the relevant dimensions were found correctly. The average length of the found partial cluster

72 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

DS2 DS2
8 ; ; ; 10 3500 . -
75+ Avg. Length —+— % 9 Overlap ——
'7 Avg. Size - iyl 3000
r 18
< 65 ¢ g 2500 ¢
is) L X 17 g a
s 6 le & & 2000 |
[} n =
4 55+ ls o]
g', 5| o 12 z 3 1500
< 45 1000
4 13
35| I 500
3% 5 . . "1 0 : . :
25 30 35 40 45 25 30 35 40 45
minsup in % minsup in %

(a) (b)

Figure 4.15: Part (a) shows the average length of the partial cluster descriptions and the average size
of the grouped final cluster descriptions depending the used minsup. The first measure drops to one
with increasing minsup while the second increases. This behavior exemplifies the tradeoff between the
conjunctions of separator regions and disjunctions. Part (b) shows that with increasing minsup the overlap
between the final cluster descriptions grows. If a partitioning in clusters is wanted a good choice for minsup
is the largest value where the overlap is zero. In the case of the DS2 data set minsup = 35% is the best
choice. As shown in table 4.4 for minsup = 35% also the accuracy is the best.

descriptions and the average size of the groups for the final cluster descriptions depending on
minsup are plotted in figure 4.15 (a). The overlap (measured in data points) between the finial
cluster descriptions is plotted in figure 4.15 (b). This measurement can be used as indicator for
choosing a good value for minsup if disjunct clusterings are wanted. For the DS2 data set we used
the rule, that the largest minsup-value with zero overlap is the best choice. As shown in table 4.4
(d) this gives also the best accuracy.

In the next experiments we examine the dependency of the algorithm’s runtime from the number
of data points as well as the number of dimensions. The data sets DS3 and DS4 generated for
this experiments, contain also two clusters. For DS3 the dimensionality is fixed to 20 and each
cluster has 10 relevant dimensions. The clusters are equally sized in each setting. The runtime
of the algorithm is dominated by the first (separator finding), the second step (frequent itemset
determination) and the third step (determination of similarity). The three steps perform in total
a nearly constant number of scan over the data. For lower minsup fewer maximal itemsets are
produced, which explains the slightly smaller runtime. Since the overall runtime of the algorithm
is linear with respect to the number of data points, the algorithm scales to large data sets.

To investigate the ability of the algorithm to scale to large dimensionality we used the data set
DS4, which also consists of two equally sized clusters, each with 25000 points. The dimensionality
varies from 5 to 50. The important point is that the number of relevant dimensions is for each
setting half of the full dimensionality. That means that the dimensionality of the clusters subspaces
also grows with global dimensionality. In the first case we set no limit for number of used separators.
This causes longer transactions and also longer frequent itemsets. Since Apriori is not designed
to handle long itemsets beyond a dimensionality of 25 the runtime of this step exploded. This
situation is reported in figure 4.16 (b). There is currently ongoing research on algorithms which
can handle this kind on data much better and find long frequent itemsets more efficiently. For
our purpose we restricted in a second experiment the number of used separators to a maximum
of 20. We chose the separators with the best separation quality. This restriction limited also the
length of the frequent itemsets to a size for which Apriory runs efficiently. As a consequence the
resulting cluster descriptions do not contain all relevant dimensions for a cluster, but separated the
clusters also very well. However, the full set of relevant dimensions for each cluster could be easily
computed in a post processing step by separately determining the noise separators for each cluster.
Each found noise separator marks a relevant dimension of the cluster. Since due to the restriction
of the number of separator the size of the transaction set fixed size is implicitly fixed and so the
growing dimensionality effects only the first step (separator finding). This explains the smaller
gradient after the restriction appealed. The runtime of the algorithms is shown in figure 4.16 (c).

4.3. A NEW PROJECTED CLUSTERING ALGORITHM 73

DS3, 2 Clusters, 20 Dimensions DS4, 2 Clusters, 50000 Points DS4, 2 Clusters, 50000 Points, Max 20 Sep.
1 2 2
60 y lgg MinSup=45 —+— * 00 MinSup=45 —+—
140 MinSup=40 MInSup=40 -
o 120 o 160 I MinSup=35 - x o 150 | MinSup=35 -~
& T 2 140 i/ I3
£ 100 e £ 120 / £
e g o 7 °
£ 80 o g 100 i 2 100
£ 60 < £ 80 P £
2 3 60 : S
40 MinSup=45 —+— .0 © 50
20 MinSup=40 —x-- 20
0 MinSup=35 % o o
0 50000 100000 150000 200000 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
No. of Data Points No. of Dimensions No. of Dimensions

(a) (b) (c)

Figure 4.16: Part (a) shows the runtime depending on the number of data points. The used data DS3
contains two equally sized clusters and is 20-dimensional. The data set DS4 contains 50000 data data
points and two clusters. The number of relevant dimensions is half of the full dimensionality. Part (b)
shows the runtime when the number of used separators is not limited. Since the lengths of the frequent
itemsets grow with the increasing number of relevant dimensions, the runtime of apriori explodes beyond
25 dimensions. Part (¢) shows the runtime depending on the dimensionality when the number of separators
is limited to 20, Since the resulting cluster descriptions do not contain all relevant dimensions. the full set
of relevant dimensions is separately determined for each cluster in a postprocessing step.

This demonstrates that the algorithms is also highly scalable with respect to dimensionality.

Application to real data After showing the behavior of our new algorithm we apply it to two
different real data sets. The first data set is derived from a collection of 8537 images. For each
image the gray scale color histogram was derived. The histograms have been wavelet-transformed
into a 64-dimensional feature vectors. The image transformation is described in detail in [65].
Using our new projected clustering algorithm 2 different clusters was found. The clusters consist
of 890 images (Cluster 1) and 1212 images (Cluster 2) respectively. This shows that our approach
is not forced to partition the data, like PROCLUS or ORCLUS and also finds small clusters. The
first cluster is very homogenous and consists of images with a white, shaded background and a
special object in the foreground. There is no restriction on the foreground objects, which also could
vary in their sizes. The other cluster does not seem to have a content-based interpretation. The
common feature of all images is, that always at least one light area appears in the images. Figure
4.17 shows typical examples from the clusters. The full clusters as well as the full image collection
could be found at http://www.informatik.uni-halle.de/~hinnebur/diss/images/ .

The second data set comes from a molecular biology simulation of a small peptide. During
the simulation every 20th pico-second a snapshot of the spatial conformation of the molecule was
taken. A single spatial conformation of the molecule is described by 19 dihedral angles, which
were used as dimensions of a feature vector. Such short peptides do not have a stable spatial
conformation and so they repeatedly fold and unfold over time. An interesting question is what
are stable states of the molecule which often occur in the data. The different states were assumed
to form clusters in the data. Our new projected clustering algorithm found 7 different cluster with
4 main clusters in the data. In figure 4.18 we show the hierarchical clustering and the similarity
matrix of the partial cluster descriptions. As shown in the similarity matrix all clusters have some
overlap, which indicates that the states could not be sharply fractionized. This goes along with the
intuition that the molecule folds over intermediate steps from one state into another. Note that
overlapping clusters could not be found by any other projected clustering method.

In summary we showed that our new projected cluster can find projected clusters with only
a few relevant dimensions, which are likely to be missed by the best known projected clustering
algorithm ORCLUS. We explained and empirically verified our new projected clustering concept
based on disjunctions of conjunctions of separator regions and showed the tradeoffs in this concept.
We showed that our algorithm is hilly scalable, namely linear in number dimensions as well as in
the number of data points. We applied our method to image and molecular biology data and
showed that our method finds clusters, which are missed by others, since our algorithms does not
need to partition the whole data set and allows to find overlapping clusters. In the next section
we extend our method to projected clusters with dependencies.

74 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

-_i o ||v.®

Y]

o
[1558
V| k=

K2

(a) Cluster 1

(b) Cluster 2

Figure 4.17: The clusters consist of 890 images (Cluster 1) and 1212 images (Cluster 2) respectively. This
shows that our approach is not forced to partition the data, like PROCLUS or ORCLUS and also finds
small clusters. The first cluster is very homogenous and consists of images with a white, shaded background
and a special object in the foreground. There is no restriction on the foreground objects, which also could
vary in their sizes. The other cluster does not seem to have a content-based interpretation. The common
feature of all images is, that always at least one light area appears in the images.

4.3. A NEW PROJECTED CLUSTERING ALGORITHM (0]

|

olusher 5 oluater B

rowlOD 14

FUWIDD18

rowiO018 L |
romion 1 [}
rowlO00E

Figure 4.18: The figure shows the similarity matrix of the partial cluster descriptions for the molecular
biology data. The similarity matrix shows four main clusters which overlap each other. This goes along with
the intuition about the application domain that the simulated molecule has intermediate states between the
stable ones. Note that overlapping clusters could not be found by any other projected clustering method.

Ingier 2 olowier 4

4.3.5 Extensions to Projected Clusters with Dependencies

In the previous subsections we assumed that the data has no dependencies between the dimen-
sions. Using this assumption we could restrict our projection pursuit in the first step (finding of
separators) to axes-parallel one-dimensional projections. Now arises the question how to deal with
projected clusters with dependencies between the relevant attributes.

First we have to redefine the term relevant dimension. This term shall capture the contribution
of a dimension to the cluster information. Unlike in case of axes-parallel projected cluster here
a relevant dimension is only relevant in the context of other relevant dimensions. Figure 4.19
illustrates the difference. The parts (b-c¢) show two-dimensional projections of the same data, in
the first case the data is projected to the dimensions (dy,ds) and in the second case to (dy,ds). In
the first case the dimensions d; is relevant since the projected data contain a cluster, while in the
second case the same dimension is not relevant. So it makes no sense to define the relevance of a
dimension independently from the context (the other involved dimensions). This is due to the fact
that in case of dependent attributes the relevance of a dimension can not be concluded from the
marginal distribution.

As a consequence we have to redesign the first step: the finding of separators has to take
multi-dimensional projections into account. Since the other steps are decoupled from the multi-
dimensional representation these parts can be left unchanged.

So the problem is, how to find good separators using multi-dimensional projections. The prob-
lem can be decomposed into three sub-problems:

1. How to find useful multi-dimensional projections?
2. How to determine good separators in the projections?
3. How to rate and compare the quality of the separators?

First we look at the problem of searching the space of projections. There are two basic possibili-
ties to do the search, namely enumeration and heuristic search. Let us first look at the enumeration

76 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

Axes-Parallel Cluster Projected Cluster with lin. Depend. Projected Cluster with lin. Depend.
3 - 3= 3
25 25 25 ¢}
[} 2 o 2 © 2
3 15 S 15 3 15¢p
§ 1 s 1 § 1
g 05 g 05 g 05
£ 0 £ 0 £ 9
a -05 a -05 P a -05
-1 -1 ! -1
1.5 1.5 1.5
2

2 E 2 =
2-15-1-050 05115 2 25 3 2-15-1-050 051 15 2 25 3 2-15-1-050 051 15 2 25 3
Dimension d1 Dimension d1 Dimension d1

(a) (b) (c)

Figure 4.19: Unlike in the case of axes-parallel projected cluster (part a), in the case of projected clusters
with dependencies a relevant dimension is only relevant in the context of other relevant dimensions. The
parts (b-c) show two-dimensional projections of the same data, in the first case the data is projected to
the dimensions (di,d2) and in the second case to (di,ds). In the first case the dimensions d; is relevant
since the projected data contain a cluster, while in the second case the same dimension is not relevant.

of projections. Since the general space of projections is infinitely large, there have to be additional
constraints to make enumeration possible. The smallest subspace of projections, which can capture
dependencies is the subspace of two-dimensional axes-parallel projections with a size of (g) = dd-1)
(d € N is the number of dimensions). With this kind of projection dependencies between two at-
tributes can be found. In general the subspace of axes-parallel projections of dimensionality d’
has a size of (j,) which grows by an exponential rate for d’ < d/2. So enumeration of the general
subspaces becomes quickly infeasible.

The other search methods are of heuristic nature. One possible strategy is presented in the
section on projected nearest neighbor search. This strategy uses genetic search to find good low-
dimensional projections (d’ = 2, 3) and then it extends the set of dimensions in a greedy fashion.

We did not consider so far how projections are rated. What would a good projection looks like?
A good projection in this context is a subspace where groups of data points can be well separated
from others. Similar to the case of axes-parallel projections here we also search for separators in
the subspaces. The examination tasks for the multi-dimensional projections are the same as for
one-dimensional projections, namely cluster and noise separation. Clusters without dependencies
are compact ellipsoids stretched along the axes, while for clusters with dependencies the shape and
orientation plays an important role. So the separation of clusters with dependencies can be done
using the density-based single-linkage separator, which can handle arbitrary-shaped clusters. For
the noise separation task we use the noise separator assuming the noise to be uniformly distributed
in the subspace. Both separator types allow to determine a separation quality which corresponds
to the maximum density at the separation border between different separator regions. A good
separation quality indicates a low density at the cluster border, which lowers the probability of
splitting a cluster.

After building separator regions the approach described in the previous sections can be used
to find cluster descriptions for the projected clusters. The difference is that the separator regions
can capture dependencies between groups of relevant dimensions. With the help of this cluster
information the continuous data can be transformed into discrete transactions. Partial cluster
descriptions are determined by finding frequent itemsets (conjunction of separator regions). Then
groups of similar partial cluster descriptions (frequent itemsets) are combined by logical or to final
cluster descriptions (disjunction of conjunctions of separator regions). Unlike in case of axes-parallel
projections here the final cluster descriptions stand for complex high dimensional regions.

The disadvantages of this approach are first the higher runtime of the separator finding step and
second the uncertainty of not fully found dependencies when heuristic search is used. If the space
of two-dimensional axes-parallel projections is enumerated this uncertainty could be excluded,
however the whole method scales only quadratically in the number of dimensions. Runtime could
be saved when heuristic search methods are used but this gain of speed comes at the risk of
missing some dependencies. Here is a potential for finding reasonable tradeoffs between runtime
and quality, which we will investigate in further research.

