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ABSTRACT
Systems that extract structured information from natural
language passages have been highly successful in
specialized domains. The time is opportune for devel-
oping analogous applications for molecular biology and
genomics. We present a system, GENIES, that extracts
and structures information about cellular pathways from
the biological literature in accordance with a knowledge
model that we developed earlier.

We implemented GENIES by modifying an existing
medical natural language processing system, MedLEE,
and performed a preliminary evaluation study. Our results
demonstrate the value of the underlying techniques for the
purpose of acquiring valuable knowledge from biological
journals.
Contact: friedman.carol@dmi.columbia.edu

INTRODUCTION
Recently the fields of molecular biology and medicine
have enjoyed an explosive development; as a result,
individual researchers find it difficult to keep up with all
the new, relevant information. Several knowledge-based
systems have been developed that capture and organize
information, such as that in the domain of molecular
interactions (Chen et al., 1997; Karp et al., 1999; Selkov
et al., 1997). Most of these systems represent a single
well-defined area, such as metabolic pathways for one
bacterial species; even so, populating and maintaining the
knowledge bases (e.g., Ashburner et al., 2000; Baker et al.,
1999; Kanehisa & Goto, 2000)) requires enormous work.
For example, the articles listed in PubMed as related to
the cell cycle number hundreds of thousands; thus, manual
identification and entry of information into a knowledge
base is not practical.

We are developing a system called GeneWays to
perform massive automated extraction of information

Fig. 1. An outline of GeneWays, the system that embeds an NLP
component consisting of GENIES and other NLP components
(Krauthammer et al., 2000; Hatzivassiloglou et al., 2001). Compo-
nents that are starred are not yet implemented.

from research literature and automated maintenance of a
knowledge base that contains comprehensive information
about signal-transduction pathways, about the diseases
associated with the pathways, and about the drugs that
affect them. GeneWays contains many modules (see
Figure 1 for an overview). One module performs natural
language processing (NLP), but the details of the NLP
module are not shown in Figure 1. However that module
is itself composed of a number of components: a tagger
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that processes HTML tags and performs part of speech
tagging, a term tagger (Krauthammer et al., 2000) that
identifies genes and proteins, a semantic disambiguation
component (Hatzivassiloglou et al., 2001), and a compo-
nent called GENIES (GENomics Information Extraction
System) that extracts and structures information related
to molecular pathways. GeneWays starts with a literature
search to identify at least one known gene that is associ-
ated with the biological system of interest. Next, it does
an automated iterative search through reference databases
(such as MEDLINE), followed by automated download
of complete journal articles. At each iteration GENIES
captures regulatory pathways by parsing the literature to
identify known genes situated in the regulatory hierarchy
immediately “above” and “below” the original gene.
The iteration is repeated for each of the new genes. The
collected redundant and potentially controversial data
are compared, “weighted,” and “cleaned” by the domain
experts. Networks assembled in this way are then edited,
visualized, and modeled.

In this paper we focus on GENIES. It is based on an
adaptation of an existing NLP system, called MedLEE
(Friedman et al., 1994), which has been used successfully
in medicine since 1995. In the Background Section, we
discuss related work and present an overview of MedLEE.
The Methods Section describes our modifications to
MedLEE that resulted in GENIES. In the Evaluation
Section, we report on our preliminary evaluation and
present results, and in the Discussion Section we discuss
their significance.

BACKGROUND
There are a number of projects aimed at automatic
extraction of biological knowledge from electronic texts
(e.g., see Iliopoulos et al., 2001; Park et al., 2001;
Yakushiji et al., 2001, for recent overviews).

One type of system primarily identifies gene or protein
names in biological texts, (Fukuda et al., 1998; Jenssen
& Vinterbo, 2000; Krauthammer et al., 2000) a task that
is critically important for subsequent recognition of in-
teractions among molecular entities. Some of these sys-
tems are rule-based whereas others use external knowl-
edge sources. GENIES exploits a term tagging component
(Krauthammer et al., 2000) that identifies gene and protein
names in text by using both rules and external knowledge
sources.

Another type of system extracts both functional rela-
tions and molecular entities from text. Four such systems
depend heavily on recognition of noun phrases that
surround verbs of interest. Sekimizu and colleagues
(Sekimizu et al., 1998) extract relations associated with
seven different verbs (activate, bind, interact, regulate,
encode, signal, and function) found in Medline abstracts.

Their system finds noun phrases in a sentence that con-
tains one of the specified verbs, and determines which
are the most probable subject and object. The system’s
precision ranged from 67.8% to 83.3%, depending on the
particular verb used. Rindflesch and colleagues (Rind-
flesch et al., 1999; Rindflesch et al., 2000) report on two
different systems; one finds noun phrases in MEDLINE
abstracts related to the process of binding of substances
and the other, EDGAR, identifies relationships between
genes, and drugs in cancer therapy. Both systems use a
part-of-speech tagger, NLP techniques developed for the
Specialist language-processing system (McCray et al.,
1996), the Unified Medical Language System (UMLS;
Humphreys et al., 1998), GenBank (Benson et al., 2000),
and other knowledge sources and contextual rules to
identify noun phrases that have an appropriate semantic
type. To identify candidate noun phrases associated with
the binding relation, the first of the two analyzes those to
the left and right of the verb bind. A formal evaluation
found a recall of 72% and a precision of 79%. In contrast,
EDGAR is more complex; it first identifies candidate
noun phrases based on semantic classification, and then
attempts to identify interactions of drugs, genes, and cells.
The task of identifying predications is based on a partial
parser that is in early stages of development. Blaschke
and associates (Blaschke et al., 1999) extract protein
interactions from Medline articles without relying on
linguistic knowledge.

Other systems employ more complex NLP. Hafner
and colleagues (Hafner et al., 1994) built a prototype
system to populate a knowledge base of experimental
processes and analytic techniques that are described in
the Materials and Methods sections of biological-research
papers. This team undertook a parsing experiment, which
involved simplification of a sample set of sentences
that contained the verbs measure, determine, compute,
and estimate. They developed a grammar that contained
semantic phrases intended for parsing the simplified
sentences. This system is at an early stage of development,
and recognizes only simplified sentences that conform
exactly to the grammar.

Several systems were developed using technology
developed for the Message Understanding Conferences
(MUCs). Thomas and associates (Thomas et al., 2000)
report on Highlight, a system that uses part-of-speech
tagging and partial parsing of certain syntactic structures,
such as noun phrases. It also uses discourse analysis to
identify co-referring noun phrases, and then uses domain-
specific patterns to map relevant information to templates
that contain slots for specific information. For example,
one pattern looks for a noun phrase followed by a verb,
a particle, and another noun phrase. The system captures
only the subset of protein interactions associated with the
verb phrases interact with, associate with, and bind to. A
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given template is ranked according to a measure of confi-
dence that it is filled correctly, depending on factors such
as confidence that each noun phrase is a protein, number
of times the relation occurs, and modality associated with
the relation. Highlight’s overall recall ranged from 29% to
58%; its precision ranged from 69% to 77%. Humphreys
and colleagues (Humphreys et al., 2000) developed
two information extraction systems named EMPathIE
and PASTA. The first, EMPathIE, captures enzyme
interactions; the second, PASTA, captures information
concerning the role of aminoacids in protein molecules.
These systems are designed similarly to the one described
by Thomas and associates. The Humphreys’ systems
have an overall recall of 77% and a precision of 94% for
extracting information about interactions.

Two systems that identify protein interactions use more
comprehensive parsing techniques than partial parsing.
Park and colleagues (Park et al., 2001) capture protein
interactions using a part of speech tagger plus rules to
identify unknown words, a regular grammar to gather
information about neighbors of keywords, and a parser
that uses a type of grammar formalism called CCG
(combinatory categorical grammar) to scan the neighbors
to the left and right of the interaction to evaluate candidate
noun phrases as legitimate arguments of the interaction
and to obtain a parse of the sentence. In addition to
part of speech tagging, the CCG grammar also requires
a CCG lexicon, which assigns CCG categories to word
entries. The recall and precision of the system was
reported to be 48% and 80% respectively. Yakushiji and
colleagues (Yakushiji et al., 2001) also describe a system
that obtains a full analysis of the sentences. This system
not only captures relationships between substances but
also between events, which is a more complex task
because it identifies the dependencies or sequences of
the events. A full analysis of the sentence is used to
map the sentence to more regularized form called an
argument structure; this process involves identification
of the underlying verb, its subject and object arguments
as well as modifiers. Two preprocessors are used to
reduce ambiguity in the syntactic parsing stage. One
preprocessor identifies and semantically classifies noun
phrases that are technical terms; these are treated as
atomic units in the parsing stage. The second preprocessor
uses local constraints instead of part of speech tagging
to reduce lexical ambiguity. After the parsing stage, a
domain-specific rule-based component is used to map
the regularized form to frames representing substances,
events, and their relationships. A preliminary evaluation
showed that 23% of the relationships were extracted
uniquely and another 24% were extracted with ambiguity.
Measures for precision were not given.

Our system, GENIES is similar to Hafner’s system in
using a semantic grammar, but it also includes substan-

tial syntactic knowledge interleaved with semantic and
syntactic constraints; it works with the original complex
(rather than simplified) sentences. It is similar to Park’s
and Yakushiji’s systems in that it always attempts to
obtain a complete parse in order to achieve high precision;
however, if a sentence cannot be parsed exactly according
to the grammar rules, GENIES uses alternative strate-
gies, such as segmenting and partial parsing to achieve
improved recall. GENIES is also similar to Yakushiji’s
system because, unlike the other related systems, it
also captures relations between interactions, which is
more complex than capturing direct binary interactions
between two proteins. Moreover, the subject or object of
an interaction does not have to be a protein; it may be
a process, such as myogenesis; a tissue, such as T-cells
or a relationship between interactions. For example,
in Pax-3 may mediate activation of myod, the object
of may mediate is the interaction activation of myod.
GENIES is capable of extracting complex nested chains
of interactions, as we illustrate in Section 4. GENIES
is different from related systems in several other ways.
First, it parses complete journal articles, rather than only
abstracts. Second, rather than extracting only binding-
or enzyme-related interactions, GENIES semantically
classifies and captures a complete set of interactions and
relationships between biological molecules. Currently, it
recognizes about 125 different verbs that are important in
this field, and partitions them into 14 broader semantic
classes; we plan further expansion as we identify missing
interactions and semantic classes. GENIES also han-
dles nominalized and agentive forms of verbs, such as
inhibition and inhibitor, which occur frequently in this
domain. Third, it assigns semantic features to verbs of
interest, such as the number of arguments expected and
the argument order, as described in the Methods Section.

MEDLEE OVERVIEW
MedLEE consists of several modular components divided
according to functionality. Figure 2 shows the program-
ming components as rectangles, and the knowledge
sources as ovals. Its developers designed MedLEE to
facilitate application to other domains; which they can
accomplish by creating new domain-specific knowledge
sources while leaving the programming components as
they are.

The first component, the preprocessor, delineates the
sections of the report, and identifies individual sentences.
It does lexical lookup to identify and categorize single and
multiword phrases in each sentence, and to determine the
target output forms. Its output is (1) a list of elements,
where each element is either a single word or a list
of words that constitutes an atomic phrase, and (2) a
separate list that contains the categories and target forms.
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Fig. 2. Overview of the components used by MedLEE. The ovals
represent knowledge components and the rectangles programming
components.

For example, a sentence such as severe radiating chest
pain would be represented as [severe, radiating, [chest,
pain]].

The second component is the parser. It uses the
categories assigned to the words of the sentence and
follows the grammar rules to recognize well-formed
structures as well as to generate target forms. The target
output is in the form of a primary frame consisting of
a type–value pair followed optionally by other frames,
which represent modifiers of the primary frame. In each
frame, type represents the type of information, and value
represents the value. Thus, for our sample sentence, the
output would be [problem, chest pain, [degree, severe],
[descriptor, radiating]], where degree is a type, and
severe is a value. Similarly, problem is a type, and chest
pain is a value. There are two modifier frames denoting
the information types degree and descriptive; they have
the values severe and radiating, respectively.

If a parse of the sentence is not obtained, but the
sentence contains relevant clinical information, the error-
recovery component is activated. This component uses
various strategies to break up the sentence into segments
and to parse the segments. In effect, this component
relaxes the initial strict parsing and lexical requirements,
which achieve high specificity when possible.

The third and fourth components are not used by GE-
NIES. The compositional-regularization component com-
poses phrases that have been separated in the sentence. For
example, this component would combine the output forms
for chest and pain in the output form for radiating pain
was experienced in chest so that the primary information
is chest pain. The fourth component is the encoding com-
ponent, which maps the target forms generated by the pre-
vious phase into a specified coded controlled vocabulary.
For example, if the controlled vocabulary is the UMLS, the

Fig. 3. Current architecture of GENIES. There are two internal
knowledge sources: a lexicon and a grammar; three processing com-
ponents: a preprocessor, parser, and error recovery component; a
plug-in component term tagger that utilizes two external knowledge
sources (GenBank (Benson et al., 2000) and SwissProt (Bairoch &
Apweiler, 2000)).

value chest pain is mapped to the corresponding UMLS
code C0008031. Use of a coded vocabulary facilitates re-
trieval and subsequent access to the extracted information.

Numerous evaluations of MedLEE have been carried
out independent of the system developers (Elkins et al.,
2000; Hripcsak et al., 1995; Hripcsak et al., 1998; Jain &
Friedman, 1997; Jain et al., 1996; Knirsch et al., 1998).
MedLEE performed well, and the evaluators concluded
that the system was safe for use in real-world clinical
applications. (MedLEE is currently used in the production
mode at the New York Presbyterian Hospital in the New
York City.)

METHODS
GENIES Overview
We implemented GENIES by combining three existing
processing components of MedLEE with our own newly
developed component, term tagger (Figure 3):

• Term Tagger: This plug-in component currently uses
BLAST techniques, specialized rules, and external
knowledge sources to identify and tag genes and
proteins in the text articles

• Preprocessor: This MedLEE component determines
sentences, words, and phrases, and performs lexical
lookup.

• Parser: This MedLEE component uses a grammar
consisting of semantic patterns interleaved with
syntactic and semantic constraints to identify relevant
relationships and to specify target output forms.
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• Error recovery: This MedLEE component uses vari-
ous strategies to parse segments of a sentence.

Target Structure
GENIES’ basic output is similar to MedLEE’s. It con-
sists of frames, where each frame is a list beginning with
the elements type, value, possibly followed by additional
frames. The output for information associated with objects
and their properties is slightly different from that associ-
ated with actions. For example, the output for a protein
object Il-2 is a type–value frame [protein, Il-2]. If the ob-
ject has a modifier, it is represented as a nested frame;
for example, the output for activated Il-2 is [protein, Il-
2, [state, active]]. In this example, activated is interpreted
to be a state with a target value active.

Unlike objects, actions, in addition to the type–value
pair, have ordered arguments. For example, the output
for Raf-1 activates Mek-1 has a subject and complement
frame as follows: [action, activate, [protein, Raf-1],
[protein, Mek-1]]. This representational form can model
information that is both complex and nested, because
actions have subject or complement arguments that are not
only other objects but also may be actions or processes.
For example, the output for the phrase mediation of sonic
hedgehog-induced expression of Coup-Tfii by a protein
phosphatase is shown below with indentation added for
ease of comprehension:

[action,promote,[geneorprotein,phosphatase],
[action,activate,[geneorprotein,sonic hedgehog],

[action,express,X,[geneorprotein,Coup-Tfii]]]]

In this phrase, there are three actions: promote, which
is the target output form for mediation; activate, which
is the target form for induced; and express, which is the
target form for expression. The agent of the primary action
promote is an object that is a gene or protein that has
the value phosphatase. The complement of promote is
a nested action activate, which has an agent that is a gene
or protein object sonic hedgehog. Activate also has a
complement, which is another nested action express with
an unknown subject represented by X, and a complement
which is an object consisting of Coup-Tfii.

Another case of a nested action occurs when a substance
is modified by a relative clause or another type of
sentential clause containing an interaction. For example,
in Anergic alloantigen-specific human T-cells contain
phosphorylated Cbl that coimmunoprecipitated with Fyn,
the protein Cbl and the adjoining relative clause that
coimmunoprecipitated with Fyn would be represented as:

[protein,Cbl,[state,phosphorylated],
[action,attach,[protein,Cbl,[state,phosphorylated]],

[protein,Fyn]]]

Table 1. Semantic classes associated with actions, processes, and other
relations.

Class Actions and Processes

activate hasten, incite, up-regulate
attach bind, form complex, add
breakbond sever, cleave, dephosphorylate
cause based on, due to, result in
contain contain, container
createbond methylate, phosphorylate
generate express, produce, overexpress
inactivate repress, suppress, down-regulate
modify mutate, modify
process myogenesis, apoptosis, cell cycle
react interact, react
release disassemble, discharge
signal regulate
substitute replace, substitute

This nested action attach corresponds to the target
form of coimmunoprecipitated with; it has a subject
phosphorylated Cbl that is the same as the outer host
phosphorylated Cbl. The representation illustrated above
would itself be nested because it would occur as the
complement of the relation contain; the subject would be
the frame representing anergic alloantigen-specific human
T-cells.

Semantic Categories
The bulk of our work to create GENIES was the devel-
opment of a grammar and a lexicon. We started with es-
tablishing semantic categories for the extraction system –
this task in its turn required development of an ontology
for the signal transduction domain (Rzhetsky et al., 2000).
The semantic categories identify relevant information to
extract and are used by the lexicon and the grammar. A
portion of the categories overlap with MedLEE’s (for ex-
ample, certainty (e.g., no), and connective (e.g., after)),
but most of the categories are specific to genomic func-
tional information (for example, types of substances and
biological interactions). Table 1 contains descriptions and
examples of the semantic classes associated with interac-
tions and certain relations. Examples of semantic classes
associated with objects are amino acid, cell, complex, do-
main, DNA region, gene, protein, site, small molecule,
species, state, and substance.

Term Tagger
As explained, the term tagger (Krauthammer et al., 2000)
identifies genes and proteins by using BLAST techniques,
special rules, and external knowledge sources, such as
GenBank (Benson et al., 2000) and Swiss-Prot (Bairoch &
Apweiler, 2000). The term tagger is a plug-in component
and GENIES is designed to operate with or without it.
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When the tagger identifies a term, it encloses it in an XML
tag. If the tagger is not used, the names of genes and
proteins must be incorporated into the lexicon. The tagger
significantly increases the flexibility of the system in
the quickly changing environment (new gene and protein
names appear weekly!): it eliminates the lexical effort that
would be required to update the lexicon frequently, and it
allows for a more tailored treatment of specialized textual
terms.

Preprocessor
The preprocessor separates the article into sentences and
the sentences into single words or atomic multiword
phrases. Words and atomic phrases are identified via tags
or lexical lookup. If a phrase has a tag, the preprocessor
records the information associated with the tag and
bypasses lexical lookup. Lexical lookup is used for terms
in the domain that are not identified by the tagger.
Currently, there are about 530 entries in the lexicon that
correspond to phrases associated with interactions and
relations.

The lexicon developed for GENIES contains several
informational categories that overlap with MedLEE for
words associated with certainty, degree, and quantita-
tive information, as well as categories associated with
functional words such as prepositions and conjunctions.
An entry for an object or property in GENIES is similar
in form to an entry for a clinical term in MedLEE: it
specifies only the semantic category and target form.
In contrast, the entries associated with interactions and
certain relations contain additional information that is
needed for accuracy. Interactions are associated with a
particular number of arguments, and the arguments appear
in a certain order; as such this additional information is
specified in the lexical entries. For example, activates is
associated with two arguments, whereas transcribes is
associated with one. In X activates Y, the first argument
of activate, X, is the agent, and the second argument,
Y, is the complement. The relation attributable to also
has two arguments, but the situation is reversed: In X is
attributable to Y, the target form is cause, the second
argument, Y, is the agent and the first argument, X, is the
complement.

Syntactic classifications are also maintained in the
lexicon for entries associated with interactions. The clas-
sifications are associated with verbal forms: v, vp, ved,
ven, ving, vn, vor (e.g., activate, activates, activated,
activated, activating, activation, and activator); the parser
uses these categories to constrain the grammar patterns
associated with interactions.

Parser
The parser uses grammar rules to recognize well-formed
patterns and to generate target output. A grammar rule

consists of (1) specification of semantic and syntactic
components, (2) specification of the target form if the
rule is successful, and (3) constraints that ensure that
the components are well formed. We developed our
grammar manually by observing typical semantic and
syntactic co-occurrence patterns in sample texts. The
grammar is a definitive clause grammar (DCG) (Pereira
& Warren, 1980). The initial implementation recognized
simple binary actions, such as X activates Y; we then
incrementally added the ability to handle more complex
structures, such as nested actions, modifiers of objects
and actions, relations between actions, relative clauses,
and conjunctions. The following is output obtained for the
sentence phosphorylated Cbl coprecipitated with CrkL,
which was constitutively associated with the C3G:

[action,attach,[protein,Cbl,[state,phosphorylated]],
[protein,CrkL,[action,attach,[protein,CrkL],
[protein,C3G]]]]

In the example, there is one nested action and one
primary action. Both actions are attach, corresponding
to the target output form associated with coprecipitated
with and associated with; the agent and complement
in the nested action are the proteins CrkL and C3G
respectively. The outer action has an agent, which is the
protein Cbl, and a complement, which is the protein CrkL
that contains a nested action. Note that, for the protein
Cbl, GENIES also captured the state, phosphorylated.
The grammar rules for GENIES are the same in form
as, but are substantially different in content from, the
rules used by MedLEE (although there are overlapping
rules). Both grammars contain relations that connect two
interactions, such as during and and. For example, the
output for the phrase Cbl tyrosine phosphorylation during
induction of anergy is a relation during that connects two
actions phosphorylate and activate, both of which have
unspecified agents:

[rel,during,[action,phosphorylate,X,[protein,Cbl],
[site,[aminoacid,tyrosine]]],
[action,activate,X,[state,anergy]]]

EVALUATION
We performed a pilot evaluation study. We compared GE-
NIES’ output to that obtained manually by an expert. Inde-
pendently of system developers, the expert chose an article
from Cell, (Maroto et al., 1997), read it, and highlighted
those sentences that he judged to contain information rele-
vant to signal transduction pathways. In addition, he noted
the binary and nested relations of interest for each high-
lighted sentence. We also used GENIES to extract signal
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Fig. 4. Molecular interactions that were extracted by GENIES from
the test Cell article were visualized by the authors with the program
CUtenet. (Koike & Rzhetsky, 2000)

transduction-related information from the same article au-
tomatically, and to obtain the structured output. We then
calculated the recall and precision measurements. Recall
was computed as the number of correct relations extracted
by GENIES divided by the number obtained by the ex-
pert, and precision was computed as the number of correct
relations extracted by GENIES divided by all relations ex-
tracted by GENIES. Measurements for binary and nested
relations were computed separately.

Results of evaluation
The article contained 7,790 words and took 1.3 minutes
to process on a 500 MHZ PC with 128 MB RAM. The
expert identified 51 binary relations; GENIES correctly
extracted 27 (53%) stemming from the same sentences.
GENIES’ precision was thus 100%. Many of the relations
were redundant: in the whole article only 19 relations
were unique. Of the 19, GENIES retrieved 12 (63%;
Figure 4). Thirteen of the relations identified by the expert
contained nesting; GENIES captured 8; 7 were correct and
1 was incorrect (54% sensitivity; 88% precision). GENIES
identified 30 binary relations not noted by the expert for a
total of 57. The expert evaluated the additional relations,
and judged that only two were incorrect. Therefore, we
evaluated the precision of GENIES (when considering all
binary information) for extracting binary relations as 96%
(55/57).

DISCUSSION
Our pilot evaluation was based on only one article; The
article was chosen by the expert, rather than by the
system developers. The work that the expert performed

was considerable (a few hours) and in general it is rather
difficult to find volunteers for such an evaluation. To
address this problem, we are currently developing tools
to assist the expert in recording and editing interactions.
Ideally, we would like to evaluate the system with a
large number of articles (containing several hundred
relations), although that would require an extraordinary
amount of work. We have subsequently processed 140
complete journal articles in preparation for a second more
comprehensive evaluation.

GENIES processes complete articles, whereas other sys-
tems process abstracts only. Processing complete articles
has clear-cut advantages, although the evaluation effort
is substantially more time consuming. Complete articles
contain more interactions than do abstracts (only 7 of the
19 unique interactions that the expert identified were men-
tioned in the abstract of the Cell paper (Maroto et al.,
1997)), and therefore more information, than the abstracts.
Another advantage is that complete articles contain redun-
dant information; if an interaction is not extracted from
one part of the article by the system, it may still be ex-
tracted from another portion of the article. In our evalua-
tion, the expert noted that there were 51 interactions over-
all, but that only 19 were unique. An additional benefit is
that recognition of a redundant interaction may justify in-
creased confidence in the correctness of the interaction.

We analyzed the errors that occurred and found that two
types caused the majority of the problems. One type was
due to an incomplete lexicon. For example, expands was
not in the lexicon, causing an incorrect interpretation of
Ectopic expression of SHH expands myod expression in
the paraxial mesoderm of either chick. Future extension
of the lexicon is likely to reduce this type of error. The
second type of error was caused when a well-formed
pattern that was covered by the grammar was interrupted
in the middle by information not in the grammar rule
or in the lexicon; sometimes this was due to non-critical
information, (e.g. directly or indirectly in Pax-3 directly or
indirectly activates Myod expression), and sometimes to
lexical omissions (.e.g. in Inhibition of hedgehog signaling
in the paraxial mesoderm of zebrafish reduces myod
expression, the phrases paraxial mesoderm and zebrafish
were not in the lexicon, thereby interrupting inhibition
of hedgehog signaling reduces myod expression). A few
sentences were not interpreted correctly because they were
very complex. For example in the output for Wnt or
SHH signals alone are insufficient to induce high level
expression of either pax-3 or pax-7, the system incorrectly
represented that either Wnt signals were insufficient to
induce expression or SHH signals were insufficient. Other
types of errors that occurred infrequently were due to
incorrect tagging and lack of a discourse component.

One of our goals in developing GENIES was to achieve
a high accuracy. Our preliminary results for precision,
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96% (binary relations) and 88% (nested relations) respec-
tively made us optimistic that we would achieve our goal.
This measure compares favorably with the evaluation
results of the related systems discussed in Section 2. The
results for precision also are comparable to those that we
obtained for MedLEE in the medical domain (Friedman &
Hripcsak, 1998). Because MedLEE is a mature system, it
has been evaluated numerous times, often independently
of the system developers. Our results in the GENIES
evaluation demonstrate that similar methods can be used
to extract accurate information associated with molecular
pathways, but that syntactic knowledge is more useful in
this domain than in the medical domain (data not shown).

Future work in improving GENIE will consist of
(1) extending the lexicon; (2) adding more patterns to
the grammar; (3) improving partial parsing techniques;
(4) integrating the medical domain with the molecular
domain to capture molecular pathways, diseases, drugs,
and their relationships; this task should be relatively
straightforward in that GENIES and MedLEE use the
same processing engine; only the grammars and lexicons
differ and need to be combined. Future work involving
the other NLP components of GeneWays that affect
GENIES will involve (5) establishing a method for the
unique identification of synonymous forms of substances;
(6) improving the term tagger; (7) improving the term
disambiguation component and linking it to GENIES;
(8) adding a discourse component; (9) adding a filter
to weed out irrelevant text, such as references, and to
recognize special structures, such as titles and captions;
(10) resolving conflicting hypotheses within one article
and between articles.

SUMMARY
We have demonstrated that it is possible to apply the gen-
eral information-extraction system MedLEE, previously
applied to the domain of clinical records to the domain
of literature associated with molecular information. Our
pilot evaluation demonstrated high precision (96%) and
satisfactory recall (63%). To build GENIES, we created
a new knowledge model, (Rzhetsky et al., 2000), new se-
mantic categories, a new lexicon, a new grammar, and new
representational frames. We also made basic changes to
use specialized processes and external knowledge sources
to identify genes and proteins, and we incorporated more
syntactic and semantic features into the grammar, partic-
ularly for verbs of interest. We will continue to refine,
improve, and evaluate GENIES because it demonstrated
its effectiveness for acquiring worthwhile knowledge from
journal articles.
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