
Hierarchical Document Clustering Using Frequent Itemsets

Benjamin C.M. Fung∗ Ke Wang† Martin Ester‡

Abstract

A major challenge in document clustering is the extremely

high dimensionality. For example, the vocabulary for a

document set can easily be thousands of words. On the

other hand, each document often contains a small fraction

of words in the vocabulary. These features require special

handlings. Another requirement is hierarchical clustering

where clustered documents can be browsed according to the

increasing specificity of topics. In this paper, we propose

to use the notion of frequent itemsets, which comes from

association rule mining, for document clustering. The

intuition of our clustering criterion is that each cluster is

identified by some common words, called frequent itemsets,

for the documents in the cluster. Frequent itemsets are

also used to produce a hierarchical topic tree for clusters.

By focusing on frequent items, the dimensionality of the

document set is drastically reduced. We show that this

method outperforms best existing methods in terms of both

clustering accuracy and scalability.

Keywords: document clustering, text documents,
frequent itemsets.

1 Introduction

Document clustering has been studied intensively be-
cause of its wide applicability in areas such as web min-
ing, search engines, information retrieval, and topologi-
cal analysis. Unlike in document classification, in docu-
ment clustering no labeled documents are provided. Al-
though standard clustering techniques such as k-means
can be applied to document clustering, they usually do
not satisfy the special requirements for clustering doc-
uments: high dimensionality, high volume of data, ease
for browsing, and meaningful cluster labels. In addi-
tion, many existing document clustering algorithms re-
quire the user to specify the number of clusters as an
input parameter and are not robust enough to handle
different types of document sets in a real-world environ-

∗Simon Fraser University, BC, Canada, bfung@cs.sfu.ca
†Simon Fraser University, BC, Canada, wangk@cs.sfu.ca. Sup-

ported in part by a research grant from the Natural Science and
Engineering Research Council of Canada and by a research grant
from Networks of Centres of Excellence/Institute for Robotics and
Intelligent Systems.

‡Simon Fraser University, BC, Canada, ester@cs.sfu.ca

ment. For example, in some document sets the cluster
size varies from few to thousands of documents. This
variation tremendously reduces the clustering accuracy
for some of the state-of-the art algorithms.

In this paper, we propose a novel approach, Fre-
quent Itemset-based Hierarchical Clustering (FIHC), for
document clustering based on the idea of frequent item-
sets proposed by Agrawal et. al [1]. The intuition of
our clustering criterion is that there are some frequent
itemsets for each cluster (topic) in the document set,
and different clusters share few frequent itemsets. A
frequent itemset is a set of words that occur together
in some minimum fraction of documents in a cluster.
Therefore, a frequent itemset describes something com-
mon to many documents in a cluster. We use frequent
itemsets to construct clusters and to organize clusters
into a topic hierarchy. Here are the features of our ap-
proach.

• Reduced dimensionality. We use only the frequent
items that occur in some minimum fraction of
documents in document vectors, which drastically
reduces the dimensionality of the document set.
Experiments show that clustering with reduced
dimensionality is significantly more efficient and
scalable. This decision is consistent with the study
from linguistics (Longman Lancaster Corpus) that
only 3000 words are required to cover 80% of the
written text in English [13, 18] and the result is
coherent with the Zipf’s law [21] and the findings
in Mladenic et al. [12] and Yang et al. [20].

• High clustering accuracy. Experimental results
show that the proposed approach FIHC outper-
forms best documents clustering algorithms in
terms of accuracy. It is robust even when applied
to large and complicated document sets.

• Number of clusters as an optional input parameter.
Many existing clustering algorithms require the
user to specify the desired number of clusters
as an input parameter. FIHC treats it only as
an optional input parameter. Close to optimal
clustering quality can be achieved even when this
value is unknown.

• Easy to browse with meaningful cluster description.

The topic tree provides a sensible structure for
browsing documents. Each cluster in the tree has
a set of frequent itemsets as its description. Users
may utilize them to navigate the topic tree.

The outline of this paper is as follows. Section 2
briefly discusses some well-known clustering algorithms
and some common preprocessing steps. Sections 3 and 4
present our algorithm in two stages, cluster construction
and tree building, with a running example. Section 5
shows the experimental results and the comparison with
other algorithms. Section 6 provides an analysis on
our method. We conclude the paper and outline future
directions of research in section 7.

2 Related Work

Hierarchical and partitioning methods are two major
categories of clustering algorithms. One popular ap-
proach in document clustering is agglomerative hierar-
chical clustering [5]. Algorithms in this family follow
a similar template: Compute the similarity between all
pairs of clusters and then merge the most similar pair.
Different agglomerative algorithms may employ differ-
ent similarity measuring schemes. Recently, Steinbach
et al. [14] shows that UPGMA [5, 9] is the most accurate
one in its category. K-means and its variants [4, 9, 10]
represent the category of partitioning clustering algo-
rithms. [14] illustrates that one of the variants, bisect-
ing k-means, outperforms basic k-means as well as the
agglomerative approach in terms of accuracy and effi-
ciency. The bisecting k-means algorithm first selects a
cluster to split. Then it utilizes basic k-means to form
two sub-clusters and repeats until the desired number
of clusters is reached.

Wang et al. [17] introduces a new criterion for clus-
tering transactions using frequent itemsets. In principle,
this method can also be applied to document clustering
by treating a document as a transaction; however, the
method does not create a hierarchy for browsing. The
HFTC proposed by Beil et al. [2] attempts to address
the special requirements in document clustering using
the notion of frequent itemsets. HFTC greedily picks
up the next frequent itemset (representing the next clus-
ter) to minimize the overlapping of the documents that
contain both the itemset and some remaining itemsets.
The clustering result depends on the order of picking up
itemsets, which in turn depends on the greedy heuristic
used. In our approach, we do not follow a sequential or-
der of selecting clusters. Rather, we assign documents
to the best clusters with all clusters available. Experi-
ments show that this strategy produces better clusters
and is more scalable.

Similar to most document clustering algorithms,

our method employs several preprocessing steps includ-
ing stop words removal and stemming on the document
set. Each document is represented by a vector of fre-
quencies of remaining items within the document. As
an extra preprocessing step, many document clustering
algorithms would replace the actual term frequency of
an item by the weighted frequency, i.e., term frequency
× inverse document frequency (TF×IDF), in the docu-
ment vector. The idea is that if an item is too common
across different documents, then it would have little dis-
criminating power, and vice versa [16]. Note that our
algorithm applies TF×IDF after stemming; therefore,
each document is actually represented by a vector of
weighted frequencies. The effect of TF×IDF on our al-
gorithm will be explained in Section 3.2.

3 Constructing Clusters

The agglomerative or partitioning methods are
“document-centered” in that the pairwise similarity be-
tween documents plays a central role in constructing a
cluster. Our method is “cluster-centered” in that we
measure the “cohesiveness” of a cluster directly, using
frequent itemsets: the documents under the same topic
are expected to share more common itemsets than those
under different topics. First, we introduce some defini-
tions.

A global frequent itemset is a set of items that
appear together in more than a minimum fraction of
the whole document set. A minimum global support,
in a percentage of all documents, can be specified for
this purpose. We borrowed an algorithm presented by
Agrawal et al. [1] for finding global frequent itemsets.
Note that itemsets are found based on word presence,
not on TF and IDF. A global frequent item refers to
an item that belongs to some global frequent itemset.
A global frequent itemset containing k items is called
a global frequent k-itemset. The global support of an
itemset is the percentage of documents containing the
itemset. A global frequent item is cluster frequent in a
cluster Ci if the item is contained in some minimum
fraction of documents in Ci. A minimum cluster
support, in a percentage of of the documents in Ci, can
be specified for this purpose. The cluster support of an
item in Ci is the percentage of the documents in Ci that
contain the item.

Our method constructs clusters in two steps: con-
structing initial clusters, then making initial clusters
disjoint.

3.1 Constructing Initial Clusters. For each
global frequent itemset, we construct an initial cluster
to contain all the documents that contain this itemset.
Initial clusters are not disjoint because one document

may contain several global frequent itemsets. We will
remove the overlapping of clusters in Section 3.2. One
property of initial clusters is that all documents in
a cluster contain all the items in the global frequent
itemset that defines the cluster, that is, these items
are mandatory for the cluster. We use this defining
global frequent itemset as the cluster label to identify
the cluster. Cluster labels serve another purpose: their
set containment relationship establishes a hierarchical
structure in the tree construction stage.

3.2 Making Clusters Disjoint. This step makes
clusters disjoint: for each document, we identify the
“best” initial cluster and keep the document only in the
best initial cluster. Suppose that Score(Ci ← docj)
measures the goodness of a cluster Ci for a document
docj . For each docj , we remove docj from all the
initial clusters Ci that contain docj but one for which
Score(Ci ← docj) is maximized. If there are more
than one Ci that maximizes Score(Ci ← docj), choose
the one that has the most number of items in the
cluster label. After this step, each document belongs
to exactly one cluster. Notice that this step preserves
the early property that the items in the cluster label are
mandatory for a cluster.

Now, we define the score function Score(Ci ←
docj). Intuitively, a cluster Ci is “good” for a document
docj if there are many global frequent items in docj

that appear in “many” documents in Ci. The “many”
is qualified by being cluster frequent in Ci. Precisely,
the following score measures the goodness of an initial
cluster Ci for a document docj .

(3.1)
Score(Ci ← docj) = [

∑
x

n(x) ∗ cluster support(x)]

− [
∑

x′
n(x′) ∗ global support(x′)]

where x represents a global frequent item in docj and
the item is also cluster frequent in Ci; x′ represents a
global frequent item in docj that is not cluster frequent
in Ci; n(x) and n(x′) are the weighted frequency of x
and x′ in the feature vector of docj . n(x) and n(x′) are
defined by the TF×IDF of item x and x′, as discussed in
Section 2. For better understandability, in our running
example we use simply the term frequency (TF) of x
and x′, i.e., the number of occurrences in a document,
without applying TF×IDF.

The first term of the score function rewards cluster
Ci if a global frequent item x in docj is cluster frequent
in Ci. In order to capture the importance (weight) of
item x in different clusters, we multiply the frequency

Doc. Feature vector
name (flow, form, layer, patient, result, treatment)
cisi.1 (0 1 0 0 0 0)
cran.1 (1 1 1 0 0 0)
cran.2 (2 0 1 0 0 0)
cran.3 (2 1 2 0 3 0)
cran.4 (2 0 3 0 0 0)
cran.5 (1 0 2 0 0 0)
med.1 (0 0 0 8 1 2)
med.2 (0 1 0 4 3 1)
med.3 (0 0 0 3 0 2)
med.4 (0 0 0 6 3 3)
med.5 (0 1 0 4 0 0)
med.6 (0 0 0 9 1 1)

Table 1: Document set

Global frequent itemset Global support
{flow} 42%
{form} 42%
{layer} 42%
{patient} 50%
{result} 42%

{treatment} 42%
{flow, layer} 42%

{patient, treatment} 42%

Table 2: Global frequent itemsets
(minimum global support = 35%)

of x in docj by its cluster support in Ci. The second
term of the function penalizes cluster Ci if a global
frequent item x′ in docj is not cluster frequent in
Ci. The frequency of x′ is multiplied by its global
support which can be viewed as the importance of x′

in the entire document set. This part encapsulates the
concept of dissimilarity into the score.

Example: Consider the twelve documents in Table 1.
They are selected from the document set in [3] and
their document names indicate their topics. Each
document is represented by a feature vector. Table 2
contains all the global frequent k-itemsets with their
global supports. The initial clusters of this example
are shown in Table 3. To find the most suitable cluster
for document med.6, for example, we need to calculate
its scores against each initial cluster that contains the
document:

Score(C(patient) ← med.6) = 9 ∗ 1 + 1 ∗ 0.83− 1 ∗ 0.42
= 9.41

Cluster Documents Cluster frequent items

(label) in cluster & cluster supports (CS)

C(flow) cran.1, cran.2, {flow, CS=100%},
cran.3, cran.4, {layer, CS=100%}
cran.5

C(form) cisi.1, cran.1, {form, CS=100%}
cran.3, med.2,

med.5

C(layer) cran.1, cran.2, {layer, CS=100%},
cran.3, cran.4, {flow, CS=100%}
cran.5

C(patient) med.1, med.2, {patient, CS=100%},
med.3, med.4, {treatment, CS=83%}
med.5, med.6

C(result) cran.3, med.1, {result, CS=100%},
med.2, med.4, {patient, CS=80%},
med.6 {treatment, CS=80%}

C(treatment) med.1, med.2, {treatment, CS=100%},
med.3, med.4, {patient, CS=100%},
med.6 {result, CS=80%}

C(flow, layer) cran.1, cran.2, {flow, CS=100%},
cran.3, cran.4, {layer, CS=100%}
cran.5

C(patient, med.1, med.2, {patient, CS=100%},
treatment) med.3, med.4, {treatment, CS=100%},

med.6 {result, CS=80%}

Table 3: Initial clusters
(minimum cluster support = 70%)

Score(C(treatment) ← med.6) = 10.8
Score(C(result) ← med.6) = 10.6
Score(C(patient, treatment) ← med.6) = 10.8

We use Score(C(patient) ← med.6) to explain the
calculation. The global frequent items in med.6 are “pa-
tient”, “result”, and “treatment”. Their frequencies in
the feature vector are 9, 1, and 1 respectively. “pa-
tient” and “treatment” are cluster frequent in cluster
C(patient); hence these two items appear in the reward-
ing part of the function and their frequencies are multi-
plied by their corresponding cluster supports 1 and 0.83
respectively. “result” is not cluster frequent in cluster
C(patient); therefore, it appears in the penalty part and
its frequency is multiplied by its global support 0.42.

Both clusters C(treatment) and
C(patient, treatment) get the same highest score.
Document med.6 is assigned to C(patient, treatment),
which has a larger number of items in its cluster label,
i.e., a cluster with a more specific topic. After repeating
the above computation for each document, Table 4

Cluster Documents Cluster frequent items

(label) in cluster & cluster supports (CS)

C(flow) cran.1, cran.2, {flow, CS=100%},
cran.3, cran.4, {layer, CS=100%}
cran.5

C(form) cisi.1 {form, CS=100%}
C(layer) none

C(patient) med.5 {patient, CS=100%},
{treatment, CS=83%}

C(result) none

C(treatment) {treatment, CS=100%},
{patient, CS=100%},
{result, CS=80%}

C(flow, layer) none
C(patient, med.1, med.2, {patient, CS=100%},
treatment) med.3, med.4, {treatment, CS=100%},

med.6 {result, CS=80%}

Table 4: Disjoint clusters

shows the disjoint clusters. Ignore the third column at
this moment.

We like to point out some important differences
between the cluster label and the set of cluster frequent
items associated with a cluster. The cluster label is
a set of mandatory items in the cluster in that every
document in the cluster must contain all the items in the
cluster label. We use the cluster label to construct an
initial cluster and to identify the cluster. On the other
hand, a cluster frequent item is required to appear in
some minimum fraction of documents in the cluster. We
use the cluster frequent items as the topic description
of the cluster.

Since some documents are removed from initial
clusters, we need to recompute the cluster frequent
items for each cluster to reflect the updated clustering.
While re-computing the cluster frequent items of a
cluster Ci, we also include all the documents from all
“descendants” of Ci. A cluster is a descendant of Ci

if its cluster label is a superset of the cluster label of
Ci. The rationale is that descendants are likely to be
subtopics of a parent; therefore, it is sensible to include
them.

Example: The third column in Table 4 reflects the
updated cluster frequent items in the disjoint clusters.
The potential descendant of cluster C(patient) is clus-
ter C(patient, treatment). While recomputing the clus-
ter frequent items of C(patient), we would consider
all the documents in both C(patient, treatment) and

Figure 1: Cluster tree built from table 4

C(patient). The cluster support of the item “treat-
ment” in cluster C(patient) is 83% because five out of
the six documents contain this item.

4 Building the Cluster Tree

The set of clusters produced by the previous stage
can be viewed as a set of topics and subtopics in the
document set. In this section, a cluster (topic) tree
is constructed based on the similarity among clusters.
In case a tree contains too many clusters, two pruning
methods are applied to efficiently shorten and narrow a
tree by merging similar clusters together.

4.1 Tree Construction. In this section, we explain
how to construct a hierarchical cluster tree. The
resulting tree has two objectives: to form a foundation
for pruning and to provide a natural structure for
browsing. In the cluster tree, each cluster (except the
cluster with the empty cluster label) has exactly one
parent. The topic of a parent cluster is more general
than the topic of a child cluster and they are “similar”
to a certain degree.

Recall that each cluster uses one global frequent
k-itemset as its cluster label. Such clusters are called
k-clusters below. In the cluster tree, the root node ap-
pears at level 0, which corresponds to the cluster with
the cluster label “null”, and collects the unclustered
documents. In the actual user interface, the unclus-
tered documents can be put in a cluster marked “mis-
cellaneous” at level 1. The 1-clusters appear in level 1
of the tree, and so forth for every level. The depth of
the tree is equal to the maximum size of global frequent
itemsets.

We build the cluster tree bottom-up by choosing a
parent at level k−1 for each cluster at level k. For each
k-cluster Ci at level k, we first identify all potential

Figure 2: Cluster tree after child pruning

parents that are (k − 1)-clusters and have the cluster
label being a subset of Ci’s cluster label. There are
at most k such potential parents. The next step is
to choose the “best” among potential parents. The
criterion for selecting the best is similar to choosing
the best cluster for a document in Section 3.2. We
first merge all the documents in the subtree of Ci

into a single conceptual document doc(Ci), which is
done incrementally in the bottom-up tree construction,
and then compute the score of doc(Ci) against each
potential parent. The potential parent with the highest
score would become the parent of Ci. All leaf clusters
that contain no document can be removed.

Example: Consider the clusters in Table 4. We start
to build the tree from 2-clusters (i.e., clusters with 2-
itemsets as the cluster label). Cluster C(flow, layer)
is removed since it is an empty leaf node. Next,
we select a parent for C(patient, treatment). The
potential parents are C(patient) and C(treatment).
C(patient) gets a higher score and becomes the parent
of C(patient, treatment). Figure 1 depicts the resulting
cluster tree.

4.2 Tree Pruning. A cluster tree can be broad and
deep, especially when a small minimum global support
is used. Therefore, it is likely that documents of the
same topic are distributed over several small clusters,
which would lead to poor clustering accuracy. The aim
of tree pruning is to merge similar clusters in order to
produce a natural topic hierarchy for browsing and to
increase the clustering accuracy. Before introducing the
pruning methods, we will first define the inter-cluster
similarity, which is a key notion for merging clusters.

To measure the inter-cluster similarity between two
clusters Ca and Cb, we measure the similarity of Cb to
Ca, and the similarity of Ca to Cb. The idea is to treat

Figure 3: Cluster tree after child pruning
and sibling merging

one cluster as a conceptual document (by combining
all the documents in the cluster) and measure its score
against the other cluster using our score function defined
in Section 3.2. The only difference is that the score
has to be normalized to remove the effect of varying
document size. Formally, the similarity of Cj to Ci is
defined as:

(4.2) Sim(Ci ← Cj) =
Score(Ci ← doc(Cj))∑

x n(x) +
∑

x′ n(x′)
+ 1

where Ci and Cj are two clusters; doc(Cj) stands for
combining all the documents in the subtree of Cj into a
single document; x represents a global frequent item in
doc(Cj) that is also cluster frequent in Ci; x′ represents
a global frequent item in doc(Cj) that is not cluster
frequent in Ci; n(x) is the weighted frequency of x
in the feature vector of doc(Cj); n(x′) is the weighted
frequency of x′ in the feature vector of doc(Cj).

To explain the normalization by
∑

x n(x) +∑
x′ n(x′), notice that the global support and cluster

support in Score function are always between 0 and 1.
Thus, the maximum value of Score is

∑
x n(x) and the

minimum value of Score is −∑
x′ n(x′). After normaliz-

ing Score by
∑

x n(x)+
∑

x′ n(x′), the normalized value
is within the range of [-1,1]. To avoid negative similarity
values, we add the term +1. As a result, the range of
Sim function is [0,2].

We define the inter-cluster similarity between Ca

and Cb as the geometric mean of the two normalized
scores Sim(Ca ← Cb) and Sim(Cb ← Ca):

(4.3)
Inter Sim(Ca ↔ Cb)

= [Sim(Ca ← Cb) ∗ Sim(Cb ← Ca)]
1
2

Ca and Cb are two clusters including their descendant

clusters.
The advantage of the geometric mean is that two

clusters are considered to be similar only if both values
Sim(Ca ← Cb) and Sim(Cb ← Ca) are high. Given
that the range of Sim function is [0,2], the range of
Inter Sim function is also [0,2]. Higher values imply
higher similarity between two clusters. An Inter Sim
value below 1 implies the weight of dissimilar items
has exceeded the weight of similar items. Hence, the
Inter Sim value of 1 serves as a good threshold in
distinguishing whether two clusters are similar. We
now present two pruning methods.

Child Pruning. The objective of child pruning
is to efficiently shorten a tree by replacing child clusters
with their parent. The pruning criterion is based on the
inter-cluster similarity between a parent and its child.
A child is pruned only if it is similar to its parent. The
rationale is that if a subtopic (e.g. tennis ball) is very
similar to its parent topic (e.g. tennis), the subtopic is
probably too specific and can be removed.

The procedure is to scan the tree in the bottom-up
order. For each non-leaf node, we calculate Inter Sim
between the node and each of its children, and prune
the child cluster if Inter Sim is above 1. If a cluster is
pruned, its children become the children of their grand-
parent. Notice that child pruning is only applicable to
level 2 and below since the root (at level 0) collects
only unclustered documents.

Example: Consider figure 1. To determine whether
cluster C(patient, treatment) should be pruned,
the inter-cluster similarity between C(patient) and
C(patient, treatment) is calculated as follows:

Sim(C(patient) ← C(patient, treatment))
= (30∗1+9∗0.83−1∗0.42−8∗0.42)/48+1 = 1.70

Sim(C(patient, treatment) ← C(patient))
= (34 ∗ 1+8 ∗ 0.8+9 ∗ 1− 2 ∗ 0.42) / 53+1 = 1.92

Inter Sim(C(patient) ← C(patient, treatment))
= (1.70∗1.92)

1
2 = 1.81

To calculate Sim(C(patient) ←
C(patient, treatment)), we combine all the docu-
ments in cluster C(patient, treatment) by adding up
their feature vectors. The summed feature vector is
(0, 1, 0, 30, 8, 9). Then we calculate the score of this
combined document against C(patient) and normalize
the score by the sum of the frequencies which is 48.
Sim(C(patient, treatment) ← C(patient)) is com-
puted using the same method. Since the inter-cluster
similarity is above 1, cluster C(parent, treatment) is
pruned. See Figure 2.

Cluster pair Sim Sim Inter Sim
(Ci, Cj) (Cj ← Ci) (Ci ← Cj) (Ci ↔ Cj)

C(flow) & 0.71 0.58 0.64
C(form)

C(flow) & 0.58 0.54 0.56
C(patient)
C(form) & 0.58 0.58 0.58
C(patient)

Table 5: Inter-cluster similarity calculation

Sibling Merging. Since child pruning only applies to
level 2 and below, there are often many clusters at level
1. Sibling merging will merge similar clusters at level 1.
Each time, we calculate the Inter Sim for each pair of
clusters at level 1 and merge the cluster pair that has
the highest Inter Sim. By merging two clusters, the
children of the two clusters become the children of the
merged cluster. This procedure is repeated for the re-
maining clusters at level 1 until the user-specified num-
ber of clusters is reached. If the user does not specify the
number of cluster, the algorithm will terminate when all
cluster pairs at level 1 have Inter Sim below or equal
to 1. The pairwise comparison ensures that only similar
clusters are merged.

The above sibling merging is similar to the pairwise
merging in the agglomerative clustering method. The
difference is that the agglomerative method applies
the merging to all clusters, which often becomes the
bottleneck to scalability. In our algorithm, the merging
is applied to only the clusters at level 1, which are
limited by the number of global frequent items. For
clusters at a lower level, this is not necessary because
child pruning has merged similar children into their
parent. The idea is to apply the child pruning that
does not require the expensive pairwise search when
the number of clusters is large (at lower levels), and
to apply the elaborated sibling merging only when the
number of clusters is small (at level 1). This approach
is more scalable than the agglomerative clustering.

Example: Consider the tree in Figure 2. Sibling merg-
ing computes the Inter Sim for each pair of clusters at
the level 1 as in Table 5. If the user has not specified the
desired number of clusters, FIHC would terminate and
return the tree as in Figure 2. Suppose the user specifies
the number of clusters as 2. The algorithm would prune
one cluster at level 1 based on the inter-cluster similar-
ity among clusters C(flow), C(form), and C(patient).
Since C(flow) and C(form) is the pair with the highest
Inter Sim, the smaller cluster C(form) would merge

Data # of # of Class Size # of
Set Docs Classes Terms

Classic4 7094 4 1033 – 3203 12009
Hitech 2301 6 116 – 603 13170
Re0 1504 13 11 – 608 2886

Reuters 8649 65 1 – 3725 16641
Wap 1560 20 5 – 341 8460

Table 6: Summary descriptions of data sets

with the larger cluster C(flow). Figure 3 depicts the
resulting tree.

5 Experimental Evaluation

This section presents the experimental evaluation of the
proposed method (FIHC) by comparing its results with
several popular document clustering algorithms, ag-
glomerative UPGMA [5, 9], bisecting k-means [5, 9, 14],
and HFTC [2]. We make use of the CLUTO-2.0 Clus-
tering Toolkit [8] to generate the results of UPGMA and
bisecting k-means. For HFTC, we obtained the original
Java program from the author and then compiled the
program into Windows native code to avoid the over-
head of the Java Virtual Machine. All algorithms, ex-
cept HFTC, employ TF×IDF as a preprocessing step.
HFTC applies its own preprocessing technique, the term
frequency variance selection. The produced clustering
results are evaluated by the same method and criterion
to ensure fair comparison across all algorithms.

5.1 Data Sets. Five data sets widely used in docu-
ment clustering research [14, 2] were used for our eval-
uation. They are heterogeneous in terms of document
size, cluster size, number of classes, and document dis-
tribution. Each document has been pre-classified into a
single topic, called natural class below. This informa-
tion is utilized by the evaluation method for measuring
the accuracy of the clustering result. During the cluster
construction, this information is hidden from all clus-
tering algorithms.

Here are the five data sets. Classic4 is combined
from the four classes CACM, CISI, CRAN, and MED
abstracts [3]. Hitech and Wap are originally from the
San Jose Mercury newspaper articles [15] and the Ya-
hoo! subject hierarchy web pages [19], respectively.
Reuters and Re0 were extracted from newspaper arti-
cles [11]. For Reuters, we only use the articles that are
uniquely assigned to exactly one topic. All of these data
sets, except Reuters, can be obtained from [8].

5.2 Evaluation Method. A commonly used exter-
nal measurement, the F-measure [10, 14], is employed
to evaluate the accuracy of the produced clustering so-
lutions. It is a standard evaluation method for both
flat and hierarchical clustering structures. Suppose that
each cluster is treated as if it were the result of a query
and each natural class is treated as if it were the rele-
vant set of documents for a query. The recall, precision,
and F-measure for natural class Ki and cluster Cj are
calculated as follows:

(5.4) Recall(Ki, Cj) =
nij

|Ki|

(5.5) Precision(Ki, Cj) =
nij

|Cj |

(5.6)

F (Ki, Cj) =
2 ∗Recall(Ki, Cj) ∗ Precision(Ki, Cj)
Recall(Ki, Cj) + Precision(Ki, Cj)

where nij is the number of members of natural class
Ki in cluster Cj . Intuitively, F (Ki, Cj) measures the
quality of cluster Cj in describing the natural class Ki,
by the harmonic mean of Recall and Precision for
the “query results” Cj with respect to the “relevant
documents” Ki. While computing F (Ki, Cj) in a
hierarchical structure, all the documents in the subtree
of Cj are considered as the documents in Cj .

The success of capturing a natural class Ki is
measured by using the “best” cluster Cj for Ki, i.e.,
Cj maximizes F (Ki, Cj). We measure the quality of
a clustering result C using the weighted sum of such
maximum F-measures for all natural classes. This
measure is called the overall F-measure of C, denoted
F (C):

(5.7) F (C) =
∑

Ki∈K

|Ki|
|D| maxCj∈C{F (Ki, Cj)}

where K denotes all natural classes; C denotes all clus-
ters at all levels; |Ki| denotes the number of documents
in natural class Ki; and |D| denotes the total number
of documents in the data set. The range of F (C) is
[0,1]. A larger F (C) value indicates a higher accuracy
of clustering.

5.3 Experimental Results. We evaluated our
algorithm, FIHC, and its competitors in terms of
F-measure, sensitivity to parameters, efficiency and
scalability. Recent research in [14] shows that UPGMA
and bisecting k-means are the most accurate clustering
algorithms in their categories. We also compared FIHC

Data # of Overall F-measure

Set Clusters FIHC UPGMA Bi kmeans HFTC

Classic4 3 0.62* × 0.59 n/a

(4) 15 0.52* × 0.46 n/a

30 0.52* × 0.43 n/a

60 0.51* × 0.27 n/a

Avg. 0.54 × 0.44 0.61*

Hitech 3 0.45 0.33 0.54* n/a

(6) 15 0.42 0.33 0.44* n/a

30 0.41 0.47* 0.29 n/a

60 0.41* 0.40 0.21 n/a

Avg. 0.42* 0.38 0.37 0.37

Re0 3 0.53* 0.36 0.34 n/a

(13) 15 0.45 0.47* 0.38 n/a

30 0.43* 0.42 0.38 n/a

60 0.38* 0.34 0.28 n/a

Avg. 0.45* 0.40 0.34 0.43

Reuters 3 0.58* × 0.48 n/a

(65) 15 0.61* × 0.42 n/a

30 0.61* × 0.35 n/a

60 0.60* × 0.30 n/a

Avg. 0.60* × 0.39 0.49

Wap 3 0.40* 0.39 0.40* n/a

(20) 15 0.56 0.49 0.57* n/a

30 0.57 0.58* 0.44 n/a

60 0.55 0.59* 0.37 n/a

Avg. 0.52* 0.51 0.45 0.35

Table 7: F-measure comparison of our FIHC method
and the other four methods on five data sets

× = not scalable to run * = best competitor

with another frequent itemset-based algorithm, HFTC
[2].

Accuracy. Table 7 shows the F-measure values
for all four algorithms with different user-specified
numbers of clusters. Since HFTC does not take the
number of clusters as an input parameter, we use
the same minimum support from 3% to 6% for both
HFTC and our algorithm in each data set to ensure
fair comparison. Our algorithm FIHC apparently
outperforms all other algorithms in accuracy for most
number of clusters. Although UPGMA and bisecting
k-means perform slightly better than FIHC in several
cases, we argue that the exact number of clusters
in a document set is usually unknown in real world
clustering problem, and FIHC is robust enough to
produce consistently high quality clusters for a wide
range number of clusters. This fact is reflected by
taking the average of the F-measure values over the
different numbers of clusters. Due to the pairwise

Classic
CRANFIELD class Best FIHC cluster
aerodynamic, aircraft, angle, approximate, body,

angle, boundary, boundary, calculate,

effect, flow, ft, height, condition, distribution,

layer, maximum, effect, equation, experiment,

measurement, number, flow, investigation, layer,

present, pressure, machine, method, number,

shape, speed, system, present, pressure, speed,

stream, theory, value surface, theory, velocity

Table 8: Comparison on class/cluster frequent items
(minimum cluster support = 35%)

similarity comparison in agglomerative algorithms,
UPGMA is not scalable for large data sets. Hence,
some experiment results could not be generated for
UPGMA.

While the F-measure provides a yardstick of clus-
tering accuracy in the “document retrieval” interpreta-
tion, we like to provide some intuition that our clusters
capture the natural classes. One possibility is to com-
pare the frequent items from a natural class Ki with
the description, i.e., cluster frequent items, of the best
cluster Cj (i.e., Cj maximizes F (Ki, Cj) for Ki). We
use the CRANFIELD class from Classic4 [3] to illus-
trate this comparison. The CRANFIELD documents
are summaries for papers on the aeronautical system.
Table 8 shows the two sets of frequent items. The items
in the left column are generated from the CRANFIELD
class. The items in the right column are generated from
the best cluster. We observed that many items (in bold
face) in the two columns are overlapping. This sug-
gests that the description of the cluster reflects the topic
of the natural class. Interestingly, the description also
capture some keywords that are not shown in the natu-
ral class column but are definitely reasonable to appear
under this topic. For example, the items “body”, “ma-
chine”, “surface”, and “velocity” are related to aero-
nautical system. Our algorithm also misses some items,
such as “aerodynamic” and “aircraft”. About 50% of
the frequent items in the CRANFIELD class are cap-
tured by the best cluster as the description. There is a
similar capturing rate for other three natural classes in
Classic4.

Sensitivity to Parameters. Our algorithm, FIHC,
allows for two input parameters: KClusters and Min-
Sup.

1. KClusters is the number of clusters at level 1 of
the tree and is an optional input. Table 7 has

Figure 4: Sensitivity to MinSup without
pre-specifying # of clusters on five data sets

already shown that FIHC produces consistently
high quality clusters for a wide range of KClusters.

2. MinSup is the minimum support for global frequent
itemset generation with a default value 5%. Fig-
ure 4 depicts the F-measure values of FIHC with
respect to MinSup without pre-specifying a value
for KClusters. Unlike many other clustering meth-
ods where the clustering accuracy is very sensitive
to input parameters, we observe that high cluster-
ing accuracy is fairly consistent while MinSup is set
between 3% and 9%. A general guidance from nu-
merous experiments is: if a data set contains less
than 5000 documents, MinSup should be set be-
tween 5% and 9%; otherwise, MinSup should be
set between 3% and 5%. We would like to empha-
size that, in practice, the end user does not need
to specify MinSup. Determining MinSup can be
made a part of the clustering algorithm. For exam-
ple, preliminary runs can be done on a sample of
the document set to determine an appropriate Min-
Sup, and then the whole document set is clustered
using the determined MinSup.

Another parameter is the minimum cluster sup-
port, which determines if an item is cluster frequent.
Experiments show that a value around 25% always
yields a good result in different document sets, provided
that there are at least a few hundreds of documents.
Thus, this is not an input parameter.

Efficiency and Scalability. The largest data set,

Figure 5: Comparison on efficiency
with the Reuters document set

Reuters, is chosen to examine the efficiency and scal-
ability of our algorithm on a Pentium III 667 MHz PC.
Figure 5 compares the runtime of our algorithm only
with bisecting k-means and HFTC. UPGMA is excluded
again because it is not scalable. The MinSup of HFTC
and our algorithm is set to 10% to ensure that the ac-
curacy of all produced clustering solutions is approxi-
mately the same. The efficiency of HFTC is comparable
with other algorithms in the first 5000 documents, but
its runtime grows rapidly while there are 6000 or more
documents. Our algorithm FIHC runs twice faster than
the best competitor, bisecting k-means. We conclude
that FIHC is significantly more efficient than other al-
gorithms.

To create a larger data set for examining the scal-
ability of FIHC, we duplicated the files in Reuters un-
til we get 100,000 documents. Figure 6 once again il-
lustrates that our algorithm runs approximately twice
faster than bisecting k-means in this scaled up docu-
ment set. Figure 7 depicts the runtime with respect
to the number of documents. The whole process com-
pletes within two minutes while UPGMA and HFTC
cannot even produce a clustering solution. It demon-
strates that FIHC is a very scalable method. The fig-
ure also shows that Apriori and the clustering are the
most time-consuming stages in FIHC, while the run-
time of tree building and pruning usually completes in a
split of a second. The efficiency of Apriori is very sensi-
tive to the input parameter MinSup. Consequently, the
runtime of FIHC increases while the MinSup decreases.
Nevertheless, many scalable and efficient frequent item-

Figure 6: Comparison on efficiency
with the scale-up Reuters document set

set mining algorithms have been proposed [6, 7] and
can be employed to further improve the efficiency of
our method. In the clustering stage, most time is spent
on constructing initial clusters, and its runtime is linear
with respect to the number of documents.

6 Discussions

6.1 Tree Structure vs Browsing. Most existing
agglomerative and divisive hierarchical clustering meth-
ods, e.g., bisecting k-means, generate relatively deep hi-
erarchies. However, deep hierarchy may not be suitable
for browsing. Suppose that a user makes an incorrect
selection while navigating the hierarchy. She may not
notice her mistake until she browses into the deeper por-
tion of the hierarchy. Our hierarchy is relatively flat. A
flat hierarchy reduces the number of navigation steps
which in turn decreases the chance for a user to make
mistakes. However, if a hierarchy is too flat, a parent
topic may contain too many subtopics and it would in-
crease the time and difficulty for the user to locate her
target. Thus, a balance between depth and width of the
tree is essential for browsing. Given a reasonable Min-
Sup from 3% to 9%, our cluster tree usually has two to
four levels in our experimental results. In general, the
number of levels depends on the given documents.

Another frequent itemset-based method, HFTC,
also provides a relatively flat hierarchy and its lattice
structure is suitable for browsing. The resulting hierar-
chy usually contains many clusters at the first level. As
a result, documents in the same natural class are likely
to be distributed into different branches of the hierar-

Figure 7: Scalability of our FIHC method
with the scale-up Reuters document set

chy which decreases the overall clustering accuracy. Our
sibling merging method resolves this problem by joining
similar clusters at the first level of the tree.

6.2 Complexity Analysis. Our method involves
four phases: finding global frequent itemsets, initial
clustering, tree construction, and pruning. The problem
of finding frequent itemsets has been studied intensively
in the data mining literature. In the initial clustering
phase, the document feature vectors are scanned twice,
once for constructing initial clusters and once for mak-
ing clusters disjoint. Since an initial cluster labeled by
a global frequent itemset f contains global support(f)
documents, this step makes

∑
f∈F global support(f)

document-to-cluster assignments and score calculations.
This amount of work is no more than the support count-
ing in mining global frequent itemsets. In the tree con-
struction, all empty clusters with a maximal cluster la-
bel are first removed. The remaining number of clusters
is no more than, often much smaller than, the number
of documents.

The tree construction is essentially linear in the
number of remaining clusters because finding a parent
for a k-cluster requires to examine at most k clusters at
level k − 1 (which are subsets of the k-cluster), where
k (i.e., the height of the topic hierarchy) is usually very
small. Again, this part is no more expensive than the
Apriori subset pruning in [1]. Child pruning makes only
one scan of clusters, and sibling merging is performed
only at the first level of the tree. As mentioned in
Section 4.2, the philosophy is to apply the efficient child

pruning when the number of clusters is large and to
apply the elaborated sibling merging only when the
number of clusters is small. This approach is more
scalable than the agglomerative clustering.

7 Conclusions

Most traditional clustering methods do not satisfy the
special requirements for document clustering, such as
high dimensionality, high volume, and ease of browsing
with meaningful cluster labels. In this paper, we present
a new approach to address these issues. The novelty of
this approach is that it exploits frequent itemsets for
defining a cluster, organizing the cluster hierarchy, and
reducing the dimensionality of document sets. The ex-
perimental results show that our approach outperforms
its competitors in terms of accuracy, efficiency, and scal-
ability.

Acknowledgment

The initial phase of this work benefited considerably
from extensive discussions with Leo Chen and Linda
Wu.

References

[1] R. Agrawal and R. Srikant. Fast algorithm for mining
association rules. In J. B. Bocca, M. Jarke, and C. Zan-
iolo, editors, Proc. 20th Int. Conf. Very Large Data
Bases, VLDB, pages 487–499. Morgan Kaufmann, 12-
15 1994.

[2] F. Beil, M. Ester, and X. Xu. Frequent term-based
text clustering. In Proc. 8th Int. Conf. on Knowledge
Discovery and Data Mining (KDD)’2002, Edmonton,
Alberta, Canada, 2002. http://www.cs.sfu.ca/˜ es-
ter/publications.html.

[3] Classic. ftp://ftp.cs.cornell.edu/pub/smart/.
[4] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W.

Tukey. Scatter/gather: A cluster-based approach to
browsing large document collections. In Proceedings of
the Fifteenth Annual International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 318–329, 1992.

[5] R. C. Dubes and A. K. Jain. Algorithms for Clustering
Data. Prentice Hall College Div, Englewood Cliffs, NJ,
March 1998.

[6] J. Han, J. Pei, and Y. Yin. Mining frequent pat-
terns without candidate generation. In Proceedings
of the 2000 ACM SIGMOD International Conference
on Management of Data (SIGMOD’00), Dallas, Texas,
USA, May 2000.

[7] J. Hipp, U. Guntzer, and G. Nakhaeizadeh. Algorithms
for association rule mining - a general survey and
comparison. ACM SIGKDD Explorations, 2(1):58–64,
July 2000.

[8] G. Karypis. Cluto 2.0 clustering toolkit, April 2002.
http://www-users.cs.umn.edu/˜ karypis/cluto/.

[9] L. Kaufman and P. J. Rousseeuw. Finding Groups in
Data: An Introduction to Cluster Analysis. John Wiley
and Sons, March 1990.

[10] B. Larsen and C. Aone. Fast and effective text mining
using linear-time document clustering. KDD’99, pages
16–22, 1999.

[11] D. D. Lewis. Reuters.
http://www.research.att.com/˜ lewis/.

[12] D. Mladenic and M. Grobelnik. Feature selection for
unbalanced class distribution and naive bayes. In
International Conference on Machine Learning, 1999.

[13] I. S. P. Nation and J. Coady. Vocabulary and read-
ing. In Carter and McCarthy (Eds.) Vocabulary and
Language Teaching. Longman, London, 1988.

[14] M. Steinbach, G. Karypis, and V. Kumar. A compar-
ison of document clustering techniques. KDD Work-
shop on Text Mining’00, 2000.

[15] Text REtrival Conference TIPSTER, 1999.
http://trec.nist.gov/.

[16] C. J. van Rijsbergen. Information Retrieval. Dept.
of Computer Science, University of Glasgow, Butter-
worth, London, 2 edition, 1979.

[17] K. Wang, C. Xu, and B. Liu. Clustering transactions
using large items. In Proc. CIKM’99, pages 483–490,
1999.

[18] R. Waring. Second language vocabulary acquisition,
linguistic context and vocabulary task design. Sum-
mary of a paper presented at The British Council Con-
ference in St Andrews Scotland, September 1995.

[19] Yahoo! http://www.yahoo.com/.
[20] M. Yang and J. O. Pedersen. A comparative study

on feature selection in text categorization. In Interna-
tional Conference on Machine Learning, 1997.

[21] G. K. Zipf. Selective studies and the principle of
relative frequency in language, 1932.

