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Abstract

Clustering techniques are used in database mining for finding interesting patterns in high
dimensional data. These are useful in various applications of knowledge discovery in databases.
Some challenges in clustering for large data sets in terms of scalability, data distribution, under-
standing end-results, and sensitivity to input order, have received attention in the recent past.
Recent approaches attempt to find clusters embedded in subspaces of high dimensional data. In
this paper we propose the use of adaptive grids for efficient and scalable computation of clusters
in subspaces for large data sets and large number of dimensions. The bottom-up algorithm for
subspace clustering computes the dense units in all dimensions and combines these to generate
the dense units in higher dimensions. Computation is heavily dependent on the choice of the
partitioning parameter chosen to partition each dimension into intervals (bins) to be tested for
density. The number of bins determines the computation requirements and the quality of the
clustering results. Hence, it is important to determine the appropriate size and number of the
bins. We present MAFIA, which 1) proposes adaptive grids for fast subspace clustering and
2) introduces a scalable parallel framework on a shared-nothing architecture to handle massive
data sets. Performance results on very large data sets and a large number of dimensions show
very good results, making an order of magnitude improvement in the computation time over
current methods and providing much better quality of clustering.

1 Introduction

Clustering is one of the primary data mining tools which helps a user understand the natural
grouping of attributes in a data set. Large amount of data are being collected in many business and
scientific domains which is being subjected to data analysis for finding interesting and previously
unknown patterns. Clustering techniques for large scale data containing a large number of attributes
is gaining importance to make the task of knowledge discovery and data mining from various
databases much more efficient [1].

*This work was supported in part by NSF Young Investigator Award CCR-9357840, NSF CCR-9509143 and
Department of Energy ASCI/ASAP program



Emerging applications of data mining are making refinements to the clustering algorithms that
have been studied in the past. The presence of data distributed in a large multi-dimensional space,
due to a large number of attributes makes it difficult to detect clusters. Noise in data owing to
uniform distributions in some data dimensions further complicate the cluster detection process.
Further, clusters can be embedded in some lower dimensional space, a subspace of the total data
space. Algorithms for efficient computation of clusters are as important as correctly detecting the
clusters in the data. Cluster descriptions of the data have to be used by the end-user to leverage the
benefits of data mining. Simplicity in reporting clusters among those found improves the usability
of the algorithm. This can help to interpret the results better and lead to the expected value-
adding that data mining provides to the end-user. Scalability of the algorithm with data sets and
the number of dimensions is another important feature for current applications of clustering. These
algorithms are to be applied to large repositories of business data (data warehouses) and large scale
scientific data (satellite images, large scientific simulations) to be effective.

The problem of high dimensionality has been either addressed by using user-defined subset
of dimensions to apply the clustering algorithm to, or use a dimensionality reduction method.
The former is not very effective for using data mining as an unsupervised learning technique.
Dimensionality reduction techniques such as principal component analysis and Karhunen-Loéve
transformation [2], transform the original data space into a lower dimensional space by forming
dimensions which are linear combinations of given dimensions. However, the effectiveness of clus-
tering in this transformed space is limited by the difficulty in interpreting the clusters in relation
to the original data space. Also, clusters in subspaces of the original space cannot be found using
this method. Most techniques in the database community have developed scalable versions of the
clustering algorithms used in earlier work in statistics and data mining [3, 4]. These operate and
find clusters in the whole data space. We use the method developed in CLIQUE [5] to identify
clusters in subspaces which is a density and grid based approach.

1.1 Contributions of the paper

In a grid and density based subspace clustering algorithm, the number of bins in each dimension
determine the computation requirements and the quality of the clustering results. In data sets
with a large number of dimensions and varying data distributions, a uniform grid size leads to
enormous amount of computation for fine grids and very poor cluster quality for coarse grids.
Hence, it is important to have the correct size of the grids, embedded by the bins, depending on
the data distribution. In this paper we present MAFIA!, a technique for adaptive computation
of the finite intervals (bins) in each dimension, which are merged to explore clusters in higher
dimensions. Consequently, adaptive grid sizes are used, which reduce the computation and improves
the clustering quality by concentrating on the portions of the data space which have more points
and thus more likelihood of having clusters. This also enables minimal length DNF expressions,
important for interpreting results by the end-user, to capture the cluster definition without a
complicated post-processing step needed in other methods. Performance results show MAFIA to
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be 40 to 50 times faster than CLIQUE, due to the use of adaptive grids. Further, to enable
scalability, we also introduce parallelism to obtain a highly scalable clustering algorithm for large
data sets. This allows us to handle data sets, much larger than the ones reported in the most recent
literature in clustering research. To the best of our knowledge, this is one of the first efforts in
practical parallel clustering techniques for large data sets.

We describe recent work on clustering techniques in databases in Section 2. Density and grid
based clustering is presented in Section 3 where we describe subspace clustering as introduced by
[5]. Section 4 introduces our approach of using an adaptive grid and an algorithm for calculating
bin boundaries for dimensions automatically. Section 5 describes the parallel algorithms for scalable
parallel computation on a shared-nothing architecture, the IBM-SP2 machine. Section 6 presents
the performance evaluation results on a wide variety of synthetic data sets, for large data sets and
large number of dimensions, which highlight both the scalability of the algorithms and the quality
of the clustering. Section 7 concludes the paper.

2 Related Work

Clustering has been extensively studied in statistics [6], machine learning [7], pattern recognition
[2] and image processing . Existing clustering algorithms can be classified into hierarchical and
partitioning algorithms. A hierarchical method uses a nested sequence of partitions. This can
either be done by starting with each object in its own cluster and then merging these to form
larger clusters, or all objects are considered in one cluster and the process starts by subdividing
it into smaller clusters [8]. Hierarchical clustering has been used in the single-link method, which
starts with placing each object in its own cluster and in every step the two closest clusters are
merged until all points are in one cluster [9]. Recently, CURE [10] has been proposed which uses
the hierarchical clustering method. Creation of cluster hierarchy is stopped if a level consists of
k clusters, where k is one of several input parameters. Distance between clusters is evaluated by
multiple representative points which is well-suited for arbitrary shaped clusters.

Partitioning algorithms construct a partition of the objects in the database into clusters such
that objects in a cluster are more similar to each other than to the objects in different clusters.
k-means and k-medoid methods determine k cluster representatives and assign each object to the
cluster with its representative closest to the object such that the sum of the distances squared
between the objects and their representatives is minimized. CLARANS [11], BIRCH [4] can be
considered to be extensions of this method for databases. The k-modes algorithm extends the
k-means paradigm to categorical domains [12]. Density based approaches apply a local cluster
criterion, in which clusters are regarded as regions in the data space in which the objects are dense,
and which are separated by regions of low object density (noise). A common way to find regions
of high-density in the data space is based on grid cell densities [8]. A histogram is constructed by
partitioning the data space into a number of non-overlapping regions or cells. Cells containing a
relatively large number of objects are potential cluster centers and the boundaries between clusters
fall in the “valleys” of the histogram. The size of the cells determines the computations and the



quality of the clustering. Cells of small volume will give a very “noisy” estimate of the density,
whereas large cells tend to overly smooth the density estimate. A non-grid based density based
approach is presented in DBSCAN [3]. For each object of a cluster the neighborhood of a given
radius has to contain at least a minimum number of points. Here both the radius and minimum
number of points are input parameters which can significantly affect the quality of clustering.
WaveCluster [13] is a density and grid based approach which applies wavelet transforms to the
feature space. It is computationally very efficient but is applicable to only low dimensional data.
CLIQUE is another density and grid based approach for high dimensional data sets [5], which also
detects clusters in the highest dimensional subspaces. Density based algorithms which use grids
take the size of the grid and a global density threshold for clusters, as input parameters. The
computation complexity and the quality of clustering is heavily dependent on these parameters.
Another algorithm that finds clusters in subspaces has been reported in [14]. It relies on a statistical
definition of clustering, that clustering has to partition the points in disjoint groups. This makes
its appeal limited to the task of data mining and knowledge discovery in which interesting clusters
can be overlapping. Further, it uses input parameters k, the number of clusters to be found, and I,
the average dimensionality of the cluster, which are not possible to know apriori for real data sets.
In our view this makes it unsuitable for the task of unsupervised learning to discover unknown
and interesting clusters in data. A survey of parallel algorithms for hierarchical clustering using
distance based metrics is given in [15]. These are more theoretical, PRAM algorithms, now more
of academic interest than practical parallel algorithms for large data sets.

In the next few sections we describe the density and grid based algorithm and introduce the
use of adaptive grids which greatly reduces the computation time and improve the quality of the
clustering.

3 Density and Grid based Clustering

A cluster is a region that has a higher density of points than its surrounding region. A common way
to find regions of high-density in the dataspace is based on grid cell densities [8]. In this approach
a histogram is constructed by partitioning the data space into a number of non-overlapping regions
or grids. The data space is partitioned and the number of points are found that map to each cell
in the grid. This approximates the density of the data points. Equal length intervals are used in
[5] to partition each dimension, which results in uniform volume cells. The number of points inside
the cell with respect to the volume of the cell can be used to determine the density of the cell.

Let A= {A;1,As,... Ay} be a set of bounded, totally ordered domains. Let S = A; X AaX... X Aq
be a d-dimensional numerical space, where A1, ..., A4 are attributes (dimensions) of S. The input is
a set of d-dimensional records. The space S is partitioned into a grid consisting of non-overlapping
rectangular units. The units are obtained by partitioning every dimension into intervals of equal
length in [5], which is given as an input parameter. A cell, c, is the intersection of one interval from
each dimension, having a form {c1,...,cq}, where ¢; = [l;,u;) is the interval in the partitioning of
A;. A record r = (r1,...,7q) is contained in the cell ¢, if [; < r; < h; for all ¢;. A cell ¢ is dense if



the fraction of the total data points contained in the cell is greater than a user-defined threshold.
We define 0 as the threshold, which is a fraction of the total number of records present in the data
set.

The clusters are unions of connected high density cells. Two k-dimensional cells are connected
if they have a common face or if there is another cell which is connected to both. Clusters are
expressed as a DNF expression on intervals of the domains A;. For ease of understanding and
interpretability of results by the end-user these expressions should be as simple as possible. Using
this method to obtain clusters in subspaces, a histogram is created in all subspaces that counts the
points contained in each unit. This approach is infeasible in high dimensional data as the number
of subspaces is prohibitive.

3.1 Subspace Clustering

A bottom-up approach of finding dense units and merging them to find dense clusters in higher
dimensional subspaces has been proposed in CLIQUE [5]. This algorithm is similar to the Apriori
algorithm [16] used in mining association rules. It exploits the monotonicity of the clustering
criterion with respect to dimensionality to restrict the search space. Formally, it states that “If a
collection of points S is a cluster in a k-dimensional space, then S is also a part of a cluster in any
(k—1)-dimensional projection of the space” [5]. The algorithm starts by determining 1-dimensional
dense units by making a pass over the data. Candidate dense cells in any k& dimensions are obtained
by merging the dense cells in (k — 1) dimensions which share the first (k — 2) dimensions. A pass
over data is made to find which of the candidate dense cells are actually dense. The algorithm
terminates when no more candidate dense cells are generated. It is shown in [5] that the running
time of this algorithm is exponential in the highest dimensionality of any dense cell. This is due to
the fact that if a dense cell exists in & dimensions then all its projections in a subset of k£ dimensions,
O(2*) combinations, are also dense. The running time of the algorithm is O(c* + mk), where k is
the highest dimensionality of any dense cell, m is the number of input records and c is a constant.

A pruning technique is used to decrease the number of candidate dense units in CLIQUE. This
is done by using a minimum description length technique to find the dense units in interesting
subspaces. It groups dense units that lie in the same subspace and finds out the coverage of the
database that the dense units provide in each subspace. Subspaces which provide larger coverage
are selected and the rest are pruned. According to [5], there is a caveat of missing some clusters by
using this technique. If a cluster exists in £ dimensions, then all of its projections in k¥ dimensions
are also clusters. In the bottom-up approach, all of these have to be considered if the cluster in k
dimensions has to be found. Some of these may be in the pruned subspaces and hence the cluster
will never get discovered. To maintain the high quality of clustering we do not use this pruning
technique in our implementation of CLIQUE.



4 Adaptive Grids

The computation cost of the algorithm depends on the identification and propagation to higher
dimension of dense cells. The number of candidate dense cells generated and processed depend
on the size of the unit in each dimension. A constant size unit disregards the distribution of data
with respect to the dimension. Dense regions and sparse regions are both represented by the same
grid sizes. For regions with clusters this might leads to a high number of candidate dense cells and
regions with noise data might also get propagated as dense cells since their densities are above a
certain threshold.

We propose an adaptive interval size to partition the dimension depending on the distribution of
data in the dimension. Using a histogram constructed by one pass of the data initially, we determine
the minimum number of bins for a dimension. Contiguous bins with similar histogram values are
combined to form larger bins. This partitions the dimension based on the data distribution. The
bins and cells that have low density of data will be pruned limiting the eligible candidate dense
units, thereby reducing the computation. The boundaries of the bins will also not be rigid, as
in the uniform bins case and will be able to delineate cluster boundaries more accurately in each
dimension. This improves the quality of the clustering result. Algorithm 1 describes the adaptive
grid algorithm. First, we set the maximum value of the histogram in a dimension within a small
window to reflect the window value. Adjacent windows are merged to form larger windows within
a certain threshold. Window sizes of 5 are shown to work well in our experiments. A threshold of
20% is used to merge adjacent windows. A dimension containing a cluster will have a differential
greater than 20% between the values of A; which have the likelihood of being included in a cluster
description and the ones which represent noise. Hence, we will get them in separate bins, and try
to merge contiguous sections with relatively low densities in one bin. However, in dimensions where
data is equi-distributed, this will result in one bin. We need to examine this further to be sure that
this dimension does not contribute to clusters. Hence, we split such a dimension into a small fixed
number of partitions, and collect statistics for these bins. This allows us to set a higher threshold
since the likelihood of a cluster in this dimension is low, and limit the bins which contribute to the
candidate dense units. This greatly reduces the computation time since we have been able to limit
the bins from non-cluster dimensions, and eliminating them in some cases, from contributing to
the computation. In the variable sized bins we use a threshold value for checking density set to be
a percentage of the total number of records. Since the interval lengths of the dimension are such
that a region with clusters will fall in a bin, a high value can eliminate the bins which have noise
or low density.

4.1 Effect of Grids on Cluster Quality

Figure 1(a) illustrates the uniform grid used in CLIQUE. This is not cognizant of the data distribu-
tion and generates many more candidate dense units for processing at each step than an adaptive
grid illustrated in Figure 1(b). CLIQUE needs a post-processing phase to generate the minimal
description length of the clusters to make the cluster definitions more amenable to the end-user.



Algorithm 1 Adaptive Grid Computation

|A;| - Cardinality of A,
for each dimension A;,7 € d
Divide |4;| into windows of some small size z
Compute the histogram for each unit of A;, and set the value of the window to the maximum
in the window
From left to right merge two adjacent units if they are within a threshold g
/* If number of bins is one, we have an equi-distributed dimension */
if(number of bins == 1)
Divide the dimension A; into a fixed number of equal partitions and set a threshold 5’
for it
end

This is solved by using a greedy algorithm in CLIQUE which covers the found grids in clusters by
maximal rectangles that provide coverage. Since this is an approximation of the cluster, it further
adds to the complexity and reduces the correctness of the reported clusters.

@ (b)

Figure 1: (a) Uniform grid size (b) Adaptive grid size

On the other hand, since MAFTA uses adaptive grid boundaries its cluster definitions are min-
imal DNF expressions and report the boundaries of clusters far more accurately. Figure 2 shows a
cluster definition in two dimensions. The cluster reported by CLIQUE, pgrs, shown in Figure 2(a),
loses the boundaries of the cluster. MAFTA develops grid boundaries very close to the boundaries
of the cluster and hence can incorporate most of the cluster in its definition. The DNF expression
for the cluster abede f ghijkl shown in Figure 2(b) is (I,y) A (m, 2) A (n,y) A (m,z) A (m,y).
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Figure 2: (a) Cluster discovered by CLIQUE (b) Cluster discovered by MAFIA

4.2 Performance of Adaptive Grids

The gains of using adaptive finite intervals are very impressive. As can be seen from the table in
Figure 4(b) the performance of MAFIA due to the use of adaptive grids reduces the clustering time
to 55.61 seconds from 2469.12 seconds that CLIQUE takes, which is 44 times faster. This result is
for a 15 dimensional data set with 300,000 records with a 5 dimensional cluster. For larger data sets
and higher dimensions, the effect of performance enhancements by using adaptive grids are more
pronounced. Parallelism further enhances the appeal of MAFIA adding scalability for handling
massive data sets, making it a platform for emerging clustering applications. Experimental results
are presented in detail in Section 6.

5 Parallelism for Large Data Sets

We introduce a scalable parallel formulation of the subspace clustering algorithm incorporating
both data and task parallelism. The underlying parallel machine is a shared-nothing architecture.
Several processor-memory-disk unit are attached on a communication network as shown in Figure
3. Programs run in the Single Program Multiple Data (SPMD) mode, where the same program
runs on multiple processors but uses portions of the data assigned to the processor. This leads
to a natural data parallel mechanism for parallelism. Task parallelism is achieved by portions of
the task at hand assigned to each processor. Processors communicate by exchanging messages. In
contemporary parallel architectures which use this paradigm (e.g IBM SP2), the communication
latencies are more than an order of magnitude larger than computation time. The communication
time is comprised of a connection setup component and per message word latency, the former being
the larger component. To achieve good parallelization, the overhead of communication has to be
reduced by allocating tasks to processors such that relatively few number of messages are exchanged.
Further, exchanges of a few large messages is better than many exchanges of small messages. A



Reduce communication primitive using sum as its operand is used for communication to gather
global statistics after statistics are gathered locally. Given a vector of size m on each processor and
a binary associative operation, the Reduce operation computes a resultant vector of size m and
stores it on every processor. The i*? element of the resultant vector is the result of combining the
i" element of the vectors stored on all the processors using the binary associative operation.

§ INTERCONNECT
| |
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Distribute Memory Parallel Machines

Figure 3: A shared-nothing architecture, P:Processor, M:Memory, D:Disk

5.1 Algorithm and Analysis

We develop a disk-based parallel and scalable algorithm for MAFIA which can handle large data
sets and a large number of dimensions. This algorithm can also run on a single processor in which
the communication steps will be ignored. Algorithm 2 shows the steps of the algorithm.

In this discussion we assume that the data is available on the local disk of a processor which
it needs to process. In our set up, each processor reads a portion of the data from a shared disk
initially and keeps it on the local disk. The bandwidth seen by a processor of an I/O access from
the local disk is much higher than an access to a shared disk. This can be modified for other disk
setups if necessary.

Each processor starts by building the histogram for each dimension with the data of size %

on its local disk, where N is the total number of records and p is the number of processors. A
Reduce operation gathers the global histogram on each processor. Each processor then proceeds to
determine the adaptive finite intervals for each dimension to fix their sizes. Each bin is considered
to be a candidate dense unit. These are then populated by a pass on local data, which is read in
chunks of B records. Another Reduce operation gets the global counts of the candidate dense units
on all processors. The phase of populating the candidate dense units is the data parallel phase of the
algorithm. The candidate dense units are then examined to determine which of them are actually
dense by selecting the ones which have counts greater than all the thresholds of their projected
dimensions. Each processor selects %th of the candidate dense units to do this in a completely task
parallel manner. Having done this, each processor has the partial counts of the actual dense units
which is combined to get the global counts on all processors with another Reduce communication
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Algorithm 2 Parallel MAFIA Algorithm

N - Number of records
p - Number of processors
d - Dimensionality of data
A; - i*" attribute i € d
B - Number of records that fit in memory buffer allocated at each processor
/* Each processor reads % data from its local disk */
On each processor
Read plB chunks of B records from local disk and build a histogram in each dimension A;,7 € d
Reduce communication to get the global histogram
Determine adaptive intervals using the histogram in each dimension A;,i € d and also fix the threshold level
Set candidate dense units to the bins found in each dimension
Set current dimensionality, k¥ to 1
while (no more dense units are found)
if (k>1)
Build candidate dense units in &k from the dense units in (k—1) which share the (k—2)-dimensional
edges
Read p% chunks of B records from local disk and for every record populate the candidate dense units
Reduce communication to get the global candidate dense unit population
/* Now divide the task of finding dense units between processors */
Pick the appropriate %th portion of the populated candidate dense units to check if it qualifies to be a
dense unit
Reduce communication to get the global information of identified dense units
Pick the appropriate %th of the dense units to find their bounds and build their data structures for use
in the (k +1)*" dimension
Reduce communication to get the global information of the dense unit bounds
end

operation. Combinations of the dense units in dimension (k£ — 1) are then formed which share the
first (k—2) dimensions to be examined in the next higher dimension (k). The algorithm terminates
when there are no more candidate dense units.

The running time of the algorithm is exponential in the distinct number of dimensions repre-
sented by the cluster subspaces in the data set, denoted by k’. Let N be the total number of records
and p be the number of processors. Let a be the constant for communication and S be the size of
messages exchanged among processors. Also, let B be the number of records that fit in memory
buffer on each processor and let v be the I/O access time for a block of of B records from the local
disk. The computation time complexity of the algorithm is then O(ck’), where c is a constant. The
total I/O time on each processor is O(p%k"y). The communication time is O(aSpk’). The total
time complexity of the algorithm is then O(c¥ + p%k' v + aSpk’). The running time on a single
processor can be obtained by substituting p = 1 and S = 0, as there will be no communication.

In the next section we present performance results of our experiments with a variety of synthetic
data sets.
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6 Experimental Results

Our implementation of MAFIA is on an IBM SP2, which is a collection of IBM RS/6000 worksta-
tions connected with a fast communication switch. In our setup of 16 processors, each processor
is a 120MHz thin node with 128MB main memory, and a 2GB disk on each node of which 1GB is
available as scratch space. The communication switch has a latency of 29.3 milliseconds and the
bandwidth is 102 MB/sec (uni-directional) and 113 MB/sec (bi-directional) [17]. We use Message
Passing Interface (MPI) [18] for communication between processors.

We report results of our experiments with MAFTA on a variety of synthetic data sets and show
the performance and scalability of the algorithm in terms of - size of database, dimensionality
of data, dimensionality of clusters, performance improvement over CLIQUE, parallel speedup as
number of processors are increased, and quality of the reported clusters.

6.1 Synthetic Data Generation

We created a data generator to produce the data sets used in our experimental results. The data
generator takes from the user a definition of cluster(s) in different subspaces. The extents of the
cluster are specified by the user in every dimension of the subspace in which it is embedded. Data
can vary between any user specified maximum and minimum values for all attributes. Unlike
CLIQUE, our data sets can have arbitrary cluster shapes instead of just hyper-rectangular regions.

The attribute values in the dimensions of the subspace in which the cluster is defined is generated
as follows. We scale all the dimensions to lie in the range [0...100]. We generate the data points
such that each unit cube (which is a part of the user defined cluster) in this scaled space contains
at least one point. The data so generated is scaled back appropriately into the user specified
attribute ranges. This method, as against randomly populating the user defined cluster region,
ensures that we have a cluster exactly as defined by the user and helps us to validate the results
easily. Randomly populating points in the cluster region, as used in CLIQUE, may not form the
user required cluster strictly. However, since CLIQUE uses fixed sized bins, the cluster boundaries
reported are discretized and is an approximation of the cluster. For the remaining attributes we
select a value at random from a uniform distribution over the entire range of the attribute. It is
to be noted that long sequences of uniform random numbers generated by typical Unix random
number generators (Linear Congruential Generators) have been shown to exhibit regular behavior
by falling into specific planes [19]. To avoid this, we use a random number generator called the
Inversive Congruential Generator which has better statistical properties [20]. After populating the
user defined cluster we add an additional 10% noise records to the data set. Values for all the
attributes in these noise records are independently drawn at random over the entire range of the
attribute. It is also important to mention here that we split the user defined cluster ranges into
parts and permute them before we generate the synthetic data. This will ensure that there is no
specific behavior with respect to the input order of the data records.

12



6.2 Synthetic Data Results

We present performance results of our adaptive grid technique in MAFTA and compare it with our
implementation of CLIQUE. The results presented here are on our synthetic data sets as efforts to
procure the data sets used in CLIQUE were unfruitful. Further, we show results for scalability of
MAFTA with data dimension, cluster dimensionality and data records, followed by results of the
improvement in quality of the clustering obtained. Finally, we show results of the parallelization
of MAFIA observing both scale up and speedup.

6.2.1 Effect of using Adaptive Grids

Figure 4(a) shows the speedup that we have obtained over CLIQUE on different number of proces-
sors. The results shown are for a database with 300,000 records with data in 15 dimensions. There
is one cluster embedded in a 5 dimensional subspace. The algorithm sets 6 to 1% in the cluster
dimension and 24% for dimensions with equi-distributed data in MAFIA. However, while running
CLIQUE we set the threshold 7 to a uniform high value of 2% in all dimensions so that it could
discard a larger number of candidate dense units in every pass over the data. Note that we do
not use pruning as defined in CLIQUE to maintain the correctness of the clustering. We set the
number of bins in each dimension to be 10 as used in CLIQUE. We see good parallelization for both
CLIQUE and MAFIA from the table in Figure 4(b). It can be seen from Figure 4(a) that MAFIA
performs 40 to 50 times better than CLIQUE for this data set. We expect the speedups obtained
for data sets with much larger dimensionality to be even more impressive. This is due to the very
nature of our algorithm which decides upon a minimum set of bins for each dimension based on
its interestingness as observed from the histogram of the data in every dimension. This results in
a set of candidate dense units whose cardinality is much lower than the one obtained by setting
equal number of bins in all dimensions. The latter results in an explosion of candidate dense units
in a very high dimension space. We were unable to run CLIQUE in a much higher dimension space
for a large number of records in a reasonable amount of time (8 hours). Hence, we are unable to
present comparisons for large data sets in a high dimensional space. We present results only for
MAFTIA for these data sets. The table in Figure 4(b) shows the comparative execution times of
MAFITA and CLIQUE for the data set used in Figure 4(a).

6.2.2 Effect of Subspace Overlap in Clusters

Another important point to note here is the effect of subspace overlap on the computation time.
Consider an example data set with 1 million records in 20 dimensions which has 3 clusters each of
5 dimensions, embedded in a different subspace. The computation time for this data set heavily
depends on the number of distinct cluster dimensions in the 3 subspaces put together as the num-
ber of candidate dense units explode when we have to consider more combinations of dimensions.
This effect would be even more pronounced in CLIQUE as it treats all dimensions equally without
exploiting the data distribution in each dimension. For this reason it is not possible to make a
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300,000 records, 15 Dim data, 1 cluster in 5 dimensions
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Speedup over CLIQUE
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(a)

Number of Processors
1 2 4 8 16
MAFIA 55.61 27.95 14.93 7.71 4.68
CLIQUE | 2469.12 | 1324.51 | 664.65 | 338.19 | 184.36

(b)

Figure 4: (a) Speedup of MAFIA over CLIQUE (b) Comparative execution times (in seconds) for
300,000 records in a 15 dimensional space with 1 cluster in 5 dimensions

direct comparison to the results reported in [5] as it does not provide enough information about
the subspace overlap of its clusters. Table 1 shows the effect of subspace overlap in the embedded
clusters on the execution times of MAFIA, which calculates adaptive finite intervals in every di-
mension. The threshold values were chosen to be the same as those reported for the data set in

Figure 4(a).

Table 1: Comparative execution times (in seconds) on 16 processors of MAFIA for a data set with
1 Million records in a 30 dimensional space with 3 clusters in 5 dimensions each

subspace)

{13,15,17,18,19}

Cluster Dimensions Total No. of Total Number of Time
Distinct Dimensions | Dense Units Processed
MAFIA {1,3,7,8,10} 9 8,645 242.25
(overlapped {1,3,6,8, 9}
subspaces) {1,4,5,7, 9}
MAFIA {3,4,6,10,11} 15 345,823 10999.42
(non-overlapping {1,2,5,7,8}

6.2.3 Scalability with Database Size

Figure 5 shows the results for scalability with the size of the database. In this experiment we used
20 dimensional data and varied the number of records from 1.3 million to 10.4 million. There were
5 clusters embedded in 5 different subspaces each of 5 dimensions. The experiment reported here
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Figure 5: Scalability with increasing database size

is run on 16 processors. Similar behavior is observed on other number of processors. The threshold
percentage, 6, was set to 1% in the cluster dimensions by the algorithm. In the dimensions which
we found to have data equi-distributed, we divide the dimension into a default number of bins and
correspondingly the algorithm sets the value of 8. In this experiment we set the default number of
bins to be 5 and correspondingly threshold percentage for that dimension, 8, was automatically set
to 24%. The graph clearly shows the relationship between time and the database size to be almost
linear. This linear behavior is exactly what is expected as the number of passes over the database
depends only on the dimensionality of the cluster. An increase in the size of database just means
that more data has to be scanned on every pass over the database while finding the dense units
and this results in a linear increase in time.

6.2.4 Scalability with Dimensionality of Data

In Figure 6 we see that MAFIA scales very well with the increase in the data dimension. The
results presented are for a data set with 250,000 records with 3 clusters each in a five dimensional
subspace and with a total of 9 distinct dimensions. The results are obtained by using 16 processors.
Similar behavior is observed on other number of processors. The threshold values were set to 1% in
the cluster dimensions and 24% in the dimensions with equi-distributed data by the algorithm. The
near linear behavior is due to the fact that our algorithm makes use of data distribution in every
dimension and only depends on the maximum cluster dimensionality and the subspace overlap of
the clusters. CLIQUE depends on subspace overlap and also on the data dimensionality. Hence it
exhibits a quadratic behavior with respect to the data dimensionality as reported in [5].

6.2.5 Scalability with Increasing Cluster Dimensionality

Figure 7 shows the scalability observed with increasing cluster dimensionality in MAFIA. The
results reported are for a data set in 50 dimensions with 650,000 records containing 1 cluster.
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The threshold values were set by the algorithm to 1% in the cluster dimensions and 24% in the
dimensions with equi-distributed data. The results reported are on 16 processors. Results show
that the time increase with cluster dimensionality reflects the time complexity of the algorithm,
O(%k + p%k'y + aSpk + c*), where N is the number of records, p is the number of processors, k
is the maximum dimensionality of the cluster, B is the number of records read in one chunk from
disk, «y is the I/O access time for a block of B records, « is the constant for communication, S is
the total size of the message communicated, and c is a constant. Similar behavior is observed on

other number of processors.
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Figure 7: Scalability with increasing cluster dimensionality
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6.2.6 Quality of Results

We compare the quality of the results obtained by MAFIA with those of CLIQUE shown in Table
2. In this experiment we report the results for a relatively small data set with 400,000 records
with data in 10 dimensions. The data set consisted of 2 clusters each in a different 4 dimensional
subspace. We ran our parallelized version of CLIQUE on 16 processors. In the first case we set
the number of bins to be 10 in every dimension and also set a threshold of 1% uniformly in all
dimensions (as implemented in CLIQUE). In the second case we give an arbitrary number of bins
in each of the 10 dimensions (with a minimum of 5 bins to a maximum of 20 bins per dimension)
and set the threshold in each dimension to 1%. In the first case CLIQUE reported the correct
dimensions of the 2 clusters, but, however it was only able to partially detect the 2 clusters and
large parts of the clusters were thrown away as outliers. In the second run, with variable number
of bins in each dimension, it completely failed to detect one of the clusters and as before the single
cluster was partially detected. This is due to the inherent nature of CLIQUE which uses fixed
discretization of the dimensions and hence results in a loss in the quality of the cluster obtained.
It is also prohibitive to experiment with different number of bins, for each run on 16 processors
took about 3 hours for this particular data set. Also for a real life data set validation of the results
obtained would be a very hard task and bin selection would be a non trivial problem.

When we ran MAFIA with the same data set on 16 processors, both the clusters and the cluster
boundaries in each dimension were accurately reported. The reported cluster boundaries differed
from the user specified cluster description by a maximum of 1 unit (of size 1). Greater resolution
(say, units of size 0.1) can also be used to calculate the adaptive bin boundaries since the run-time
of the adaptive grid algorithm is negligible. This will allow finer cluster descriptions.

Table 2: Comparison of the quality of results obtained by MAFIA and CLIQUE

Cluster Dimensions | Clusters Discovered
CLIQUE {1,7,8,9} {1,7,8,9}
(fixed 10 bins) {2,3,4,5} {2,3,4,5}
CLIQUE {1,7,8,9}
(variable bins) {2,3,4,5} {2,3,4,5}
MAFIA {1,7,8,9} {1,7,8,9}
{2,3,4,5} {2,3,4,5}

In the other experiments that we conducted with MAFIA, in very few cases, few dimensions
into which random data had been pumped in was also reported as part of some cluster. However,
upon close examination of the data in those dimensions, the histograms revealed to us that the
random dimension had been divided into just two largely unequal sized bins due to a not so random
distribution of numbers in that dimension, an artifact of the data generation procedure. However,
this would not be a concern in real life data sets wherein adaptive finite intervals would be highly
efficient.
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6.2.7 Parallel Performance

Figure 8 presents the times obtained by the parallelization of MAFIA. The results presented are
for a 20 dimensional data set with 2.6 million records containing 5 clusters each in a different 5
dimensional subspace. The threshold percentages were automatically set by the algorithm in various
dimensions based on the data distribution. From the plot it can be seen that we have achieved near
linear speedups. This is due to the fact that the algorithm is heavily data parallel and time for
computation goes down linearly with the increase in the number of processors. Also the additional
task parallelism that we have introduced in finding the dense units and building up the candidate
dense units for a higher dimension contributes to the speedup, but this contribution is negligible as
compared to the gains from data parallelism. Table 3 summarizes the various components of total
time obtained by running the data set on different number of processors. The bulk of the time is
taken in populating the candidate dense units which is completely data parallel. It can be seen that
the communication overheads introduced due to the parallel algorithm is negligible as compared to
the total time. Also the time taken to build the initial histogram is a very small percentage of the

total time.
Speedup on Different No. of Processors
20 D data, 2.6M records, 5 clusters each of 5 dimension 20D data, 2.6M records, 5 clusters each of 5 dimension
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Figure 8: (a) Parallel run times of MAFIA (b) Speedup observed

7 Conclusions

In this paper we presented MAFIA, an efficient algorithm for subspace clustering using a density
and grid based approach, which uses adaptive finite intervals. This performs an order of magnitude
better than existing formulations of the method and also improves the quality of clustering. A
scalable parallel algorithm is developed which can handle massive data sets and makes it a viable
algorithm for discovering clusters in high dimensional data for large scale data mining applica-
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Table 3: Timing Results (in seconds) of parallel MAFIA on 2.6 million records, 20 dimensional

data with 5 clusters, each of 5 dimensions

Components Number of Processors
1 2 4 8 16
Total time for 8486.33 | 4302.03 | 2134.49 | 1035.27 | 503.18

populating the
candidate dense units

I/O Time 287.01 130.24 20.67 3.82 1.86
Total communication 0.000 1.536 2.0395 3.044 3.514
time

tions. Experimental evaluation on a variety of synthetic data sets, with varying dimensionality and

database sizes show the gains in performance and quality of clusters. The use of adaptive grids in
MAFIA leads to a 40 times improvement over CLIQUE, for a 15 dimensional data set with 300,000
records. Gains on higher dimensional data and larger data sets has been observed to be even more

dramatic.
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