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A literature network of human genes for
high-throughput analysis of gene
expression
Tor-Kristian Jenssen1, Astrid Lægreid2, Jan Komorowski1,4 & Eivind Hovig3

We have carried out automated extraction of explicit and implicit biomedical knowledge from publicly available gene

and text databases to create a gene-to-gene co-citation network for 13,712 named human genes by automated analy-

sis of titles and abstracts in over 10 million MEDLINE records. The associations between genes have been annotated by

linking genes to terms from the medical subject heading (MeSH) index and terms from the gene ontology (GO) data-

base. The extracted database and accompanying web tools for gene-expression analysis have collectively been named

‘PubGene’. We validated the extracted networks by three large-scale experiments showing that co-occurrence reflects

biologically meaningful relationships, thus providing an approach to extract and structure known biology. We vali-

dated the applicability of the tools by analyzing two publicly available microarray data sets.
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Introduction
Functional genomics is still at an early stage, but, with some
genomes sequenced1–3 and others near completion, attention is
shifting towards assigning biological function to gene sequences4.
DNA microarrays5 and other high-throughput gene and protein
assays will be critical tools for gene-expression analysis. The abil-
ity to use existing knowledge is fundamental to scientific discov-
ery, but unsupervised methods for data analysis, such as
hierarchical clustering, leave the user to incorporate background
knowledge6. The large number of genes that can be included in
such studies motivates the implementation of automated meth-
ods for use of existing knowledge.

The fact that a substantial amount of biomedical knowledge is
recorded in only free-text form and, as such, is not readily avail-
able for computerized analysis has inspired research on methods
for automated extraction of biomedical knowledge7. Many have
focused on protein-protein8–10 and gene-protein interactions11

or other specific relationships between molecular entities, for
example, cellular localization of proteins12, molecular binding
relationships13, and interactions between genes or proteins and
drugs14. A fundamental problem to be solved is the recognition
of biomedical nouns or noun phrases (for example, gene15 and
protein names16). Noun recognition can also be done using pre-
defined dictionaries, as is often the case for index-based informa-
tion-retrieval systems. Keyword indexing has been used to
annotate proteins17 and was recently proposed for construction
of co-occurrence networks of genes in human18 and Saccha-
romyces cerevisiae19. Text mining of functional links based on
document similarity is another strategy that has been used to
extract and annotate relationships between genes20.

Here, we present the completion of a full-scale literature net-
work for 13,712 human genes extracted from the titles and
abstracts of over 10 million article records from the MEDLINE

citation database (http://www.ncbi.nlm.nih.gov/PubMed/) of the
National Library of Medicine (NLM). We constructed the net-
work from the co-occurrence of gene symbols or short gene names
in the title or the abstract of a common article record. The method
is based on the assumption that if two genes are co-mentioned in a
MEDLINE record there is an underlying biological relationship. As
co-occurrence may reflect many kinds of interactions, we anno-
tated the network to better appreciate the nature of the extracted
relationships. The annotation consisted of linking genes to terms
from the MeSH index (http://www.nlm.nih.gov/mesh/meshhome.
html) and terms from the Gene Ontology (GO) database4. The
extracted information can be obtained through a set of web tools
(http://www.PubGene.org) to be used for analysis of gene-expres-
sion data. The database and the tools are collectively named Pub-
Gene and are publicly available.

We evaluated the quality of the network by manual examina-
tion of 1,000 randomly chosen pairs of genes and by comparison
with the Database of Interacting Proteins (DIP) and the Online
Mendelian Inheritance in Man (OMIM) database. Following the
analysis of the network, we used the web tools to analyse publicly
available microarray data21,22 and although our approach was
limited to named genes, the automatic integration of background
knowledge made PubGene a complement to conventional clus-
tering analysis.

Results
Automated indexing of named human genes
We collected publicly available nomenclature information for
human genes from the HUGO Nomenclature Committee
(http://www.gene.ucl.ac.uk/nomenclature/), LocusLink (http://
www.ncbi.nlm.nih.gov/LocusLink/), the Genome Database
(http://www.gdb.org/) and GENATLAS (http://www.citi2.fr/
GENATLAS/). The resulting gene nomenclature database 
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Fig. 1 Gene-to-article and gene-to-gene distributions. a, Contributions to the
gene-to-article index over time from gene symbols, single-word gene names and
family-variant gene names. The MEDLINE records before 1975 do not contain
abstracts. More article records for the years 1999 and 2000 were expected to be
included into MEDLINE after the time of indexing. b, Distribution of genes with
respect to the number of articles found to be relevant. c, Distribution of genes
with respect to the number of gene neighbors. The height of each column in (b)
and (c) is proportional to the base-10 logarithm of the number of genes + 1 for
the given number of articles or the given number of gene neighbors.
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contained 13,712 genes, with each gene identified by a primary
symbol. We obtained 9,722 primary gene symbols from the
HUGO database, and 2,729, 1,239 and 358 additional (primary)
gene symbols from the LocusLink, GENATLAS and Genome
Database databases, respectively. Because many of the official
symbols defined by the HUGO Nomenclature Committee have
been recently introduced, many authors had not referred to genes
by their official gene symbol. Thus, in addition to the primary
symbols, we collected gene names and alternative symbols. The
standardization of gene nomenclature has also resulted in a num-
ber of previously official gene symbols being withdrawn (that is,
their status as primary gene symbols has been revoked). Of the
gene symbols found as primary symbols in LocusLink, GENAT-
LAS and the Genome Database, 63, 63 and 352, respectively, had
been withdrawn by the HUGO Nomenclature Committee.

We found gene occurrences by searching for gene symbols and
short gene names. Occurrences of gene symbols and short gene
names were mapped to primary gene symbols through the nomen-
clature information. The short names were names consisting of a
single word (for example, insulin) or names of the form ‘family
variant’, in which the family stem consisted of a single word (for
example, cyclin E2). We analyzed 10,125,978 MEDLINE records
from 1966 to the present and found 1 or more gene symbols in
1,964,717 (19.4%) of them. Counting each symbol found in one or
more places in a record as one occurrence resulted in 3,534,061
gene-symbol occurrences. Many symbols have been used to refer to
more than 1 gene and, of the 24,443 symbols in our database, 2,796
were ambiguous in the sense of having associations to multiple
genes (for example, ALR, MTS1 and PBP). We treated each symbol
occurrence as a possible occurrence of any of the genes for which
the symbol had been listed as a primary symbol or an alternative
symbol. This gave 8,920,666 putative gene occurrences. Some gene

symbols coincided with common abbreviations in other contexts
(for example, II, IV and ABO). After mapping occurrences of gene
symbols to genes, only 885,146 gene occurrences based on symbols
remained. We mapped occurrences of short gene names into occur-
rences of the corresponding genes. Fig. 1a illustrates the evolution
of the total number of gene occurrences the three gene-term
sources contributed to the total gene-article index.

Literature co-occurrence associates biologically related
genes
After constructing the gene-article index, we used it to compute a
network of genes by linking two genes if they occurred in the same
article. Graphically, we represented each gene in the database by a
node in the network and created a connecting link between every
pair of genes that co-occurred (Fig. 1b). As an indication of
strength, we gave each pair of genes a weight equal to the number of
articles in which the pair was found (Fig. 1c). The network con-
tained 139,756 pairs of such related genes, with a total occurrence
weight of 1,087,757. Among the 13,712 genes, 7,512 had one or
more neighbors, and 710 genes had literature references but no
neighbors. Of the 5,490 genes that were not found in any articles,
5,202 genes had a status of ‘reserved’ or ‘provisional’.

To examine the extent and nature of gene pairs being over-rep-
resented or incorrectly assigned in the PubGene network, we car-
ried out a randomized experiment by drawing 500 gene pairs
with a weight of 1, and 500 pairs with a weight of 5 or more. The
1,000 gene pairs were classified into 7 categories (Table 1). Six
categories covered pairs with meaningful biological relationships
and one category, labeled ‘incorrect’, covered pairs for which no
relationship was found or for which it was obvious that the asso-
ciation was incorrect. The proportions of incorrect pairs were
40% and 29% for the low-weight and high-weight categories,
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respectively. The distributions of errors are shown (Table 2).
There were essentially three types of errors in the higher weight
group: symbols belonging to more than one primary gene sym-
bol, very general symbols coinciding with general acronyms, and
very short gene names. In contrast, in the low-weight group, we
observed a number of different types of errors, with a significant
contribution from general symbols.

To examine the extent and nature of under-represented gene
pairs in the PubGene network, we extracted information from the
Database of Interacting Proteins (DIP; http://dip.doe-
mbi.ucla.edu/). The DIP contained 169 human pairs of interacting
proteins recorded from articles published in peer-reviewed journals
within the time span covered by PubGene. We mapped the 171 pro-
teins included in the 169 protein pairs to corresponding genes in
PubGene, giving 169 pairs of human genes (Table 3). PubGene con-
tained 51% of the DIP pairs, a more than sixfold improvement over
a random experiment (assuming sampling without replacement of
an equal number of pairs as found in PubGene from all possible
pairs over the 171 genes). The DIP-derived gene pairs not detected
by PubGene were further analyzed to find the main reasons for
under-representation of gene pairs. A total of 49 references covered
all missed interactions in the DIP database (Table 4).

The predominant problems were due to three main integrity
issues: insufficient synonym lists, synonym case variation, and
complex gene families with immature or complex naming con-
ventions. These problems mainly caused a reduction in true gene
pairs, and did not create ‘noise’. As DIP is based on protein names
not necessarily included in the PubGene name lists, it is expected
that synonym problems will be elevated in such a comparison. As
very few interactions are missed due to lack of citation in the title
or abstract, however, an even better representation is expected
from optimizing the indexing procedure.

To examine PubGene performance in comparison with a very
rich independent information source, we selected from the OMIM
database (http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db=OMIM) all genes that have been mapped to a chro-
mosomal location. For each of these, we analyzed the textual
description in OMIM to locate OMIM numbers for other mapped
genes. This resulted in 19,157 ordered pairs of genes. PubGene cor-
rectly incorporated 45% of the OMIM pairs, an 88-fold increase
over random sampling (Table 3). OMIM record information con-
tent varies depending on the editor. In some records, the informa-
tion is biased towards gene mapping and diseases, and will therefore
include gene associations that are not recorded in PubGene,
whereas in others very little information is offered.

It is difficult to assess precisely the expectations from these exper-
iments, as the manually curated databases only contain subsets of
the PubGene data not necessarily reflected in titles or abstracts of

MEDLINE records. But the numbers of interactions in DIP and
OMIM contained in PubGene reflect that PubGene captures sub-
stantial amounts of the existing biological information on protein-
protein interactions and on gene mapping and disease.

Literature associations highlight background
knowledge for signature genes in patient sample data
The microarray data set of Alizadeh et al.21 contains mRNA expres-
sion measurements across 96 normal and malignant lymphocyte
samples, and represents the most informative and richest data set
on human material so far published. The authors presented an
analysis based on unsupervised hierarchical clustering analysis of
the data. They proposed the term ‘signature gene cluster’ as an
operational definition to indicate genes that are coordinately
expressed and thus cluster together. Of the six identified signatures
thought to characterize distinct cell types or biological processes,
the germinal center B-cell (GC-B) signature highlights a main find-
ing using the hierarchical clustering technique: germinal center
(GC) B-cells represent a specific stage of B-cell differentiation, dis-
tinct from activation of blood B-cells. Using the GC-B signature
and the signature of activated B-cells, diffuse large B-cell lym-
phomas were divided into two subgroups having features of either
germinal center B-cells or activated blood B-cells; these subgroups
were also distinguished by clinical outcome.

To explore the correlation between unsupervised clustering
and the supervised PubGene approach in a large, biologically rel-
evant data set, we extracted the data for tonsil GC B-cells and
activated B-cells isolated from healthy individuals. The publicly
available data subset contains measurements on 4,026 clone spots
that can be mapped, through the IMAGE clone-IDs, to 1,302
named genes in PubGene. For the two cell types, we calculated
the mean log-ratio for each gene across the samples in each group
and submitted the group differences to the expression analysis
tool. The cell-type mean value represented an extra layer of
abstraction from the original data, and was obtained to highlight
group-specific biological differences between the two cell types.
The 50 genes corresponding to the 50 most up- or downregulated
literature sub-networks included 7 (28%) of the 25 named genes
in the GC-B signature (BCL6, BMP7, CD24, CD38, E2F5, MME
and MYBL1). This is a sevenfold increase compared with a ran-
dom experiment (assuming randomly sampling 50 genes with-
out replacement from all 1,302). Moreover, 39 of 50 genes
identified by PubGene were cluster designations (CDs; data not
shown), which are surface cell markers generally used to define

Table 1 • Types of gene relationships found in PubGene

Count
Relationship W1 W5+

cell biology 43 24
expression correlation 151 183
histology 22 66
homology 29 75
chromosome mapping 53 6
other 4 5
incorrect 198 141

We randomly selected 1,000 pairs of genes and manually analyzed these to
obtain an assessment of what kinds of biological relationships are reflected
and what types of errors are being made by connecting genes by co-occurrence
of gene terms. We randomly selected 500 pairs from pairs with weight 1 (W1)
(that is, pairs of genes that had been found in exactly one article) and also ran-
domly selected the other 500 pairs from pairs with weight greater than or
equal to 5 (W5+). The proportions of correct links in the two categories were
60% and 72% for W1 and W5+, respectively. Pairs for which no relationship
was found or the link was obviously incorrect were analyzed further (Table 2).

Table 2• Categories of incorrectly linked pairs in PubGene

Count
Category W1 W5+

symbol, other gene 19 40
symbol, gene other species 8 3
symbol, cell line 20 4
symbol, other biomedical concept 15 1
symbol, general 82 43
symbol, other 20 4
short name 34 46
total number of incorrect links 198 141

The two groups of pairs were the same as in Table 1. For each group, we analyzed
and classified reasons for incorrect links. “Symbol, other gene” denotes incorrect
links due to a symbol associated with several genes. “Symbol, gene other species”
denotes incorrect links due to a symbol that had been used in another species.
“Symbol, cell line” denotes symbols that had also been used as names for cell
lines, and “symbol, other biomedical concept” covers other biomedical concepts
(for example, diseases or drugs). The category “symbol, general” includes symbols
that had been used in a number of contexts (for example, P1 had been used to
refer to postnatal day 1). “Symbol, other” includes other incorrect links caused by
symbol confusion that are not in any of the above categories. “Short name”
denotes incorrect links caused by short gene names that have other uses (for
example, in most of the manually checked abstracts medulloblastoma had been
used to refer to the tumor type and not the gene).
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lymphocyte differentiation stages. The products of these genes
are known to be significant regulators of lymphocyte functions.
Using the Alizadeh web analysis tool (http://llmpp.nih.gov/lym-
phoma/index.shtml), we were able to link 21 of 50 top-ranked
genes to one of the B-cell signatures found by hierarchical clus-
tering. The distribution of the 21 genes among the 3 B-cell signa-
tures (Table 5) illustrates the correlation between the supervised
PubGene approach and the unsupervised clustering approach.

To estimate the extent of complementarity of the two
approaches, we characterized the biological basis of the GC-B sig-
nature using the PubGene tools. We started with the 25 named
genes found using hierarchical clustering by Alizadeh et al. and
extracted a network from PubGene based on the named GC-B sig-
nature genes. Of the 25 signature genes, 5 did not have neighbors in
PubGene, and therefore would not be visible in a network. The
remainder and the most important literature neighbors (among the
1,302 genes with expression data) were all connected (Fig. 2a), thus
displaying graphically an underlying biological relationship
between these genes. We then linked the signature gene list to dis-
ease MeSH terms to search for diseases associated with the signature
genes. Among the top-ranked terms were those related to Fragile X
and Angelman syndromes, lymphoma, leukaemia and tuberculosis
(data not shown). Fragile X and Angelman syndromes ranked
ahead of lymphoma, because FMR2 and HERC2 are loci associated
with these syndromes. FMR2 is downregulated by repeat expansion
and methylation23, and its protein product shows similarity to that
of MLLT2, which is involved in translocations found in acute lym-
phoblastic leukemia cells. Moreover, we noted that MLL was also
listed as a close neighbor of the signature gene MME (CD10). MLL
is not a signature gene (that is, it was not found by the clustering
analysis), but is distinctly upregulated in tonsil GC B cells, and has
been found translocated to a number of genes, including FMR2.
Transcription was the most significant ontology term obtained by
the genes in the GC-B signature, indicating that a large number of
the signature genes are transcriptional regulators.

PubGene rapidly focused the extracted biological attention for
the GC-B signature genes towards central GC B-cell processes.
DNTT is upregulated as a signature gene. This gene is involved in
normal V(D)J immunoglobulin recombination in B-cells. A num-
ber of the genes identified tend to be translocated in lymphomas
(FMR2, MLL, BCL6 and BCL7A), as disclosed by the MeSH terms
and their neighboring positions in expression networks. All of

these genes are upregulated in GC-B cells (Fig. 2a), most likely a
reflection of hypermutability being a process of immunoglobulin
variation. Current models of immunoglobulin variation suggest
that both the recombination and hypermutability processes take
place in the germinal center24,25. The fact that these genes were
solely identified by the PubGene approach demonstrates that the
current PubGene index may be used to identify gene networks
not identified by clustering and to classify genes according to bio-
logical processes. In parallel to our analyses, it was confirmed
that the process of hypermutability is a major discriminant
between the germinal center versus activated B cell-like lym-
phomas26, as an ongoing somatic mutation process was shown in
the lymphomas of the GC-B type.

Detection of complex coregulatory patterns between
biologically related genes
The gene-expression data set of Iyer et al.22 contains 8,613 mRNA
measurements over 12 time points. We used a publicly available
data subset containing 517 clones, selected from genes whose
transcription levels changed substantially after serum stimula-
tion of human fibroblasts. Using the IMAGE clone-IDs, we were
able to map expression data to 340 named human genes. To
examine the biological relationships between similarly upregu-
lated genes, we used PubGene to identify literature associations
between the 340 genes and ranked sub-networks according to
their content of highly upregulated genes.

The highest-scoring network at the time point of one hour (Fig.
2b,c) depicts the upregulation of the typical immediate early genes
FOS, JUNB and EGR1, which all encode transcription factors
involved in the cellular response to mitogenic stimuli27. Four genes
associated with these transcription factors by literature co-citation
were also strongly upregulated at this early stage of the fibroblast
serum response (IL6, PDGFRB, FGF7 and SERPINE1). Superim-
posing expression levels from time point eight hours onto the same
gene network revealed that the genes encoding the angiogenesis-
promoting factors FGF2 and VEGF (ref. 28) followed a more
delayed course of gene induction. Moreover, at eight hours, EGR1
transcript levels were well below the levels at time point zero (67%
of levels at 0H). Also the levels of FOS and JUNB had considerably
decreased relative to the one hour levels. Activation of FOS and
JUNB had also considerably decreased relative to one hour.
Although still 123% and 185% of zero hour levels, transcript levels
were only 9.7% and 29% of one-hour levels for FOS and JUNB,
respectively. This illustrates how PubGene can visualize complex
co-regulatory patterns of gene expression and simultaneously high-
light biological relationships relevant for these patterns.

Extending the analysis for time point 1H showed that, among
the ten highest-scoring networks, there were several other net-
works similar to the network shown in Fig. 2b,c. In addition, we
found networks containing the upregulated genes encoding

Table 3 • Comparison of PubGene with manually curated
databases

Database
DIP OMIM

Number of genes 171 6,404
Number of actual links 169 19,157
Number of possible links 14,535 37,350,432
Number of actual links found in PubGene 86 8,585
Number of all links found in PubGene 1,052 187,226
Number of expected actual links in PubGene < 13 < 97
p value <E–10a < E–7b

Improvement over random > 6 > 88
ap(x≥86)=1–p(x<86)<1–p(x≤39)<1.1E–11.
bp(x≥8585)=1–p(x<8585)<1–p(x≤160)<7.4E–8.

Signal-to-noise ratio as assessed by comparison with the manually curated
databases DIP and OMIM is shown. Links in DIP were found by selecting pairs of
interacting proteins in which both proteins were human (determined by the
SWISS-PROT ID; http://www.expasy.ch/sprot/sprot-top.html). Participating pro-
teins were linked to human genes through information in SWISSPROT, OMIM
and the PubGene nomenclature compilation. As DIP includes self-interactions,
we included ‘pairs’ with the same gene, when comparing against the DIP data-
base. Links in OMIM were found by analyzing the text part of the OMIM record
for each mapped gene in OMIM. Assuming a process of sampling without
replacement, we calculated the number of actual links from DIP and OMIM
expected to be found in a random sample with the same number of pairs as the
number of links in PubGene.

Table 4 • Reasons for under-representation of DIP derived
gene pairs

Reason Number of articles

missing in abstract 5
symbol case mismatch 22
missing alternative symbol 24
complex protein (gene) family name 9
other 5
sum 65

The MEDLINE records of articles referred to in DIP as references for the DIP pairs
not found in PubGene were manually examined to determine the causes for this
under-representation. One or more reasons were assigned to each article accord-
ing to what caused the omission of the gene pair corresponding to the protein
pair documented in DIP. Examples of proteins (genes) with complex names are, for
instance, 14-3-3 family, G-coupled protein receptors and integrins.
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Fig. 2 Literature networks of genes
found relevant in gene expression data
analysis. We submitted gene symbols
and corresponding expression data to
PubGene to identify co-expressed
groups of genes associated in the liter-
ature. Lines connect genes that have
co-occurred in one or more articles.
Annotations reflecting the number of
literature co-citations have been sup-
pressed for readability. a, Network of
the genes in the GC-B signature. Colors
represent relative expression values
when comparing tonsil GC B-cells with
activated blood B-cells. Yellow reflects
no difference between the two
groups, whereas red/green reflects
genes that are more/less expressed in
tonsil GC B-cells than in activated
blood B-cells. b,c, Literature network
of genes highly upregulated at time
point one hour (1H) in the fibroblast
serum response. d,e, Literature net-
work of genes highly upregulated at
time point 6 h (6H) in the fibroblast
serum response. We used PubGene to
score sub-networks with the closest
neighbors of each gene based on
gene-expression levels ranking the
networks according to their content of
highly upregulated genes. At 1H, a
three-gene network containing JUNB,
EGR1 and FOS was ranked as the most
upregulated one. An expanded ver-
sion, including the literature neighbors
of these genes, is shown color-coded
using expression levels from 1H (b) and
expression levels from 8H (c). JUNB,
EGR1 and FOS have lower expression levels at 8H. The most upregulated network at 6H contained the neighborhood around IL8. This network contained 16 genes,
of which the 12 most important in terms of upregulation and literature proximity to IL8 are shown (d,e). d, The 6H-network color-coded with expression levels at 6H.
e, The same network color-coded with expression levels at 1H. b–e, The gene-expression data encoded in the colors were ratios at the given time point relative to
serum-starved, growth-arrested fibroblasts used as the reference (time point 0H). Strong up/downregulation is shown as bright red/green color, whereas genes with
unchanged expression levels are yellow. a, GBC signature network. b, 1H network at 1H. c, 1H network at 8H. d, 6H network at 6H. e, 6H network at 1H.
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nuclear receptors NR4A2 and NR4A3 (two members of the
steroid/thyroid hormone family and presently with less precisely
defined functions), and a network showing that DUSP1, which is
involved in signal transduction, is upregulated at one hour. The
latter network revealed literature connections from DUSP1 to the
cell-cycle regulatory genes CCNA2, CCND1 and CDKN1A, whose
gene expression levels are still unchanged at this time point.

The most upregulated literature network at time point six
hours (Fig. 2d,e) contained genes largely classified as cytokines,
growth factors and hormones. Using PubGene to look up rele-
vant MeSH-terms for the 12 genes (Table 6), we found that
‘angiogenesis’ co-occurred with the highest fraction of genes
(10/12). These data (Table 6) are similar to those obtained by Iyer
et al.22, who used background knowledge to assign biological
function to the genes involved in the fibroblast serum response.
Our indexing strategy permits rapid profiling of genes through
the distribution of MeSH terms, as well as identification of strong
associations between genes and biological processes. In effect,
this represents a quantitative approach to bringing background
knowledge into gene-expression analysis.

Discussion
Several linguistic and statistical methods have been applied to
information retrieval and information extraction in biomedi-
cine. Parsing, tagging of parts of speech and estimation of key-
word distributions are computationally expensive compared
with term recognition. By choosing a simplistic method of com-
puting a network from term co-occurrences, we aimed to create a
literature-wide as well as a genome-wide view of the current

knowledge about human genes. By not attempting to detect
directly occurrences of particular types of relationships, thus pri-
oritizing perspective over detail, it was possible to obtain a global
view of the literature of the human genome. To our knowledge,
there have been no other reports on completed work on a compa-
rable scale. Stapley and Benoit19 also extracted a gene network
based on term co-occurrence, but they created a network of genes
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for yeast extracted from 2,524 MEDLINE documents chosen on
the basis of being from 1997 or 1998 and containing the MeSH
term ‘Saccharomyces cerevisiae’.

There are several limitations to our methodology. The use of
MEDLINE records restricts the relationships that can be found to
those mentioned in titles and abstracts. The dependency of the
underlying text material is well illustrated by the increase in the
number of relevant articles from 1974 to 1975, when abstracts
were first included. Nevertheless, the use of MEDLINE records
has the advantage of making an explicit basis for defining co-
occurrence. A principal question in this respect is whether cor-
rectly determined co-occurrences in the title and abstract
precisely reflect meaningful relationships between genes. Based
on the 1,000 pairs we investigated, our answer, albeit preliminary,
is 'yes'. This is because all incorrect pairs were explained by syn-
onym or name confusion, and not because the gene terms
referred to genes where no relationship was mentioned in the
text. This conclusion was also supported by Stapley and Benoit19.

Although our experiments support the premise that abstract co-
occurrence reflects meaningful biology, they also demonstrate
problems generated by ambiguous gene names and symbols. The
use of a thesaurus for information retrieval has been debated29. An
advantage is that it may increase recall (the percentage of all correct
occurrences that are detected), as it is not necessary to explicitly
mention all alternative names. Conversely, ambiguities arise when
gene terms are associated with several genes in the nomenclature
database (thesaurus) and when a gene term has been used in other
contexts. This may degrade precision (the percentage of detected

occurrences that are correct). Manually editing (parts of) the the-
saurus and resolving ambiguities may reduce this problem. Given
that a large proportion of the incorrect links were caused by a rela-
tively small number of problematic terms (data not shown), we
expect that major improvements can be made by manually verify-
ing and, if necessary, deleting some of these terms from synonym
lists. We believe this may provide a level of precision similar to that
of a completely manual process, but at a much lower cost. Our
strategy to resolve symbol ambiguities was to accept symbol occur-
rences as gene occurrences only when one (or more) of the words
from at least one of the names of the gene occurs with the symbol.
Our experiments indicated that this was not sufficiently stringent.
Improving the precision and recall of the indexing procedure is an
ongoing effort, but as perfect accuracy (perfect precision and per-
fect recall) is presently beyond our reach, we are left with a compro-
mise between precision and recall. So far, we have prioritized recall,
as it is easier for the user to relate to noise that is present than to
ponder relationships that are missing.

Stapley and Benoit argued that gene terms (symbols), due to
their specificity, are superior to natural language searching for
information retrieval19. Our choice of using gene symbols and
short gene names was based on efficiency, and in our experience
gene terms are not as specific; this may in part be attributed to
organism-specific nomenclatures. We have noted a long list of
gene symbols that are poorly designed with respect to informa-
tion retrieval (for example, ‘II’, ‘IV’, ‘KD’, ‘SD’, ‘AS’, ‘A1’ and
‘ABO’). It would be beneficial if specificity were considered in the
design of future official symbols, but most symbols enter the lit-
erature as a convenient abbreviation of a full name associated
with a gene30. Moreover, such considerations would only benefit
information retrieval in new literature and provided the official
nomenclature is actually used. More elaborate indexing proce-
dures may raise precision, but most likely would be at the
expense of efficiency, and, because the gene nomenclature is
rapidly changing, it is critical to be able to rebuild the indices
periodically. One method to improve the filtering procedure may
be to estimate a word distribution for MEDLINE records relevant
to (human) genetics and simply eliminate gene term occurrences
from articles with deviating word distributions.

The idea of estimating a word distribution, as well as the overall
aim of our work, is related to the work of Shatkay et al.20. They used
document similarity based on estimated word distributions to link
genes through a set of so-called ‘kernel’ documents. Using one ker-
nel document per gene, they first identified a core of documents
containing the union of the sets of the 50 documents most similar
to any kernel document. This core was then trimmed to contain

Table 5 • B-cell signature cluster associations for the 50
highest ranked genes according to PubGene expression

analysis

Number of genes
Signature all member similar

activated peripheral B-cell 37 (87) 2 3
resting peripheral B-cell 21 (81) 2 9
germinal center B-cell 25 (112) 3 2
sum 83 (270) 7 14

For each of the 50 genes, we investigated associations to the 3 B-cell signatures
using similarity of the clustering patterns of the 20 genes having most similar
expression patterns (using Pearson correlation as given by the analysis tool of
Alizadeh et al.21). The ‘all’ column shows the number of genes in the respective
signatures, with the number of clones in parentheses. The ‘member’ and ‘simi-
lar’ columns show the number of genes among the 50 highest ranked genes
that could be classified as a member of a B-cell signature, or whose majority of
most closely related genes (clones) were from the given B-cell signature. A
large number of the genes could in this way be associated with one of the B-
cell signatures (42%), as opposed to 6% by pure chance, reflecting the B-cell
nature of the samples being submitted.

Table 6 • MeSH terms associated with selected genes

Gene
MeSH Term IL8 IL6 SCYA2 ICAM1 VEGF EDN1 SERPINE1 PTGS2 THBD FGF7 SDF1 IL1B

blood coagulation 4 – – 12 1 4 3 – 94 50 – –
chemotaxis 331 57 173 79 11 6 1 – – – 26 –
fibrinolysis 2 5 1 1 1 2 294 – 44 – – –
hemostasis – 4 1 1 1 3 57 – 35 – – –
inflammation 45 76 7 37 5 3 7 3 2 – – –
angiogenesis 44 21 1 24 740 14 35 6 3 5 – –
wound healing 3 17 4 2 11 3 8 1 1 4 – –
gene total articles 2,932 11,149 1,048 5,084 1,858 3,985 2,359 866 1,254 348 104 31

Using the gene to MeSH term index in PubGene, we immediately obtained an overview of the degree of association between the genes in Fig. 2d,e and important bio-
logical processes relevant for the fibroblast serum response. Each cell in the table contains the number of articles relating the gene in the given column with the MeSH
term in the given row. Note that the process ‘blood coagulation’ was searched for using the MeSH terms ‘blood coagulation factor inhibitor’ and ‘blood coagulation
factor inhibitor blood’ in addition to ‘blood coagulation’, and that ‘angiogenesis’ was searched for with the term ‘neovascularization’. The bottom row shows the total
number of articles found in the PubGene index for each gene. The columns are arranged in the order of decreasing strength of association with IL8, which was the
defining gene for the network shown in Fig. 2d,e. The selection of MeSH terms was based on the report of Iyer et al.22. This analysis, however, can easily be adapted to
find the most relevant MeSH terms for an arbitrary set of genes without relying on prior knowledge. It is obvious from the table that IL1B is heavily under-represented
in the Pubgene index, hence also its association to IL8 and the MeSH terms. Being one of the first variants of interleukin discovered, IL1B would be expected to have
more references than both IL6 and IL8. The explanation can be found in terms of naming conventions. Indeed, the number of Medline hits for ‘interleukin 1 beta’
exceeds 20 thousand, whereas the primary symbol IL1B is found in less than 20 for the subset of Medline relevant for comparison.
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only documents found for at least two kernel documents. Genes
were then linked if their kernel documents had similar sets of
related documents in this core set, and the intersecting documents
were used to annotate the link. This approach surpasses the prob-
lems with gene-term ambiguity, but has two problems related to
scalability. The first is that of choosing the best kernel document for
each gene. To be most useful, the kernel document should be
descriptive of the gene function, and it is likely that the most
descriptive document will change over time. The second problem is
that density estimation is computationally expensive.

In the long run, term co-occurrence detection should be consid-
ered a temporary solution and, as we expect linguistic and statistical
methods be improved in robustness and efficiency, the overview
map represented by PubGene can be refined and enhanced. A num-
ber of more specialized tools based on the PubGene concept may be
envisaged. For example, by combining predefined keywords (such
as disease states or chemical agents) with the gene index in the same
way as MeSH terms were linked to genes, composition of special-
ized microarrays may be largely automated. Integration with unsu-
pervised methods for gene expression analysis is also a priority. The
feasibility as well as the applicability is suggested by our analyses,
and the combination is expected to result in increasingly user-
acceptable interfaces to the evermore-increasing complexity of bio-
logical knowledge. Linking literature information to sequence
analysis may develop this even further. The large number of interac-
tions amenable to automated extraction will increase with the
increased efforts of post-genomic molecular research and with
increased availability through, for example, full-text open reposito-
ries. PubGene, with its present indexing strategy, rich and varied
information content and analytical flexibility, can incorporate more
of the available biological knowledge for high-throughput gene-
expression analysis than any other analytical tool available.

Methods
The PubGene gene database. We downloaded gene symbols and names for
human genes and merged the information into a list of unique human
genes, each identified by a primary symbol. For each official gene symbol in
the HUGO NC database, we created a gene record and added literature
aliases. We added additional gene records for primary symbols from
LocusLink, GDB and GENATLAS (when these were not found with the sta-
tus ‘withdrawn’ in HUGO).

The gene-article index. We processed the MEDLINE records year for year.
For each article record, we extracted occurrences of genes by finding gene
symbols and short gene names. We first split the text into separate words,
whereupon each word was compared against a list of symbols or names. We
required gene symbols to match with correct case, whereas we allowed gene
names to match regardless of case. We found occurrences of ‘family vari-
ant’ names by first looking for occurrences of the family stem word and
then looking for a variant designation immediately before or after. To
check if a word was a symbol, a one-word gene name or a family stem, we
used a hash table. Becasue hash tables can be implemented with O(1)
access time (see Cormen et al.31 for an explanation of big-O notation), all
symbol and name occurrences can be found in O(n) time, where n repre-
sents the length of the text (for example, the number of article records if a
maximum combined length on titles and abstracts is assumed).

As a preliminary step, we considered each occurrence of a gene symbol as a
potential occurrence of all of the genes to which the symbol had been associ-
ated. To resolve ambiguities we implemented a filtering procedure to remove
incorrect associations between genes and articles. For each gene, the filtering
procedure looked at the articles for each of the listed symbols. If the symbol
was longer than l1=4 characters and was found in less than k=10 articles
(within the particular year being processed), all articles for this symbol were
kept for the gene. Otherwise, the procedure checked each article record to see
if the title or abstract mentioned any words from any of the long names of the
gene. The procedure kept articles associated with symbols longer than l2=2
that also contained w=1 word from at least 1 of the long names. If the symbol

was only two characters long, it was required that the title or abstract con-
tained more than w words from at least one of the long names. l1, l2, k and w
are parameters. The given numbers reflect default settings. For each gene-arti-
cle association, the procedure checked, at most, all the words in all the names
of the gene. Assuming that the number of names associated with a gene is less
than some constant and that the length of each name is also less than some
constant, each gene-article association can be checked in O(1) time by pre-
computing the association between words and articles. Moreover, if we
assume that there is a fixed upper limit of the number of genes that need to be
checked for each article, the complexity of the filtering procedure is O(n+m),
where n is the number of articles and m is the number of genes.

We mapped occurrences of gene names to occurrences of genes through
the map between symbols and genes. That is, each name was associated
with a symbol linked to one or more genes. We interpreted all occurrences
of short gene names as occurrences of all thus-associated genes.

The implemented procedure has complexity O(n+m), where n is the
length of the analyzed text and m is the size of the gene database to be
indexed. In other words, the procedure is linear in the size of the data. As an
indication of the actual processing time, on a UNIX server (multi-proces-
sor server running SunOS 5.8 with 4×400 MHz UltraSPARC-II processors)
concurrently running other processes, the year 1998 was indexed in less
than 5 hours. The actual processing time depends on the system load.

The gene-gene network and gene-term maps. We found links between
genes by associating genes that co-occurred in an article record. For each
gene, the algorithm considered all articles for this gene, and, for each arti-
cle, found all other genes that also occurred in this article. For each other
gene that was also linked to the article, the algorithm created a link of
weight 1 or added 1 to the weight of a pre-existing link.

We also constructed the gene-term relations by linking genes to terms
through a common set of articles. We linked every gene to any term co-
associated to a common article. The MeSH term index links MeSH terms to
articles and was obtained from NLM, whereas we created the GO ontology-
term index and the disease index with the same software used to index gene
symbols. Assuming the use of O(1) lookup hash tables for the relations
between genes and articles, terms and articles and the inverses, the algo-
rithm for constructing gene-gene and gene-term relations has complexity
O(n*m), where n is the number of genes (or maximum of number of genes
and number of terms) and m is the average number of articles associated to
each gene (or term).

The gene network browser. Given a particular query gene, the network
browser extracts its neighborhood in the whole network and creates a small
sub-network with the most important neighbors of the gene. The graphs
are generated dynamically in real time with adjustable parameters deter-
mining the size of the gene neighborhood to be shown. The extraction
algorithm is a breadth-first search, prioritizing links with higher weight.
The Neato program in the Graphviz software (AT&T; http://www.
research.att.com/sw/tools/graphviz/) is used to create the two-dimensional
layout. The extraction algorithm and the Neato layout-algorithm are both
of complexity O(n2), where n is the size of the graph.

The gene expression and literature score. Gene-expression data are super-
imposed on the literature network to compute an expression score for each
gene in the assay. The input format of the data is a list of pairs (gi, vi), where
gi is a gene (symbol) and vi is an expression measurement (for example, a
log of a ratio or the difference between two log-ratios if comparing two
conditions). This score is computed by extracting a literature neighbor-
hood for the gene, similarly as in the network browser, and calculating a
score from the expression data of the genes in the neighborhood. The score
is then computed as

where f is the absolute value function or the identity function, n is the
number of genes, h is absolute value or identity (typically, at most one of f
and h is chosen to be the absolute value function), and xi is an expression

f ( 1
n ∑
   i         

h(xi))
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value or the average expression value of two genes connected by a link in
the neighborhood cluster. The score parameters can thus be set to priori-
tize up-/downregulation, concomitant up- and downregulation, or no
change, and if summation is carried out over links in the network, densely
linked neighborhoods can be prioritized. For instance, to find the most up-
or downregulated cluster (not concomitant) one would use the expression, 

that is, find clusters with high absolute value of the mean value. After ranking
the clusters by score, the tool generates images for the highest scoring clusters.
The scoring algorithm has complexity O(n2), where n is the size of the score-
neighborhood. This algorithm is repeated for each gene in the expression data
set. Thus, if N is the number of genes, the whole computation is O(N log N +
Nn2), assuming that sorting the N scores requires O(N log N) time.

The gene-term association strength. Given a set of genes, the weighted
relation between genes and terms can be used to compute term-relevance
for individual terms. For a given term, the score with respect to a set of
genes is calculated by combining scores from individual genes. The
strength of association between a term and a gene can be computed in
absolute terms as the number of co-associations, or in relative terms as the
number of co-associations for the term divided by the number of co-asso-
ciations of the highest scoring term for that gene. For each term, associa-
tion strengths from each gene can be combined by addition or multiplica-
tion to derive a score of the term relative to the set of genes.

Symbol lookup. In the PubGene database, genes are identified and accessed
by their primary symbol. Given the abundance of synonyms in common
use, we created a nomenclature lookup tool that can be used to find official
symbols for genes having information matching a given query. The query is
matched against the nomenclature database using the regular expression
matching facility of Perl to find all occurrences of the query. The query can
be used to search among synonyms, long names, chromosome locations,
UniGene clusters or any subset of these fields.
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