Paper Number: U040

A Framework for Finding Projected
Clusters in High Dimensional Spaces

Charu C. Aggarwal*, Cecilia Procopiuc**, Joel L. Wolf*, Philip S. Yu* and

Jong Soo Park***

*IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA

** Department of Computer Science
Duke University, Durham, NC 27708, USA

*** Department of Computer Science

Sungshin Women’s University, Seoul, Korea

Abstract

Clustering problems are well known in the database literature for their use in numerous
applications such as customer segmentation, classification and trend analysis. Unfortunately,
all known algorithms tend to break down in high dimensional spaces because of the inherent
sparsity of the points. In such high dimensional spaces not all dimensions may be relevant
to a given cluster. One way of handling this is to pick the closely correlated dimensions and
find clusters in the corresponding subspace. Traditional feature selection algorithms attempt
to achieve this. The weakness of this approach is that in typical high dimensional data mining
applications different sets of points may cluster better for different subsets of dimensions. The
number of dimensions in each such cluster-specific subspace may also vary. Hence, it may be
impossible to find a single small subset of dimensions for all the clusters. We therefore introduce
a generalization of the clustering problem, referred to as the projected clustering problem, in
which the subsets of dimensions selected are specific to the clusters themselves. We develop an
algorithmic framework for solving the projected clustering problem, and test its performance on
real and synthetic data.

1 Introduction

The clustering problem has been discussed extensively in the database literature as a tool for
similarity search, customer segmentation, pattern recognition, trend analysis and classification.
Various methods have been studied in considerable detail by both the statistics and database
communities [3, 6, 7, 8, 18, 22]. Detailed surveys on clustering methods can be found in [5, 14, 15,
17, 21].

The problem of clustering data points is defined as follows: Given a set of points in multidimensional
space, find a partition of the points into clusters so that the points within each cluster are close
to one another. (There may also be a group of outlier points.) Some algorithms assume that the
number of clusters is prespecified as a user parameter. Various objective functions may be used in

order to make a quantitative determination as to how well the points are clustered.

Most clustering algorithms do not work efficiently in higher dimensional spaces because of the
inherent sparsity of the data [19]. In high dimensional applications, it is likely that for any given
pair of points there exist at least a few dimensions on which the points are far apart from one
another. So a clustering algorithm is often preceded by feature selection (see for example [16]).
The goal is to find the particular dimensions on which the points in the data are correlated. Pruning
away the remaining dimensions reduces the noise in the data. The problem of using traditional
feature selection algorithms is that picking certain dimensions in advance can lead to a loss of
information. Furthermore, in many real data examples, some points are correlated with respect to
a given set of dimensions and others are correlated with respect to different dimensions. Thus it
may not always be feasible to prune off too many dimensions without at the same time incurring

a substantial loss of information. We demonstrate this with the help of an example.

In Figure 1 we have illustrated two different projected cross sections for a set of points in 3-
dimensional space. There are two patterns in the data. The first pattern corresponds to a set of
points that are close to one another in the z-y plane, while the second pattern corresponds to a
set of points that are close to one another in the z-z plane. We would like to have some way of
discovering such patterns. Note that traditional feature selection does not work in this case, as
each dimension is relevant to at least one of the clusters. At the same time, clustering in the full
dimensional space will not discover the two patterns, since each of them is spread out along one of

the dimensions.

In this context we now define what we call a projected cluster. Consider a set of data points in
some multidimensional space. A projected cluster is a subset C of data points together with a subset

D of dimensions such that the points in C are closely clustered in the subspace of dimensions D. In

Xx
X o XX
X X X
X X
X . X
Y axis x X &gg(Z axis %x X
X
x X % X X
X X X
X X x X
X X
X axis X axis
Cross Section on X-Y axis Cross Section on X-Z axis

Figure 1: Difficulties Associated with Feature Preselection

Figure 1, two clusters exist in two different projected subpaces. Cluster 1 exists in projected z-y

space, while cluster 2 exists in projected z-z space.

In this paper we focus on a method to find clusters in small projected subspaces for data of
high dimensionality. We call our algorithm PROCLUS to denote the fact that it is a PROjected
CLUStering algorithm. We assume that the number k of clusters to be found is an input parameter.

The output of the algorithm will be twofold:

e a (k+1)-way partition {Cy, ...,Cx, O} of the data, so that the points in each partition element
except the last form a cluster. (The points in the last partition element are the outliers, which

by definition do not cluster well.)

e a possibly different subset D; of dimensions for each cluster C;, 1 < ¢ < k, so that the points in
C; are correlated with respect to these dimensions. (The dimensions for the outlier set O can
be assumed to be the empty set.) For different clusters, the cardinality of the corresponding

set D; can be different.

In addition to the number of clusters k the algorithm takes as input the average number of dimen-
sions [in a cluster. The two parameters can be varied independently of one another. (The only

restriction is that the total number of dimensions k - I must be integral.)

1.1 Contributions of this paper

The contributions of this paper are as follows:

(1) We introduce the concept of projected clustering for finding clusters in multidimensional
spaces. Thus, we compute clusters based not only on points but also on dimensions. For data
in a large number of dimensions this can result in a significant improvement in the quality of

the clustering.

(2) We propose an algorithm for the projected clustering problem which uses the so-called medoid
technique described in [18] to find the appropriate sets of clusters and dimensions. The
algorithm uses a locality analysis in order to find the set of dimensions associated with each

medoid.

A variant of this problem has been addressed for the first time in [1]. The algorithm, called
CLIQUE, works from lower to higher dimensionality subspaces and discovers “dense” regions in
each subspace. More precisely, each dimension is divided into a number of intervals . For a given
set of dimensions, a cross-product of such intervals (one on each dimension in the set) is called a
unit in the respective subspace. Units are dense if the number of points they contain is above a
certain threshold 7. Both ¢ and 7 are user parameters. The algorithm discovers all dense units in
each k-dimensional subspace by building from the dense units in (k— 1)-dimensional subspaces, and
then “connects” these axis-parallel units to form the reported rectangular regions. Although such
an approach can discover interesting characteristics of the data, it does not produce a clustering
in the accepted definition of the word, since the points are not partitioned into disjoint groups.
Rather, there is a large overlap among the reported dense regions, due to the fact that for a given

dense region all its projections on lower dimensionality subspaces are also dense and get reported.

While both CLIQUE and PROCLUS aim to discover interesting correlations among data in various
subspaces of the original high dimensional space, their output is significantly different. CLIQUE
is successful in exploring dense regions in all subspaces of some desired dimensionality. For many
applications in customer segmentation and trend analysis, a partition of the points is required.
Furthermore, partitions provide clearer interpretability of the results, as compared to reporting
dense regions with very high overlap. In such cases, PROCLUS is preferable to CLIQUE.

The remainder of this paper is organized as follows. Section 2 describes our clustering algorithm
in detail. In Section 3 we provide a theoretical analysis of the robustness of PROCLUS. Empirical
results based on real and synthetic data are presented in Section 4. Section 5 contains conclusions

and areas of future work.

1.2 Definitions and Notations

In order to describe our algorithm we introduce a few notations and definitions. Let N denote
the total number of data points, and d denote the dimensionality of the data space. Let C =
{z1,z9,...,z} be the set of points in a cluster. The centroid of a cluster is the algebraic average of
all the points in the cluster. Thus, the centroid of the cluster C is given by Zc = Yt_; z;/t. Given
a specific distance function d, we define the radius of a cluster to be the average distance of a point

from the centroid of the cluster: r¢c = Y i_; d(T, z;)/t.

Various distance functions have been used in full dimensional clustering algorithms, depending on
the particular problem being solved. T'wo such well known functions are the Manhattan distance
and the euclidean distance. The Manhattan distance between two points z1 = (z1,1,...,21,4) and

z2 = (Z2,1,-.-,T2,4) is given by di(z1,z2) = Z;izl |z1,; — x24|, and the euclidean distance is given

by da(z1,22) = \/ >4 (z1; — x2,)2. Both distance functions are derived from norms. In general,
the distance corresponding to the so-called L, norm is given by d,(z1,z2) = (X%, |21 — z2,4/7)"/P.
Thus the Manhattan distance corresponds to the L; norm and the euclidean distance to the Lo

norm.

In this paper we will use a variant of the Manhattan distance, called Manhattan segmental dis-
tance, that is defined relative to some set of dimensions D. Specifically, for any two points z; =
(z1,1,---,21,4) and 2 = (z2,1,...,%2,4), and for any set of dimensions D, |D| < d, the Manhattan
)/IDI.

Employing the Manhattan segmental distance as opposed to the traditional Manhattan distance

segmental distance between z; and x5 relative to D is given by dp(z1,22) = (X iep |21, — %2,

is useful when comparing points in two different clusters that have varying number of dimensions,
because the number of dimensions has been normalized away. There is no comparably easy nor-
malized variant for the euclidean metric. For many applications, this metric often has physical
significance. One potential application is collaborative filtering [9], where customers need to be
partitioned into groups with similar interests for target marketing. It needs to be able to handle a
large number of dimensions (for different products or product categories) with an objective function
representing the average difference of preferences on the different objects (Manhattan segmental

distance).

2 The Clustering Algorithm

The problem of finding projected clusters is two-fold: we must locate the cluster centers and find
the appropriate set of dimensions in which each cluster exists. In the full dimensionality setting, the

problem of finding cluster centers has been extensively investigated, both in the database and in the

computational geometry communities. A well known general approach is the so called K-Medoids
method (see, for example, [15] for a detailed discussion), which uses points in the original data
set to serve as surrogate centers for clusters during their creation. Such points are referred to as
medoids. We combine the greedy method of [12] with the local search approach of the CLARANS
algorithm [18] to generate possible sets of medoids, and use some original ideas in order to find
the appropriate dimensions for the associated clusters. The overall description of the algorithm
is given in Figure 2. The algorithm proceeds in three phases: an initialization phase, an iterative
phase, and a cluster refinement phase. The general approach is to find the best set of medoids by a
hill climbing process similar to the one used in CLARANS, but generalized to deal with projected
clustering. The purpose of the initialization phase is to reduce the set of points on which we do
the hill climbing, while at the same time trying to select representative points from each cluster in
this set. The second phase represents the hill climbing process that we use in order to find a good
set of medoids. We also compute a set of dimensions corresponding to each medoid so that the
points assigned to the medoid best form a cluster in the subspace determined by those dimensions.
The assignment of points to medoids is based on Manhattan segmental distances relative to these
sets of dimensions. Thus, we search not just in the space of possible medoids but also in the space
of possible dimensions associated with each medoid. Finally, we do a cluster refinement phase in

which we use one pass over the data in order to improve the quality of the clustering.

We detail each phase in the following.

2.1 Initialization Phase

We call a set of k points piercing if each point is drawn from a different cluster. Clearly, finding
such a set together with appropriate sets of dimensions is the objective of our algorithm. The
initialization phase is geared towards finding a small enough superset of a piercing set, so that it is

possible to efficiently perform hill-climbing on it, as opposed to the entire database of points.

In full dimensional algorithms, one of the techniques for finding some piercing set of medoids is
based on a greedy method. In this process medoids are picked iteratively, so that the current
medoid is well separated from the medoids that have been chosen so far. The greedy technique has
been proposed in [12] and is illustrated in Figure 3. In full dimensionality, if there are no outliers
and if the clusters are well enough separated, this method always returns a piercing set of medoids.

However, it does not guarantee a piercing set for the projected clustering problem.

In our algorithm we will use the greedy technique in order to find a good superset of a piercing set
of medoids. In other words, if we wish to find & clusters in the data, we will pick a set of points of

cardinality a few times larger than k. We will perform two successive steps of subset selection in

Algorithm PROCLUS(Number of Clusters: k, Average Dimensions: 1)

{ C; is the ith cluster }

{ D; is the set of dimensions associated with cluster C; }

{ Mcurrent is the set of medoids used for clustering in current iteration }

{ Myest is the best set of medoids found so far }

{ N is the final set of medoids returned along with associated dimensions }
{ A, B are constant integers }

begin

{1. Initialization Phase}
S = random sample of size A - k
M = GREEDY(S, B - k)

{2. Iterative Phase}
BestObjective = oo
Mecyrrent = Random set of medoids {m1,ms,...my} C M
repeat
{ Approximate the optimal set of dimensions }
for each medoid m; € M¢yrrent do
begin
Let 4; be the distance to the nearest medoid from m;
Define £; = Points in sphere centered at m; with radius é;
end;
L={L,...,Lr}
(D1, Da,...Dx) = FindDimensions(k, I, £)
{ Form the clusters }
(C1,...,Cr) = AssignPoints(Dy, . .. Dy)
Objective Function = EvaluateClusters(Ci,...Cx,D1...Dx)
if Objective Function < BestObjective then
begin
BestObjective = Objective Function
Myest = Meyrrent
Compute the bad medoids in Mpest
end
Compute Mcyrrent by replacing the bad medoids in Mps: with random points from M
until (termination_criterion)

{3. Refinement Phase}
L={C,...,Cr}
(D1, Da, ... Di) = FindDimensions(k, I, £)
(C1,...,Cr) = AssignPoints(Ds, ... D)
N = (Mpest, D1, D, ... D)
return(N)
end

Figure 2: The Clustering Algorithm

Algorithm Greedy(Set of points: S, Number of medoids: k)

{ d(-,-) is some distance function }

begin

M ={m1} {mi is a random point of S }

{ compute distance between each point and medoid m: }

for each z € S\ M
dist(z) = d(x, m1)

for i=2tok

begin
{ choose medoid m; to be as far away as possible from previous medoids }
let m; € S\ M be s.t. dist(m;) = max{dist(z) |z € S\ M}
M= MU{m;}
{ compute distance between each point and its closest medoid }
for each z € S\ M

dist(x) = min{dist(x),d(z,m;)}

end

return M

end

Figure 3: The Greedy Algorithm

order to choose our superset. In the first step, we choose a random sample of data points of size
proportional to the number of clusters we wish to generate. (In Figure 2, we denote this size by
A -k, where A is a constant). We shall denote this sample by S. In the second step, we apply the
above-mentioned greedy technique to S in order to obtain an even smaller final set of points on
which to apply the hill climbing technique during the next phase. In our algorithm, the final set of
points has size B - k, where B is a small constant. We shall denote this set by M. The reasons for

choosing this two-step method are as follows:

(1) The greedy technique tends to pick many outliers due to its distance based approach. On the
other hand, the set S contains only a very small number of outliers, and the greedy algorithm

is likely to pick some representatives from each cluster.

(2) The reduction to the sample set S significantly reduces the running time of the initialization

phase.

2.2 Iterative Phase

We start by choosing a random set of k£ medoids from M and progressively improve the quality
of medoids by iteratively replacing the bad medoids in the current set with new points from M.
Let 9, C 2™ denote the set of sets of medoids of size k. The hill climbing technique can be
viewed as a restricted search on the complete graph with vertex set 9. The current node in the

graph, denoted Mj.,: in Figure 2, represents the best set of medoids found so far. The algorithm

tries to advance to another node in the graph as follows: It first determines the bad medoids in
Mpest using a criterion we discuss at the end of this subsection. Then it replaces the bad medoids
with random points from M to obtain another vertex in the graph, denoted M yrrent- If the
clustering determined by M yrrent is better than the one determined by M, the algorithm sets
Mpest = Meyrrent- Otherwise, it sets Meyrrent t0 another vertex of the graph, obtained by again
replacing the bad medoids in Mjpe,: with random points of M. If My does not change after a

certain number of vertices have been tried, the hill climbing phase terminates and M., is reported.

In what follows, we detail how we evaluate the clustering determined by a given set of k£ medoids.
This implies solving two problems: finding the appropriate set of dimensions for each medoid in

the set, and forming the cluster corresponding to each medoid.

Finding Dimensions: Given a set of k medoids M = {my, ..., my }, PROCLUS evaluates the locality
of the space near them in order to find the dimensions that matter most. More exactly, for each
medoid m; let J; be the minimum distance from any other medoid to my, i.e. §; = min,,;d(m;, m;).
For each i, we define the locality L; to be the set of points that are within distance d; from m;. (Note
that the sets L, ..., £ need not necessarily be disjoint, nor cover the entire set of data points).
We then compute the average distance along each dimension from the points in £; to m;. Let X; ;
denote this average distance along dimension j. To each medoid m; we wish to associate those
dimensions j for which the values Xj; ; are as small as possible relative to statistical expectation,
subject to the restriction that the total number of dimensions associated to medoids must be equal
to k- 1. We add the additional constraint that the number of dimensions associated with a medoid

must be at least 2. Corresponding to each medoid 7 we compute the mean Y; = (E?Zl Xi,j)/d and

> (X —Ya)

2
1 of the values X; ;. Note that Y; represents in fact the

average Manhattan segmental distance of the points in £; relative to the entire space. Then the

the standard deviation o; =

Y

value Z; ; = X‘(’T — indicates how the j-dimensional average distance associated with the medoid
m,; is related to the average Manhattan segmental distance associated with the same medoid. A
negative value of Z; ; indicates that along dimension j the points in £; are more closely correlated
to the medoid m;. We want to pick the smallest values Z;; so that a total of k - I values are
chosen, and at least 2 values are chosen for any fixed 7. This problem is equivalent to a so-called
separable convez resource allocation problem, and can be solved exactly by a greedy algorithm [13].
Specifically, we sort all the Z; ; values in increasing order, choose the 2 smallest for each i (for a
total of 2k values), and then greedily pick the remaining lowest & - (I — 2) values. (There are other
algorithms for solving this problem exactly that are even faster from a complexity point of view.
We employ a greedy algorithm here because it is sufficiently fast in light of the typically expected
values of k and I. However, see [13] for further details.) With each medoid ¢ we associate those

dimensions j whose corresponding Z; ; value was chosen by the above algorithm. We denote the

sets of dimensions thus found by D1, Ds, ... Dg. This is illustrated in Figure 4.

Forming Clusters: Given the medoids and their associated sets of dimensions, we assign the
points to the medoids using a single pass over the database. For each i, we compute the average
Manhattan segmental distance relative to D; between a point and the medoid m;, and assign the

point to the closest medoid. See Figure 5.

We evaluate the quality of a set of medoids as the average Manhattan segmental distance from the
points to the centroids of the clusters they belong to (see Figure 6). Note that the centroid of a
cluster will typically differ from the medoid. We also determine the bad medoids as follows: The
medoid of the cluster with the least number of points is bad. In addition, the medoid of any cluster
with less than (N/k) - minDeviation points is bad, where minDeviation is a constant smaller than

1 (in most experiments, we choose minDeviation = 0.1).

We make the assumption that if a medoid forms a cluster with less than (N/k) - minDeviation
points (where minDeviation is usually 0.1), it is likely that the medoid is either an outlier, or it
belongs to a cluster that is pierced by at least one other medoid in the set. Conversely, we assume
that an outlier is likely to form a cluster with very few points. We also assume that if the current
set of medoids contains two or more medoids from the same natural cluster, one of these medoids
(which is the most “central”) is likely to form a cluster containing most of the points in the natural

cluster, while the remaining medoids that pierce that cluster will form clusters with few points.

2.3 Refinement Phase

After the best set of medoids is found, we do one more pass over the data to improve the quality of
the clustering. Let {C1,...,C} be the clusters corresponding to these medoids, formed during the
Tterative Phase. We discard the dimensions associated with each medoid and compute new ones
by a procedure similar to that in the previous subsection. The only difference is that in order to
analyze the dimensions associated with each medoid, we use the distribution of the points in the
clusters at the end of the iterative phase, as opposed to the localities of the medoids. In other words,
we use C; instead of £;. Once the new dimensions have been computed, we reassign the points to

the medoids relative to these new sets of dimensions. The process is illustrated in Figure 2.

Outliers are also handled during this last pass over the data. For each medoid m; and new set of
dimensions D;, we find the smallest projected Manhattan distance 6; to any of the other (k — 1)

medoids:

0 = mindp, (mi, m;).

Algorithm FindDimensions(k, !, £)
begin
{ d is the total number of dimensions }
{ Xi; is the average distance from the points in £; to
medoid m;, along dimension j}
for each medoid ¢ do
begin

Y; =
D=0

Zj=1(Xi,j—Yi)2
d—1

for each dimension j do Z; ; = (X;; — Yi)/oi

end
Pick the k - I numbers with the least (most negative) values of Z; ; subject to the constraint
that there are at least 2 dimensions for each cluster
if Z; ; is picked then add dimension j to D;
return(D1,Ds,... D)
end

0 =

Figure 4: Finding the Dimensions

Algorithm AssignPoints(D1, Dy, ... Dy)
begin
for each i € {1,...,k} do C; = ¢
for each data point p do
begin
Let d(p, m;) be the Manhattan segmental distance from point p to medoid m; relative to dimensions D;;
Pick the medoid m; with the lowest value of % and add p to C;;
end;
return (Ci,...,Cp)
end;

Figure 5: Assigning Points to the Various Clusters

We define the influence A; of the medoid m; to be the corresponding projected Manhattan segmen-
tal distance: A; = %. A point is an outlier if its segmental distance to each medoid m;, relative

to the set of dimensions D;, exceeds A;.

3 Analyzing the Robustness of PROCLUS

To ensure a good accuracy of the output, PROCLUS must be able to achieve two essential results:
find a piercing set of medoids, and associate the correct set of dimensions to each medoid. In our
discussion of the Initialization Phase, we gave some insight into why we expect the set M to contain
a piercing set of medoids. In the following, we will discuss some issues related to the robustness of

the procedure for finding dimensions. It is important to note that since the locality of a medoid is

10

Algorithm EvaluateClusters(C1,...,Cg,D1,...Dx)

begin
for each C; do
begin
for each dimension j € D; do
begin
Y; ; = Average distance of points in C; to centroid of C; along dimension j
end
YY‘L' .
Wi = Z:léil s
end
k
return(w)
end

Figure 6: Evaluating the Clusters

used in order to determine the set of dimensions corresponding to it, a sufficient number of points
must exists in the locality in order to have a robust algorithm. The total number of points in
the localities of all the medoids is also useful in order to estimate the number of dimensions for a
given cluster. To give some insight into how the localities of medoids look like, suppose first that
the medoids are chosen randomly from the entire set of points, rather than by the more elaborate
procedure in PROCLUS. We prove the following

Theorem 3.1 Let k be the number of medoids and N be the total number of data points. Then,
for a random set of k medoids {m1,...,my}, the expected number of points in L; for the medoid
m; is N/k.

Proof: Let di,ds,...d% denote the distances of the N points from medoid m;. The problem is

equivalent to the following standard result in order statistics (see [2] for details):

Given a set of N values {d, db, ..., d}, suppose we choose k — 1 of them randomly. Then, the

expected number of values in the set that are smaller than the £ — 1 chosen values is equal to N/k.

The k£ — 1 randomly chosen values correspond to the distances from the k£ — 1 other medoids to

medoid m;. [|

The above result shows that, if the medoids were chosen at random from the entire data set, the
expected number of points in each locality would be sufficient to ensure the robustness of the
FindDimensions(-) procedure. Since our method for choosing the medoids is not random, but
rather biased towards ensuring that the medoids are as far away from each other as possible (i.e.
their localities have large radii), we expect the localities of the medoids to contain at least N/k

points each.

11

4 Empirical Results

The simulations were performed on a 233-MHz IBM RS/6000 computer with 128M of memory,
running AIX 4.1.4. The data was stored on a 2GB SCSI drive. We report results obtained for both
synthetic and real data. We evaluate the accuracy of PROCLUS on synthetic data and determine

how the running time scales with:

- size of database.
- dimensionality of the data space.

- average dimensionality of clusters.

We also investigate the cases in which CLIQUE can be used to return a partition of the data set.

For those cases, we compare its accuracy and running time to those of PROCLUS.

4.1 Synthetic Data Generation

In order to generate the data we used a method similar to that discussed by Zhang et. al. [22].
However, we added generalizations to the data generation process in order to take into account the
possibility of different clusters occurring in different subspaces. The points have coordinates in the
range [0...100] and are either cluster points or outliers. The percentage of outliers is a simulation
parameter and was chosen to be Fyyuer = 5%. Outliers were distributed uniformly at random

throughout the entire space.

In order to generate cluster points the program takes as input parameters the number of clusters k
and a Poisson parameter p that determines the number of dimensions in each cluster, as we explain
below. The algorithm proceeds by defining so-called anchor points around which the clusters will be
distributed, as well as the dimensions associated with each such anchor point. Then, it determines
how many points will be associated with each cluster and finally it generates the cluster points.

We explain these steps in more detail below.

The anchor points of clusters are obtained by generating k uniformly distributed points in the

d-dimensional space. We shall denote the anchor point for the ith cluster by ¢;.

The number of dimensions associated with a cluster is given by the realization of a Poisson random
variable with mean p, with the additional restriction that this number must be at least 2 and at most
d. Once the number of dimensions d; for the cluster i is generated, the dimensions for each cluster
are chosen using the following technique: The dimensions in the first cluster are chosen randomly.

The dimensions for the ith cluster are then generated inductively by choosing min{d;_1,d;/2}

12

dimensions from the (i — 1)st cluster and generating the other dimensions randomly. This iterative
technique is intended to model the fact that different clusters frequently share subsets of correlated

dimensions.

To decide the number of points in each cluster, we generate k exponential random variables with
mean 1 and then assign to each cluster a number of points proportional to these realizations. More

exactly, let 71,79, ... 7 be the realizations of the k random variables, and let N, = N - (1 — Fyugier)

be the number of cluster points. Then, the number of points in cluster 7 is given by N, -

5
Zf:l ri’
Finally, the points for a given cluster i are generated as follows: The coordinates of the points
on the non-cluster dimensions are generated uniformly at random. For a cluster dimension j, the
coordinates of the points on dimension j follow a normal distribution with mean at the respective
coordinate of the anchor point, and variance determined randomly in the following manner: Fix
a spread parameter r and choose a scale factor s;; € [1,s] uniformly at random, where s is user
defined. Then the variance of the normal distribution on dimension j is (s;; - r)2. For our data

generation we chose r = s = 2.

4.2 Accuracy Results

To test how accurately the algorithm performs we compute the Confusion Matriz defined as follows:
entry (i,7) is equal to the number of data points assigned to output cluster i, that were generated
as part of input cluster j. The last row and column of the matrix represent output outliers,
respectively input outliers, and their entries are similarly defined. Obviously, we want each row to
have one entry that is much larger than the others, which indicates a clear correspondence between
the input and output clusters. In the tables below, the input clusters are denoted by letters, while
the output clusters are denoted by numbers. Another significant result is the set of dimensions
computed for each output cluster, as compared to the set of dimensions of the corresponding input

cluster.

We divided the experiments in two classes. First, we used input files for which all clusters had been
generated in the same number of dimensions, but in different subspaces. Then, we used input files
containing clusters generated in different number of dimensions. We report below the results for one
experiment in each class. We obtained similar quality in all the other experiments we performed.
Both files had N = 100,000 data points in a 20-dimensional space, with £ = 5. The first input file
had [= 7 (i.e. all input clusters were generated in some 7-dimensional subspace), while the second
file had [= 5, and the clusters were generated as follows: two clusters were generated in different
2-dimensional subspaces, one in a 3-dimensional subspace, one in a 6-dimensional subspace, and

one in a 7-dimensional subspace.

13

Input Clusters A B C D E Outliers
Output Clusters
1 0 0 18245 0 0 456
2 21391 0 0 0 0 523
3 1 23278 0 101 0 697
4 0 0 0 15728 0 290
5 0 0 0 0 16357 638
Outliers 0 0 0 0 0 2396

Table 1: PROCLUS: Confusion Matrix (same number of dimensions)

H Input Clusters H Dimensions ‘ Number of points H
A 3,4,7,09, 14, 16, 17 21391
B 3,4, 7,12, 13, 14, 17 23278
C 4,6, 11, 13, 14, 17, 19 18245
D 4,7,9, 13, 14, 16, 17 15728
E 3,4, 9, 12, 14, 16, 17 16357
Outliers - 5000
| Clusters Found | Dimensions | Number of points |
1 4, 6, 11, 13, 14, 17, 19 18701
2 3,4,7,09, 14, 16, 17 21915
3 3, 4,7, 12, 13, 14, 17 23975
1 4,7,9,13, 14, 16, 17 16018
5 3,4,9,12, 14, 16, 17 16995
Outliers - 2396

Table 2: PROCLUS: Dimensions of the Input Clusters (Top) and Output Clusters (Bottom)

Input Clusters A B C D E Outliers
Output Clusters
1 0 20992 | 267 416 18 358
2 34 0 0 0 16097 669
3 0 9 1 15309 10 58
4 0 2256 | 16536 0 0 178
5 21357 0 0 2 10 129
Outliers 0 21 1441 1 222 3609

Table 3: PROCLUS: Confusion Matrix (different number of dimensions)

14

H Input Cluster H Dimensions ‘ Number of points H

A 2,3,4,9, 11, 14, 18 21391
B 2,3, 7 23278
C 2,12 18245
D 2,3,4,12, 13, 17 15728
E 2,4 16357
Outliers - 5001
H Clusters Found H Dimensions ‘ Number of points H
1 2,3, 7 22051
2 2,4 16800
3 2,3,4,12, 13, 17 15387
4 2,12 18970
5 2,3,4,9,11, 14, 18 21498
Outliers - 5294

Table 4: PROCLUS: Dimensions of the Input Clusters (Top) and Output Clusters (Bottom)

In both cases PROCLUS discovers output clusters in which the majority of points comes from one
input cluster, as shown in Tables 1 and 3. In other words, it “recognizes” the natural clustering of
the points. We note that for both files the output clusters pick some of the original outliers and
report them as cluster points. This is not necessarily an error, since the outliers were randomly
placed throughout the entire space, and it is probable that some of them have actually been placed
inside clusters. The output clusters in Table 3 also have some small number of points that should
have been assigned to other clusters. For example, the 267 points in row 1 and column C should
have been assigned to cluster 4, because they were generated as part of input cluster C, and output
cluster 4 has a clear correspondence to cluster C. However, the percentage of misplaced points
is very small so that it does not influence the correspondence between input and output clusters,
nor would it significantly alter the result of any data mining application based on this clustering.
Moreover, there is a perfect correspondence between the sets of dimensions of the output clusters
and their corresponding input clusters, as illustrated by Tables 2 and 4. This is important for
applications that require not only a good partitioning of the data, but also additional information

as to what dimensions (or attributes) are relevant for each partition.

As we mentioned before, CLIQUE does not guarantee that the result it returns represents a par-
titioning of the points. To quantify how different its output is from an actual partitioning, we

compute the average overlap as follows:

Eg:l |Cz‘

lap =
overiLap | ngl CZ|’

15

where ¢ is the number of output clusters. Thus, an overlap of 1 means that on the average each
point that is not an outlier is assigned to only one cluster, and so the result can be considered
a partitioning. On the other hand, a large overlap means that many of the points are assigned
to more than one output cluster, so the result cannot be considered a reasonable approximation
for a partitioning. In the experiments below we try to determine the cases in which CLIQUE is
likely to generate an output with small overlap. For those cases we compare the results of CLIQUE
and PROCLUS in terms of quality and running time, to decide which method is preferable. One
problem we have encountered during these experiments is that on the average half of the cluster
points are considered outliers by CLIQUE. This is a consequence of the density-based approach of
the algorithm, since lower-density areas in a cluster can cause some of its points to be thrown away.
Another reason is the fact that clusters are considered to be axis-parallel regions. Such a region
generally offers a low coverage of the corresponding input cluster, especially as the dimensionality
of the cluster increases. Hence, a significant percentage of relevant data points are erroneously
considered outliers by CLIQUE. Of course, this percentage can be lowered by tuning the input
parameters ¢ and T appropriately. This leads to a tradeoff between quality of output and running
time. Moreover, the density threshold of a unit must take into account both the number of intervals
on a dimension and the dimensionality of the space. Hence, variation of one input parameter must
be correlated with the variation of the other parameter. No obvious method is indicated in [1] for

how to choose the two parameters.

For files in which clusters exist in different number of dimensions CLIQUE reported a large number
of output clusters, most of which were projections of a higher dimensional cluster. As a result, the
average overlap was also large. It is unclear how one can differentiate between, for example, a 2-
dimensional output cluster corresponding to a 2-dimensional input cluster, and the 2-dimensional
projection of a 6-dimensional cluster. In this case, CLIQUE cannot be used to obtain a good

approximation for a partitioning.

Below, we discuss the results we obtained with CLIQUE for input files in which all clusters exist in
the same number of dimensions. As in [1], we set £ (the number of intervals on each dimension) to
10, and we tried various values for the density threshold 7. We present the results obtained on an
input file with [= 7, the same for which we reported the PROCLUS results above. However, the
issues we discuss were noted on other input files and for different values of [, as well. For 7 = 0.5
and 7 = 0.8, the average overlap was 1, but the percentage of cluster points discovered by CLIQUE
was low (42.7%, respectively 30.7%). We then experimented with lower values for 7, more exactly
7 = 0.2 and 7 = 0.1, expecting the percentage of cluster points to increase. However, because
of the low density, CLIQUE reported output clusters in 8 dimensions (one dimension more than

they were generated), and the percentage of cluster points decreased to 21.2% for 7 = 0.1. Two

16

Input Clusters A B|C D E | Outliers
Output Clusters
2 11128 { 0 | O 0 0 0
15 19510 | 0 | O 0 0 0
31 0 00| 101 |0 0
32 0 00| 111 | O 0
47 0 0012849 | 0 0

Table 5: CLIQUE: Matching between Input and Output Clusters (small snapshot)

of the original input clusters were entirely missed, and all their points declared outliers. Of the
remaining three input clusters, at least 50% of the points in each one were thrown away as outliers,
and two of these input clusters were split into four output clusters. We finally ran CLIQUE with
7 = 0.1 and “told” it to look for clusters only in 7 dimensions, using an option provided by the
program. It reported 48 output clusters, with a percentage of cluster points equal to 74.6%. The
average overlap was 3.63, which means that on the average, an input point had been assigned to
at least 3 output clusters. We present the results of this last experiment in Table 5. Due to lack
of space, we do not provide the entire Confusion Matrix, but only a small snapshot that reflects
both “good” and “bad” output clusters discovered by CLIQUE. We conclude that, while there are
cases in which CLIQUE returns a partitioning of the points, PROCLUS is still useful because of

its better accuracy.

4.3 Scalability Results

In what follows we will say that two input files are similar if the following parameters are identical
for both files: number of points N, dimensionality of the space d, number of clusters k&, and average

dimensionality of a cluster /.

As noticed in the previous subsection, the output of CLIQUE could only be interpreted as an
(approximate) partitioning of the points when all clusters exist in the same number of dimensions.
Hence, we compare the running times of CLIQUE and PROCLUS only on such files. However, we
also tested PROCLUS on similar files in which clusters exist in different number of dimensions, and
found no significant difference between the respective running times. Because of the random nature
of PROCLUS, each running time reported in this section is averaged over three similar input files.
We want to mention that in each run the quality of the results returned by PROCLUS was similar

to that presented in the previous subsection.

Number of points All data files on which we tested contained 5 clusters, each existing in some

17

10* T T

6——6 PROCLUS
6—— CLIQUE

10 b

Running time in seconds

10’ I I I I I I I
100 150 200 250 300 350 400 450 500

Number of points (x 1000)

Figure 7: Scalability with number of points

5-dimensional subspace. The data space was 20-dimensional. We ran CLIQUE with ¢ = 10 and
7 = 0.5. Figure 7 shows that PROCLUS scales linearly with the number of input points, while
outperforming CLIQUE by a factor of approximately 10. The graph has logarithmic scale along

the y coordinate.

Average dimensionality of the clusters All files on which we tested had N = 100,000 points
and contained 5 clusters. The data space was 20-dimensional. We ran CLIQUE with ¢ = 10
and 7 = 0.5 for files in which the dimensionality of clusters was 4,5 or 6, and with 7 = 0.1 for
dimensionality of clusters equal to 7 and 8. We selected a lower 7 for the higher dimensional clusters
because, as the volume of the clusters increases, the cluster density decreases. This corresponds to

the approach used for the experiments in [1].

Figure 8 shows that the two algorithms have a different type of dependency on the average cluster
dimensionality [. The results we obtained for CLIQUE are consistent with those reported in [1],
where an exponential dependency on [is proven. On the other hand, the running time of PROCLUS
is only slightly influenced by [. This happens because the main contribution of [to the running
time is during the computation of segmental distances, which takes O(N - k - [) for each iteration.
Since we are also computing distances in the full dimensional space in time O(N - k- d), the running

time of an iteration is dominated by this second term and only slightly influenced by a change in [.

This very good behavior of PROCLUS with respect to [is important for the situations in which
it is not clear what value should be chosen for parameter [. Because the running time is so small

(about 150 seconds for each point shown in the graph), it is easy to simply run the algorithm a few

18

3000 T T

6—o Proclus
&——= Clique

2500

2000

1500 b

Running time in seconds

1000~ b

500 T

I I I I I
4 4.5 5 55 6 6.5 7 75 8
Average dimensionality of clusters

Figure 8: Scalability with average dimensionality
times and try different values for [.

Dimensionality of the space We tested on files with N = 100,000 points that contained 5
clusters, each existing in a 5-dimensional space. The results are indicated in Figure 9. As expected,

PROCLUS scales linearly with the dimensionality of the entire space.

4.4 Real Data

We tested the algorithm on real data sets obtained from the University of California, Irvine site at
http : [Jwww.cs.uci.edu/ mlearn/M LSummary.html. For testing purposes the attributes were
normalized between 0 and 1 after throwing away the small percentage of points that took on values
which were more than 3 standard-deviations away from the mean in any dimension. The following

are the data sets on which we performed the experiments.

(1) Ionosphere Data: This data was collected by a system in Goose Bay, Labrador. We applied
the projected clustering method in order to find the clusters that best fit the data. The entire
data existed in 34 dimensions. Two clusters were discovered: one in 31 dimensions, and the
other in 33 dimensions. Specifically, for cluster 1 the dimensions 0,1 and 32 were excluded,
while for cluster 2 the dimension 33 was excluded. Full dimensional clustering was unable to

identify these clusters.

(2) Credit Report Data: We picked 8 of the numeric attributes from the credit report data

in order to create the dataset. In this case, we found two clusters embedded in the same

19

220 T

210~ 8

200 b

Running time in seconds
s
9
o
T
|

i
o
=}
T
I

150~ T

140 q

130¢ I I I I I
20 25 30 35 40 45 50

Dimensionality of space

Figure 9: Scalability with dimensionality of the space

2-dimensional subspace. Interestingly, the same two clusters were found embedded in 3 and
5 dimensional spaces respectively. Thus, even though the clusters that were found were the
same in both cases, the second set of clusters provides us with additional information about

how the features in the data are correlated with one another.

5 Conclusions

We have proposed a new concept, called projected clustering, for discovering interesting patterns in
subspaces of high dimensional data spaces. This is a generalization of feature selection, in that it
allows the selection of different sets of dimensions for different subsets of the data. While feature
selection algorithms do not work on all types of data, projected clustering is general enough to

allow us to deal with different correlations among various subsets of the input points.

We have also provided a projected clustering algorithm called PROCLUS that returns a partition
of the data points into clusters, together with the sets of dimensions on which points in each
cluster are correlated. The CLIQUE algorithm, which was previously proposed for a variant of
this problem, successfully discovers patterns in subspaces of the data space, but its output does
not guarantee a partition of the points. Such a partition is often desired in classification and trend
analysis problems for better interpretability of results. We conclude that for these applications
PROCLUS is the method of choice.

20

References

1]

[9]

R. Agrawal, J. Gehrke, D. Gunopolos and P. Raghavan, “Automatic Subspace Clustering of
High Dimensional Data for Data Mining Applications”, Proceedings of the ACM SIGMOD

International Conference on Management of Data, Seattle, Washington, 1998.
H. David, Order Statistics, John Wiley and Sons, New York, 1981.

M. Berger and I. Rigoutsos, “An Algorithm for Point Clustering and Grid Generation”, IEEE
Transactions on Systems, Man and Cybernetics, Vol. 21, No. 5:1278-1286, 1991.

P. Cheeseman, J. Kelly and S. Matthew, “AutoClass: A Bayesian Classification System”, Pro-
ceedings of the 5th International Conference on Machine Learning, Morgan Kaufmann, June

1988.

R. Dubes and A. Jain, Clustering Methodologies in Ezploratory Data Analysis, Advances in
Computers, Edited by M. Yovits, Vol. 19, Academic Press, New York, 1980.

M. Ester, H.-P. Kriegel and X. Xu, “A Database Interface for Clustering in Large Spatial
Databases”, Proceedings of the first International Conference on Knowledge Discovery and

Data Mining, 1995.

M. Ester, H.-P. Kriegel and X. Xu, “Knowledge Discovery in Large Spatial Databases: Fo-
cusing Techniques for Efficient Class Identification”, Proceedings of the Fourth International

Symposium on Large Spatial Databases, Portland, Maine, U.S.A. 1995.

M. Ester, H.-P. Kriegel, J. Sander and X. Xu, “A Density Based Algorithm for Discovering Clus-
ters in Large Spatial Databases with Noise”, Proceedings of the 2nd International Conference

on Knowledge Discovery in Databases and Data Mining, Portland, Oregon, August 1995.

“Collaborative Filtering Technology: An Overview”,

http://www.firefly.net /company /CollaborativeFiltering.fly.

[10] D. Fisher, “Knowledge Acquisition via Incremental Conceptual Clustering”, Machine Learning

2(2), 1987.

[11] D. Fisher, “Iterative Optimization and Simplification of Hierarchical Clusters”, Technical Re-

port CS-95-01, Department of Computer Science, Vanderbilt University, Nashville, TN 37235.

[12] T. Gonzalez, “Clustering to minimize the maximum intercluster distance”, Theoretical Com-

puter Science, Vol. 38, pp. 293-306, 1985.

21

[13] T. Ibaraki and N. Katoh, “Resource Allocation Problems: Algorithmic Approaches”, MIT
Press,, Cambridge, Massachusetts, 1988.

[14] A. Jain and R. Dubes, Algorithms for Clustering Data, Prentice Hall, Englewood Cliffs, New
Jersey, 1998.

[15] L. Kaufman and P. Rousseeuw, “Finding Groups in Data - An Introduction to Cluster Anal-

ysis”, Wiley Series in Probability and Mathematical Statistics, 1990.

[16] R. Kohavi and D. Sommerfield. “Feature Subset Selection Using the Wrapper Method: Over-
fitting and Dynamic Search Space Topology.” Proceedings of the First International Conference
on Knowledge Discovery and Data Mining, 1995.

[17] R. Lee, Clustering Analysis and its applications, Advances in Information Systems Science,

edited by J. Toum, Vol. 8, pp. 169-292, Plenum Press, New York, 1981.

[18] R. Ng and J. Han, “Efficient and Effective Clustering Methods for Spatial Data Mining”,
Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile,
1994, pp. 144-155.

[19] D. Keim, S. Berchtold, C. Bohm, and H.-P. Kriegel. “A cost model for nearest neighbor search
in high-dimensional data space.” Proceedings of the 16th Symposium on Principles of Database
Systems (PODS), pages 78-86, 1997.

[20] S. Wharton, “A Generalized Histogram Clustering for Multidimensional Image Data”, Pattern
Recognition, Vol. 16, No. 2: pp. 193-199, 1983.

[21] M. Zait and H. Messatfa, “A Comparative Study of Clustering Methods”, FGCS Journal,
Special Issue on Data Mining, 1997.

[22] T. Zhang, R. Ramakrishnan and M. Livny, “BIRCH: An Efficient Data Clustering Method
for Very Large Databases”, Proceedings of the ACM SIGMOD International Conference on
Management of Data, Montreal, Canada, June 1996.

22

