
576 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Generalized Fuzzy c-Means Clustering Strategies
UsingLp Norm Distances

Richard J. Hathaway, Member, IEEE, James C. Bezdek, Fellow, IEEE, and Yingkang Hu

Abstract—Fuzzy c-means (FCM) is a useful clustering tech-
nique. Recent modifications of FCM using 1 norm distances
increase robustness to outliers. Object and relational data versions
of FCM clustering are defined for the more general case where
the norm ( 1) or semi-norm (0 1) is used as the
measure of dissimilarity. We give simple (though computationally
intensive) alternating optimization schemes for all object data
cases of 0 in order to facilitate the empirical examination of
the object data models. Both object and relational approaches are
included in a numerical study.

Index Terms—Clustering, fuzzy c-means, norm, outlier.

I. INTRODUCTION

T HE fuzzy c-means (FCM) algorithm [1] has successfully
been applied to a wide variety of clustering problems [2].

This approach partitions a set of object data
into c-(fuzzy) clusters based on a computed minimizer of the
fuzzy within-group least squares functional

(1)

where
fuzzification parameter;
prototype (or mean) of
the th cluster;
degree to which datum

belongs to the th
cluster;
matrix of cluster proto-
types;
partition matrix;
Euclidean or 2-norm
squared.

For later notational convenience, we will array the object data
as columns in the object data matrix

. The partition matrix is a convenient
tool for representing cluster structure in the data ;
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we define the set of allnondegeneratefuzzy partition
matrices for partitioning data into clusters as

(2)

The most popular and effective method of optimizing (1) is
the fuzzy c-means algorithm, which alternates between opti-
mizations of over with fixed and
over with fixed, producing a sequence .
Specifically, the st value of is computed
using the th value of in the right-hand side of

for

(3)

Then the updated st value of is used to calculate the st
value of via

where (4)

for and (5)

The FCM iteration is initialized using some (or
possibly ) and continues by alternating the updates in
(3) and (4) until the difference measured in any norm on
(or ) in successive partition matrices (ormatrices) is less
than some prescribed tolerance.

While FCM has proven itself to be very useful, the quality
of the computed cluster centers can sometimes
be degraded due to the effects of outliers in the data set. This
occurs because ,
the datum-to-prototype dissimilarity term in (1), can place con-
siderable weight on outlying data points, thus pulling cluster
prototypes away from the “center” or main distribution of the
(nonoutlying) cluster.

There are a number of useful approaches for controlling the
harmful effects of outlying data, including the possibilistic clus-
tering approach of Krishnapuram and Keller [3] and the fuzzy
noise-clustering approach of Dave [4]. Most important to this
note is the work of Kersten [5]–[7] and Miyamoto and Agusta
[8], who independently suggested replacing with

in the FCM functional in order
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Fig. 1. An illustration of the possible shapes off (v ) = U jx � v j .

to increase robustness against outlying data. Earlier work that
uses the norm or its square in FCM-based clustering ap-
pears in Bobrowski and Bezdek [9] and Jajuga [10]. Bobrowski
and Bezdek [9] also gave a method for optimizing when the
square of the sup norm is used in (1).

In this note, we examine FCM-based clustering using general
norm distances, where the norm of the -dimensional real

vector is defined as . In Sec-
tion II, we present an object-data strategy for usingnorms
due to Miyamoto and Agusta [11], [12] and Overstreet [13].
Additionally, we describe how a relational data approach can be
taken using the non-Euclidean fuzzy c-means (NERFCM) algo-
rithm of Hathaway and Bezdek [14]. The object-data approach
operates directly and solely, on the object data matrix. The re-
lational approach clusters indirectly through the
use of derived dissimilarity data , where is some
measure of the dissimilarity betweenand . The two strate-
gies will be compared using numerical examples in Section III.
The final section summarizes our findings.

II. EXTENSIONS OFFUZZY c-MEANS

A. Object-Data Strategy

This approach is based on a direct modification of the fuzzy
c-means functional . The generalization of (1) that we
consider here was originally proposed by Miyamoto and Agusta
[11] and later extended by Overstreet [13]. The objective func-
tion is

(6)

The optimization of (6) is relatively straightforward and the
choice of has considerable effect on the influence of outliers
and other properties of the representation of the clusters. We see
that is the original FCM functional and is the more ro-
bust functional used by Kersten [5]–[7]. Miyamoto and Agusta
[11], [12] consider this model in general for and the
range of is extended to include in Overstreet [13].
The object-data approach considered in this correspondence is
based on iterative minimization of .

The optimization of (6) for generalis more complicated and
costly than the optimization of the special case (FCM).

However, as with FCM, optimization can be done by alternating
separate optimizations over theand variables. The ( -vari-
able) minimizer of over (for a fixed ) is given
by (4) using the datum-to-prototype dissimilarities

for and (7)

Appropriate methods of computing the-variable minimizer of
over (for a fixed ) depend on the value of

, but in all cases this optimization can be decoupled into
independentunivariate minimizations of functions of the form

for and (8)

The geometric form of is nonconvex for , with
a cusp at each datum value . For is convex and
piecewise linear, with a corner at each . The function is
differentiable and strictly convex if . The three types
of shapes are illustrated in Fig. 1 using the function

.
We choose to minimize in (8) in the simplest possible way

since our emphasis here is on understanding the properties of the
clusterings and not on computational efficiency. For , we
note that takes its minimum value over for one (or more)
elements in the set . For , the minimizing
value of is simply taken to be the smallest of the values,
which globally minimize over . The mean of
the smallest and largest globally minimizing values is used
for the special case of . For , the computed value of

is taken to be a numerical approximation to the unique zero
of , obtained
here using the method of bisection.

We summarize the object-data strategy. It consists of alter-
nating optimizations of in (6) between the and vari-
ables. The optimization over the variable is accomplished
using (7) in (4) and the optimization over thevariable is decou-
pled into univariate optimizations of functions of the form
(8). The univariate optimizations are essentially done using ex-
haustive search over for and bisection on

for . (Exhaustive search, which is necessary for ,
is prohibitively expensive for sufficiently large data sets and we,
therefore, acknowledge a practical limitation to the usefulness
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of this model in some cases. We repeat that the emphasis here
is on studying the clustering solutions produced by the various
models.) The alternating optimization is continued until succes-
sive partitions are within of each other, as mea-
sured by the sup norm of - . It is important to under-
stand that the independence of the components of(for fixed

) in (6) allows the minimizing to be calculated using only
univariate optimizations; and the result so obtained does opti-
mize over for .

B. Relational-Data Strategy

The relational-data strategy uses the non-Euclidean re-
lational fuzzy c-means (NERFCM) in [14]. In essence,
NERFCM is a safeguarded version of RFCM, which is the
relational dual of fuzzy c-means. RFCM produces the FCM
clustering of indirectly using relational data

. Given some matrix of rela-
tional data , the NERFCM algorithm iteratively generates
a sequence of partition matrices according to the
following steps. The current matrix is used to calculate
vectors according to

(9)

These vectors are then used to calculate new dissimilarities
according to

for and (10)

If necessary, the dissimilarities are altered to guarantee posi-
tivity ([14]) and then they are used in (4) to generate the new

iterate. The iteration is continued until the sup-norm differ-
ence in successive matrices is sufficiently small.

The relational data approach for an extension of FCM
consists of applying NERFCM with the -based relational
data .
This approach will produce a terminal partition matrix ,
which attempts to represent the cluster memberships for

, but it does not directly provide cluster proto-
types . We recover meaningful prototypes by
using the terminal partition with and solving

(11)

We remark that the duality theory (in [14] and [15]) that guar-
antees that the same solution is found using the object and re-
lational versions of FCM holds only for . At other values
for , it is possible that the object data version and its relational
derivative yield different pairs for the same choices of
common algorithmic parameters. One purpose for trying a rela-
tional approach for is to discover any general similarities
between the object and relational approaches that extend past
the limited duality theory. Theoretical convergence of the object
data algorithms for is shown in [12]; existing con-
vergence theory ([14]) for the relational approach only covers
the case of .

Fig. 2. “Two cluster data” scatterplot and initial prototypes,c = 2.

III. N UMERICAL EXPERIMENTS

In all experiments we chose and stopped iteration as
soon as the absolute value of differences ofall pairs of elements
(i.e., ) in a successive pair of matrices dif-
fered by less than 0.000 01. The first experiment uses the (
point) data set in Fig. 2, which consists of three (25 point) ra-
dial clusters centered at and

and a varying number of outliers located at
the indicated positions. The purpose of this experiment is to in-
vestigate sensitivity to outliers of the object and relational ap-
proaches for various values of. The leftmost column of the
table gives the number of outliers included with the three clus-
ters in the sample. The number of outliers is even and the outliers
are evenly divided between the two positions shown in Fig. 2.
All iteration sequences are initialized using a hard partition that
correctly partitions the three clusters and groups each outlier
with its nearest cluster. For a computed set ofterminal prototype
vectors and , we measure the sensitivity to the outliers
as the Frobenius norm distance between the true centers and
terminal prototype vectors: , where

is defined by .
Note the effects of increasing numbers of outliers as we move

down the rows of Table I. We see no deterioration in the quality
of the terminal prototype vectors for as many as 24 outliers for
both the object and relational approaches with and

. The last few rows indicate that this resistance to out-
liers is actually slightly greater for than for .
For any value of , the deviation of the computed proto-
types from the true cluster centers steadily increases with the
number of outliers. The object and relational data results are
quite comparable for and, as predicted by duality theory,
they produce identical results for . For , the object
and relational protoypes eventually vary from the true centers
for sufficiently large numbers of outliers, but fewer outliers are
required to cause substantial deviation for the relative data ap-
proach. Based on the results of this experiment, the object data
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TABLE I
DEVIATION OF COMPUTED FROMTRUE CLUSTER CENTERS: k[� � � ] � [v v v ]k

Fig. 3. “Two cluster data” scatterplot and initial prototypesc = 2.

approach for offers the greatest robustness and efficient
implementational approaches for it are discussed in [7].

The results of the first experiment show that in at least
some cases, the errors produced by the object and relational
approaches are of a similar magnitude. Is it also true that
the computed prototypes and partition matrices of the two
approaches are themselves very similar? The remaining nu-
merical experiments use other artificial two-dimensional data
sets that allow us to graphically depict the effect ofon the
placement of the terminal prototype vectors. The two data
sets (and initial prototype values) are depicted in Figs. 3 and

4 and are, respectively, called the “two cluster data” and “no
cluster data.” Using identical data values, initializations,
and stopping criteria, we calculate and
using the relational and object data approaches, respectively.
We calculated the Frobenius norm difference in the terminal
partitions and prototypes produced by the two approaches as

and . These differences
are given for a range of values using the “two cluster data”
and “no cluster data” in Table II.

Duality theory for NERFCM ([11], [12]) guarantees that the
difference is zero when , but note that it is reasonably
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Fig. 4. “No cluster data” scatterplot and initial prototypesc = 4.

TABLE II
FROBENIUSNORM DIFFERENCE INTERMINAL OBJECT AND RELATIONAL

(U; v) VALUES

small for near two. Note also how the difference is some-
times much greater than the difference. We also see from
this table that the relational and object-based results can be very
different for the important case of .

The remaining figures in this section graphically depict the
position of the computed terminal prototypesfor a range of

values. Fig. 5 shows the results for the “two cluster data”
obtained by the two approaches. Note that the outliers have
increasing effect as increases from to . As

continues to increase above two, the outlying data has an
even more powerful draw on the prototypes, which move ever
nearer to the approximate center of the figure. Note that for

, the terminal prototypes produced by the object-data
approach collapse into coincident clusters. Because the “two

cluster data” set has vertical symmetry, so doand from
either approach.

Fig. 6 shows a similar experiment for the relational-data ap-
proach applied to the “no cluster data.” While this is not a “clus-
tering” example, we used it to better understand the behavior of
the methods. Surprisingly, we observed coincident prototypes at
the center of the data for small values ofsuch as and
nearly coincident prototypes for large values such as ;
the prototypes are most different and farthest from the center
when . The behavior of the object-data approach on this
example was similar in that gave the most separated pro-
totype values.

IV. DISCUSSION

We described relational and object-data approaches for gen-
erating norm extensions of FCM. Also, we examined the
behavior of the approaches for variousvalues using artificial
data sets. We believe that the two most useful models are ob-
ject data based and correspond to and . For , the
fuzzy c-means algorithm in [1] offers the least expensive clus-
tering technique of all, and it works very well in most cases. For
cases where noisy data and outliers may degrade FCM results,
we recommend the use of the object data model with , op-
timized using the fuzzy c-medians algorithm described in [7].
The relational data approach is best saved for cases when ob-
ject data is unavailable or, in special cases for , when the
dimension of the feature space is very high but the number of
data is small. (In this case, it may be computationally cheaper
to form and operate on it rather than on the original feature
data.) We believe the relational approach for exhibits
some robustness properties, but overall we view it as inferior to
the object data approach of Kersten [7]. Our experiments always
used , but we believe the importance of and holds
for any choice of the fuzzification constant.
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Fig. 5. “Two cluster data” terminal prototypes for the object() and relational( ) approachesc = 2.

Fig. 6. “No cluster data” terminal prototypes for the relational-data approachc = 4.

Choices for other than or lead to models which
can provide good clustering results and possibly classifier de-
signs, but the models are more difficult to optimize in the ob-
ject data case. Forvalues near two, the results obtained using
the object and relational approaches are quite similar. However,
it now appears that the existing duality theory stated in [14] is
complete; that is, the object and relational approaches have a
strict duality relationshiponly when . As values in-
crease above one, the attraction of terminal prototype vectors
to outliers increases. The empirical migration of the prototypes
to the approximate center of the data sets asincreases is inter-
esting to us, but no illuminating result regarding this has been

obtained. A partial analysis of the relational case indicates that
there is still a strong dependence on the point of initialization,
even as increases without bound. For example, consider clus-
tering into two clusters. It is not hard
to show that as , the relational based approach is es-
sentially equivalent to that done using NERFCM on the
matrix with all zero entries except . Simple
numerical experiments with different crisp initializations show
that different solutions are possible. Because of this, we believe
there may not be a nice theoretical result regarding the limiting
position of the prototypes as . We conclude by giving
one last question. Why is special in the sense demon-
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strated by Fig. 6 and does this mean that the original FCM is in
some sense optimal as a quantization tool?
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