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Abstract

A new unsupervised fuzzy clustering algorithm is provided in this paper to cluster the data patterns without a priori
information about the number of clusters. The initial guesses of the locations of the cluster centers or the initial guesses
of the membership values are not necessary. With the minimization of a new objective function, cluster centers are
generated one by one. Related centers are de0ned to belong to the same cluster. Multi-centers are adopted to represent
the non-spherical shape of clusters. Thus, the clustering algorithm with multi-center clusters can handle non-traditional
curved clusters. The proposed algorithm is tested on di1erent data sets with a variety of cluster shapes, cluster densities,
and number of points in each cluster. Also, the results are compared with some other clustering algorithms to show the
e1ectiveness of the algorithm. Moreover, the designed unsupervised fuzzy clustering algorithm is applied to cluster the
pixels in a color image to show the e3ciency of the algorithm. c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Clustering [7,21,36] plays an important role in pattern recognition [36], image processing, and computer
vision [5,40]. With a clustering technique, a collection of objects or feature vectors is partitioned into clusters.
The objects in the same cluster have similar characteristics, while a characteristic distinction exists between
di1erent clusters. Unsupervised clustering consists of partitioning the unlabeled objects into an unknown
number of clusters. To cluster the unlabeled objects based on a model of mixture normal density [6,28,34,39],
the parameter vectors of the multivariate normal densities could be either estimated by maximum likelihood
approach or the unsupervised Bayesian learning approach [3,34]. Then the objects can be allocated to their
correct population according to these normal densities. Unsupervised clustering can also be achieved by
the mode identifying procedures [15,25,37]. A hierarchical clustering [13,33] sequentially merges (divides)
clusters and records the merging (divisive) sequence. Two typical hierarchical clustering methods are the
single-link [23] and complete-link [19] methods. Gordon [16] clusters the objects by minimizing the within-
cluster sum of square distances. The K-means algorithm [11,29] assigns the objects to the closest cluster
center. Friedman and Rubin [12] de0ne a hill-climbing method to change the cluster label when the objective
function is improved.
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Unlike the hard clustering techniques above (each object is assigned to one and only one cluster), fuzzy
clustering [1,8,30] allows an object to belong to a cluster with a grade of membership. Moreover, when there is
not enough information about the structure of the data, fuzzy set theory [43] can handle this uncertainty better,
and has been widely applied to the data clustering area [2,9,18]. One of the most popular fuzzy clustering
algorithms is the fuzzy C-means algorithm [2]. Like many hard clustering techniques (e.g. K-means algorithm
[35]), the number of clusters is known in advance for the fuzzy C-means algorithm [2]. However, we have to
cluster objects without knowing the number of clusters in a lot of cases. To solve this di3culty, the validity
of the resulting clustering is evaluated for a range of possible numbers of clusters. And the 0nal number of
clusters is selected to be the number with which the clustering process has the optimal validity [2,14,19,32].
The progressive approach to obtain the number of clusters consists of 0nding one good cluster at a time, and
the clustering is completed when no more good clusters can be found [24,44]. Unlike these approaches to
selecting the number of clusters, in this paper the number of clusters is determined by minimizing an objective
function. There are many clustering criteria that can be used to derive the objective function [2]. The distance
criterion is the most commomly used criterion; and is also adopted in our design.
It is known that the improper initial guesses of the cluster centers may degrade the performance of K-means

(fuzzy C-means) algorithm. To eliminate the di3culty of initial guesses of the cluster centers, the mountain
clustering method [42] and the subtractive clustering approach [4] can be used to 0nd the initial cluster centers
when the number of clusters is known. As mentioned in the book of Jang et al. [22], the computation load
will be heavy when a large number of data points are clustered with the subtractive clustering approach. And
the same di3culty (heavy computation load) occurs when high-dimensional data points are clustered with the
mountain clustering method. In our study, the hierarchical subtractive clustering approach (HSC) is proposed
to reduce the computational load.
Since, the data clustering will encounter the di3culty of the occurrence of variations in cluster shapes,

researchers have devoted substantial e1orts to cluster hyperellipsoidal data [14], multimodal data [15], and
shell-type data [26]. Without derivation of the “exponential” distance measure [14] and the characteristic
function of multimodal data set [15], the nonspherical cluster is represented with multi-centers in this paper.
Lately, a fuzzy min–max clustering neural network was constructed in Simpson’s work [31] to create and
re0ne the clusters, and one cluster (called class in [31]) can consist of more than one hyperbox. However,
the approach which is used to assign hyperboxes into one cluster is not detailed in [31]. Also, the clustering
algorithm DBSCAN [10,27] considers that a cluster contains the points which has more than a speci0ed
threshold number of points in a speci0ed neighborhood. The cluster is constructed by 0nding a maximum set
of the connected points which satisfy the density (points in the neighborhood) condition. That is, DBSCAN
expands the cluster in a pointwise manner. Although DBSCAN can 0nd the clusters with arbitrary shape,
a priori information (speci0ed neighborhood and density threshold) is necessary. A similar algorithm (which
creates the cluster pointwise) DBCLASD [41] is designed to cluster data points into arbitrarily shaped clusters
without any prior information. DBCLASD is e3cient for clustering large databases. However, the densities
in the clusters are assumed to be uniform and a minimum number (30) of data point is required to apply
the �2-test used in the algorithm. Thus, DBCLASD might not be appropriate to 0nd clusters with a small
cardinality. To achieve a successful clustering without these di3culties, a new fuzzy clustering algorithm
is introduced in this paper. Instead of generating clusters in a pointwise manner, candidate cluster centers
are found to represent clusters. In order to partition data points into clusters with arbitrary shape which is
non-traditional curved, it is reasonable to represent clusters using multi-centers. The connection test between
centers is de0ned to associate the centers within one cluster. If the centers are connected, then they belong
to the same cluster. With the bene0ts of the fuzzy technique, the proposed fuzzy clustering with multi-center
clusters would be expected to handle non-traditional curved clusters well. The simulation results included
empirically justify the e1ectiveness of the proposed unsupervised fuzzy clustering with multi-center clusters.
The remainder of this paper is organized as follows. The subtractive clustering algorithm is reviewed in

Section 2. Section 3 describes the hierarchical subtractive clustering approach (HSC) in detail. The objective
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function is designed and the cluster centers are selected to minimize the objective functon in Section 4.
Section 5 presents the algorithms to assign multi-centers to one cluster to represent the nonspherical clusters.
A complete algorithm for the proposed fuzzy clustering technique is presented in Section 6. Data with unequal
population clusters, two-elliptic clusters, and linearly unseparable clusters are clustered in Section 7. The
clustering for the iris data and a color image is also included. Moreover, the proposed clustering algorithm is
compared with some other clustering algorithms. Finally, Section 8 provides the conclusion.

2. Subtractive clustering algorithm

In this section, the subtractive clustering algorithm [4] is reviewed for the comparison with the pro-
posed hierarchical subtractive clustering algorithm described in Section 3. Let the collection of data points
be Cx = {x1; x2; : : : ; xn}, and each data point xi=(xi1; xi2; : : : ; xip) be a p-dimensional vector. The subtractive
clustering algorithm is presented in Algorithm 1:

Algorithm 1 (Subtractive clustering)
1. Let m=0, xc0 = 0, and Dc0 = 0. (m is the number of iterations, xcm is the cluster centers and Dcm is the
density of xcm:)

2. Calculate the density function for each data point xi,

Di =
n∑

j=1

exp
(−‖xi − xj‖2

(ra=2)2

)
−

m∑
k=0

Dck exp
(−‖xi − xck‖2

(rb=2)2

)
; ra; rb: constants (1)

3. Let m=m+ 1.
4. Select the cluster center xcm to be the point with largest density value

Dcm = max
i

Di:

5. If a su3cient number of cluster centers have been generated, then stop.
else go back to step 2.

From the density function in Eq. (1), it is easy to see that the computation load will be heavy when
the number of data points n is large. To reduce the computation load, a two-level hierarchical subtractive
clustering algorithm is proposed.

3. Hierarchical subtractive clustering algorithm

The hierarchical subtractive clustering approach partitions the collection of data into several subcollections,
and calculates the density functions for the data points in each subcollection. The density function is de0ned
to be the number of points inside the neighborhood of each data point. For each subcollection, instead of
taking the data point with highest value of density function as the cluster center, the centroid of the data
points in the neighborhood of the point with highest value of density function is calculated as the cluster
center. To 0nd the second cluster center, the data points used for derivation of the 0rst cluster center has to be
taken o1 from the collection of data. With the same approach, the cluster centers for each subcollection can
be found. Then, all the cluster centers from all the subcollections are considered as a new collection of data
to be further clustered. Thus, the calculation load can be reduced with this hierarchical subtractive clustering
approach.
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Let the collection of data points be Cx = {x1; x2; : : : ; xn} with each data point xi=(xi1; xi2; : : : ; xip). A two-
level hierarchical subtractive clustering algorithm is proposed to reduce the computation load. In the 0rst level
of HSC, the collection of data is divided into several subcollections with an approximately equal number of
data points. Each subcollection has to include a su3cient number of points. That is, if the number of data
point n is small, the collection division is not necessary and the 0rst level of HSC can be omitted. Assume that
n=mb+d (b; d; m are integers and m¿1; d¡m), Cx can be divided into m subcollections C�

x ; �=1; 2; : : : ; m
with

C�
x = {x�1; x�2; : : : ; x�b}; � = 1; 2; : : : ; m− 1

and

Cm
x = {xm1 ; xm2 ; : : : ; xmb ; xmb+1; : : : ; xmb+d}:

To de0ne a neighborhood of a data point, the scatter of data points on each dimension is considered to be an
important factor. For example, if the scatter of data points is large and the neighborhood of points is small, then
there might be no points included in the neighborhood of any one of the points. On the other hand, if the scatter
is small and the neighborhood is large, then the entire data set might be in the neighborhoods of all the data
points. The problem can be reasonably solved by selecting di1erent neighborhoods for di1erent collections
of data points with di1erent scatter. It is known that a standard deviation can be used to approximately
represent the scatter of data points. Thus, the neighborhood of a multidimensional point xi can be considered
as a function of standard deviations on each dimension. In our work, the neighborhood of a data point xi is
de0ned to be a hypersphere (centered at xi) with the radius selected to be the minimum standard deviation
among all the dimensions. It is assumed that the data points have been properly normalized. That is, the point
xj is said to be in the neighborhood of data point xi, if the distance ‖xj − xi‖ is less than the value rmin which
is de0ned to be

rmin = min
p
(standard deviation of {x1p; x2p; : : : ; xnp}):

For each point x�i in the subcollection C�
x , the density function D�

i of x
�
i is de0ned as

D�
i (x

�
i ) = the number of points in the neighborhood of x�i ;

=
b∑

j=1

u(rmin − ‖x�j − x�i ‖) (2)

is calculated. Note that the unit step function u in Eq. (2) is de0ned as

u(�) =

{
1 if �¿ 0;

0 otherwise:

If the data point x�c1 ∈C�
x has the largest density value, i.e.,

D�
c1 = maxi

D�
i ;

the 0rst center cc�1 of the subcollection C�
x is derived as

cc�1 = mean(data points in the neighborhood of x�c1): (3)

Instead of calculating Eq. (1) every time to 0nd the cluster center in the subtractive clustering algorithm, the
density function is only evaluated once in the 0rst level of the hierarchical subtractive clustering algorithm.
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Let the collection C�
c1 be the data points which are in the neighborhood of x

�
c1. The centroid of the data points

in the neighborhood of a data point x�c2 (∈C�
x − C�

c1) is considered as the second cluster center if

D�
c2 = maxi

D�
i for xi ∈ C�

x − C�
c1;

where D�
c2 is the density of x

�
c2. Likewise, we can continue to 0nd the cluster centers of C

�
x until

C�
x −

∑
k=1

C�
ck = ∅ (empty set):

Thus, the 0rst level of HSC can be summarized in the following algorithm:

Algorithm 2 (First level of HSC)
1. Divide the collection Cx into m subcollections C�

x ; �=1; 2; : : : ; m.
2. Let �=1.
3. Find the centers of subcollection C�

x as follows,
(a) Calculate the density function for each data point x�i ,

D�
i =

b∑
j=1

u(rmin − ‖x�j − x�i ‖): (4)

(b) Let k =1
(c) Find

x�ck ∈ C�
x −

k∑
l=1

C�
c(l−1);

such that the density of x�ck , D
�
ck , satis0es

D�
ck = maxi

D�
i for x�i ∈ C�

x −
k∑

l=1

C�
c(l−1);

where C�
ck is the collection of data points in the neighborhood of x

�
ck , and (C

�
c0 = ∅).

(d) Take the centroid of the data points in the neighborhood of x�ck to be the center cc
�
k .

(e) If C�
x −

∑k
l=1 C

�
c(l−1) �= ∅ go back to step 3(c) with k = k + 1. else go to step 4.

4. If �=m, then stop.
else go back to step 3 with �= �+ 1.

With the collection of cluster centers obtained from the 0rst level of HSC as a new collection of data
points, the second level of HSC mainly repeats the key steps in Algorithm 2 (the 0rst level of HSC). And
the algorithm of the second level of HSC is presented as:

Algorithm 3 (Second level of HSC)
1. Reset Cx to be the collection of all the centers obtained from Algorithm 2 with the elements xi; i=1; 2; : : : ; nc,
where nc is the number of centers.

2. Calculate the density function for each data point xi; i=1; 2; : : : ; nc

Di =
nc∑
j=1

u(rmin − ‖xj − xi‖): (5)
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3. Let k =1.
4. Take the centroid of the data points in the neighborhood of xck to be the cluster center cck if

xck ∈ Cx −
k∑

l=1

Cc(l−1) (Cc0 = ∅)

and

Dck = max
i

Di for xi ∈ Cx −
k∑

l=1

Cc(l−1):

5. If Cx −
∑k

l=1 Cc(l−1) �= ∅ go back to step 4 with k = k + 1.
else stop with cluster centers, ccj; j=1; 2; : : : ; np, and np being the number of cluster centers.

From Eqs. (1) and (4), it is easy to see that for each data point xi, the distance function ‖xj − xi‖ is
calculated n times in Eq. (1) of the subtractive clustering algorithm, while it is calculated only n=m (Eq. (4))
and nc (Eq. (5)) times for each data point in the 0rst and second levels of HSC, respectively. Therefore, when
n is large, the computation load is signi0cantly reduced with the hierarchical subtractive clustering algorithm.
Note that nc is usually much smaller than n. To automatically determine the number of clusters, the centers
obtained with the HSC algorithm (Algorithms 2 and 3) are used as the primary cluster centers for the further
processing which is presented in Section 4.

4. Selection of candidate cluster centers

The candidate cluster centers are selected from the set of primary cluster centers,

Cpc = {cc1; cc2; : : : ; ccnp};

by minimizing the objcetive function de0ned in Eq. (6). There are many clustering criteria that can be used to
derive the objective functions [2]. The distance criterion is the most commonly used criterion. Therefore, our
objective function is designed based on the distance criterion. Consider the objective function of the fuzzy-C
means algorithm, i.e.,

Jf cm =
n∑

i=1

np∑
j=1

�m
ji‖xi − ccj‖2; (6)

where �ji is the membership function and m¿1 is the fuzzi0er. It is shown in [2] that the optimal memberships
�ji are given by

�ji =
1∑np

k=1 (‖(xi − ccj)‖2=‖(xi − cck)‖2)2=(m−1)
:

It can be seen that the objective function Jf cm in Eq. (6) is a measure of the di1ernces between the data
points and the cluster centers. When Jf cm is minimized, the sum of the di1erences between the data points
and the cluster centers are minimized. Thus, Jf cm can be minimized to obtain good clustering results when the
number of clusters is 0xed. However, it is known that if the number of cluster is not known, to minimize Jf cm
would results n clusters, where n is the number of data poins. That is, the e1ective number of clusters cannot
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be determined simply by minimizing the objective function Jf cm [19]. Instead of using the validity measures
[2,38,40], the e1ective number of cluster is determined by minimizing the modi0ed objective function J ∗

f cm,

J ∗
f cm =

n∑
i=1

�∑
j=1

�m
ji‖xi − cccj‖2 + !Jcc

and

Jcc =
�∑

i=1

�∑
j=i+1

‖ccci − cccj‖2; (7)

where � is the number of candidate cluster centers picked from C p
c ; and ccci ; i=1; 2; : : : ; �, are candidate

cluster centers. Also, Jcc=0 when �=1. With the objective function J ∗
f cm, the entire energy is de0ned to not

only consider the energy in each clusters, but also consider the energy between clusters. In this case, with one
more cluster center selected, it decreases the energy in clusters (Jf cm is decreased) but it increases the energy
between clusters (Jcc is increased). Therefore, the system will only bene0t from selecting the centers which
will reduce more energy in clusters than the energy increased between clusters (if they are selected). That is,
if the value of the objective function J ∗

f cm is decreased with an additional cluster center cci selected from C p
c ,

then the value of � is increased by one and cci is decided to be one candidate cluster center, i.e., ccc�= cci.
Otherwise, cci is decided not to be a candidate cluster center and we will try the next primary cluster center
of C p

c . Note that if there is a priori information which indicates that the clusters are highly close to each
other, we can weight Jcc by a factor !¿1 to further emphasize the closeness of cluster centers. The selection
of the candidate cluster centers is implemented with Algorithm 4.

Algorithm 4 (Selection of candidate cluster centers)
1. Let �=1; J ∗∗

f cm =∞, and �=1.
2. Set ccc�= cc�. (cc� ∈C p

c = {cc1; cc2; : : : ; ccnp}.
3. Calculate the objective function J ∗

f cm in Eq. (7) with the membership function

�ji =
1∑�

k=1 (‖(xi − cccj)‖2=‖(xi − ccck)‖2)2=(m−1)
:

4. If J ∗
f cm¡J ∗∗

f cm, then
(a) J ∗∗

f cm = J ∗
f cm.

(b) �= � + 1.
5. If �¿np − 1, stop with �= � − 1.
else go back to step 2 with �= �+ 1.

With Algorithm 4, the number of candidate cluster centers can be automatically determined. Since, the non-
spherical clusters are represented with multi-centers, the number of cluster centers is not equal to the number
of clusters. In the next section, non-spherical clusters are detected and the number of clusters is decided.

5. Association of related centers to the same cluster

Multi-centers are assigned to one cluster to represent the non-spherical cluster in this section. For two
centers ccci and cccj , let v1; v2; : : : ; vh be the equal distance points on the line connecting ccci and cccj such that
the points v1; v2; : : : ; vh lie between ccci and cccj . That is,

‖v1 − ccci ‖ = ‖v2 − v1‖ = · · · = ‖vh − vh−1‖ = ‖cccj − vh‖ =
‖cccj − ccci ‖

h+ 1
:
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As the density function in Eq. (2), the densities of ccci and cccj are

Dcci =
n∑

l=1

u(rmin − ‖xl − ccci ‖);

Dccj =
n∑

l=1

u(rmin − ‖xl − cccj‖): (8)

Also, the density Dvk ; k =1; 2; : : : ; h is calculated as

Dvk =
n∑

l=1

u(rmin − ‖xl − vk‖); k = 1; 2; : : : ; h:

In order to 0nd centers which are connected, clusters are 0rst assumed to be well separated. Then the densities
of the points vk ; k =1; 2; : : : ; h; between two centers (ccci and cccj ) are examined, if the condition in Eq. (9)
is satis0ed for all k, ccci and cccj are de0ned to be connected. After the connection relationship between
any two candidate cluster centers are decided, the transitive law is applied to 0nd the largest collections of
connected centers, and assign each collection of connected centers to a cluster. Thus, multi-center clusters are
created. For example, if the centers ccci and cccj are connected, and the centers cccj and ccck also connected,
then ccci ; cccj , and ccck are connected. The centers cci, ccj, and cck are assigned to the same cluster. To detail
the connection criterion in Eq. (9), let ccci and cccj be two centers from two di1erent clusters, and let there
be no other centers on the line segment connecting ccci and cccj . It is reasonable to assume that the distance
between ccci and cccj is larger than 5rmin. Recall that rmin is de0ned as the radius of the neighborhood of a
point and rmin is the minimum standard deviation among all the dimensions. That is, two di1erent clusters
are expected to be well separated or just slightly overlapping. Since there is no prior information about the
structure of data points, the distributions of the two centers, ccci and cccj , are assumed to be approximated by
a normal distribution. Thus, for each center, the neighborhood is supposed to contain around 68 percent of the
data points which belong to this corresponding center. Let the two centers be further assumed to have almost
equivalent number of points in their neighborhoods. In this case, we can 0nd a point vi (between ccci and
cccj , and closer to ccci than cccj ) which contains less than 17 percent of points of any one center (16 percent
from the neighborhood of the center ccci , and 1 percent of points from the neighborhood of the center cccj ).
Likewise, the density of vi is less than 0:17

0:68 =
1
4 of the density of each center. On the other hand, if such a

point vi cannot be found on the line segment between ccci and cccj , then the centers ccci and cccj are said to
be connected. Therefore, the criterion for the connection of two centers can be de0ned as follows.
If the density Dvk ; ∀k satis0es

Dvk ¿
max(Dcci; Dccj)

4
∀k; (9)

then the centers ccci and cccj are considered to be connected and assigned to the same cluster. Otherwise,
ccci and cccj belong to two di1erent clusters. Note that the connection criterion could be adjusted if there is
prior information about the clusters and the structure of data points. The algorithm for the multi-center cluster
detection is presented as follows.

Algorithm 5 (Detection of multi-center cluster). (Associate related centers to the same cluster)
1. Assign the center cccl to the cluster l, l=1; 2; : : : ; �. That is, Clusterl= {cccl }, l=1; 2; : : : ; �.
2. Create two index sets indx1; indx2 with indx1(i)= 0 and indx2(j)= 0, for i; j=1; 2; : : : ; �.
3. Let i=1, and j= i + 1.
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4. Find the equal distance points v1; v2; : : : ; vh which are on the line segment connecting centers ccci and cccj
and lying between ccci and cccj .

5. Calculate the densities Dcci; Dccj; Dvk ; k =1; 2; : : : ; h.
6. If the density Dvk ; ∀k satis0es the condition in Eq. (9), then
if indx1(i)= 0 and indx2(j)= 0,
Clusterj = Clusterj ∪ Clusteri; (assume ccci and cccj to belong to the same cluster);
indx1(i) = j; and indx2(j) = i:

elseif indx1(i) �=0 and indx2(j)= 0,
Clustermax(j; indx1(i)) = Clustermax(j; indx1(i)) ∪ Clustermin(j; indx1(i));

indx1(i) = max(j; indx1(i)); and indx2(j) = i:
elseif indx1(i)= 0 and indx2(j) �=0,
Clusterindx1(indx2(j)) = Clusterindx1(indx2(j)) ∪ Clusteri; and
indx1(i) = indx1(indx2(j)):

elseif indx1(i) �=0 and indx2(j) �=0, let temp = indx1(indx2(j)),
Clustermax(indx1(i);temp) = Clustermax(indx1(i);temp) ∪ Clustermin(indx1(i);temp);
and indx1(i) = max(indx1(i); temp):

else Clusteri= {ccci }; Clusterj = {cccj} (the centers ccci and cccj represent two di1erent clusters).
7. If i6� and j6�, go back to step 4 with j= j + 1.
elseif i6�, go back to step 4 with i= i + 1 and j= i + 1.
else (Find the number of clusters and the set of 0nal clusters)
(a) Let i=1 again, and FC = ∅ (set of 0nal clusters).
(b) If indx1(i) �=0, then �= � − 1, and delete Clusteri.

else FC =FC ∪ i.
(c) i= i + 1:
(d) If i 6 �, go back to step 7(b).

else stop with the cluster number �, and the set of 0nal clusters FC.

To complete the fuzzy clustering process of a given data, the proposed fuzzy clustering algorithm is pre-
sented in the next section.

6. A complete algorithm for the proposed fuzzy clustering

With the three parts in the previous Sections 3–5, a complete algorithm is presented in this section for the
proposed fuzzy clustering of a given data set.

Algorithm 6 (A complete fuzzy clustering algorithm)
1. Let the collection of data points be Cx = {x1; x2; : : : ; xn}. And each data point xi=(xi1; xi2; : : : ; xip) is a

p-dimensional vector.
2. If the number of data points is large, Run the 0rst level of HSC (Algorithm 2) for all the possible cluster
centers,
else go to step 4 with each data point being a possible cluster center.

3. Run the second level of HSC (Algorithm 3) to reduce the number of cluster centers, and to generate the
primary cluster centers.

4. Run Algorithm 4 to select the candidate cluster centers from the set of primary cluster centers to minimize
the objective function.

5. Run Algorithm 5 to associate the related centers to the same cluster. Thus, the 0nal number of clusters
and the 0nal clusters are obtained.
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6. (This step may be by taking the centers of the 0nal clusters as the 0nal cluster centers and going to step 7
directly.) Run the standard fuzzy-C means algorithm with the centers of the 0nal clusters as initial cluster
centers and then stop.

7. (if step 6 is skipped) The membership values �ji of data point xi; ∀i associated with cluster center cccj ; ∀j
are calculated with

�ji =
1∑n

k=1(‖(xi − cccj)‖2=‖(xi − ccck)‖2)2=(m−1)
∀i; j;

and then stop.

Note that the membership value of the data point xi in a multi-center cluster is the sum of the membership
values of the data point xi associated with cluster centers which are assigned to represent the multi-center
cluster. To indicate the e1ectiveness of the proposed unsupervised fuzzy clustering algorithm, data with unequal
population clusters, two-elliptic clusters, linearly unseparable clusters, the iris data, and a color image are
clustered in Section 7.

7. Experimental results

Three sets of two dimensional data with unequal population clusters, two elliptic clusters, and linearly
unseparable clusters are generated for experiments. The iris data is also clustered in this section. Moreover, the
classi0cation of the color pepper image which contains 512× 512 three-dimensional data points is implemented
to indicate the time savings of the proposed fuzzy clustering algorithm compared to the subtractive clustering
algorithm.
Data with unequal population clusters: Two unequal population clusters with 50 and 10 points are given

in Fig. 1. The centers obtained from the HSC algorithm are shown with data points in Fig. 2. The candidate
cluster centers are selected from the centers in Fig. 2 to minimize the objective function. And the candidate
cluster centers are presented in Fig. 3. With the multi-center cluster detection algorithm (Algorithm 5), the
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Fig. 1. Data with unequal population clusters.
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Fig. 2. Cluster centers (’o’) and data with unequal population clusters (’+’).
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Fig. 3. Primary cluster centers (’o’) and data with unequal population clusters (’+’).

number of cluster is determined to be two. The coordinates of the centers are[
0:0630 0:1419

0:3378 0:2637

]
and [2:0588 2:2521];

respectively. Note that there is a cluster with two centers. With the candidate cluster centers, the clustering is
implemented by using the fuzzy C-means algorithm. For this set of data, the proposed clustering algorithm
can cluster the data correctly without any misclustered data points.
Data with two elliptic clusters: Two elliptic clusters with 140 points are shown in Figs. 4 and 5 indicates

the centers obtained from the HSC algorithm with data points. The candidate cluster centers are selected with
Algorithm 4 to minimize the objective function. Fig. 6 shows the candidate cluster centers. The number of
clusters is determined to be two. Each of the clusters has two centers. Two elliptic clusters are clustered
correctly without any misclustered data points.
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Fig. 4. Data with two elliptic clusters.
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Fig. 5. Cluster centers (’o’) and data with two elliptic clusters (’+’).

Data with linearly unseparable clusters: In Fig. 7, data with linearly unseparable clusters is created. The
HSC algorithm produces the cluster centers in Fig. 8. Five candidate cluster centers are denoted with data in
Fig. 9. Four centers are assigned to the same cluster; and the number of clusters is two. No data points are
misclustered.
The iris data. The iris data is obtained from three di1erent species, and there are 50 data points for each

specie. The 150 four-dimensional iris data are clustered with the proposed clustering algorithm. The candidate
cluster centers are


5:1 3:43 1:44 0:21

5:65 2:75 4:15 1:3

6:7 3:1 4:7 1:5

6:7 3:3 5:7 2:1


 ;
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Fig. 6. Primary cluster centers (’o’) and data with two elliptic clusters (’+’).
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Fig. 7. Data with linearly unseparable clusters.

and the second and third centers (the second and third columns) are assigned to the same cluster. Thus,
the number of clusters is three. With these candidate cluster centers, the 0rst and second species can be
correctly clustered without any misclustered data points. For the third specie, 13 data points out of 50 are
misclassi0ed, i.e., the percentage of error classi0cation is 26 percent. Note that the percentage of classi0cation
error is because the clustering algorithm is not optimized for classi0cation accuracy but rather for clustering
soundness.
The color image of peppers: To emphasize the low computation load (compared to the subtractive clus-

tering) and to show the application of the proposed clustering algorithm to image segmentation, the color
peppers image is used as the data set for clustering. The image data set contains 512× 512 three-dimensional
(RGB) data points. For the 0rst level HSC, we separate the image data set into 512 subsets, and each subsets
includes 512 points. With the clustering algorithm (coded in Matlab), it takes 20 min to run through the
0rst level of HSC, and 1432 cluster centers are obtained. The second level of HSC is then applied with this
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Fig. 8. Cluster centers (’o’) and data with linearly unseparable clusters (’+’).
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Fig. 9. Primary cluster centers (’o’) and data with linearly unseparable clusters (’+’).

collection of cluster centers, and the processing time of the second level of HSC is about 25 min. Note that
because the number of data points in the second level of HSC (1432) is about 3 times larger than the number
of points in one subset in the 0rst level of HSC (512), the processing time of the second level of HSC is even
larger than the processing time of the 0rst level of HSC. There are 412 primary cluster centers generated by
the second level of HSC. It takes another 15 min to select the 6 candidate cluster centers from the primary
cluster centers. The candidate cluster centers are listed as



123:6 172:7 98:8

120:7 118:6 52:4

31:9 21:1 0

188:6 212:1 165:4

186:4 58:4 26:5

135:9 165:1 90:2



;
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Fig. 10. The image “peppers” used in the experiment.

Fig. 11. Segmentation result of the color pepper image with the proposed algorithm.

and the (second, and sixth), candidate cluster centers are found to be associated with the same cluster. Thus,
the 0nal number of clusters is 5. The fuzzy-C means algorithm is used to cluster the original peppers image
data sets with the set of candidate cluster centers as the initial cluster centers. For simplicity, the original color
peppers image is shown in Fig. 10. The clusters are shown with di1erent gray levels (0; 62; 125; 187; 255)
shown in Fig. 11. From Fig. 11, it can be seen that the red area is clearly indicated to be black points
(gray level 0). The green color area is clustered and shown with white points (255). The yellow area is
represented by gray level 125. The area with high reOection is presented with gray level (187). The shadow
area in the image is indicated as gray level (62). Note that the total amount of time taken for the proposed
unsupervised fuzzy clustering algorithm to get the 0nal results is around 1:5 h. However, if the original
subtractive clustering algorithm is used, it cannot even generate one cluster during 1:5h. From our experience
in clustering the image data, the extension of HSC algorithm to have more than two levels is expected to be
able to reduce the computation load for huge data sets (e.g. data mining clustering).
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Table 1
Comparison of clustering algorithms (the numbers in the cell indicate the error percentage)

Data type Clustering algorithms

FCM (%) GK (%) FCS (%) Proposed algorithm

Unequal population clusters 0 0 18.3 0
Two elliptic clusters 27.1 0 24.3 0
Linearly unseparable clusters 42.7 39.9 13.9 0

Fig. 12. Segmentation result of the color pepper image using plain FCM algorithm.

Comparison with other clustering algorithms: To show that the proposed unsupervised fuzzy clustering
algorithm is more e1ective for clusters of various shape than some other “traditional” clustering algorithms,
the data with unequal population clusters, two elliptic clusters, and linearly unseparable clusters are also
clustered with other clustering algorithms (fuzzy-C means (FCM), Gustafson–Kessel (GK) [17], fuzzy-C shell
(FCS) algorithms [26]). The correct cluster number and the fair initial conditions are given for clustering data
with Algorithms FCM, GK, and FCS. The clustering results are listed in the Table 1. Moreover, with the
cluster number assumed to be known as c=5, and fairly selected initial membership value matrix, the color
pepper image is segmented with the plain fuzzy-C means algorithm for comparison. From Fig. 12, it can be
seen that segmentation result with plain fuzzy-C means algorithm is similar to the result with the proposed
algorithm (see Fig. 11). However, if the initial membership value matrix is improperly selected, the degraded
segmentation result will be obtained with the plain fuzzy-C means algorithm in Fig. 13. Note that with the
advantage of the matrix operation in Matlab, the segmentation of color pepper image with the plain fuzzy-C
means algorithm takes about 7 min.

8. Conclusions

In this paper, a new unsupervised fuzzy clustering algorithm is presented. A new objective function is
de0ned. The number of clusters can be reasonably determined automatically by minimizing the objective
function. And the 0nal clusters with multi-centers are generated for the data. Also, the centers of the 0nal
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Fig. 13. Segmentaion result of the color pepper image using plain FCM algorithm (with improper initial membership value matrix).

clusters can form good initial cluster centers for the fuzzy-C means algorithm. Since multi-centers are used
to represent clusters, the nonspherical clusters can be correctly detected. Moreover, the proposed clustering
algorithm can handle non-traditional, curved clusters. Note that the merging criteria used in this work prefers
a cluster with a “thick” shape than a thin curve. Also, our clustering algorithm might have di3culty in
clustering highly overlapped clusters. The clustering algorithm in this paper is e3cient when the number of
data points is large. However, for huge data sets (e.g. data mining sets), the clustering algorithm with HSC
may still su1er from a heavy computation load. Thus, the extension of HSC to be more than two levels can
be considered. The experimental results indicate the e1ectiveness of the proposed clustering algorithm.
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