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Abstract

Natural language processing for biomedical text currently focuses mostly on entity and relation extraction. These entities and

relations are usually pre-specified entities, e.g., proteins, and pre-specified relations, e.g., inhibit relations. A shallow parser that

captures the relations between noun phrases automatically from free text has been developed and evaluated. It uses heuristics and a

noun phraser to capture entities of interest in the text. Cascaded finite state automata structure the relations between individual

entities. The automata are based on closed-class English words and model generic relations not limited to specific words. The parser

also recognizes coordinating conjunctions and captures negation in text, a feature usually ignored by others. Three cancer

researchers evaluated 330 relations extracted from 26 abstracts of interest to them. There were 296 relations correctly extracted from

the abstracts resulting in 90% precision of the relations and an average of 11 correct relations per abstract.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Knowledge is largely disseminated in textual format

and the texts are increasingly available online in elec-

tronic format. In the medical field, Medline is the main

source of publications. It currently contains more than

12 million citations and is growing fast. However, the

amount of available publications makes it hard for re-

searchers to stay up-to-date.

Natural language processing (NLP) is a set of tech-
niques that can help facilitate analysis, retrieval, and

integration of textual and electronic information. NLP

for medical texts has mainly been the focus of the

medical informatics field. Bioinformatics, in contrast,

has mostly focused on data processing, e.g., microarray

analysis. During the last few years, NLP has also be-

come important in bioinformatics and we agree with
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Maojo et al. [1] that both disciplines can and should

learn from each other. In the following we describe
natural language processing techniques for entity and

relation extraction in medical informatics and bioin-

formatics. We then discuss our parser, which extracts

relations between medical entities from biomedical text.

This parser is the main component of a knowledge base

for bioinformatics, Genescene, which we are currently

developing. Genescene stores Medline abstracts relevant

to several biomedical topics, e.g., AP-1, p53, yeast, to-
gether with the relations extracted from these abstracts.

We describe here the details of the biomedical parser,

which automatically extracts the relations.
2. Natural language processing for medical text

2.1. Entity extraction

When dealing with medical text, it is important to

recognize different entities such as diseases, symptoms,

and gene names. Twomain approaches to recognize these

entities exist. The first uses existing, manually created
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knowledge sources containing lists of specific entities,
such as disease names or human gene names. Words are

compared against the entities in these sources and tagged

with an appropriate tag. A second approach uses partial

parsers to recognize entities in text. The two approaches

can very well be combined, especially if there does not

exist a single knowledge source that contains a sufficiently

large and specific vocabulary to deal with all medical text.

2.1.1. Knowledge sources

The UMLS, developed by the National Library

of Medicine [2] and available from http://umlsks.nlm.

nih.gov, is a knowledge source useful for entity extraction

from general medical text. It is updated yearly and cur-

rently consists of three components. Its Specialist Lexicon

contains general English and specific medical terms and

their syntactic and orthographic information. The
Metathesaurus is a concept-based vocabulary in which

each concept represents several unique terms. The con-

cepts are an abstract representation of the words used in

text. In addition to these concepts, the Metathesaurus

contains a list of phrases that are represented by these

concepts. For example, the concept ‘‘Genes, p53’’ is

mapped to seven phrases, e.g., ‘‘P53 Tumor Suppressor,’’

‘‘ONCOGENE, P53.’’ In addition, a concept has one or
more semantic types, e.g., the word ‘‘RB1’’ belongs to the

concept ‘‘RB1 Gene’’ with the semantic type ‘‘Gene or

Genome.’’ The Semantic Net links the semantic types by

means of semantic relations.

Several researchers have evaluated the coverage of

existing knowledge sources. However, since different

mapping strategies are used, it is often difficult to

compare the results. Hersh et al. [3] evaluated more than
200,000 documents and found that less than 40% of the

words appeared in any of their six vocabularies, one of

which was the Unified Medical Language System

(UMLS). Aronson [4] developed a more comprehensive

mapping technique, MetaMap, to map biomedical terms

to the UMLS Metathesaurus. This mapping is not lim-

ited to string matches, but uses variant generation and

knowledge intensive algorithms to choose between dif-
ferent candidates. Humphreys et al. [5] performed an

extensive evaluation to estimate to what extent the

UMLS can provide the vocabulary required by health

information systems. Most of the terms submitted by

their participants belonged to the field of individual

healthcare. The authors found that 58% of all submitted

terms had exact matches, 41% had related concepts, and

only 1% of the terms were not found.
Specific biomedical knowledge sources are also avail-

able. The Human Genome Nomenclature (HUGO) [6],

available from www.gene.ucl.ac.uk/nomenclature, con-

tains a list ofmore than 15,000 currently approved human

gene names and symbols and the names and symbols used

prior to approval. Its purpose is to facilitate communi-

cation and electronic information retrieval of human
genes. The Gene Ontology (GO), available from
www.geneontology.org, contains information on genes

and their products and is designed for use by both people

and computers. The GOConsortium has several member

organizations such as the Berkeley Drosophila Genome

Project, FlyBase, andWormBase. By integrating different

organisms, they aim to provide a controlled vocabulary

for biomedical research useful for all eukaryotes [7,8]. The

GENIA corpus [9] is a small, tagged, biomedical corpus
available from http://www-tsujii.is.s.u-tokyo.ac.jp/~ge-

nia/ and can be used to train entity extraction algorithms.

There are many more specific biomedical databases such

as Flybase (http://flybase.harvard.edu), Caenorhabditis

elegans (http://elegans.swmed.edu), Online Mendelian

Inheritance in Man (OMIM, http://www3.ncbi.nlm.

nih.gov/Omim/), or SWISS-PROT (http://www.ebi.ac.

uk/swissprot/).

2.1.2. Extraction algorithms

Partial parsers are very efficient for entity extraction

because they focus only on those elements of interest.

There exist several partial parsers for general English

text. For example, Weischedel et al. [10] focused on

tagging unknown words, core noun phrases, and verb

frames. They found that, for example, noun phrases
could be discovered in text with a 90% success rate

when using only local information and a statistical

partial parser. Hindle [11] developed a partial parser to

discover non-fluencies, i.e., the corrections a speaker

makes while speaking, in transcribed text. This deter-

ministic parser edits the text where the non-fluencies

occur. Church [12] developed a partial parser based on

dynamic programming that assigns parts-of-speech in
real time to be used with speech processing. The parser

used local information only in a bottom-up fashion

and assigns correct tags in more than 95% of the cases.

Voutilainen and Padro [13] combined linguistic rules

with statistical disambiguation to extract noun phrases

from text. This hybrid approach achieved both high

precision (97%) and recall (96%). McDonald developed

a parser to extract 4-tuples consisting of person and
company names, title, and events [14], which correctly

identified 81% of these 4-tuples in Wall Street Journal

articles.

There also exist partial parsers that focus on bio-

medical and medical entity recognition. The Arizona

(AZ) Noun Phraser was originally developed as a gen-

eral English noun phraser and later adapted to recognize

relevant medical phrases [15]. The evaluation showed
that recall of these relevant medical phrases was 52%

with a precision of 36%. Hersh et al. [16] focused on

general medical concepts and matched the medical text

from radiology reports to UMLS Metathesaurus con-

cepts. Their goal was to automatically add indexing

terms to the reports. They discovered more than 60% of

the indexing terms with 30% precision.

http://umlsks.nlm.nih.gov
http://umlsks.nlm.nih.gov
http://www.gene.ucl.ac.uk/nomenclature
http://www.geneontology.org
http://www-tsujii.is.s.u-tokyo.ac.jp/~genia/
http://www-tsujii.is.s.u-tokyo.ac.jp/~genia/
http://flybase.harvard.edu
http://elegans.swmed.edu
http://www3.ncbi.nlm.nih.gov/Omim/
http://www3.ncbi.nlm.nih.gov/Omim/
http://www.ebi.ac.uk/swissprot/
http://www.ebi.ac.uk/swissprot/
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Entity recognition tends to improve when the algo-
rithms are developed for more specific entities. Rindflesh

et al. [17] looked at ‘‘binding terminology’’ and combined

heuristics and the matching of extracted noun phrases

with the UMLSMetathesaurus and NCBI�s GenBank to

discover binding terminology in Medline. They recalled

72% of the binding terms with 79% precision. Ray-

chaudhuri et al. [18] assigned GO annotations to genes.

They used a document classifier based on the maximum
entropy principle to associateMedline abstracts with GO

annotations. Then they annotated genes by combining

and weighting all GO annotations associated with the

abstracts discussing the genes. Their maximum entropy

model achieved 72% accuracy. Kazama et al. [19] trained

support vector machines on the GENIA corpus to assign

words to 24 entity classes. Although the technique is very

promising, the authors report that precision was too low
for practical use. Fukuda et al. [20] used surface clues of

strings to recognize materials names, e.g., proteins, with

high precision (95%). Cohen et al. [21] developed four

types of heuristics to match gene names found inMedline

to their official name.Thebest results, 85%precision,were

achieved with strict pattern matching. Hatzivassiloglou

and Dubou�e [22] tested three machine learning ap-

proaches, native Bayesian, decision trees, and inductive
rule learning, to distinguish between genes, proteins, and

RNA in text. They achieved approximately 80% accuracy

when testing non-ambiguous cases, i.e., terms containing

disambiguating words that were not used for learning.

When comparing against labels assigned separately by

three experts, accuracywas approximately 70%. The pair-

wise agreement of their three experts was 77%, illustrating

the complexity of the task. Krauthammer et al. [23] used
BLAST, available at http://www.ncbi.nlm.nih.gov/

BLAST/, to assign nucleotide sequences to words and so

recognize gene and protein names in text. They compared

their automated technique with a list of gene names

compiled by experts. When comparing the combined set

of full and partial matches of extracted names with the

expert list, they achieved 79% recall of the genes and

proteins with 71% precision. For names already available
in the BLAST database, they achieved 95% full matches.

Proux et al. [24] used cascaded finite state transducers to

recognize gene names in sentences from the FlyBase set.

After tuning, they could extract 94% of the gene names

with 91% precision. Liu et al. [25] used different versions

of a na€iive Bayes and a Decision List Method to disam-

biguate 12 biomedical terms using the UMLS Metathe-

saurus. Their best classifier reached an overall accuracy of
97%.

2.2. Relation extraction

Besides recognizing medical entities, it is important

that the relations between them are extracted from the

text. Several different techniques exist. With co-occur-
rence based approaches, the entities are first extracted
and the relations are based on the assumption that two

entities in the same sentence or abstract are related.

Negation in the text is not taken into account. Jenssen

et al. [26] collected a set of almost 14,000 gene names

from publicly available databases and used them to

search Medline. Two genes were linked if they appeared

in the same abstract; the relation received a higher

weight if the gene pair appeared in multiple abstracts.
For the pairs with high weights, five or more occur-

rences of the pair, the authors found that 71% of the

gene pairs were indeed related.

Linguistic-based relation extraction usually employs

time-efficient, shallow parsing techniques focusing on

specific parts of the text and predefined, handpicked

verbs and nouns. Rules are specifically developed to

extract the surrounding words of these predefined terms
and to format them as relations. As with the co-occur-

rence based approach, negation in sentences is usually

ignored. Many techniques achieve high precision but

low recall. This is no surprise since only a small number

of relations between genes or proteins can be automat-

ically captured when the exact terms (the genes or pro-

teins) need to appear in the sentence. Blaschke and

Valencia [27] found that only 25% of all existing protein
interactions could be found in sentences in Medline

abstracts.

Sekimizu et al. [28] collected the most frequently used

verbs in a collection of abstracts and developed partial

and shallow parsing techniques to find the verbs� subject
and object. They estimated their precision at 73%.

Thomas et al. [29] modified a preexisting parser based

on cascaded finite state machines to fill templates with
information on protein interactions for three verbs: in-

teract with, associate with, bind to. They calculated re-

call and precision in four different manners for three

samples of abstracts. Recall ranged from 24 to 63%, and

precision from 60 to 81%. Pustejovsky et al. [30] targeted

inhibit relations in the text and built finite state auto-

mata to recognize these relations. They achieved 91%

precision and 59% recall on 56 abstracts. The PASTA
system is a more comprehensive systems that extracts

relations between proteins, species, and residues [31].

This system fills templates representing the relations

between these three elements where appropriate. The

authors achieved 82% precision and 84% recall for the

recognition and classification of the terms, and 68%

recall and 65% precision for the complete templates.

GENIES [32] uses the MedLEE parser [33] to retrieve
target structures from full-text articles. The authors re-

port very high precision (96%) for relations between

biological molecules found in full-text articles. They also

use predefined verbs and templates for each, which are

encoded in a set of rules.

MedLEE is probably the most advanced medical

natural language processing system not part of

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
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commercial for-profit software. It was originally devel-
oped for chest radiograph reports, has been expanded to

cover several other domains, and is currently used in a

clinical setting to automatically encode the information

in both chest radiograph and mammogram reports [34].

It consists of five modules: a preprocessor to perform

lexical lookup, a parser that identifies structures, a

compositional regularizer to compose phrases from

words, an encoder to map terms to codes, and a re-
covery component to take care of failed parses [34,35].

The relations MedLEE extracts are based on a semantic

grammar. The parser starts from a controlled vocabu-

lary and hundreds of grammar rules to recognize pat-

terns.

The parser we are developing has a syntactic basis.

All relations are processed without limiting in advance

what type of content is to be captured. The advantage of
our approach is that we can extract many different re-

lations with a small, manageable number of rules. The

advantage of an approach such as MedLEE�s is that

meta-knowledge of a relation, e.g., if a phrase indicates

a body part, is available from the start. We will later

attempt to use ontologies and vocabularies to tag the

elements in our relations with this type of meta-infor-

mation.
Fig. 1. Capturing semantics.
3. Parser development

3.1. Purpose

The parser is part of Genescene, a knowledge base we

are building for biomedical researchers. It extracts re-
lations from abstracts, which are stored in a document

warehouse together with the original abstracts and all

abstract meta-information. A parser relation can con-

tain up to five elements: relation negation, left-hand side

element (LHS), connector modifier, connector, and

right-hand side element (RHS). For example, from the

abstract title: ‘‘Regulation of E2F1 activity by acetyla-

tion,’’ the following relation is extracted: ‘‘Acetylation
(LHS)—regulates (connector)—E2F1 activity (RHS).’’

In some cases, a modifier (one or more adverbs) that

adds information about the connector and negation of

the relation are also available. More detailed descrip-

tions are provided in the following section.

Most existing techniques are developed from a se-

mantic perspective. They specify few elements or rela-

tions of interest, e.g., gene names or verbs, and build
parsers that recognize patterns around these specific

words. We started from a syntactic perspective and ex-

tract relations between all noun phrases regardless of

their type. Comparable to others, we built our parser to

look for certain patterns in the text; however, these

patterns are based on English closed-class words, e.g.,

conjunctions and prepositions. This provides us with
templates that are generic and do not depend on a pre-
specified medical vocabulary. Our goal is to extract re-

lations in a very precise manner. The relations, however,

are not limited to a few nouns and verbs. Our focus on

precision is necessary because we later want to use these

relations to visualize the content of texts or to perform

text mining on the relations and researchers distrust

software that is based on incorrect biological informa-

tion.

3.2. Overview

Our parser consists of two modules. The semantic

module captures the content of the abstracts, and the

structure module consists of cascaded finite state auto-

mata (FSA) to provide structure for the content. Both

modules are described in detail below.

3.2.1. Capturing content

There are five sequential processes used to capture the

content of abstracts. Fig. 1 provides an overview. Ab-

stracts are first cleansed by removing phrases referring

to the publisher and copyright information. Text be-

tween parentheses is removed when not part of a bio-

medical term, but nothing is removed from for example,
‘‘H(2)O(2).’’ The abstracts are then split into sentences

based on punctuation. We use a short list of heuristics to

ensure that a sentence is not split incorrectly. The heu-

ristics deal with phrases such as ‘‘p < :01,’’ common

English abbreviations such as ‘‘vs.,’’ and biomedical-

specific abbreviations such as ‘‘Escherichia coli.’’

Each sentence is submitted to the AZ Noun Phraser

[15], which extracts medical nouns and noun phrases
from the sentences. The settings of the AZ Noun

Phraser were adjusted so that it does not extract com-
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plete prepositional phrases, but instead splits them up in
the constituent phrases. Nouns not recognized by the

AZ Noun Phraser are added based on lexical lookup

and a set of heuristics. For example, words that have a

dash in the middle are considered nouns. This heuristic

is based on the observation that authors use words such

as ‘‘self-epitopes,’’ or ‘‘TGF-b’’ in a relation such as

‘‘Generation of active TGF-b.’’ A second set of heuris-

tics is used to combine nouns together. For example
‘‘G1’’ was recognized based on lexical lookup and was

combined where appropriate with ‘‘cell cycle’’ when

both words appeared together in the text as ‘‘G1 cell

cycle.’’ As such, the parser is not limited to phrases or

words that appear in controlled vocabularies. This ap-

proach illustrates a first difference between our parser

and the semantic approach. For example, for MedLEE

a knowledge engineer is trained to add terms to its lex-
icon [35]. Only terms that are part of the lexicon can

become part of a relation.

Nouns and noun phrases are also checked to discover

if they consist of nominalizations. We use the UMLS

Specialist Lexicon for this purpose. When a nominal-

ization is discovered, e.g., ‘‘activation,’’ then both the

underlying verb infinitive and the original nominaliza-

tion are retained. Which one will be used in the relation
is decided in a later phase.

Closed class words such as prepositions, negation,

conjunctions, and punctuation are also tagged. Deter-

miners and pronouns are ignored. Verbs and adverbs

are recognized and added based on lexical lookup. The

UMLS Specialist Lexicon is used for lookup. The

number of ignored or unrecognized words in the sen-

tence between extracted elements is then added as the
‘‘distance’’ between these elements. This distance mea-

sure will allow us to retain sufficient precision when

combining the entities into relations.

3.2.2. Capturing structure

Overview. To capture the structure of a sentence, we

use a shallow parser based on closed class English

words. The closed classes� membership does not change
and allows us to build very specific but semantically

generic relation templates. We initially chose only

prepositions and negation but later added conjunctions.

Prepositions were chosen because they form the con-

nections between different elements in a sentence.

Prepositions are the heads of phrases [36] and we believe

that these connections, in addition to verbs, are impor-

tant in representing free text as binary relations. Prep-
ositions indicate different types of relations between

phrases, such as time or spatial relations [37], but can

also be distinguished based on their operative class [38]:

predicative and non-predicative prepositions. The first

indicate a semantic relation; the prepositions are used to

communicate information about an object, action or

process, e.g., after, under. The second indicates a
syntactic relation; the prepositions are used to indicate
cases within a clause, e.g., from and with. However,

prepositions can belong to different classifications de-

pending on their use in a sentence.

We chose three prepositions (by, of, in) for several

reasons. We wanted to use prepositions that occur fre-

quently in the text and that led to interesting relation

templates for the researchers. In addition, we felt it was

interesting to test both prepositions with and without
grammatical function. ‘‘By’’ and ‘‘of’’ have a gram-

matical function in the sentence and do not contribute

much to the meaning. ‘‘By’’ is used very often to head

complements in passive sentences, for example, in

‘‘Mdm2 is not increased by the Ala20 mutation.’’ ‘‘Of’’

is one of the most highly grammaticized prepositions

that allows a wide range of semantic relations between

phrases [36] and is often used as a complement, such as
for example in ‘‘the inhibition of the activity of the tu-

mor suppressor protein p53.’’ In contrast, ‘‘in’’ is usually

a positive indication of location and it forms interesting

relations when combined with the verb, for example in

‘‘Bcl-2 expression is inhibited in precancerous B cells.’’

In addition, extracting relations from both active and

passive sentences provided us with a test case where we

could evaluate how suitable it would be to change re-
lations from passive to active.

A problem encountered when using prepositions for

text analysis is that of prepositional attachment. For

example, in the sentence ‘‘He bought the shirt with

pockets,’’ the phrase ‘‘with pockets’’ goes with the noun

‘‘shirt.’’ However, in the sentence ‘‘He washed the shirt

with soap,’’ the ‘‘with soap’’ goes with the verb ‘‘wa-

shed.’’ Different approaches are used to disambiguate
the attachment. Maximum entropy models [39], rule-

based approaches [40], and several machine learning

methods [41,42] have been used. However, we believe

that for a specific and scientific domain, this problem

will be less pronounced because authors try to com-

municate their message in an unambiguous manner. In

addition, the same type of sentence structures is often

used, making it probable that these structures will also
have the same attachment.

We tested our parser initially with two prepositions

[43] and have expanded it since then. The templates are

currently based on three prepositions (by, of, in), two

conjunctions (and, or), the comma, negation, and aux-

iliary or modal verbs to structure relations. One of our

reasons for chosen these prepositions, as described

above, was their frequency of appearance, see Table 1.
Although ‘‘with’’ occurred more often than ‘‘by,’’ we

chose ‘‘by’’ because it is frequently combined with ‘‘of’’

and produces interesting relations. ‘‘To’’ was more often

an infinitive marker than a preposition.

The parser recognizes most conjunctions, preposi-

tions, determiners, and auxiliary verbs but only a subset

is currently used in the templates. Table 2 provides an



Table 2

Closed class words recognized and utilized to extract relations

Recognized Utilized

Modal/auxiliary verbs 35 35

Conjunctions 52 2

Determiners 28 Ignored

Negations 26 26

Prepositions 63 3

Punctuation 8 1 (comma)

Fig. 2. Example finite state automaton.

Table 1

Prepositions in sample biomedical abstracts

Total %

Abstracts 500

Sentences 6434

Prepositions 16,411 100

Of 5416 33

In 3416 20

To 2145 13

With 1324 8

By 1126 7

For 918 6

On 452 3

41 Other prepositions 1614 10
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overview. Recognizing elements that are not yet utilized

will facilitate future expansion of the parser.

Negation is a complex phenomenon in both spoken

and written text. It can be easily detected when there are

specific negation words present, e.g., not, neither, and

never. This is both the case for Not-negation, e.g., not,

n�t, and No-negation, e.g., never, nobody. However, in

many cases, these specific words are not presented, e.g.,
deny, fail, and lack. Words in this second category are

called inherent negatives [44], i.e., they have an negative

meaning but a positive form. An additional difficulty is

that negation can be non-affixal or affixal. Examples of

the non-affixal negation are the words no, none, and

nothing; examples of the second affixal negation are

word ending in -less, e.g., childless, or words starting

with non-, e.g., non-committal. We are concerned with
both not- and no-negation of the non-affixal type be-

cause these form a closed class [44] and all the compo-

nents can be enumerated.

Few people dealing with medical or biomedical text

report on capturing negation. A first interesting excep-

tion is the work by Chapman et al. [45] who captured

negation in narrative medical reports. The authors de-

veloped regular expressions to look for negation pat-
terns and could recall 88% of the patterns covered by the

expressions with 68% precision. MedLEE�s parse mod-

ule deals with negation by treating negation as an

atomic or leaf category in its parser�s grammar [34,46].

This category is contained in several modifying gram-

mar rules. Mutalik et al. [47] hypothesized and discov-
ered that most negations in medical text are
straightforward and can be captured with regular ex-

pressions. They achieved recall and precision of over

90% when parsing negations in their test set. Since the

list of possible negations is limited, our parser uses a list

containing for example ‘‘not,’’ ‘‘neither,’’ and ‘‘isn�t’’ to
recognize these elements. We do not treat verbs such as

‘‘inhibit’’ as negative instances of other verbs such as

‘‘activate.’’
Relation recognition. FSA represent the relation pat-

terns of interest. An FSA consists of a set of nodes and

the arcs that connect them. The nodes and arcs are or-

ganized as a directed graph. Fig. 2 shows an example of

a simple automaton, with four nodes or states, that can

recognize noun phrases. Moving from one state to the

next is called a state transition. The start state is indi-

cated by q0. For example, the phrase ‘‘terrible disease’’
consists of an adjective and a noun and would be rec-

ognized by the following transitions: when the adjective

is encountered, there will be a transition from state q0 to
state q1 because the input is an adjective and so it the

label on the arc between state q0 and q1. Then, when the

noun is encountered, there will be another transition

from state q1 to state q3, which is an end state or final

state. End states are indicated with a double circle in the
graph. Other phrases such as ‘‘very terrible disease’’

consisting of an adverb, adjective, and noun would also

be recognized (order of states: 0, 2, 1, and 3). This simple

automaton requires that each word has received a cor-

rect label. When an element is encountered that is not in

the finite state automaton, e.g., a verb encountered when

in state q1, the automaton rejects the input, or it is said

to end in a fail or sink state [48]. Sink states are usually
not explicitly represented in the model but are used to

describe the lack of possible advancement in the FSA.

FSA can be deterministic or non-deterministic. De-

terministic FSA do not have decision points, i.e., states

with arcs leading to different nodes for the same input.

The FSA in Fig. 2 shows a deterministic FSA because at

every state, only one arc can be followed for certain

input. If, for example, state q2 had two arcs labeled
‘‘adjective’’ that pointed to a different node, then this

would have been a non-deterministic FSA. Finite state

transducers are very closely related to FSA. The trans-

ducers differ from automata in that they have a pair of

symbols on each arc: one input symbol and one output
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symbol. The automata are used to recognize a sequence
of elements, i.e., patterns; the transducers can transform

these elements while transitioning from one state to the

next. For formal definitions, we refer to Roche and

Schabes [49] and Jurasfky and Martin [50].

FSA and transducers are commonly used in many

different aspects of natural language processing, such as

parts-of-speech tagging, parsing, or chunking. For ex-

ample, Kokkinakis and Johansson-Kokkinakis [51] used
cascaded FSA to parse Swedish and achieved 95% pre-

cision and 92% recall for full chunk parsing. Grefens-

tette [52] used a finite state approach to identify noun

and verb groups and the syntactic relations between and

within groups. Abney [53] described a chunker for En-

glish and German based on cascaded FSA that is almost

as precise as the human evaluators. FSA are also suc-

cessfully applied towards less common tasks. For ex-
ample, Van Delden and Gomez [54] used FSA to

determine the syntactic roles of commas; precision was

well over 90%.

FSA are efficient and can deal with complex struc-

tures. Roche and Schabes [49] showed that a finite state

version of a rule based part-of-speech tagger runs at

much greater speed. Roche [55] showed that finite state

transducers can be used to handle linguistically complex
structures, demonstrating the efficiency of the automata

structures in general. We used FSA to accept or reject

patterns found in the input. When the FSA accepts a

pattern, we store information about this pattern as a

relation. The FSA used to accept patterns, i.e., recognize

relations, are very similar to that in Fig. 2 with addi-

tional features such as can be seen in Fig. 3. In addition

to a label on each arc that indicates what type of tran-
sition is allowed, our FSA also have a maximum dis-

tance on each arc. The maximum distance allowed

between elements is used as an additional restriction to
Fig. 3. Augmented finite state automaton and transition table.
increase the precision of the relations. This distance is
the number of steps required to get from one element to

the next. For the example in Fig. 3, one step is allowed

to get from the adjective ‘‘terrible’’ to the noun ‘‘dis-

ease’’ which means that there can be no intervening

words. The first adjective of a noun phrase can be the

fifth word in a sentence. This ensures that elements

separated by unrecognized or unsuitable words are not

part of a relation. Blascke and Valencia [27] also use the
number of intervening words between protein names in

a sentence and assigned a lower score to relations cov-

ering a larger distance. In our case, the distance is not

used as part of a score but to decide if the FSA can

advance to the next state or if a sink state is encoun-

tered. Another adaptation is that we use a short list of

irrelevant phrases that lead to sink states. This ensures

that we do not store relations such as ‘‘the aim of this
study,’’ and do not spend time processing such irrelevant

relations. The directed graph is represented by a state

transition diagram, as is also shown in Fig. 3.

During state transitions, the elements are recognized

based on their tags, such as noun or verb, and the actual

strings are temporarily stored. Each element is retained

together with information about the state it fitted. For

our first example, we store (state 1, terrible) and then
(state 2, disease). If the FSA ends in a successful end

state, these stored strings are permanently stored in re-

lation format.

The parser is currently based on four cascaded FSA.

Cascading FSA means combining them by adding arcs

between the FSA such that transitions can be made from

one FSA into the next one. To improve the speed of our

parser, we made a few modifications in comparison to
classical, cascaded FSA. For our cascade, the parser can

progress past an end state in search of a later end state.

This is done in a greedy manner, meaning that it passes

successful end states until a sink state or the last possible

end state is encountered. When the parser encounters a

sink state, it backtracks to the last encountered end

state. A further modification was that the four FSA

share some states where the patterns are identical. This
made the parsing more efficient: when one pattern can-

not be successfully accepted, it is not necessary to start

over and process the same states a second time for a

different FSA.

Relation format. The patterns recognized by the FSA

are later stored as relations in the database. They ex-

press binary relations between two noun phrases. Re-

lations can contain up to five elements and require a
minimum of two elements. The left-hand side (LHS) of a

relation is often the active component and the right-hand

side (RHS) of a relation is often the receiving compo-

nent. The connector connects the LHS with the RHS and

is often a verb. The relation can also be negated

or augmented with a modifier. We will present examples

in the following format: ‘‘negation: LHS—(modifier)
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connector—RHS’’ to facilitate readability. For example,
from the sentence ‘‘. . . Hsp90 has become a promising

new drug target’’ a relation is extracted as follows

‘‘Hsp90 (LHS)—become (connector)—promising new

drug target (RHS).’’ From the sentence ‘‘Thus hsp90

does not inhibit receptor function solely by steric in-

terference; rather . . .’’ the following relation is extracted

‘‘NOT(negation): Hsp90 (LHS)—inhibit (connector)—

receptor function (RHS).’’ Passive relations based on
‘‘by’’ are stored in active format. In some cases the re-

lations are simpler, e.g., when the connector is only a

preposition, e.g., the relation ‘‘single cell clone—of—AK-

5 cells.’’ In other cases, the preposition ‘‘in’’ and the verb

are combined, e.g., the relation ‘‘NOT: RNA Expres-

sion—detect in—small intestine,’’ or multiple adverbs are

combined into one modifier.

BS-FSA. Fig. 4 provides an overview of the FSA for
Basic Sentences (BS-FSA). This FSA models short basic

sentences containing minimally two nouns or noun

phrases and a verb. This pattern is often found in the

title of an abstract, but can also be part of a longer

sentence. On each arc in Fig. 4, there is a label to indi-

cate the required input to advance and the maximum

distance allowed. The start state is q0. The parser pro-

gresses from state 0 (q0) to state 1 (q1) when it encoun-
ters a noun phrase that is not more than five words from

the start of the sentence; it progresses to state 4 (q4)
when negation is encountered. The FSA requires a verb

and a final noun phrase to lead to two possible success

states (q19 and q20). Modifiers, auxiliary verbs, and ne-

gation are optional to progress but are captured when

encountered. For example, from the sentence ‘‘Yet,

E2F1 deficiency does not accelerate tumor growth,’’ the
following relation is extracted: ‘‘NOT: E2F1 deficiency—
Fig. 4. Finite state automaton for basic sentences (BS-FSA: Nom.,

nominalization; Mod, modifier; Neg., negation; NP, noun phraser or

noun; and Adj., adjective).
accelerate—tumor growth.’’ This FSA contains two sets
of common states that are reused by other FSA.

OF-FSA. Fig. 5 provides an overview of the FSA that

deals with the preposition ‘‘of’’ (OF-FSA). This FSA

has one set of states in common with the BS-FSA and

there are three end states indicating a successful parse.

The FSA deals with structures surrounding one or two

‘‘of�s.’’ There are two subtypes of patterns that we dis-

tinguish. The first and easiest pattern involves noun
phrases. For example, from the sentence ‘‘. . . the cyto-

plasmic sequestration domain of the p53 protein’’ we

extract the following relation ‘‘cytoplasmic sequestra-

tion domain—of—p53 protein.’’

The second pattern contains nominalizations and is

more complex. Originally, we transformed all nominal-

izations to infinitives. For example, in the sentence

‘‘Regulation of c-Myb activity . . .’’ the nominalization
‘‘regulation’’ is transformed into the infinitive ‘‘regu-

late’’ resulting in the following relation ‘‘null—regulate—

c-Myb activity.’’ This was done so that more relations

would overlap, which would be useful for later text

mining and visualization. However, during initial eval-

uation sessions, researchers pointed out that in some

cases, this is misleading. It might be, for example, that

the original authors were trying to measure inhibition
but did not actually find it. In this case, we need to retain

the nominalization because changing it to an infinitive

leads to the incorrect impression that inhibition was
Fig. 5. Finite state automaton for the preposition ‘‘of’’ (OF-FSA:

Nom., nominalization; Mod., modifier; Neg., negation; NP, noun

phraser or noun; and Adj., adjective).
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actually measured. To avoid misleading future users, we
let the parser evaluate all verbs in a sentence. If any of

the verbs indicates that the text does not discuss actual

results, we do not use the infinitive representation. For

this purpose, we use a list of 32 verbs, for example

‘‘anticipate,’’ ‘‘investigate,’’ ‘‘question.’’ For example,

from the sentence ‘‘We propose that E2F1 acts as a

specific signal for the induction of apoptosis by affecting

. . .’’ we currently represent the relations as follows ‘‘in-
duction—of—apoptosis’’ because of the verb ‘‘propose’’

that is found in the sentence. The transformation into

infinitives is based on a lexical lookup of the nominal-

ization in the UMLS Specialist Lexicon.

BY-FSA. Fig. 6 provides an overview of the FSA that

deals with the preposition ‘‘by’’ (BY-FSA). This FSA

can stand alone or it can be cascaded with the previous

OF-FSA. There is one end state indicating a successful
parse. When on its own, the FSA requires the presence

of a verb and two noun phrases or nominalizations. It

uses states common to other FSA for efficiency. For

example, from the sentence ‘‘Given that E2F1 activity is

stimulated by p300/CBP acetylase and . . .’’ the relation

‘‘p300/CBP acetylase—stimulate—E2F1 activity’’ is ex-

tracted. When combined with the OF-FSA, it can con-

tinue from both its end states q3 and q8.
IN-FSA. Fig. 7 provides an overview of the FSA that

deals with the preposition ‘‘in’’ (IN-FSA). This FSA can
Fig. 6. Finite state automaton for the preposition ‘‘by’’ (BY-FSA:

Nom., nominalization; Mod., modifier; Neg., negation; NP, noun

phraser or noun; and Adj., adjective).

Fig. 7. Finite state automaton for the preposition ‘‘in’’ (IN-FSA:

Nom., nominalization; Mod., modifier; Neg., negation; NP, noun

phraser or noun; and Adj., adjective).
stand alone when there is a verb available, or it can be
combined with both the OF- or BY-FSA. There is one

end state indicating a successful parse. When the FSA is

in stand-alone mode, the verb and the prepositions ‘‘in’’

are combined and stored as one connector. For example,

from the sentence ‘‘These results suggest that p53 gene

mutations may not occur frequently in rat bladder car-

cinogenesis . . .’’ the following relation is extracted:

‘‘NOT: p53 gene mutations—(frequently) occur in—rat
bladder carcinogenesis.’’

The IN-FSA can be combined with the OF-FSA by

continuing from either of the three end states (q3, q8, or
q10). It can also be combined with the BY-FSA by

continuing from end state q12. The FSA can only lead to

success when it ends with the preposition ‘‘in’’ followed

by a noun phrase.

Conjunctions. The parser recognizes coordinating
conjunctions. Currently, conjunctions with ‘‘and’’ and

‘‘or’’ are used that may contain any number of elements.

These conjunctions are taken care of with a step-out

function. When the parser encounters the start of a

conjunction as indicated by ‘‘and,’’ ‘‘or,’’ or a comma,

the FSA is halted and the parser temporarily steps out of

the FSA to deal with the conjunction. It retains infor-

mation about the state where the conjunction is en-
countered and uses heuristics to recognize valid

conjunctions. Then the conjunctional constituents are

stored together with the FSA state where they were

encountered and the parser continues processing the

FSA. This concept is illustrated in Fig. 8 and more

concretely for the IN-FSA in Fig. 9.

When the parser reaches an end state successfully,

the original relation is extracted together with a copy of
the relation for each constituent in the conjunction. The

relevant part of the copied relation is replaced with the
Fig. 8. Step-out function for coordinating conjunctions.

Fig. 9. Illustration of the step-out function for coordinating conjunc-

tions.



Table 3

Overview of the abstracts and relations

Total Average per abstract

Abstracts 26

Sentences 237 9

Extracted relations 330 13

Correct relations 296 (90%) 11
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constituent resulting in a new relation for each element
in the conjunction.

For example, two sets of relations are extracted from

the sentence ‘‘. . . induced degradation of p53 in normal

thymocytes and myeloid leukemic cells.’’ The parser first

extracts the following two relations based on the IN-

FSA:

• induced degradation—of—p53

• induced degradation—in—normal thymocytes

The second set of relations is the result of the con-

junction. All information is copied, but the last element

is correctly replaced, resulting in these relations:

• induced degradation—of—p53

• induced degradation—in—myeloid leukemic cells

To judge conjunctions we use several heuristics. They

require exactly one ‘‘and’’ or ‘‘or’’ at the end and cannot

be immediately followed by prepositions. All elements in
a conjunction need to have the same part-of-speech and

compatible semantic types. The semantic types are ex-

tracted from the UMLS Metathesaurus. To extract

these types, we do a lexical lookup of the phrase, and

retrieve the concept it belongs to and the semantic types

of the concept. All semantic types of a concept are re-

trieved. We do not disambiguate the terms to assign a

single semantic type. If two elements can be found in the
UMLS, we consider their types compatible if both have

one or more identical semantic types. This mapping

captures additional errors not found based on parts-of-

speech only. For example, with ‘‘breast and ovarian

cancer,’’ both ‘‘breast’’ and ‘‘ovarian cancer’’ are nouns

(or noun phrases). However, the semantic types are

entirely different. The reader can check this using the

online UMLS Knowledge Sources (http://um-
lsks5.nlm.nih.gov/). These combined restrictions ensure

that we capture conjunctions with complete and com-

patible elements. For example, in the sentence ‘‘. . . but
not inhibitors of ERK/MAP kinase or protein kinase C

. . .’’ each constituent of the conjunctions is a complete

element and two relations are extracted: ‘‘NOT: inhibi-

tor—of—ERK/MAP kinase’’ and ‘‘NOT: inhibitor—of—

protein kinase C.’’
There is no limit to the number of elements a con-

junction can contain. For example, from the sentence

‘‘Immunohistochemical stains included Ber-EP4,

PCNA, Ki-67, Bcl-2, p53, SM-Actin, CD31, factor

XIIIa, KP-1, and CD34,’’ 10 relations were extracted

based on the same underlying pattern: ‘‘Immunohisto-

chemical stains—include—Ber-EP4,’’ ‘‘Immunohisto-

chemical stains—include—PCNA,’’ etc. At this moment,
the parser captures only one conjunction per FSA.

Negation. Negation is recognized in both sets of

common states (see Fig. 4) and is therefore part of each

FSA. The first set of common states deals with negation

that precedes a verb phrase as in for example the sen-

tence ‘‘Yet, E2F1 does not accelerate tumor growth,’’

the relation ‘‘NOT: E2F1 deficiency—accelerate—tumor
growth’’ is extracted. The second set of common states
deals with negation that is part of a noun phrase as in

for example from the sentence ‘‘. . . no evidence of ap-

optosis . . .’’ the relation ‘‘NOT: evidence—of—apopto-

sis.’’ Currently, the parser does not handle double

negation.
4. Evaluation

Three cancer researchers from the Arizona Cancer

Center submitted 26 abstracts of interest to them. All 26

were parsed and 330 relations were extracted. Table 3

provides and overview. Each researcher evaluated the

relations from his or her abstracts. A relation is con-

sidered correct if each component is correct, e.g., the

noun phrases are complete, and if they represent the
information correctly. Any incorrect component, e.g.,

an incomplete noun phrase, results in an incorrect re-

lation. Additionally, even though all components can be

correct, if the relation does not represent the informa-

tion from the sentence correctly, if negation is missing,

or if the verb infinitives are used inappropriately, the

relation is scored as incorrect. Of the 330 extracted re-

lations, 296 or 90% were correct. Five relations were
correctly negated but one relation was considered in-

correct because the negation was missing. We did not

obtain a gold standard of all possible, relevant relations

in the text from the cancer researchers because the

parser focuses currently only on basic sentences and

three prepositions. Therefore, we performed recall and

coverage for this limited set of relations. The numbers

below do not reflect the recall of all interesting relations
in an abstract, but of those surrounding our target

closed class words.

The researchers evaluated the relations without

knowledge of the underlying FSA and so the number

reported in Table 3 does not evaluate if a relation was

captured by the appropriate FSA. For example, if a

relation was captured by the OF-FSA but should have

been captured by the BY-FSA, the researchers consid-
ered the relation correct as long as it correctly repre-

sented the information in the sentence. To better

understand how each FSA contributed to the results, we

calculated precision and recall per FSA and for

the conjunctions. This evaluation is presented in the

following sections. It is based on the evaluation of the

http://umlsks5.nlm.nih.gov/
http://umlsks5.nlm.nih.gov/


Table 5

Recall of the relations

FSA Total correct Total relations Recall (%)

BS-FSA 8 23 35

OF-FSA 145 203 71

BY-FSA 15 24 63

IN-FSA 11 37 30

All 179 287 62
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researchers of the correctness of relations but with the
additional condition that each relation needs to be

completely extracted by the correct FSA to be consid-

ered correct.

4.1. Precision of the FSA

Precision was calculated by dividing the number of

correctly and completely extracted relations by the total
number of extracted relations. The ‘‘correctly extracted

relations’’ are those relations considered correct by the

researchers, as described above, but with the additional

restriction that it needs to be completely extracted by the

appropriate FSA. This is a more strict evaluation.

Precision ¼# correctly and completely extracted

relations=# total extracted relations

Table 4 provides an overview of the precision of the

relations. There were 267 relations extracted from the
abstracts (excludes the conjunctional copies); 179 were

extracted completely and correctly resulting in 89%

precision. A closer look at all errors revealed that nine

errors (38%) were due to incorrect noun phrases in the

relation and two errors (8%) were due to an incorrect

transformation of a nominalization to a verb infinitive.

Precision was highest for the OF-FSA (92%) and lowest

for the basic sentences (53%).

4.2. Recall of the FSA

We calculated recall in a similar manner as precision:

the number of correctly and completely extracted rela-

tions divided by the total number of relations available

in the text:

Recall ¼ # correctly and completely extracted

relations=# total relations

The ‘‘total relations’’ were counted by doing a man-

ual check of all sentences in the abstracts. When a sen-

tence contains the required prepositions for a particular

pattern and the distance between the elements was less

or equal to the maximally allowed distance, the relation

was counted as ‘‘required.’’ When a relation contained a

conjunction, it was only counted once, since we evaluate
conjunctions separately in the following section.
Table 4

Precision of the relations

FSA Total correct Total extracted Precision (%)

BS-FSA 8 15 53

OF-FSA 145 157 92

BY-FSA 15 17 88

IN-FSA 11 13 85

All 179 202 89
Only those relations that could have been captured in
the text with the current FSA were considered. Table 5

shows an overview of the recall of relations per FSA.

Overall, 62% of the patterns were correctly and com-

pletely extracted. As with precision, conjunctional cop-

ies are not considered here. The highest recall was found

for the OF-FSA, 71% recall, and the BY-FSA, 63% re-

call. Recall was lowest for the IN-FSA (30%) where a

relation was considered missing when the noun phrase
introduced by ‘‘in’’ was missing. These relations were

often extracted by another FSA but considered incorrect

here.

4.3. Precision and recall of conjunctions

To calculate precision and recall of conjunctions, we

counted each relation in the text where a conjunction
was part of the FSA pattern. Conjunctions where the

elements needed recombination, e.g., ‘‘breast and ovar-

ian cancer,’’ are not counted since we explicitly avoid

them. A conjunction is considered to be completely and

correctly extracted if each element is placed in the cor-

rect FSA relation. If any of the elements is incorrect, if

the relation is incorrect, or if any element is missing

from the copied relation, e.g., a negation, we consider
this to be an incorrect conjunction resulting in lower

precision. If any copy is missing, we consider this a

missed conjunction resulting in lower recall.

Tables 6 and 7 provide an overview of the results.

There were 30 valid conjunctions in the abstracts. Of

these, 12 were correctly and completely extracted. A

conjunction was either correctly extracted (100% preci-

sion) or it was ignored. This results in a few selective
relations being added to the result set without intro-

ducing any new errors.
Table 6

Precision of the conjunctions

FSA Total correct Total extracted Precision (%)

BS-FSA 1 1 100

OF-FSA 10 10 100

BY-FSA 0 0 —

IN-FSA 1 1 100

All 12 12 100



Table 7

Recall of the conjunctions

FSA Total

correct

Total

conjunctions

Recall

(%)

BS-FSA 1 1 100

OF-FSA 10 22 45

BY-FSA 0 1 0

IN-FSA 1 6 16

All 12 30 40

Table 8

Coverage of prepositions and conjunctions

26 Abstracts Prepositions

of by in

Total in abstracts 257 66 130

Correctly captured 197 19 18

Coverage 77% 29% 14%
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4.4. Coverage of relations

To learn the coverage of the combined FSA patterns,

we counted the three prepositions in the abstracts. All

occurrences of ‘‘by,’’ ‘‘of,’’ and ‘‘in’’ were counted with

the following exceptions: ‘‘in addition,’’ ‘‘in view,’’ ‘‘in

this report,’’ ‘‘in order,’’ and ‘‘in contrast’’ which ap-

peared usually in the beginning of the sentence and are
explicitly avoided by the parser because they result in

irrelevant relations. In addition, ‘‘in’’ was not counted as

a preposition when encountered as part of ‘‘in vivo’’ and

‘‘in vitro.’’

The results are summarized in Table 8. We consid-

ered the prepositions captured when it was part of a

correct relation. Seventy seven percent of all ‘‘of’’

prepositions, 29% of all ‘‘by’’ prepositions, and 14% of
all ‘‘in’’ prepositions were correctly captured by the

FSA. These numbers indicate that the OF-FSA is rela-

tively complete for this type of biomedical text. The BY-

FSA and IN-FSA cover a smaller portion of the avail-

able structures.
5. Conclusion

In this paper, we presented a shallow parser based on

closed-class English words to efficiently capture rela-

tions between noun phrases in biomedical text. Cas-

caded FSA model the relations resulting in time-efficient

processing. Relations are not limited to certain words,

e.g., proteins, or certain verbs, e.g., activate, and can

contain up to five elements: the left-hand side (LHS) and
right-hand side (RHS) of a relation, a connector which

binds the LHS to the RHS, a modifier, and negation.

We tested our approach on 26 abstracts of interest to
three cancer researchers who subsequently evaluated the
relations extracted by the parser. On average, there were

11 correct relations extracted per abstract, 296 in total,

with 90% precision.

The precision (90%) we achieved makes our parsing

approach comparable to the best. Others report preci-

sion ranging from 60 to 96% [29,30,32]. Comparing re-

call with others is harder, since different types of

relations are extracted and it is often hard to find exact
numbers. In general, we believe our parser extracts more

relations per abstract because we do not limit the rela-

tions to specific verbs or specific entities. GENIES, for

example, extracted 27 relations between biological

molecules, 19 of which were unique, from one full text

article [32]. Ng and Wong [56] found 16 unique protein–

protein interactions in 26 Medline abstracts. Thomas

et al. [29] estimate that there exists one relevant relation
in half of their 2565 Medline abstracts and report a re-

call of 80% for their best sample.

The parser has limitations that need to be addressed

in the near future. First of all, the coverage of the

prepositions provides us with a guideline on where to

focus expansion efforts. We plan to complete the pat-

terns for ‘‘by’’ and ‘‘in,’’ before moving on to other

prepositions. In addition, a more general, complete, and
linguistically sound approach towards conjunctions

needs to be used. Currently, only one conjunction can be

dealt with per FSA. Finally, our study is limited because

no complete gold standard for all relevant relations was

available for our test set. Instead, we approximated re-

call of the patterns. We counted all the occurrence of the

prepositions. The counts of the prepositions in the order

covered by the parser were used to calculate recall. The
count of all occurrences was used to calculate coverage.
6. Future directions

In the near future, we plan to improve and expand

the parser. Initially, we will add more patterns for the

same prepositions, later we will add more prepositions.
We will look further into the differences between rela-

tions that represent actual results or not. We also plan

to add a module that can combine these structures into

more complex hierarchies. This would be necessary to

deal with structures introduced by, for example, sub-

ordinating conjunctions.

Currently, we are collaborating with cancer re-

searchers from the Arizona Cancer Center who are in-
terested in the p53 gene. As of August 2002, there were

23,265 abstracts in Medline that contained the keyword

p53 in either the title or the abstract text. On a computer

with a 1-GHz processor and 392-MB RAM, the parser

processed seven abstracts per second and this p53-col-

lection was processed in about 1 h demonstrating the

scalability of our approach. All relations and original
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abstracts are stored in our Genescene knowledge base.
We plan to add meta-information about the extracted

relations to Genescene and hope to achieve this by

tagging all elements with information from the UMLS,

the Gene Ontology, and the Human Genome Nomen-

clature. All three knowledge sources are currently inte-

grated in Genescene and used to tag each element. We

are working on algorithms to choose a unique tag for

each element instead of multiple tags. This will allow us
to label individual elements with relevant tags such as

gene, disease, or patient group.

Our goal is to visualize the relations extracted from

each collection in a semantically rich map that re-

searchers can browse. Because of this goal, we focused

on finding semantically rich but precisely extracted re-

lations. By tagging all elements, users will be able to

limit the map to only those parts of interests, e.g., only
relations between genes and diseases. An online demo is

available at http://ai.bpa.arizona.edu/go/GeneScene.
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