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Abstract

In this paper we present a variant of fuzzy c-means
that allows to find similar shaepes in time series data
in a scale-invariant fashion. We use date from pro-
tein mass spectrography to show how this approach finds

areas of interest without a need for ad-hoc normaliza-
tions.

1. Motivation

- When analyzing time series data, especially from bi-
ological domains such as proteomics mass spectrogra-
phy, it is crucial to extract relevant pieces of informa-
tion in order to quickly gain some insights into the vast
amounts of data. In mass spectrography the recorded
data often exhibits vast variances in quantitative infor-
mation, which up to now required cumbersome heuris-
tics for normalization and base-line subtraction. In
Figure 1 the basic operation of protein mass spectrog-

raphy is sketched. Charged proteins are accelerated in

‘a vacuum and- the charge over time-of-flight plot can
be used to draw conclusions about the concentrations
of 'proteins of specific mass. In reality, however, the
resulting information is highly unreliable in quantita-
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tive terms and also exhibits large amounts of noise.
Figure 2 shows an example of mass-over-charge dia-
grams derived from a real protein mass-spec instru-
ment. Note how, although both plots were derived
from the same sample, the quantitative information,
i.e. the peak heights, vary. In addition a heavy base-
line offset and a substantial amount of noise is visible.
The enlarged section shows an area where it is hard
to identify all peaks using conventional peak-detection
techniques, since some of them overlap and form head-
shoulder constellations. Such shapes generally are hard
to identify as separate peaks.

In this paper we present a method that finds areas
in such spectra that exhibit informative clusters of re-
lated shapes. The use of a fuzzy clustering technique
based on fuzzy c-means allows us to assign overlapping
degrees of membership and assign each pattern to pro-
totypical shapes with a certain degree of membership.
Since quantitative information is only marginally reli-
able in many of these data sets, the matching needs to
be invariant under certain transformations of the spec-
tra, particularly scaling. The proposed method consid-
ers different sub-samples, obtained by sliding a tempo-
ral window over the set of time series and scores the
resulting clustering of each passage in order to identify
well separated clusters or clusters that offer good class
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Figure 1. The principle. behind Protein

Mass Spectrography is based on accelerated
charged proteins in vacuum. Based on volt-
age and distance, the observed charge over
time-of-flight plot can be used to identify con-
centrations of proteins at a certain mass.

discriminability; the final outcome are a small collec-
tion of relevant granules representing shape fragments
of interest, which characterize the original set of mass
specs.

The paper is organized as follows. Section 2 con-
tains a short description of the fuzzy c-means cluster-
ing technique; in section 3 we present our approach,
introducing the use of a scale independent objective
function and, after presenting some results in section 4
and summarizing our conclusions in section 5, we dis-
cuss some possible future developments in section 6.

2. Objective-Function Based Fuzzy Clus-
tering

The general idea behind clustering is to partition a
given dataset into homogeneous subsets. One popular
approach consists in finding a partition of the original
space and assigning each data element to one of the
clusters by means of a similarity function, which is of-
ten based on the Euclidean distance as a metric. Each
cluster is then represented by a prototype, or cluster
representative. The well-known fuzzy c-means algo-
rithm [1] is an example for such a clustering algorithm,
where in addition one allows each data element to be-
long to all clusters simultaneously, but to different de-
grees. In formal terms, assuming we have a data set

X= {:cl,...,:v|x|} Cc R*,neN

the aim is to compute the prototypes P = {ps, ..., p|p|}
as a result of the following optimization problem:

1X] 1P|

Jn(X;U,P) = Zz'u,,] 3,

j=11i=1
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Figure 2. Two examples of real mass-
over-charge plots from a protein mass-
spectrography instrument.

using the constraints

1X|

Vi € N¢p| Z u;; >0 (2)
j=1
|P|

Vj € Nqu Zui,j =1 (3)
i=1

that is, we want to minimize the sum of weighted
(squared) distances between data objects and cluster
prototypes. The membership degree of datum z; to
cluster p; is denoted by u;; € [0,1]. The distance of
datum z; and cluster prototype p; is denoted by d; ;.
The parameter m > 1 influences the “fuzziness” of the
obtained partition.

With m — 1 the partition tends to be crisp (u;; =
{0,1}); with m — oo, totally fuzzy (u;; — 171“’T) Con-
straint (2) makes sure that none of the clusters is empty
and thus we really have a partition into |P} clusters.
Constraint (3) assures that every datum has the same
overall weight in the data set.

Fuzzy clustering under constraints (2) and (3) is of-
ten called “probabilistic clustering”. Other fuzzy clus-
tering techniques, using a relaxed constraint (3), are
noise clustering [2] and possibilistic clustering [6]. The
latter approaches are especially useful when dealing
with very noisy data.

The most popular fuzzy clustering algorithm is the
fuzzy c-means algorithm. It uses the Euclidean dis-
tance between data vector z; and prototype p; as dis-

" tance measure. This model searches for spherical clus-
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ters of approximately the same size.
Most of the objective function based fuzzy cluster-

- ing algorithms minimize (1) by alternatingly optimiz-

ing the membership degrees and cluster shapes. From
the membership model (e.g. “probabilistic”) and the



cluster shape model (e.g. “point-like”) one can develop

necessary condltlons for a local minimizer of J from

2J = 0and & = 0. Of course, for each model we

obtain dlfferent_update equations. Ideally we have in
both cases closed-form update equations, which makes
the algorithms much faster and more robust when com-
pared with variants that use additional numerical tech-
niques like the Newton-Raphson method. In case of the
fuzzy c-means algorithm, we obtain for the probabilis-
tic membership model the update equation

1
Uij = 4)
d2 \T i—x
(7))

and for the point-like shape model the update equation

Zl}-{- i
=R x,l (5)
=1 U5
Besides point-like  clusters, hyper-ellipsoidal

shapes [3], linear shapes [1] and many others are
known in the literature. We refer to [5] for a thorough
overview. .

3. Scale Invariant Clustering

For our purposes, every data object represents (part
of) a time series and the aim is to cluster them ac-
cording to their similarity. Given a time series (¢;)ieN
we define the associated data object z to consist of
n consecutive observations: z; = (fo,%1,%2,..stn—-1)-
Analogously, every cluster is represented by a proto-

type, which is an n-dimensional vector that can be in-

terpreted as (part of) a time series.
In addition we are interested in a partition that takes

* into account that we are uncertain about the scale of

each time series. Hence, we introduce variable scaling
parameters and measure the Euclidean distance of the
scaled data object to the prototypes rather than the
distance between the unscaled objects; this gives the
algorithm more flexibility as opposed to having a fixed
scaling factor (as would be the case, for example, when
normalizing all the time-series a-priori and applying
the standard fuzzy c-means algorithm). Obviously, for
different prototypes different scaling factors minimize
the Euclidean distance, we therefore use s; ; to denote
the scaling factor for data object z; to match prototype
pi- This leads to a modified objective function:

IX| |P|
In(X;U,P) =) ulbllsiiz; —mil® (6)
j=1i=1
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choose termination threshold

choose fuzzifier m (popular choices 1.5 < m < 3)
.initialize prototypes p;

repeat

// update scaling factors :

llz;11?
// update memberships :

( lls:,5% ) i
llsk.jz;
// update prototypes :
n
Vi:p; = Zu;’,}s;,jzj
j=1
// normalize prototypes :
Pi
llp: |l

until change in prototypes < &

Vi,j L84, =

|P|

=1/ Z

k=1
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Figure 3. The Scale-Invariant Clustering Algo-
rithm.

To avoid the trivial solution of {p; = 0,s;; = 0}, we
have to place a constraint on (6). Every prototype p;
might be scaled by an arbitrary factor without chang-
ing anything in the value of the objective function if
we consider the same factor for the scaling factors s; ;.
Therefore we choose a fixed scale for the prototypes,
requiring

Vi:llpill =1 (7)

: Skipping the derivation of the necessary conditions
for the parameter updates, an alternating optimiza-
tion clustering algorithm minimizing (6) under the con- -
straint (7) is given in Figure 3. 7

Note that it is not necessary to store the scale and
membership matrix completely if the prototypes p; are
updated incrementally.

4. Experimental Results

Previous work to find features in protein mass spec-
trograms has mostly focused on detecting individual
peaks and somehow assigning quantitative information
to each peak. This requires some sort of normalization
and a reliable peak detection algorithm.

However, biologists often do not want to rely on such



summaries, since they want to investigate the overall
shape of a region of a spectra to determine its category
instead. The approach presented here allows the user
to find clusters of similar shape as well, which mimics
the human expert more closely than going through an
intermediate process of translating the spectra into a
set of peaks with associated heights.

Figure 4 shows two examples of running the pre-
sented algorihtm on a set of 192 mass spectrograms (the
precise nature of the underlying sample is not of prime
interest for this example). Two screen shots are shown,
which display a series of mass specs on the left, to-
gether with a label indicating the categories repz/39y-
repz/tcy. The number z following ’rep’ indicates an
individual experiment using 8 different samples (39, 40,
41, 42, 46, 47, rc, tc) and y="a’-’h’ denotes duplicate
experiments using the same sample.

The top row shows the cluster representatives, in
this case for three clusters. The bars in each cell rep-
resent the degree of membership of each pattern to a
specific cluster. It is interesting to see how the method
finds clusters that group samples of class 39-42 and 46-
tc together on the left side. A clustering in a different
region, shown on the right, nicely separates the 6th
repetition from the remaining five (rep6 vs. rep1-5), an
indication that the 6th experiment ran into problems.

It is important to note that, since the number of
clusters is chosen a priori, the analysis of a range where
none of the samples showed any particular discrimina-
tive shape was bound to produce more clusters than
necessary. Nevertheless, when a certain phenomenon
(that is an area with a peculiar shape) was present,
the algorithm was usually able to detect it as an out-
lier, assigning it to a cluster of its own. The screen shot
on the right of Figure 4 is a nice example of this effect.

When the number of clusters is chosen too large, a
high fuzziness index results in the memberships being
almost equally spread, which is not particularly mean-
ingful. On the other hand, with fewer clusters, the
fuzziness, together with the scaling factor, produces
a better clustering. The usual situation is that some
clusters are reserved for the outliers, if present, with
the rest of the samples showing very low memberships
on those clusters; at the same time, they will group
together in the remaining clusters according to the re-
spective similarities (but the difference in the member-
ships is not so evident).

We also compared the algorithm with a standard
fuzzy c-means (i.e. without scaling factor). As ex-
pected, since the similarity measure is basically the
same, the latter is bound to come up with worse re-
sults; with the same number of clusters and fuzziness,
the results tend to be “sharper”, because even small
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differences in time series that appear similar but at
different scales are enhanced. Since the number of pro-
totypes is not determined by the algorithm, it will try
to assign each spectrum to one of the clusters, even if
this may result in “bad” values for the memberships,
that is memberships equally spread along the possible
prototypes. The introduction of a validity assessment
function would provide a quantitative measure of the
goodness of the scaling invariant algorithm with re-
spect to the original one.

5. Conclusions

The test on a real dataset has shown that our algo-
rithm is capable of generating meaningful clusters tak-
ing into account shape similarities, and it succeeded
in separating common shapes from unusual ones. The
procedure is similar to that of a human expert, which
naturally rejects differences in scale, but rather focuses
on particular shapes. As expected, carefully choosing
the fuzziness degree as well as the number of clusters
is important and including the scaling factor into the
objective function to be minimized has proven to be
successful.

The fact that outliers are usually isolated can cer-
tainly be useful in some application to further refine the
analysis. Even though these preliminary experiments
were encouraging and basically confirmed theoretical
results, they also gave us some hints on how to further
improve the algorithm as outlined in the next section.

6. Future Work

It is clear that having a fixed number of clusters is
not the best solution. This constraint is due to the
class of algorithms which the fuzzy c-means belongs
to. We hope that we can overcome this limitation at
least partially, using cluster validity assessment tech-
niques ([7], [4]) could be a first step in this direction.
In addition leaving the scaling factors completely un-
constrained is usually not desirable as well. In some
instances, noise was artificially blown out of propor-
tion to match a certain prototype in cases where this
was clearly nonsensical. Defining valid ranges for the
scaling factors would have helped to avoid these effects. -
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