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ABSTRACT
Motivation: Mining the biomedical literature for references
to genes and proteins always involves a tradeoff between
high precision with false negatives, and high recall with
false positives. Having a reliable method for assessing the
relevance of literature mining results is crucial to finding
ways to balance precision and recall, and for subsequently
building automated systems to analyze these results. We
hypothesize that abstracts and titles that discuss the
same gene or protein use similar words. To validate this
hypothesis, we built a dictionary- and rule-based system
to mine Medline for references to genes and proteins, and
used a Bayesian metric for scoring the relevance of each
reference assignment.
Results: We analyzed the entire set of Medline records
from 1966 to late 2001, and scored each gene and protein
reference using a Bayesian estimated probability (EP)
based on word frequency in a training set of 137 837
known assignments from 30 594 articles to 36 197 gene
and protein symbols. Two test sets of 148 and 150
randomly chosen assignments, respectively, were hand-
validated and categorized as either good or bad. The
distributions of EP values, when plotted on a log-scale
histogram, are shown to markedly differ between good and
bad assignments. Using EP values, recall was 100% at
61% precision (EP = 2 × 10−5), 63% at 88% precision
(EP = 0.008), and 10% at 100% precision (EP = 0.1).
These results show that Medline entries discussing the
same gene or protein have similar word usage, and that
our method of assessing this similarity using EP values is
valid, and enables an EP cutoff value to be determined that
accurately and reproducibly balances precision and recall,
allowing automated analysis of literature mining results.
Contact: jlevy@incellico.com; jleonard@incellico.com;
jeffcolombe@hotmail.com.

INTRODUCTION
Literature searching is one of the most common
information-processing tasks in the biomedical
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sciences. Medline search engines such as Entrez/Pubmed
(Roberts, 2001; Schuler et al., 1996) allow retrieval of
document references based on text matching in an entry’s
fields. A user then hand-filters these results by reading
the titles and/or abstracts, keeping relevant entries and
discarding irrelevant ones. The final set of relevant articles
represents the high-quality references on a given topic.

The above information retrieval (IR) problem of finding
relevant documents is simple but time consuming for a
human to perform. Retrieval of relevant documents can
be the first step in information extraction (IE) processes
that build knowledge from documents in a domain, such
as the automatic detection of protein–protein interactions
in the literature (Blaschke et al., 1999; Humphreys et al.,
2000; Marcotte et al., 2001; Ono et al., 2001; Thomas
et al., 2000; Yoshida et al., 2000), or the construction
of literature networks (Jenssen et al., 2001). The first
example depends on being able to correctly identify
documents relevant to protein–protein interactions, while
both examples rely on being able to correctly identify
documents relevant to specific genes and proteins, usually
by detecting gene and protein symbols or abbreviations
in the article. In this paper, we address the problem of
retrieving relevant articles for a gene or protein using an
automated process for document filtering, followed by an
assessment of the probabilistic significance of each article.

Software for finding relevant documents must be able to
first identify terms related to the search in the titles and
abstracts and second must distinguish between relevant
and irrelevant results. The success of a given program’s
ability to do this has typically been measured using
precision (percent of relevant results) and recall (percent
of total known results), as well as false-positive and false-
negative rates. Stringency parameters can be varied to
balance precision versus recall, and to shift the balance
to either side. A curve in which high stringency gives low
recall and high precision, while low stringency gives high
recall and low precision is usually observed (see Marcotte
et al., 2001, Figure 2b).

Automated detection of relevant words or terms can use
linguistic, statistical and/or machine-learning approaches.
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Fig. 1. Histogram of Medline entries per year in our training set.
The training set was constructed by taking the entire set of Medline
entries that had cross-references to sequence databases such as
GenBank. Accession numbers were then translated to gene and
protein symbols by traversing each record’s cross-references, for
example from GenBank to LocusLink, which contains a symbol.
Note that 1974, 1975 and 1976 have one, zero, and three counts,
respectively.

Linguistic approaches include dictionary- and rule-based
methods that look for specific words and sentence features
in order to identify terms. In the biomedical literature,
dictionary terms can be gene and protein names or
symbols, or subject-specific terms. English words can be
filtered using an English dictionary. The rules usually
take into account variable features such as punctuation,
hyphenation and capitalization in order to distinguish real
from false biomedical terms, and also to identify new
symbols or terms (Fukuda et al., 1998; Proux et al.,
1998). Though dictionary-based approaches are useful,
they suffer from high false-positive rates when used
without other filters or subsequent statistical analysis
(Mutalik et al., 2001; Nadkarni et al., 2001).

Machine-learning approaches use features within the
abstract and title text for training adaptive algorithms.
For example, an iterative keyword-extraction method
has been applied to the problem of assigning proteins
to classes using SwissProt descriptions (Tamames et
al., 1998), naive Bayesian, decision trees and inductive
learning methods have been used to differentiate between
biomolecule types (Hatzivassiloglou et al., 2001) and
a hidden Markov model has been used for gene name
recognition (Collier et al., 2000). The features chosen
for training can be similar to features recognized in rule-
based approaches, such as capitalization, Greek letters, or

Fig. 2. Distribution of good (+) and bad (−) symbol assignments
over the range of estimated probability (EP) values. Dashed lines
show data from test set 1, 148 manually checked randomly-sampled
assignments, while solid lines show the data from test set 2, 150
manually checked randomly-sampled assignments. The two test sets
are distributed similarly, showing that samples were not biased. The
distributions of good assignments are shifted to higher EP values
relative to the distribution of bad assignments, validating the use of
EP values for determining relevance.

neighboring words.
Statistical approaches can use metrics such as word

frequency and term weighting to filter irrelevant articles
and to identify relevant symbols or terms (Andrade
and Valencia, 1998). Metrics can include Bayesian
probability (Marcotte et al., 2001), maximum entropy
(Raychaudhuri et al., 2002) or other methods, such as
C/NC value (Frantzi and Ananiadou, 1999). The Bayesian
approach used by Marcotte et al. involved term and word
frequencies to calculate a likelihood score of Medline
abstracts discussing protein–protein interactions. Using a
training set of abstracts known to discuss protein–protein
interactions, they showed that the distribution of log
likelihood scores was higher for Medline abstracts dis-
cussing interactions than for a random set of abstracts.
This allowed them to choose an optimal cutoff score that
distinguished between the two distributions. Because the
two distributions overlapped, they had to choose a cutoff
score that balanced precision and recall. Raychaudhuri
et al. used a maximum entropy method to assign Gene
Ontology (GO) codes to genes associated with abstracts.
In their method, a confidence measure was calculated that
correlated well with prediction accuracy.

Using similar logic, we propose that abstracts discussing
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Table 1. Example assignments of Medline entries to gene and protein symbols, including the calculated Bayesian estimated probability (EP) value

PubMed-ID Organism Symbol EP-value Assessment

9054946 Human STFB 0.576192515 Relevant
9185522 Human MSP 0.160713616 Relevant
9185698 Human PACE4 0.155983971 Relevant
9197532 Human MYC 0.150897133 Relevant
9088342 Human ERCC4 0.145598152 Relevant
8157699 Mouse–human RARG 0.144040377 Relevant
9018118 Human BEK 0.13627135 Relevant
9006941 Human MACH 0.134491264 Relevant
8180497 All RAB17 0.094318479 Relevant
9046055 Mouse–human DMD 0.075282465 Relevant
9152386 Human CYP2D 0.070965125 Relevant
9055826 Rat PEM 0.064503465 Relevant
9174094 Human SCN4A 0.062759006 Relevant
9177787 Human ARHG 0.052642562 Relevant
9176151 Rat RAB6 0.049656803 Relevant
9128246 Mouse G 0.047954011 Irrelevant
9120417 Human MOG 0.047910074 Relevant
9022004 Mouse RAG1 0.045212177 Relevant
9188795 Rat MUC2 0.044945587 Relevant
8112598 Human MAR 0.044362471 Irrelevant
9010225 Mouse–human EPS8 0.043756746 Relevant
9188856 Human HGF 0.042814845 Relevant
9093908 Human ICE 0.042224029 Relevant
9166284 Human MT1-MMP 0.040641578 Relevant
9021013 Human PAX3 0.036484183 Relevant
9143297 Human MT2 6.79 × 10−4 Irrelevant
9203629 All AMP 6.02 × 10−4 Irrelevant
9177684 All TRP 5.40 × 10−4 Irrelevant
9166733 All TRANSFERRIN 5.10 × 10−4 Irrelevant
9119016 Mouse–human UPA 4.85 × 10−4 Relevant
8139576 All FTZ 4.54 × 10−4 Irrelevant
9104036 All HIS3 4.41 × 10−4 Irrelevant
8152905 Mouse–human HS 3.75 × 10−4 Irrelevant
8977179 Human RAF1 3.65 × 10−4 Relevant
9075785 Human S 3.35 × 10−4 Irrelevant
8980296 Human S 3.11 × 10−4 Irrelevant
9143508 Human P32 3.11 × 10−4 Irrelevant
9103614 All FST 3.07 × 10−4 Irrelevant
9168617 All FLA 2.46 × 10−4 Relevant
9027492 Human RMSA1 1.72 × 10−4 Relevant
9002272 All INA 1.18 × 10−4 Irrelevant
9174597 Human P50 1.14 × 10−4 Relevant
9108071 Human E 1.02 × 10−4 Irrelevant
9202289 Mouse–human ED 7.71 × 10−5 Irrelevant
9093942 Human E 7.55 × 10−5 Irrelevant
9108393 Human E 7.50 × 10−5 Irrelevant
9058790 Human P50 7.35 × 10−5 Relevant
9159467* All PRP21 7.00 × 10−5 Relevant
8978713 All NG 6.77 × 10−5 Irrelevant
9048912 Human E 5.60 × 10−5 Irrelevant
9151810 Human S 4.19 × 10−5 Irrelevant

The examples are taken from test set 2, which includes entries from 1997. Assignments were assessed by reading the title and abstract, then deciding if the
article was either relevant or irrelevant to the gene or protein. The assignment marked by the * is an example of a false negative.

not only a particular topic or GO category, but also
abstracts discussing a particular gene or protein, use

similar language and therefore have similar word frequen-
cies. We show, using a Bayesian probabilistic method that
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this hypothesis can be validated and the results used to
create a rich and relevant set of literature references for a
given set of genes and proteins.

SYSTEM AND METHODS
In order to validate our hypothesis, we developed a system
for detecting gene and protein symbols in Medline entries,
and for determining the relevance of each Medline entry
to the gene or protein it referenced. This required the
following components:

(1) the complete set of Medline entries from 1966 to late
2001;

(2) dictionaries of gene and protein symbols, as well as
English words;

(3) a high-quality training set of Medline entries which
were known to discuss specific genes and proteins in
our dictionaries;

(4) rules for use with above dictionaries to find
gene/protein symbols in Medline articles while
filtering out non-symbols;

(5) Bayesian probabilistic method for calculating an
article’s relevance to a particular gene/protein, using
word occurrences found in the training set.

Training data set
The first requirement for the system was a set of known
cross-references between gene and protein symbols and
Medline entries. Medline was obtained from the National
Library of Medicine through a licensing agreement. We
found that many Medline articles contain cross-references
to accession numbers from biological databases such as
GenBank, so we chose the entire set of Medline entries
with accession numbers to create our training set.

In order to translate accession numbers to the gene or
protein symbols they represent, we used our CELLTM

Annotate/Translate software (http://www.incellico.com/
products.html). This software automates the process of
traversing cross-referenced records in different biological
databases. For example, by traversing cross-references
between GenBank accession numbers and LocusLink
entries, we were able to retrieve the appropriate gene
symbols. Though it was not possible to successfully
translate all accession numbers to symbols, the end result
was 137 837 cross-references between 30 594 unique
Medline entries and 36 197 gene or protein symbols.

We then determined word frequencies for the training
set. For each gene or protein, the set of words from all
relevant abstracts and titles was determined. Next, we
calculated the estimated probability of each of those words
appearing in an abstract or title discussing that gene or
protein. In this way, a table of gene and protein symbols
and their associated word probabilities was created.

Table 2. Results of Student’s t-test performed on EP values from both good
(+) and bad (−) assignments from the two test sets

Groups tested p-value

Test set 1 good vs test set 2 good 0.0547
Test set 1 good vs test set 1 bad 1.02 × 10−4*
Test set 2 good vs test set 2 bad 0.00982*
Test set 1 bad vs test set 2 bad 0.865
Test set 1+2 good vs test set 1+2 bad 2.32 × 10−4*

*p < 0.05
The distribution of EP values is significantly different between good (+)
and bad (−) assignments for each test sets, as well as for both test sets
combined. In addition, good (+) distributions for both test sets are not
significantly different, as are bad (−) distributions from both test sets.

Identification of gene/protein symbols in Medline
entries
To identify symbols in Medline entries, we applied a
dictionary- and rule-based approach to the entire Medline
database spanning the years 1966 to late 2001. The
dictionaries, consisting of lists of gene and protein
symbols, were compiled by extracting gene and protein
symbols from the public databases HUGO (Povey et
al., 2001), OMIM (Hamosh et al., 2002) and LocusLink
(Pruitt and Maglott, 2001). In many instances, the dictio-
naries contained multiple symbols for a particular gene
or protein due to the existence of alternate names or
synonyms.

Because gene and protein symbols can sometimes be
ambiguous, referring to different products in different
organisms, we created species-specific dictionaries. We
chose to use model organisms, primarily due to the avail-
ability of information in the public databases. Dictionaries
were split into the following organisms: mouse, human,
rat, zebrafish, and fruit fly. In addition, we constructed an
all-inclusive dictionary for Medline entries that either did
not contain a specific species or that referred to a different
species than the five listed above, and a human+mouse
dictionary for entries referring to both human and mouse.
At the time of analysis, the dictionaries contained between
1856 and 194 535 gene symbols (Table 3).

Each word in a Medline title and abstract was compared
to the appropriate dictionary (either organism-specific or
multiple-organism). Gene symbols that were also English
words were stored in species-specific tables and were used
to help determine whether a word was a true gene symbol
or an English word. In this way, we were able to better
filter out potential bad assignments.

In addition to the dictionary-look-up step, numerous
rules were used to determine if a particular word in an
entry’s title or abstract was a gene or protein symbol,
and that it was not an English word. These rules included
removing concatenating tokens from words to see if the

1518



Searching Medline using a Bayesian approach

Table 3. Number of gene and protein symbols contained in each species-
specific symbol dictionary. Gene and protein symbols were taken from
HUGO, LocusLink, and OMIM

Species Number of symbols

Human 94 867
Mouse 59 140
Rat 7 741
Zebrafish 1 856
Fruit fly 52 634
Human + mouse 141 861
All 194 535

result was a gene symbol (for example, changing IL-4
to IL4) and replacing Greek characters with their Roman
equivalents (for example, changing PKC-alpha to PKCA).
In addition to these rules, another rule was used to filter out
Medline entries that did not discuss genes or proteins. This
rule selected genetics-related entries based on the presence
of genetics-related MESH headings or the presence of the
words ‘gene’ or ‘oncogene’, or their variants in an abstract
or title, and discarded all other Medline entries. This
step substantially reduced processing time, as most entries
in Medline do not discuss specific genes or proteins.
Approximately 90% of the Medline entries were discarded
during this step in the program, leaving a little over
1 million entries to be searched for gene and protein
symbols. We also included rules to find new gene and
protein symbols on-the-fly, based on proximity to words
such as ‘gene’ or ‘oncogene’. For example, if a word in
the title or abstract was not found in the gene symbol
dictionary, was not an English word, and was immediately
followed by the word ‘gene’, among other specific criteria,
then it was considered to be a gene symbol. Finally, if
a word was in the appropriate gene symbol dictionary,
and was determined by our rules to be a gene or protein
symbol, then we created a cross-reference between the
symbol and the article, which we call an assignment.

Determining the relevance of an article to a
gene/protein
In order to calculate the relevance of a given article to
a gene/protein symbol to which it referred, we used a
Bayesian method for calculating the estimated probability
(EP) based on the words that appear in its text. The method
is based on our hypothesis that articles discussing the
same gene or protein will use similar language, or in other
words, that the articles will be more similar to each other
than to the background set of all words in the genetics-
related subset of Medline. We determined the probability
of a given word occurring in any Medline entry in the

subset as:

p̂(word) = f (word) = # articles with word

total # articles

where p̂(word) is the estimated probability of a word,
f (word) is the relative frequency of the word, determined
by counting word occurrences for all Medline entries
in the genetics-related subset. We also determined the
estimated probability of the presence of a given word in
the title or abstract of an article discussing a particular
gene or protein as:

p̂(word | gene) = f (word | gene)

= # articles with word AND gene

# articles with gene

We then calculated the probability of any article in the
genetics-related subset referring to a given gene as:

p̂(gene) = f (gene)

= # articles with gene

total # articles discussing gene or proteins

The probability of a symbol for a given gene/protein co-
occurring with a given word was calculated as:

p̂(gene | word) = p̂(word | gene) · p̂(gene)

p̂(word)

Finally, estimated probability (EP) values were calculated
using a nave Bayesian, or factorial, prior as follows:

E Pj,I = p̂(gene j | wordi=1...n)

= 1 −
∏

i=1...n

(1 − p̂(gene j | wordi ))

for all genes j in the set of gene symbols J = 1 . . . m
with all words i in the set of words I = 1 . . . n comprising
each abstract. The estimated probabilities were subtracted
from 1 in order to treat the insignificance of each word,
rather than the significance, as a factorial cause. This
way, multiple words that are significant in predicting
gene/protein references are made to have a mutually
reinforcing effect, rather than a mutually undermining
effect in the joint prediction when they are multiplied
as factors, while insignificant words are made to have a
diminishing effect on the final prediction when treated
as factors. In addition, it is necessary to subtract the
probability of the gene given the word from 1 to account
for words that were not in articles in the training set.
Subtracting each probability from 1 prevents these ‘new’
words from being assigned a probability of 0, which when
multiplied by all of the other probabilities would return an
overall EP value of 0, even if all of the other words were
highly probable and very indicative of that particular gene.
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Table 4. The 20 symbols referenced by the most articles in the training set

Symbol Number of Articles

RAB20 316
RAB19 178
PPY 154
PPY-55A 146
D33 144
PPD33 144
NUP214 139
KIAA0023 139
CAIN 139
D9S46E 139
CAN 139
CANA1 134
RH30A 111
RH4 111
RHPI 111
RHCE 111
VEGFA 109
VEGF 109
ADH-3 106

RESULTS
Our hypothesis is based on the assumption that Medline
abstracts and titles that discuss the same protein or gene
will tend to use similar words. Using a dictionary- and
rule-based method, we processed the entire set of Medline
entries from 1966 to late 2001. An estimated probability
(EP) value was calculated for each result, based on a
Bayesian conditional probability of a Medline entry’s title
or abstract containing words that have been used by other
articles known to discuss that particular gene or protein.

To identify any bias in our training set, we examined the
number of articles per symbol and the number of article
per year in the training set. The number of articles per
symbol follows an exponential decay curve, with about
42% of symbols referenced by one article, 18% referenced
by two articles, 10% referenced by three articles, etc. with
a mean of 3.7 articles per symbol (data not shown). More
than 2500 symbols had 10 or greater articles, the top 20 of
which are shown in Table 4. To examine the distribution of
cross-references in our training set over time, we plotted
a histogram of Medline entry counts per year, shown in
Figure 1. The dates range from 1974 to 2001, with more
than 87% of entries having publication dates of 1990 or
later. This is most likely due to the sharp increase in
the publication of gene sequences in the 1990s (see http:
//www.ncbi.nlm.nih.gov/Genbank/genbankstats.html).

In order to check our results, and to validate that our
EP values truly reflected an article’s relevance to a gene
or protein, a set of assignments from our results were
hand validated. Medline is released on a single digital
tape and is organized into more than 400 single files of

entries in XML, which we will refer to as sections, each
ranging from <1 megabyte to >100 megabytes. Entries
from a single year usually span many sections. In order to
perform a completely unbiased analysis, two test sets were
created by randomly choosing processed documents from
different sections of Medline. The first test set, from 1994,
contained 148 assignments, and the second test set, mainly
from 1997, had 150. Each Medline entry was retrieved,
and the title and abstract read and evaluated for relevance
to the gene or protein in our assignment. Results were
binned as being either good (+) or bad (−). In order to
be classified as a good assignment, the symbol must refer
to a gene or protein, and not to a disease, cell line, or
other acronym or English word. Examples of good and
bad assignments are given in Table 1.

The distributions of EP values from each bin (good (+)
and bad (−)) for both test sets were then plotted on a
histogram (Figure 2). The histogram shows that for both
test sets, the distribution of EP values for bad assignments
is different than that for good assignments, which peak
at between 0.001 and 0.01 and between 0.01 and 0.1,
respectively. Student’s t-tests were performed to verify
that test sets were similar to each other, and that good
(+) and bad (−) assignments were significantly different
(Table 2).

A precision versus recall curve was calculated using
both test data sets (total 298 assignments; Figure 3). At
varying EP values, we achieved the following recall and
precision rates, respectively: 100% and 61% at EP = 2 ×
10−5, 63% and 88% at EP = 0.008, and 10% and 100% at
EP = 0.1. We empirically decided that EP = 0.008 was a
good cutoff for future analyses requiring high precision
and good recall, though other EP values offer different
balances between precision and recall, depending on the
demands of the application.

DISCUSSION
In this paper, we showed that Medline abstracts and titles
discussing the same gene or protein use similar language,
a similarity which we measured in the form of word fre-
quencies and calculated using a Bayesian estimated prob-
ability (EP). It has been previously shown that Medline
entries discussing protein–protein interactions can be dis-
tinguished from entries not discussing interactions using a
set of discriminating words which appear at unexpectedly
high or low frequencies in Medline abstracts (Marcotte et
al., 2001). Instead of calculating discriminating word sets,
our method uses all words in the title and abstract, and
our EP values are based on the probability of a word ap-
pearing in an abstract that discusses the given gene or pro-
tein, not by the frequency it appears in any single abstract.
A large training set of Medline entries (>30 000) was re-
quired for this purpose, and was also necessary for having
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Fig. 3. Precision versus recall at varying Bayesian estimated
probability (EP) values. The lowest precision is 61% at 100%
recall, indicated by the vertical dotted line. Precision and recall stay
relatively proportional until about EP = 0.008 (upper horizontal
dotted line), above which precision increases little while recall
diminishes significantly. EP = 0.008 offers a good balance between
precision and recall, which are 88% and 63% respectively. At EP
values of 0.1 or greater, precision is 100%, shown by the lower
horizontal dotted line.

a large number of gene and protein symbols (>36 000)
available for EP value calculation. The process of creat-
ing the training set included the translation of accession
numbers to gene and protein symbols, which involved au-
tomating the process of traversing references between bio-
logical databases. Using our CELLTM Annotate/Translate
software, we were able to translate GenBank accession
numbers to LocusLink gene symbols, for example, though
other methods might have been used as well.

One of the problems of using a dictionary of symbols
is that finding the symbol in the text does not mean that
the text refers to a gene or protein with that symbol. Since
symbols are generally acronyms, abbreviations, or other
combinations of letters and numbers, other concepts that
share that symbol also appear in abstracts and titles. For
example, CA2 refers to the carbonic anhydrase-II protein,
but it also refers to the Ca2+ ion of calcium. If we were
to add a rule eliminating symbols with a ‘+’ after them,
another problem would be introduced in that cell lines with
a particular protein are also indicated with a ‘+’, and those
references would be lost. Another problem is that symbols
can refer to different proteins in different organisms. CAR,
which is arrestin-C in humans, refers to a cytoplasmic
arginine transducer in bacteria, and is also an acronym
for Central African Republic in some abstracts. While

we developed rules to filter out many bad assignments,
it was impossible to make rules for every possible usage
of every symbol. Therefore we assumed that a rule-based
system for finding symbols could be made more sensitive
using a word-occurrence method for assessing relevance.
Although our training set included ∼36 000 symbols, there
is the potential of not having accurate word frequencies for
EP-value calculation due to the symbol in question being
absent from our training set.

Another problem of symbol identification is false nega-
tives. For example, the entry in Table 1 for PubMed id =
9159467, symbol = PRP21 (marked by a *), which our
system correctly identified, was given a low EP value. The
abstract in question is clearly relevant to PRP21, but our
training set had only one article for PRP21 in which the
context was different, leading to a difference in word oc-
currences, and therefore a low EP value. Because about
42% of symbols had only one abstract in our training set,
this may be one of the sources of overlap in the distribu-
tions of good (+) and bad (−) EP values, and therefore
finding new ways to add articles to the training set could
potentially alleviate this problem. One possible strategy
would be to take assignments from a first-pass run of our
system where EP � 0.1, precision is 100%, and add those
to the training set before re-running. This improvement
would lead to increased accuracy over time.

Most of the entries in the training set are from 1990 or
later, and therefore there is a possibility that earlier ab-
stracts containing gene and protein symbols might receive
low EP values if the context of relevant articles has signif-
icantly shifted since they were published. Additionally, if
a new context is discovered for a gene or protein, the word
frequencies may be different enough that the abstracts dis-
cussing the new context may get a low EP value for the
gene or protein symbol. In order to prevent this, frequent
updates to the word/gene tables are planned.

The difference in EP-value distributions between good
and bad assignments reflects the differences in word oc-
currences between relevant and irrelevant articles that con-
tain a given symbol. The peaks of the two distributions
overlap between EP-values of 0.001 and 0.01, but preci-
sion is always above 70% for the overlapping region. Re-
call falls sharply with higher EP-values between ∼0.01
and <0.1, but above EP = 0.1, precision is 100%. In gen-
eral, when comparing good results with high and low EP-
values, assignments with higher EP-values seemed to be
more relevant to the given gene or protein, as assessed by
the subject or general focus of the paper (data not shown).

We intend to use our results to construct a network of
protein- and gene-to-literature references, and to use our
EP-values to calculate a ‘confidence’ for each assignment.
Future work will focus on refining the EP-value method to
minimize the overlap between good and bad assignments,
and on text mining for other entities in the literature,
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including chemicals, diseases and tissues, each of which
will require new rules and dictionaries. The use of
synonyms in query expansion has been shown to improve
retrieval (Hersh et al., 2000). Thus, we also plan to use
the concept of synonyms for gene and protein names, in
that we will merge word-probability sets for all known
symbols for a given gene or protein, and use a dictionary
with multiple synonyms for each biomolecule. In addition,
the results of expanded text mining is expected to result
in a less fragmented network of literature references,
and also allow for faster literature searching with fewer
queries.
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