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ABSTRACT
Motivation: There is a general scientific need to be able to
identify and evaluate what any given set of ‘objects’ (e.g. genes,
phenotypes, chemicals, diseases) has in common. Whether
it is to classify, expand upon or identify commonalities and
functional groupings, informational needs can be diverse and
the best source to identify relationships among a potentially
heterogeneous set of objects is the scientific literature.
Results: We first establish a network of related objects by
their co-occurrence within MEDLINE records. A set of objects
within this network can then be queried to identify shared rela-
tionships, and a method is presented to score their statistical
relevance by comparing observed frequencies with what would
be expected in a random network model. Using Gene Ontology
(GO) categories, we demonstrate that this method enables
a quantitative ranking of the ‘cohesiveness’ of a set of objects
and, importantly, allows other objects related to this set to be
identified and evaluated for their ‘cohesion’ to it.
Contact: Jonathan.Wren@OU.edu
Supplemental information: A list of ranked genes related to
each GO category analyzed can be found at http://innovation.
swmed.edu/IRIDESCENT/GO_relationships.htm

INTRODUCTION
The number of articles indexed by MEDLINE is growing
exponentially, reflecting an explosion of information driven,
in part, by technological improvements. Similarly, new entit-
ies of research interest such as genes, diseases, phenotypes
and chemical compounds (hereafter simply referred to as
‘objects’) are discovered regularly. As a consequence, our
relative awareness of new research entities and new research
discoveries among known entities is decreasing. Complicat-
ing this matter is the increasing rate by which data is
being gathered and presented to researchers for analysis.

∗To whom correspondence should be addressed.

Microarrays, for example, can gather tens of thousands of data
points to analyze transcriptional response to stimuli. Clus-
tering analyses can group similar response profiles, but says
little about similar purpose or function beyond that. When
dealing with datasets, especially large ones, there is a need
to identify ‘cohesiveness’ among a set of experimental vari-
ables. That is, to identify whether or not a set (or subset)
of these variables have been studied together, involved in a
common response or pathway, or are sufficiently distinct from
random noise or a non-specific response. Also, there is a need
to identify what these sets of experimental variables have in
common to assist in interpretation of experimental results.
Specific research interests can be very diverse, such as identi-
fying genetic pathways affected by a change in experimental
conditions, new genes that may be a member of a pathway,
or drugs that affect a similar set of genes. As such, there is
a need for a general method of approaching the problem and
addressing the potential heterogeneity of informational needs.

Searching MEDLINE for information on genes can be
a daunting task, as the number of articles published in
MEDLINE containing the names of known genes ranges
from 0 (unpublished data, yet transcript identified) to over
195 000 (Insulin). MEDLINE contained an estimated 12.6
million records at the time of this writing and is growing at an
annual rate of ∼500 000 records/year, making manual evalu-
ation of large sets problematic at best. However, awareness of
commonalities among experimental variables is central to the
process of insight and discovery. As such, efforts to link litera-
ture information to experimental data provided by microarrays
have recently been the focus of much effort (Masys, 2001;
Noordewier and Warren, 2001).

Useful methods of linking genes to informational
descriptors have been used in programs like MedMiner
(Tanabe et al., 1999) and ARROGANT (Kulkarni et al., 2002),
but more sophisticated methods of analysis are needed to tie
information found within the scientific literature to a set of
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variables. Toward this end, methods have been developed such
as mapping responding genes to a core set of relevant literature
based upon a single best ‘kernel’ document (Shatkay et al.,
2000), giving the user the ability to identify keywords relevant
to the retrieved documents. Masys et al. developed a method
to map keywords within articles regarding a set of genes to
a MeSH keyword hierarchy using the UMLS Metathesaurus
(Masys et al., 2001). So far, these efforts to identify literature-
based shared relationships have predominantly centered upon
microarrays, but there is a more global need. For example,
clinicians could analyze a set of phenotypes to identify asso-
ciated diseases or chemicals in the hopes they might provide
insight into disease etiology or pharmacology.

Herein we propose a method to enable object sets to
be scored for their ‘cohesiveness’, as judged by their
co-occurrence within the scientific literature (MEDLINE).
Importantly, this method also enables other objects to be
identified and evaluated for their potential ‘cohesiveness’ or
relevance in relation to the analyzed set. To accomplish this,
MEDLINE is exhaustively scanned for potential relation-
ships between objects by identifying co-occurrences within
the same record. Term co-occurrence has been used to find
tentative relationships between objects such as genes (Stapley
and Benoit, 2000; Jenssen et al., 2001), proteins (Blaschke
et al., 1999) and drugs (Rindflesch et al., 2000). Since co-
occurrence does not necessarily reflect the existence of a
meaningful relationship, we used Fuzzy Set Theory to assign
a weight to the relatedness of two objects based upon their
frequency of co-occurrence (see Systems and Methods). By
processing all MEDLINE records, a comprehensive network
of tentative relationships is created that enables us to evaluate
the relatedness of a set of objects based upon the relationships
they share (conceptually illustrated in Fig. 1).

Assigning a measure of ‘cohesiveness’ to a set allows
researchers to infer that an experimental grouping is purpose-
ful (assuming the grouped objects are adequately represented
within the literature). When used to analyze relationships
shared by a set of objects, general ‘themes’ can be identi-
fied (e.g. cancer, apoptosis, diabetes) along with statistically
exceptional groupings within the list (e.g. drugs affecting the
activity of a group of genes). Finally, it provides a method to
identify ‘missing members’ in a set, by their relatedness to the
group as a whole. The method we propose is broadly applic-
able to a number of scientific analyses, and here we choose
the analysis of Gene Ontology (GO) categories to benchmark
its performance.

The need for a dynamic controlled vocabulary in biology
has been established (Ashburner et al., 2000) and efforts
are underway to categorize known genes in terms of their
ontology (http://www.geneontology.org/). GO construction is
accomplished primarily via a manual, volunteer effort. A large
number of ontological classifications have yet to be made, and
there is a need to reassign function in response to changing
knowledge as well as ascertain which classifications have yet

Fig. 1. Identifying shared relationships within a network. A set of
objects (gray nodes) is analyzed to find connections shared by mem-
bers of the set (black nodes). White nodes represent connected but
unshared nodes, while numbers adjacent to the nodes represent how
many total connections they have within this highly hypothetical net-
work of 1000 nodes. When several members of the set are connected
to an object in the network with many connections (black node con-
nected by dashed lines), this is a relatively non-specific relationship
since, by definition, sharing such a connection is common to many
objects (here, 95% of all objects). Conversely, if another node is
connected to more members of this set than would be expected by
chance (black node connected by solid lines), then its relatedness to
this set can be considered greater despite fewer total connections.

to be assigned based upon current knowledge. Furthermore, it
is particularly difficult to evaluate how ‘complete’ an ontology
is with reference to current knowledge when such knowledge
spans thousands of articles or more. Thus, the value of auto-
mation to aspects of this process has been recognized. In terms
of identifying the functional coherence of gene groups, Russ
Altman et al. have applied and evaluated several approaches
that involve comparison of document similarities, of which
the method of neighborhood divergence per gene (NPDG)
stands out as the most accurate (Raychaudhuri and Altman,
2003), achieving in one study 79% recall at 100% preci-
sion (Raychaudhuri et al., 2002b). A minor drawback of
this approach, however, is its reliance upon an index relat-
ing each object (genes in this case) to a document, which
may not always be established—particularly a concern for
non-gene objects such as phenotypes and drugs. Further-
more, this method does not explicitly identify which factors
make a group ‘cohesive’. The author’s note: ‘Neighbor diver-
gence determines whether a group of genes has a coherent
function. It does not tell us the function’ (Raychaudhuri
et al., 2002b). Nonetheless, using similar document classi-
fication methods, the same authors made significant inroads
into automated GO annotation by associating genes with GO
codes (Raychaudhuri et al., 2002a). They demonstrated that a
supervised machine learning approach can be used to predict
gene annotation by assigning GO codes to abstracts and,
by extension, the genes associated with the abstracts. The
downside is that a document training set must be obtained for
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each GO code to be analyzed, and the association of genes to
ontology codes is by implication rather than directly.

The method presented here is used to analyze a network of
related objects and we evaluate how well topical groupings can
be quantitatively discerned from random groupings in terms
of their cohesiveness. We reasoned that these ‘cohesive sub-
networks’ could be used to identify other objects related to
members of a set, and evaluate them in terms of their cohes-
iveness to the set. This type of analysis, among other things,
could be used to identify ‘missing members’ of a set. As
such, it could represent a practical way of obtaining a set
of unannotated genes that either belong in an ontological cat-
egory, or are highly related to it. If so, then this method could
represent a powerful automated manner of assisting in the
ontology development effort. These suggested new members
could, after evaluation, be added to the original set. Genes
related to an ontology category for reasons other than mem-
bership in it (e.g. associated with a closely related process)
could be eliminated from the list and the number of remain-
ing members would provide a dynamic estimate of how much
curation remains, assuming the relationship network was kept
up-to-date with the most current literature. Such an estimate
would, of course, be limited by the method itself as well as the
availability of literature documenting potential relationships.

SYSTEMS AND METHODS
Code was developed in Visual Basic 6.0 (SP5) using ODBC
extensions to interface with a Microsoft Access 2000 database,
with database queries written in SQL. The object database
consists of primary names and synonyms for genes, diseases,
phenotypes and chemical compounds and was constructed
using entries obtained from the following databases:

Database (Reference) Location

OMIM (Hamosh et al.
2000)

ftp://ftp.ncbi.nlm.nih.gov/
repository/OMIM/omim.txt.Z

GDB http://gdbwww.gdb.org/gdb/
advancedSearch.html

HGNC (Povey et al.
2001)

http://www.gene.ucl.ac.uk/
public-files/nomen/nomeids.txt

LocusLink (Maglott
et al. 2000)

ftp://ftp.ncbi.nih.gov/refseq/
LocusLink/LL.out_hs.gz
(Gene names & ID)

ftp://ftp.ncbi.nih.gov/refseq/
LocusLink/LL_tmpl.gz (GOs)

MeSH (Lowe and
Barnett 1994)

http://www.nlm.nih.gov/cgi/
request.meshdata (MeSH
Trees file)

MEDLINE National Library of Medicine
http://www.nlm.nih.gov

GO (Ashburner et al.
2000)

http://www.geneontology.org

Over 12 500 000 MEDLINE records were processed
(1967—November 2002) to catalog all co-occurrences of
these object names (or their synonyms) found within
each record, along with their frequency and whether they
co-occurred in the same sentence or abstract. Acronyms were
resolved with a set of heuristic rules (Wren and Garner, 2002)
when defined in text, and undefined acronyms flagged as
potentially ambiguous were ignored (a definition must com-
prise at least 95% of all known definitions to be considered
unambiguous). When two objects co-occur within a record,
Fuzzy Set Theory was used to assign a value of ‘related-
ness’ to them ranging from 0 (unrelated) to 1 (related) by the
formula P(related) = 1 − rn. Here, r represents the probabil-
ity that assigning a relationship based upon the co-occurrence
of objects is an error, and n is the frequency of co-occurrence.
When co-occurring in a sentence the probability was estim-
ated at 0.83, while in the same abstract it was 0.58, estimates
similar to those obtained by others (Ding et al., 2002). This is
calculated for both sentence and abstract co-occurrences and
the greater of the two values used. While other, more robust,
statistical approaches are available for calculating the strength
of association between terms (Wilbur and Yang, 1996), at
this point in the algorithm we are more interested in simply
whether or not there is a non-trivial relationship between
terms.

Details on the GO and Locuslink database versions used are
located on the supplemental web page information.

ALGORITHM
In this section, we will adopt terminology from graph theory
and refer to objects as ‘nodes’ and relationships (co-citations)
as ‘connections’, which are equivalent to the ‘edges’ between
nodes. We wish to evaluate the statistical significance of an
observation that n nodes within a set, consisting of a total of
t nodes (Bt , where n ≤ t), are all connected to another node
(A), which itself may or may not be a member of the set.
To do this, we compare the observed number of connections,
n, against what would be expected by chance if the same t

nodes were connected randomly. This is assuming a random
network of the same size as the literature network, and that
the nodes being analyzed in the random network have the same
number of connections as the set Bt as well as A. The solution
will be a function of the connectivity of each node in the set,
Bt , as well as the connectivity of A. For example, if A were
connected to every node in the network we would expect that
Bt would share exactly t connections with A regardless of
the connectivity of any or all nodes within Bt (assuming each
node in Bt is connected to at least one node in the network).

First, we want to calculate the probability that a node (B)
within the set Bt is connected to A. Assuming nodes are ran-
domly connected in a network with a total of Nt nodes, the
probability that B will be a node connected to A (written as
B → A) is given as KA/Nt where KA is the total number of
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nodes connected to A. Similarly, the probability that A will be
a node connected to B (written as A → B) is given as KB/Nt

where KB is the total number of nodes connected to B. For
simplicity, we assume A �= B. In the literature network these
events are not independent, such that if B → A then A → B,
and this dependency can be written as A ←−−→ B. However,
we cannot know a priori if a dependency exists and so in
the random network model we must assume independence.
Then by comparing how many connections between nodes
are observed in a given model to what would be expected
by chance, assuming independence, we arrive at a statistical
measure of how exceptional any given set of connected nodes
is. So, in a random network:

P(A ←−−→ B) = P(A → B) OR P(B → A) (1)

This probability is more easily represented in mathematical
terms as the probability B is not related to A and vice versa,
written as NOT (P (A /∈ B) AND P(B /∈ A)), where the
symbol /∈ is used here to mean ‘is not connected to’. This
probability in mathematical terms is:

P(A ←−−→ B) = 1 −
(

1 − KA

Nt − 1

)
×

(
1 − KB

Nt − 1

)
(2)

The denominator will be Nt −1 if we assume a node cannot
be connected to itself, otherwise it will be Nt . Intuitively,
we expect that if KA = Nt − 1 or KB = Nt − 1 then
P(A ←−−→ B) = 1, since the number of connections to one
node does not matter if the other node is connected to all nodes.
This formula applies for all non-zero values of KA and KB .
Random network simulations were conducted to validate this
formula (data not shown). Summing the probability of each
individual connection, we can extend this formula to estimate
the expected number of connections that a set of nodes, Bt ,
would share with another object, A, by the equation:

E(NA↔Bt
) =

t∑
i=1

1−
(

1 − KA

Nt − 1

)
×

(
1 − KBi

Nt − 1

)
(3)

Dividing the number of observed connections (Obs)
between Bt and A by the number of connections we would
expect by chance (Exp) provides us with a value reflecting how
exceptional the observed number of connections is. We can
estimate the statistical significance of this ratio by calculat-
ing or approximating (through simulations) the SD associated
with the expectation value for each set size. Here, we will con-
sider a number of Obs statistically significant if its value is 2
SD above the expected mean. Assuming a normal (Gaussian)
distribution, the area under the curve from +2σ to +∞ rep-
resents only 2.5% of the total area under the curve and we can
thus assert significance at a 97.5% confidence level.

This formula provides a weighting adjustment for each
connected node based upon its overall connectivity. When
using this formula to evaluate objects related to a set, we

are essentially asking the question ‘How specific is the rela-
tionship of this object to the set analyzed?’ For example, a
widely studied object such as ‘cancer’ may be related to 4
out of 10 genes in a set, but this result could also be obtained
by choosing 10 genes randomly. Thus, the formula evaluates
how specific a relationship is to a set.

IMPLEMENTATION AND RESULTS
Sets of objects (3–100 members) were chosen at random from
the literature-derived network. Each object in the set had at
least one connection within the network. All other objects
connected to at least two members of this set were evaluated
according to Equation (3), while objects connected to fewer
than two of the set were discarded. An average was calcu-
lated for all these connecting objects. This was repeated 100
times for each size set to obtain a set size average and SD
for the set size average. The same was then done for sets of
genes within each ontology category, except the sets were dis-
played as individual data points rather than averaged so that
the distribution can be visualized. We hypothesized that the
average Obs/Exp score should be higher due to a larger num-
ber of shared relationships within the set and, in fact, this is
what we see in Figure 2. As shown in this graph, the range
of values is much greater for smaller size sets and converges
toward 1.0 as the set size increases. To see why this is neces-
sarily true, imagine a set size increasing to the point where
the set encompasses all objects. By definition, there is noth-
ing specific or cohesive about such a set. For smaller sets, it is
apparent that there is much more overlap with the random sets
than is observed for the larger sets. To identify a good cutoff
range for classifying a set of objects as ‘cohesive’, we com-
pared specificity and sensitivity associated with classifying
sets 1, 2 and 3 SD above the average Obs/Exp score for ran-
dom sets of the same size (Fig. 3). Based upon this analysis, 2
SD (σ ) appears to offer the best tradeoff between specificity
and sensitivity.

We examined some of the topical entries that scored within
2σ of the random average to see if their low scores might
perhaps be in error. We find that a number of ontological
categories can have genes that serve a common purpose, yet
are sufficiently separate in terms of their genetic associations
that they are not frequently mentioned together in the lit-
erature (e.g. sensory perception genes, anion transporters).
Similarly, some genes have little associated literature and few
relations for analysis. This represents a potential limitation of
the method.

Using the set averages for randomly assembled sets, we
reasoned that genes that share many relationships and have
a high Obs/Exp ratio with respect to the genes in a given
ontological category, but are not themselves included in
the category, might represent an enriched set of candidate
genes for possible inclusion in the ontological category ana-
lyzed. Table 1 shows an example of a set of genes within
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Fig. 2. Comparison of the average observed to expected ratio (Obs/Exp) for topical and random sets. Sets of objects, ranging in size, were
either generated randomly or obtained from classifications within the GO database. For the random sets, only the average Obs/Exp value of
all sets analyzed is shown, along with bars indicating 1 SD. The average Obs/Exp is shown for each individual topical set analyzed, along
with a power-law trend line fit to the topical set size averages. There are 127 data points with an Obs/Exp above 30 that are not shown in this
graph.

an ontological category (brain development) along with the
number of relationships each gene has within the literature-
based network. Table 2 shows the output produced by analysis
of this set using the method described. Within this table are a
number of object names related to the genes in Table 1, and
illustrates in part the nature of the problem we are attempting
to address. Some of these relationships, while perhaps true,
are not particularly exceptional such as the objects ‘tumor’,
‘nucleus’ and ‘apoptosis’, which are all very highly-related
(common) objects within the literature-based network, and
their non-specificity to the set is reflected by a low Obs/Exp
ratio. Examining the gene names within this list, however,
reveals a number of genes also implicated in brain develop-
ment but not annotated as such within Locuslink’s GO (at the
time of this writing), such as engrailed human homologs EN1
and EN2 (Sarnat et al., 2002), SHH (Marti and Bovolenta,
2002), as well as BMP-4 and FGF8 (Crossley et al., 2001).
These genes have a much higher Obs/Exp ratio, suggesting
a strong association with this ontological category. Another
gene name, caudal, is in the list but scores low because

‘caudal’ is also a word frequently used to describe structures
toward the tail end of the body.

Genes associated with the set of genes in each GO cat-
egory, but not within the category, were output for further
analysis. A total of 163 791 annotations were predicted. Asso-
ciations by co-mention are based solely upon the gene name
and no attempt to discern species is made when scanning
MEDLINE. However, the ontology annotation for each spe-
cies within Locuslink is compared to the identified literature
association for each gene name. Thus, a number of the pre-
dicted associations on the list will be for genes in species
in which the ontology association has not been annotated,
but may be annotated in a homolog. For example, the gene
GRM3 (metabotropic glutamate receptor 3) is currently annot-
ated with the GO term ‘synaptic transmission’ in humans
(Locuslink ID# 2913) but not in rats (Locuslink ID# 24416).

We evaluated gene names associated with ontology categor-
ies identified by this method for evidence in the literature
suggesting they should be included in the category. Such evid-
ence was said to exist if it suggested the gene play a direct
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Fig. 3. Specificity versus sensitivity curve associated with the use of cutoff values when classifying a set of objects as ‘cohesive’. Cohesiveness
is determined by how much higher a set’s average Obs/Exp score is from the random average. Each GO set, ranging in size from 3 to 23
members and comprising a total of 1346 categories, was compared with a number of randomly assembled sets equal to the number of categories
of the same size available for analysis (average # of random decoys per topical set analyzed = 67.3). Specificity (precision) and sensitivity
(recall) were calculated for each set size, when using cutoffs of 1, 2 and 3 SD above the average Obs/Exp score for random sets of the same
size. Hollow symbols represent data points for each set size, while larger filled symbols represent an overall average for all set sizes analyzed.
While 3 SD offers the highest classification specificity, there is a tradeoff in sensitivity.

Table 1. Genes in the ontological category of ‘brain development’ (GO ID#
7420) at the time of analysis, sorted by the number of related objects identified
within MEDLINE

Gene Name # relationships LocusLink ID

NT-3 1111 LL:18205
TTF-1 425 LL:21869
BF1 406 LL:2290
DLX2 152 LL:1746
PGDH 152 LL:26227
SIX3 140 LL:6496
Hesx1 128 LL:15209
FMR2 121 LL:2334
ZIC 101 LL:7545
ZIC2 88 LL:7546
BMI1 87 LL:648
Cart-1 69 LL:8092
BF2 68 LL:2291
RB18A 21 LL:5469
Lhx6 20 LL:26468
hyh 14 LL:15591
Vax1 12 LL:22326
PITPNM 11 LL:9600
UNC5C 6 LL:8633
NKX2B 0 LL:4821

role (biological process/molecular function) or be localized
in the appropriate cellular compartment (cellular component).
We randomly chose 50 of the entries and conducted a litera-
ture search using the gene name(s) in concert with ontology
keywords/phrases, trying various search combinations. Of the
sample surveyed, 26 (52%) played a role in or were a part of
the ontological category, 12 were related to the category in
some way but did not belong in it, nine genes were not related
in any direct or obvious manner, and three genes represented
erroneous associations due to ambiguous gene symbols (e.g.
CCT2 which stands for ‘chaperonin subunit 2’ in mammals but
‘phosphocholine cytidylyltransferase 2’ in Drosophila, and
MT2 which stands for ‘metallothionein 2’ in mammals but
‘methyltransferase 2’ in Drosophila).

To aid in user evaluation and hopefully assist in the onto-
logy development effort, the list is electronically available.
Each gene in the list has been hyperlinked to its Locuslink
ID. The complete list can be accessed at http://innovation.
swmed.edu/IRIDESCENT/GO_relationships.htm

DISCUSSION
The method we have developed can be applied to a number of
scientific questions concerning the known relatedness of a set.
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Table 2. Objects related in the literature to one or more of the genes in
Table 1 (only first 21 relationships shown), sorted by the total number of
shared relationships identified within the network.

Object name # shared Expect Obs/Exp Locuslink ID

Nervous system 14 6.28 2.23
Transcription factor 14 4.20 3.34
Neurons 13 6.16 2.11
Tumor 13 9.55 1.36
Fibroblasts 10 5.51 1.81
Lymphoma 9 3.81 2.36
Nucleus 9 6.81 1.32
SHH 9 0.46 19.48 LL:6469
Alternative splicing 8 2.43 3.29
Secreted 8 4.40 1.82
Apoptosis 7 4.65 1.50
DNA-binding protein 7 1.54 4.54
Hypoplasia 7 2.32 3.02
Oncogene 7 2.03 3.45
Zinc 7 4.02 1.74
BMP-4 6 0.39 15.22 LL:652
Caudal 6 2.52 2.38 LL:1044
Cysteine 6 3.95 1.52
Ectodermal 6 1.05 5.70
Engrailed 6 0.27 22.01 LL:2019
FGF8 6 0.28 21.68 LL:2253

Four out of the five genes on the list have high Obs/Exp ratios, suggesting their pres-
ence on the list is due to strong relationships with the specific members of the ‘brain
development’ category

With microarray technology, it represents a potential method
of ascertaining whether or not a set of transcriptional respon-
ders contains members with documented relationships. In this
way, a researcher could decide whether or not the experiment
measured a specific response, giving the potential to recognize
when a transcriptional response is the result of less stringent
hybridization conditions or errors such as cross-hybridization
(Wren et al., 2002). Importantly, it also allows related non-
genetic factors from microarray experiments to be identified
and ranked such as phenotypes, diseases, metabolites and
chemical compounds.

We note that Drosophila names appear to represent a dispro-
portionate number of false positives, in part because the use
of gene symbol definitions diverges from mammalian stand-
ards, but also because a large number of Drosophila gene
names are also morphologically identical to common words
(e.g. basket, arrow, red). Ambiguous gene names have been
previously noted as problematic in co-occurrence networks
(Jenssen et al., 2001). Certainly, a higher quality output could
be achieved by identifying an effective way of dealing with
this ambiguity. As random objects are added to a set, its aver-
age Obs/Exp score will gradually converge toward the random
noise level. Thus, the addition of noise (i.e. unrelated or ran-
dom entries) to any set of related objects will reduce their ‘set
cohesion’ and obscure existing commonalities. This could be

problematic in experiments where a number of interrelated
subsystems are present within a much larger whole. The qual-
ity of the output and reliability of the calculated observed to
expected ratio will depend upon the ability of the experimenter
to accurately define a set of interest.

Raychaudhuri et al. (2002a) noted that granularity of the
GO codes was problematic for larger categories, where overly
general categories such as ‘metabolism’ yielded less specific
results. We observe a similar problem in that genes associated
with broad categories frequently have associations with the
category, but are not specific to that category alone. In part, this
can be adjusted for by increasing the stringency (e.g. random
average +3σ ) for larger categories.

Given the volume of genetic information in the literature
and the limited amount of time available to curate and develop
ontologies, we feel that this type of approach can aid the pro-
cess. What also may be of potential use, although yet to be
determined, are the relationships that ontological categories
have with other, non-gene objects such as diseases, pheno-
types, chemicals or drugs. These types of relationships could
suggest the creation of new ontological categories.
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