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Abstract— This paper proposes an estimation method for
fuzzy cluster loading [7] using the kernel method [3]. Fuzzy
cluster loading was proposed in order to interpret the result
of fuzzy clustering by obtaining the relationship between the
obtained fuzzy clusters and the variables of the given data.
From the structure of the model for fuzzy cluster loading,
it is known that the estimate is obtained using the estimate
of the weighted regression analysis [2). In this paper, we
propose a method to obtain the estimate in a higher space
then the space in the given data using the idea of the kernel
method. The significant properties of this technique are 1)
we use high dimension space to estimate the fuzzy cluster
loading, due to this, we can get a better result to extract
the data structure, 2) through the cluster structure of given
data, we can extract a clearer structure of the given data.
Several numerical examples show the validity of the pro-
posed technique and the efficiency of the use of the cluster
structure in the given data.

Keywords— Kernel method. Clustering validity. Regres-
sion analysis.

I. INTRODUCTION

Regression analysis is one widely used and well known
data analysis method. If the data performs irregularly in
the spatial variables, then the conventional regression anal-
ysis can not extract the data structure. So, a geographi-
cally weighted regression analysis 2] was proposed for spa-
tial data which are not stationary situated according to
geographical area. The main difference between conven-
tional regression analysis and weighted regression analysis
is the consideration of the difference among the area by the
weight that shows the degree of the relationship of objects
to each area.

Fuzzy cluster loading was proposed [7] in order to find
the interpretation of fuzzy clustering result by the degree
of the relation between a fuzzy cluster and a variable. The
degree of the belongingness of objects to the fuzzy clus-
ters also represents the state of the irregularity of the data
structure, so the estimate of the fuzzy cluster loading and
the estimate of the regression coefficients of the weighted
regression analysis is closely related to each other. It has
been shown that the fuzzy cluster loading is obtained by
the same method used to estimate the regression coefficient
of the weighted regression analysis. [7]

In this paper, we propose a method to obtain the fuzzy
cluster loading in a higher dimension space than the data
space and show that we can extract the data structure more
efficiently. ‘In order to extend the data space to higher di-
mension space which are nonlinearly related with the data
space, we use the kernel method.[3] This model is for the
nonlinear case of the fuzzy cluster loading model. We show
how we can extend the model for the nonlinear case.
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Several numerical examples show the validity of the
method and better performance when compared with the
estimate of data space. Also, the results show the advan-
tage of the use of the fuzzy cluster structure for the method.

II. WEIGHTED REGRESSION ANALYSIS

The geographically weighted regression was proposed by
C. Brunsdon et al. in 1998 [2], and the model is represented
as follows:
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where y is a vector of dependent variables and 8, a vector
of regression coefficients at h-th area. V) shows a matrix
whose diagonal element vp; shows the weight of i-th object
to h-th area and the weights are estimated explicitly. ey, is
an error vector. By roughly speaking, the main difference
between a conventional regression model and the weighed
model is to consider the difference among the géographical
areas. The estimate of 8, is obtained as

Br = (X' X) 7 X Vayy, (22)

III. Fuzzy REGRESSION BASED ON Fuzzy CLUSTERING

In order to obtain interpretation of fuzzy clustering re-
sult, we have proposed the following model [7):
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where, €5 is an error. .

An observed 2-way data which is composed of n objects,
p variables is denoted as X = (23,), i =1,---,n, a =
1,---,p. Zax shows the fuzzy degree which represents the
amount of loading of cluster k to variable a and we call this
fuzzy cluster loading. This parameter will show how each
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cluster can be explained by each variable. z,; is assﬁme_d
to be satisfied by the following conditions:

K
Zzakzla zake[oil]) a=1,---,p, k=1,"',K.

k=1
' (3.2)
ux shows the obtained fuzzy clustering result as the de-

gree of belongingness of an object i to a cluster k. The .

essence of fuzzy clustering is to consider not only the be-
longing status to the assumed clusters, but also to consider
how much the objects belong to the clusters. So, there is
a merit to representing the complex data situations which
real data usually have.

The state of fuzzy clustering is represented by a partition
matrix whose elements show the grade of belongingness of
the objects to the clusters, u;x, i=1,---,n, k=1,--- K,
where n is number of objects and K is number of clusters.
In general, u;; satisfies the following conditions:

K
ui € [0,1], Zu;k =1.
k=1

" The fuzzy clustering is to obtain the adaptable partition
u;; from the data X.
Then the purpose of the model (3.1) is to estimate
" the 24k, which minimize the following normalized sum of
squared errors 82 under condition (3.2).
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We call the model (3.1) fuzzy regression based on fuzzy
clustering. ]
The model (3.1) is rewritten as

1=Ur X2z + €, (3.3)
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From (2.1), (2.2), and (3.3), we obtain the estimate of
Zp as

zr = (XUZX) 1 X', 1. (3.4)

So, if we do not assume the condition (3.2), then it is
enough to use the estimate (3.4).

IV. KERNEL METHOD

- Kernel method originally developed in the context of
support vector machines [3], the efficient advantage of
which has been is widely reconized in many areas. The
essence of the kernel method is arbitrary mapping from
lower dimension space to higher dimension space. Note
that the mapping is an arbitrary mapping, so we do not
need to find the mapping, this is called the kernel trick.

Suppose an arbitrary mapping ®:

®: R? - F,
where F is a higher dimension space than RP.

We assume
k(z,y) = 3(x)'2(y),

where k is the kernel function which is defined in RP and
x, y € RP.

The typical examples of the kernel function are as fol-
lows:

Jlz-yll

k(z,y) = exp(-————2—a-2—-). (Gaussian kernel) (4.1)

k(z,y) = (z-y)®. (Polynomial kernel of degree d) (4.2)
k(x,y) = tanh(a(x - y) + B). (Sigmoid kernel)

(4.3)

By the introduction of this kernel function, we can ana-
lyze the data in F" without finding the mapping ® explicitly.

V. KERNEL Fuzzy REGRESSION BASED ON Fuzzy
CLUSTERING

From (3.4), we can obtain the following:

2 = (XWEX)'X'Ukl
= ((UkX)*(Ue X))~ (UrX)"1 (5.1)
= (CiCy)~'CR1,
where Ci = (c,-a(k)), Cig(k) = ui'klzia, i=1--,n a=
1,---,p. Using Cf,(k) = (Cia(k),- **,Cna(k)), We can represent
(5.1) as follows:
ze = (o) T (Coml), a,b=1,---,p, (5.2)
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where CtCk = ( (k)cb(k)) C,tcl = (cfz(k)l)’ a,b =
L.
Then we consider the following mapping ®:
®: RP —» F, ¢, € RP. (5.3)

From (5.2) and (5.3), the fuzzy cluster loading in F is as
follows:

= (®(car))'@(co(ry)) "} (BlCaq))'®(1)), @,b=1,- -(-5,1:),
where % shows the fuzzy cluster loading in F.

Using the kernel representation k(z,y) = ®(z)'®(y)
which is mentioned in the above section, (5.4) is rewrit-
ten as follows:

Zr = (k(ca(k) , C(,(k)))—l (k(ca(k), 1)), a,b=1,---,p. (5.5)

From this, using the kernel method, we can estimate the
fuzzy cluster loading in F'. We call this method the kernel
fuzzy regression based on fuzzy clustering.

VI. NUMERICAL EXAMPLES

At first, we use artificially created data in order to get
the validity of (5.5). The data is shown in table 6.1 and
figure 6.1. Table 6.1 shows values of 8 objects, 01,---; 08
with respect to 7 variables v;,---,v7. In figure 6.1, the
abscissa shows each variable and ordinate shows the values
for each variable. The solid lines show the objects o0y, 02,
03, and o4 and the dotted lines show the objects os, 0g, 07,
and og. From this, we can see the similarity among objects
01, 02, 03 and o4 as well as the similarity among objects
0s, 0g, 07 and og. The feature of this data is that the first
group which consists of objects 01, 02, 03, and 04 has the
property that values of variables v; and v; are large and
values of variables v, to vg are small. While, the other
group has an opposite property.

Table 6.1 Artificial data
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Figure 6.1 Artificial Data

The result of fuzzy k-means using m = 2.0 {1} is shown in
table 6.2. In this table, each value shows degree of belong-
ingness to each cluster, cluster C; and cluster C;. From
this result we can see that objects 0; to o4 for the most part
belong to cluster C; and objects o5 to og belong to clus-
ter C2. According to the feature of this data, which was
created with the two clusters, this result is quiet adaptable.

However, usually we do not know the property of the
data structure shown in figure 6.1, so after the clustering
we get the result shown in table 6.2. The problem in this
case is how to find the property of the clusters C; and C,.

In order to solve this problem, we use the model of fuzzy
cluster loading shown in (3.1) and the kernel fuzzy regres-
sion method shown in (5.5). Figure 6.2 shows the result.
In figure 6.2, the abscissa shows each variable and ordinate
shows the values of fuzzy cluster loading which was ob-
tained by using (5.5). We used the gaussian kernel which
is shown in (4.1) and ¢ = 2.0. The solid line shows the
values of fuzzy cluster loading for cluster C; and the dot-
ted line shows the values for cluster C;. From this result,
we can see that cluster C; is related with variables vy to
vg, because the values of degree of proportion are large.
On the other hand, cluster C; is explained by variables v
and v7, because the values of fuzzy cluster loading for these
variable are large. This is a property which we can see in
the data (shown in figure 6.1).

Table 6.2 Fuzzy Clustering Result (m = 2.0)

Clusters Cl Cz
01 0.75 1 0.25
02 0.64 | 0.36
03 0.88 | 0.12
04 0.83 | 0.17
05 0.12 | 0.88
0g 0.06 | 0.94
or 0.04 | 0.96
08 0.03 | 0.97
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However, the conventional estimation method used the
weighted regression analysis which is shown in (3.4), but
could not extract the structure of the data. In this case, the
solution of the fuzzy cluster loading is the solution which
is obtained in RP. Compared to this result, note that the
result shown in figure 6.2 is the result in F' (mapped higher
dimension space). The result of (3.4) is shown in figure 6.3.
From this figure, we could not find any adjusted result to
the cluster structure of the data shown in figure 6.1.

Moreover, figure 6.4 shows the result of (5.5) when
Uk, k = 1,2 are n X n unit matrixes in (5.1), that is the
case that we do not consider the fuzzy clustering result.
In (5.5), we used the gaussian kernel when ¢ = 2.0. In
figure 6.4, the abscissa shows each variable and ordinate
shows the values of loading which show the relationship
with each variable. From this result, we can see that this
result also does not show any clear interpretation of the
data. We can also see the merit of the use of fuzzy cluster-
ing for the method to obtain the significant latent structure
of the given data.
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Figure 6.2 Result of Fuzzy Cluster Loading in F using
Kernel Fuzzy Regression based on Fuzzy Clustering using
Gaussian Kernel

08
" Cluster 1 w==—
05 4
A Cluster 2 ===
o4t IR Y g
{0\
2 oaf ! 3
b+ . I [}
g /A
S 0.2 ! “‘
o
§ 0.1 7 1
’ [}
e 7 1
g\
v
-] [}
L .01 1
H
©02F l‘ R4
1 4
| | Y4
03 1

os . . .
1 2 3 4 5 [} 7
o Variable

Figure 6.3 Result of Fuzzy Cluster Loading in RP using

Fuzzy Regression based on Fuzzy Clustering

Loading

o8

1 2 s . s s 7
) Variable

Figure 6.4 Result of Loading in F using Kernel Fuzzy
Regression using Gaussian Kernel

Next, we will show an example which uses (5.5) when
the kernel function is polynomial kernel shown in (4.2).
The data is made up of the measurements of rain fall from
328 locations around Japan over a 12 months period. [8]
Degree of belongingness of a location to each cluster, ug,
is obtained by using the fuzzy k-means method when m =
2.0. The data was classified into 5 clusters, sapporo/sendai,
tokyo, osaka, fukuoka, and okinawa areas.

Figure 6.5 shows the result of fuzzy cluster loadings in
(5.5) when k is polynomial kernel, d = 1. Note when d =1
in (4.2), then (5.5) is reduced to be (5.2). So, this is the
same as finding the solution of fuzzy cluster loading in
RP. In figure 6.5, the abscissa shows each month (vari-
able) and ordinate is the values of fuzzy cluster loadings.
Each line shows each cluster. From this figure, we can
see that the sapporo/sendai area has an opposite situation
from the other areas. Especially, in the month of Febru-
ary, the sapporo/sendai area does not have as much rain
fall,they receive snow due to lower temperatures.

Figure 6.6 shows the result of (5.5) used polynomial ker-
nel when d = 2. In this case, the estimated fuzzy clus-
ter loading is a solution which is obtained in F' (mapped
higher dimension space). From this figure, we can see
that the same feature of February, that is, Sapporo/Sendai
have remarkable difference compared with the other four
area. Also, we can see clearer properties in figure 6.6, com-
paring with the result shown in figure 6.5. For example,
in May, Sapporo/Sendai has clearly different feature from
other four area in figure 6.5, but in figure 6.6, we see the
difference is small and Sapporo/Sendai, Tokyo, and Osaka
are similar to each other and next smaller value is Fukuoka
and the smallest value is Okinawa. Since those five area are
located from north to south according to the order, Sap-
poro/Sendai, Tokyo, Osaka, Fukuoka, Okinawa, the values
for fuzzy cluster loading in May are arranged in order from
north to south location. So, the result seems to be reason-
able.

Moreover, in November, we can see that similarity be-
tween Sapporo/Sendai and Okinawa in figure 6.5, this is
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difficult to explain because the location of these two areas
are completely different, that is, northern part and south-
ern part. In figure 6.6, we can not find any remarkable
similarity of those two area. From the comparison of these
two results in figures 6.5 and 6.6, it seems clearer to use
result in figure 6.6 to explain the data.
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Figure 6.5 Fuzzy Cluster Loadings for Rain Fall Data
using Polynomial Kernel (d = 1)
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Figure 6.6 Fuzzy Cluster Loadings for Rain Fall Data
using Polynomial Kernel (d = 2)
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VII. CONCLUSION

In this paper, a method of using the kernel method to
obtain fuzzy cluster loading was proposed.

Conventional clustering means classifying the given ob-
servation into exclusive subsets (clusters). So, we can
discriminate clearly if an object belongs to a cluster or
not. However, such a partition is not sufficient to repre-
sent many-real situations. So, a fuzzy clustering method
is offered to contract clusters with vague boundaries, this
method allows one object to belong to some overlapping
clusters with some grades. From this, it is known that
fuzzy clustering is an efficient technique for real complex
data.

However, replaced by the representativeness of fuzzy
clustering to real complex data, the interpretation of such
a fuzzy clustering causes us some confusion, because we
sometimes think that objects which have a similar degree
of belongingness can together form one more cluster. In
order to have the interpretation of the obtained fuzzy clus-
ters, we have proposed a fuzzy cluster loading which can
show the relationship between the clusters and the vari- ~
ables. ]

Related with the interpretation of fuzzy clustering result,
validity of the fuzzy clustering result have been discussed.
In the conventional measures of validity of fuzzy clustering,
partition coefficient or entropy coefficient are well known.
{1] However, these measures are essentially based on the
idea that clear classification is a better result. Using the
idea of within class dispersion and between class disper-
sion, separation coefficients are introduced. [5] Moreover,
according to the fuzzy hypervolume, partition density was
discussed. {4] Recently, a method of evaluation of fuzzy
clustering result which used the idea of the homogeneity of
homogeneity analysis has been proposed. [6] These mea-
sures show the extraction of relations of the fuzzy cluster-
ing result, which is the degree of belongingness of objects
to clusters, and observations indirectly. On the other hand,
fuzzy cluster loading is a direct measure extracted from the
data and the clustering result.

It is known that the estimate of the fuzzy cluster loading
is reduced to the estimate of the regression coefficient of
the weighted regression analysis. So, we can obtain the
solution of the fuzzy cluster loading using the same method
of weighted regression analysis.

In this paper, we extended the method to higher dimen-
sion space using the idea of the kernel method and in the
high dimension space we obtained the solution of the fuzzy
cluster loading.

Several numerical examples show the validity of this
method and the efficiency of the idea to estimate the fuzzy

cluster loading in the mapped higher space using the kernel

trick of the kernel method.

For the further discussion, from the extension of fuzzy
cluster loadings for 3-way data, we can consider the tem-
poral situation in nonlinearly mapped higher dimension
space.

Suppose an observed 3-way data which is composed of n
objects, p attributes and T situations (or times) which is



denoted as

(z(t))’ 1= 1,"‘,17., a= 1:""pa.t= la’T
For the classification of such a 3-way data, there are two
ways: first, to get a clustering result for each time we can
obtain T clustering results as U®) = (uﬁ})), t=1,---,T.
Second, to get a clustering result through times as U =
(uk). In this case, there is merit in capturing the changing
patterns of clusters through times.

Models for the interpretation of this fuzzy clustering re-

sult for 3-way data are proposed as follows:

uk—zzf‘? Sc)+e,k, (7.1)
a=1
i=1,---,n, k=1,--- K, t=1,---T.
u,k—ngsz Zak+€1k, (7.2)
t=1 a=1
i=1,---,n, k=1,---,K.

where, €;; is an error and u;; shows the obtained fuzzy
clustering result as the degree of belongingness of an ob-
ject i to a cluster k. z£k shows the fuzzy degree which
represents the amount of loading of cluster k to variable a
~at t-th time. This parameter will show how each cluster
. can be explained by each variable at each time. z,; shows
the fuzzy degree which represents the amount of loading
of cluster k to variable a through all the times. So, the
difference of purpose between these two models is the cap-
turing of properties of the clusters that exist in each time,
or properties of the clusters over all of the times. w; > 0
shows weights which show degree of salience for each time.
If t = 1, then the models for 3-way data are reduced to a
- model for 2-way data.
So, for (7.1), we can formulate the kernel fuzzy regression
for 3-way data to obtain fuzzy cluster loading for 3-way
" data in a higher dimension space as follows:

20 = (k) ci)) 7 (k(elyy 1),

a)b = ls" Y )
where o
t t t t ~1_(¢
(ct(z()k))t (csa)(k)’ 70513(1:)) CSa)(k) = uzkl Sa)7
i=1,-- anv a.;la"’vpak=17A"'7K)t=11"'T"
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