
This document was created on July 3, 2003 at 12:31am.

Introduction to Data Mining

Pang-Ning Tan (ptan@cs.umn.edu),
Michael Steinbach (steinbac@cs.umn.edu), and

Vipin Kumar (kumar@cs.umn.edu)

c© Pang-Ning Tan, Michael Steinbach, and Vipin Kumar 2003

i

Preface

This book is about data mining...

ii

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 What is Data Mining? . 2

1.1.1 Data Mining Tasks . 3
1.1.2 Data Mining Techniques . 3

1.2 What is not Data Mining? . 5
1.3 Challenges of Data Mining . 5
1.4 Other Issues in Data Mining . 6

1.4.1 Privacy and Data Mining . 6
1.4.2 Data Mining and Other Learning Techniques 7

1.5 Bibliographic Notes . 7
1.6 Exercises . 8

2 Data 9
2.1 Types of Data . 11

2.1.1 Attributes and Measurement 11
2.1.2 Structured Data . 17

2.2 Data Quality . 24
2.2.1 Errors, Noise and Outliers . 25
2.2.2 Missing Values . 27
2.2.3 Inconsistent Values . 28
2.2.4 Duplicate Data . 29
2.2.5 Design of Experiments . 30
2.2.6 Some final comments on data quality. 30

2.3 Data Preprocessing . 30
2.3.1 Aggregation . 31
2.3.2 Sampling . 32
2.3.3 Dimensionality Reduction . 36
2.3.4 Feature Subset Selection . 38
2.3.5 Feature Creation . 41

iii

2.3.6 Discretization and Binarization 43
2.3.7 Attribute Transformation . 47

2.4 Exercises . 50
2.5 Bibliographic Notes . 52

3 Classification 54
3.1 Problem Definition . 55
3.2 General Approach to Solving a Classification Problem 56
3.3 Decision Tree Induction . 58

3.3.1 How Decision Tree Works? . 58
3.3.2 How to Build a Decision Tree? 60
3.3.3 Methods for Splitting . 64
3.3.4 Measures for Selecting the Best Split 66
3.3.5 General Issues in Model Construction 71
3.3.6 Handling Overfitting . 74
3.3.7 Handling Missing Attribute Values 79
3.3.8 Algorithm for Decision Tree Construction 81
3.3.9 Characteristics of Decision Tree Induction 82

3.4 Rule-based classifiers . 85
3.4.1 How Rule-Based Classifier Works? 85
3.4.2 How to Build a Rule-Based Classifier? 88
3.4.3 Rule Ordering . 89
3.4.4 Direct Methods for Rule Extraction 89
3.4.5 Indirect Methods for Rule Extraction 97

3.5 Nearest-neighbor classifiers . 99
3.5.1 Algorithm . 102
3.5.2 Characteristics of Nearest-neighbor classifiers 103

3.6 Bayesian classifiers . 104
3.6.1 Bayes Theorem . 104
3.6.2 Using Bayes Theorem for Classification 107
3.6.3 Naive Bayes Classifier . 108

3.7 Artificial Neural Networks (ANN) . 111
3.7.1 Back-Propagation Algorithm 115
3.7.2 Characteristics of Neural Networks 116

3.8 Support Vector Machine (SVM) . 116
3.8.1 Preliminaries . 118
3.8.2 How Support Vector Machine Works? 125

3.9 Ensemble Methods . 129
3.9.1 Why Ensemble Methods Work? 130
3.9.2 Types of Ensemble Methods 130
3.9.3 Bagging . 131
3.9.4 Boosting . 132

3.10 Model Evaluation . 134
3.10.1 Metric for Performance Evaluation 135

iv

3.10.2 Methods for Performance Evaluation 139
3.10.3 Methods for Performance Comparison 143

3.11 Bibliographic Notes . 151
3.12 Exercises . 152

4 Association Analysis 167
4.1 Problem Definition . 168
4.2 Frequent Itemset Generation . 171

4.2.1 Apriori Principle . 173
4.2.2 Apriori Algorithm . 175
4.2.3 Candidate Itemset Generation 176
4.2.4 Support Counting . 177
4.2.5 Alternative Frequent Pattern Mining Algorithms 182
4.2.6 FP-growth Algorithm . 184

4.3 Rule Generation . 188
4.4 Handling Continuous and Categorical Attributes 189

4.4.1 Categorical Attributes . 191
4.4.2 Continuous Attributes . 192

4.5 Handling Concept Hierarchy . 198
4.6 Effect of Support Distribution . 201

4.6.1 Multiple Minimum Support 202
4.7 Evaluation of Association Patterns 205

4.7.1 Objective Measures of Interestingness 205
4.7.2 Subjective Measures of Interestingness 219

4.8 Generalization of Association Analysis 221
4.8.1 Maximal and Closed Frequent Itemsets 221
4.8.2 Infrequent Patterns . 225
4.8.3 Frequent Subgraphs . 233
4.8.4 Constraint Association Rule Mining 239
4.8.5 Sequential Patterns . 241
4.8.6 Spatial Associations . 241

4.9 Bibliographic Notes . 241
4.10 Exercises . 245
4.11 Grab bag . 254

4.11.1 Dependence Rules . 254
4.11.2 Comparison between Classification and Association Rule Mining 256
4.11.3 General Procedure for Building Classification Models 257
4.11.4 Using association rules for rule-based classifiers 258
4.11.5 Using association patterns for Bayesian classifiers 261
4.11.6 Support and Confidence . 261

v

5 Cluster Analysis 263
5.1 Introduction . 264

5.1.1 What is cluster analysis? . 264
5.1.2 What is not cluster analysis? 264
5.1.3 Different Types of Clusterings 265
5.1.4 Different Types of Clusters . 268

5.2 Similarity and Distance . 270
5.2.1 Similarity and Dissimilarity Between Simple Attributes 271
5.2.2 Distances Between Data Objects 272
5.2.3 Similarities Between Data Objects 274
5.2.4 Issues in Proximity Calculation 280
5.2.5 Selecting the ‘right’ proximity measure. 282

5.3 Density . 283
5.4 Characteristics of Clustering Algorithms 283
5.5 Roadmap for Discussing Specific Clustering Techniques 285
5.6 Center-Based Clustering Techniques 285

5.6.1 K-means . 286
5.6.2 K-medoid Clustering . 305

5.7 Hierarchical Clustering . 306
5.7.1 Agglomeration and Division 307
5.7.2 Divisive Algorithms . 308
5.7.3 Basic Agglomerative Hierarchical Clustering Algorithms 308
5.7.4 Defining Proximity Between Clusters 309
5.7.5 MIN or Single Link . 310
5.7.6 MAX or Complete Link or CLIQUE 311
5.7.7 Group Average . 311
5.7.8 Ward’s Method and Centroid methods 315
5.7.9 Key Issues in Hierarchical Clustering 315
5.7.10 The Lance-William Formula for Cluster Proximity 317

5.8 Density-Based Clustering . 318
5.8.1 DBSCAN . 318
5.8.2 DENCLUE . 322
5.8.3 Subspace Clustering . 324

5.9 Other Clustering Techniques . 329
5.9.1 Fuzzy Clustering . 329
5.9.2 Clustering via Mixture Models and the EM Algorithm 332
5.9.3 Self-Organizing Maps (SOM) 344

5.10 Scalable Clustering Algorithms . 348
5.10.1 Birch . 348
5.10.2 CURE . 349

5.11 Cluster Evaluation . 351
5.11.1 Overview . 352
5.11.2 Measuring Cluster Validity via Correlation 355
5.11.3 Judging a Clustering Via Its Similarity Matrix 355

vi

5.11.4 An internal measure of cluster validity: SSE 356
5.11.5 A statistical framework for cluster validity 359
5.11.6 Internal measures of cluster validity: cohesion and separation . 359
5.11.7 Using External Measures of Cluster Validity 362

5.12 Bibliographic Notes . 364
5.13 Exercises . 365

6 Visualization 374
6.1 Introduction . 374

6.1.1 What is Visualization? . 374
6.1.2 Motivations for Visualization 375
6.1.3 Visualization and Different Types of Data 376
6.1.4 General Categories of Visualization 377

6.2 General Concepts . 378
6.2.1 Representation: Mapping Data to Graphical Elements 378
6.2.2 Arrangement . 379
6.2.3 Selection . 379
6.2.4 Do’s and Don’ts . 381

6.3 Visualization Techniques . 382
6.3.1 Visualizing One-dimensional Data 383
6.3.2 Visualizing Two-dimensional Data 390
6.3.3 Visualizing Three-dimensional Data 390
6.3.4 Visualizing Four-dimensional Data 390
6.3.5 Visualizing Higher-dimensional Data 390

6.4 Exercises . 391
6.5 Bibliographic Notes . 392

7 Anomaly Detection 393

8 Special Topics in Data Mining 394
8.1 Spatio-temporal Data Mining . 394
8.2 Network Intrusion Detection . 394

Bibliography 394

A Statistics 412

B Linear Algebra 413

LIST OF FIGURES vii

List of Figures

1.1 Number of Web pages indexed by the Google c© search engine (Source:
Internet Archive, http:www.archive.org). 1

1.2 Data mining techniques. 4

2.1 The measurement of the length of line segments on two different scales
of measurement. 13

2.2 Different variations of record data. 19
2.3 Different variations of graph data. 21
2.4 Different variations of ordered data. 22
2.5 Noise in a time series context. 26
2.6 Noise in a spatial context. 26
2.7 Example of inconsistent time series data. 29
2.8 Standard Deviation and Coefficient of Variation for Monthly and Yearly

Precipitation in Australia. 33
2.9 Example of the Loss of Structure with Sampling. 35
2.10 Finding representative points from 10 groups. 36
2.11 Decrease in relative distance between min and max distance with in-

creasing dimensionality. 37
2.12 Flowchart of a feature subset selection process. 39
2.13 Different variations of record data. 42
2.14 Different discretization techniques. 45
2.15 Discretizing x and y attributes for four groups (classes) of points. . . . 47

3.1 Using a classification model for prediction. 56
3.2 Building a classification model for predicting tax evasion. 57
3.3 An illustrative example of the decision tree for mammal classification

problem. 59
3.4 Classifying an unlabeled vertebrate. 60
3.5 Hunt’s Algorithm for inducing decision trees. 61
3.6 Example of decision tree induction for a 2-dimensional data set. 62
3.7 Decision tree for the taxpayer classification problem. 63
3.8 Splitting instances based on categorical attributes. 64
3.9 Splitting the data set according to different attribute values. 65

LIST OF FIGURES viii

3.10 Splitting continuous attributes. 66
3.11 Comparison between the impurity functions for two-class problems. . . 67
3.12 Splitting binary attributes. 68
3.13 Splitting categorical attributes. 69
3.14 Splitting continuous attributes. 70
3.15 Overfitting problem during model building. 73
3.16 Overfitting and Underfitting. 75
3.17 Minimum Description Length (MDL) principle. 77
3.18 Replication problem of decision trees. 83
3.19 Example of data set that cannot be partitioned optimally using test

conditions involving single attributes. 84
3.20 Example of a Rule-Based Classifier for the taxpayer classification problem. 87
3.21 Difference between rule-based and class-based ordering schemes. 90
3.22 An illustrative example of the sequential covering algorithm. 91
3.23 Elimination of training instances by the sequential covering algorithm.

R1, R2, and R3 represent regions covered by three different rules. . . . 94
3.24 Converting a decision tree into classification rules. 98
3.25 Results of C4.5 and C4.5rules algorithms. 100
3.26 The 1-, 2- and 3-nearest neighbors of an instance. 101
3.27 Voronoi diagram for 1-nearest neighbor. 102
3.28 k-nearest neighbor classification with large k. 102
3.29 Euclidean distance between pairs of unnormalized vectors. 104
3.30 Diagram to illustrate probability of events X, Y , X ∩ Y , X ∩ Y , and

X ∩ Y . 105
3.31 The naive Bayes classifier for the taxpayer classification problem. . . . 111
3.32 Classifying boolean function using neural network. 112
3.33 Example of an artificial neural network (ANN). 113
3.34 Structure of a neuron (unit). 114
3.35 Types of activation functions for neurons. 114
3.36 An example of a two-class problem with two separating hyperplanes, B1

and B2. 117
3.37 Finding the equation for the straight-line L. 119
3.38 Stationary points of a function. 120
3.39 Plot for the function f(x, y) == 3x2 + 2y3 − 2xy. 122
3.40 Decision boundary of a linear SVM. 125
3.41 Plot of α as a function of training error ε. 133
3.42 Modifying the decision boundary (from B1 to B2) to reduce total mis-

classification cost of a classifier. 138
3.43 A learning curve. 140
3.44 ROC curve for two 1-dimensional normal distributions. 144
3.45 ROC curves for two different classifiers. 145
3.46 Constructing an ROC curve. 146
3.47 ROC curve for the data shown in Figure 3.46. 147
3.48 Data set for Question 19. 165

LIST OF FIGURES ix

3.49 Data set for Question 20. 166

4.1 The Itemset Lattice. 172
4.2 Counting the support of candidate itemsets. 172
4.3 An illustration of the Apriori principle. If {A,B,C} is frequent, then all

subsets of this itemset are frequent. 173
4.4 An illustration of support-based pruning. If {A,B} is infrequent, then

all supersets of {A,B} are eliminated. 174
4.5 Illustration of Apriori algorithm . 175
4.6 Counting the support of itemsets using hash structure. 178
4.7 Subset operation on the root of a candidate hash tree. 179
4.8 Subset operation on the left most subtree of the root of a candidate

hash tree. 180
4.9 Hash tree configuration after adding the candidate itemset {3 5 9}. . . 182
4.10 Equivalent classes based on the prefix and suffix labels of itemsets. . . 184
4.11 Horizontal and vertical data format. 185
4.12 Construction of an FP-tree. 186
4.13 An illustrative example of the FP-growth algorithm for finding itemsets

ending in E. 187
4.14 Pruning of association rules using confidence measure. 189
4.15 Frequency of words that appear in a collection of Los Angeles Times

news snippets. 197
4.16 Example of an item taxonomy. 199
4.17 Support distribution of items for a synthetic data set created using the

IBM Almaden synthetic data generator. 202
4.18 Effect of applying different minimum support threshold on number of

frequent itemsets. 203
4.19 Frequent itemset generation with multiple minimum supports. 204
4.20 An example illustrating the effect of increasing item support. 212
4.21 Effect of the inversion operation. The vectors C and E are inversions

of vector A, while the vector D is an inversion of vectors B and F . . . 214
4.22 Similarity between measures in terms of the five properties listed in Table 4.15. 215
4.23 Effect of Support Pruning on Contingency tables. 217
4.24 Similarity between measures at various ranges of support values. Note that the

column labels are the same as the row labels. 218
4.25 Unexpected subjective measure . 220
4.26 Maximal frequent itemset. 223
4.27 An illustrative example of frequent closed itemsets (with minimum sup-

port count equals to 2). 224
4.28 Relationships among frequent itemsets, maximal frequent itemsets, and

closed frequent itemsets. 224
4.29 Relationships among infrequent patterns, negative patterns, and nega-

tively correlated patterns. 227
4.30 Augmenting data set with negative items. 228

LIST OF FIGURES x

4.31 Mining interesting negative patterns using a concept hierarchy. 231
4.32 Indirect association between a pair of items. 231
4.33 Graph, subgraph, and induced subgraph definitions. 234
4.34 Mapping a collection of graph structures into market-basket transactions. 235
4.35 Vertex growing approach. 236
4.36 Edge growing approach. 237
4.37 Graph Isomorphism . 238
4.38 Adjacency matrix and string encoding of a graph. 239
4.39 Multiplicity of Candidate Joining. 240
4.40 A summary of the research issues in mining association patterns. . . . 242
4.41 An illustrative example for the CMAR algorithm. 259

5.1 Different ways of clustering the same set of points. 264
5.2 A hierarchical clustering of four points shown as nested clusters and as

a dendrogram. 266
5.3 A non-traditional hierarchical clustering of four points shown as nested

clusters and as a dendrogram. 267
5.4 Two well-separated clusters of 2 dimensional points. 269
5.5 Four center-based clusters of 2 dimensional points. 269
5.6 Eight contiguous clusters of 2 dimensional points. 269
5.7 Six dense clusters of 2 dimensional points. 270
5.8 Examples of shared property or ‘conceptual’ clusters. 270
5.9 Four two-dimensional points. 273
5.10 Mathematical illustration of the cosine measure. 277
5.11 Scatter plots illustrating correlations from -1 to 1. 279
5.12 Mahalanobis distance. 281
5.13 Finding three clusters in a set of 2D points. 288
5.14 Impact of Initial Centroids: Example 1. 289
5.15 Impact of Initial Centroids: Example 2. 290
5.16 Five pairs of clusters. 291
5.17 Five Pairs of Clusters with a Pair of Initial Centroids Within Each Pair

of Clusters. 292
5.18 Five Pairs of Clusters with More or Fewer than Two Initial Centroids

Within a Pair of Clusters. 293
5.19 Bisecting K-means on the 10 Clusters Example. 299
5.20 K-means with different size clusters. 300
5.21 K-means with different density clusters. 301
5.22 K-means with non-globular clusters. 302
5.23 Using K-means to Find Many Clusters. 303
5.24 Set of Six Two-dimensional Points. 308
5.25 Minimum Spanning Tree for Set of Six Two-dimensional Points. 309
5.26 Definition of Cluster Proximity . 310
5.27 Single Link Clustering of Six Points. 312
5.28 Complete Link Clustering of Six Points. 313

LIST OF FIGURES xi

5.29 Group Average Clustering of Six Points. 314
5.30 Wards Clustering of Six Points. 316
5.31 Core, Border and Noise Points for DBSCAN. 319
5.32 Four clusters embedded in noise. 322
5.33 DBSCAN Clustering of 3000 Two-Dimensional Points. 323
5.34 Example of the Gaussian influence (kernel) function and an overall den-

sity function. (σ = 0.75) . 324
5.35 View of four sets of points in different subspaces. 326
5.36 Histogram showing distribution of points for the X attribute. 327
5.37 Distribution of points in the XY plane. 329
5.38 Fuzzy c-means clustering of a two-dimensional point set. 333
5.39 Histogram of 10,000 points from a normal distribution with a mean of

3 and a variance of 4. 334
5.40 Plot of the likelihood function for 7 heads out of 10 coin tosses. 335
5.41 Plot of the likelihood function for the toss of 10 coins where even and

odd tosses have a different probability of being heads. 337
5.42 Figures of the expected likelihood for different iterations of the EM

algorithm. 340
5.43 EM clustering of a two-dimensional point set generated from two mul-

tivariate normal distributions. 343
5.44 Two-dimensional 3 by 3 rectangular SOM neural network. 345
5.45 Distribution of reference vectors for a two-dimensional point set. 347
5.46 Clustering of 100 Randomly Distributed Points. 353
5.47 Similarity Matrix for Well-separated Clusters. 357
5.48 Similarity Matrices for Clusters from Random Data. 358
5.49 Plot of SSE versus K for 10 Clusters. 358
5.50 Plot of SSE versus K for a more complicated data set. 359
5.51 Histogram of SSE for 500 random data sets. 360
5.52 Illustration of proximity links involved in cohesion and separation measures. 361
5.53 Figures for exercise 1. 365
5.54 Figures for exercise 6. 368
5.55 Figures for exercise 10. 370
5.56 Figures for exercise 11. 371
5.57 Figures for exercise 12. 371
5.58 Figures for exercise 12. 372
5.59 Cluster tree for exercise 16. 373

6.1 The Gross Domestic Product of New Zealand (1990-1999), both ad-
justed for inflation is the baseline) and unadjusted. 375

6.2 Sea Surface Temperature (July, 1982). 376
6.3 A generic graph: nodes are objects, links represent relationships. 380
6.4 A generic graph: nodes are objects, links represent relationships. 381
6.5 Sepal length data from the Iris data set. 383
6.6 Stem and leaf plot for the sepal length from the Iris data set. 384

LIST OF FIGURES xii

6.7 Stem and leaf plot for the sepal length from the Iris data set. 384
6.8 Dot plot for the sepal length from the Iris data set 385
6.9 Histograms of Four Iris Attributes - 10 bins. 386
6.10 Histograms of Four Iris Attributes - 20 bins. 387
6.11 Description of Box Plot. 387
6.12 Box plot for Iris attributes. 388
6.13 Empirical CDF’s of Four Iris Attributes. 389
6.14 A parallel coordinates plot of the four iris attributes. 391
6.15 A parallel coordinates plot of the four iris attributes. 392

LIST OF TABLES xiii

List of Tables

2.1 Definition of different attribute types. 15
2.2 Transformations that define attribute levels. 16
2.3 Conversion of a categorical attribute to a three binary attributes. . . . 43

3.1 The vertebrate data set. 55
3.2 Confusion matrix for a 2-class problem. 58
3.3 Decision Tree Algorithm. 81
3.4 The Sequential Covering Algorithm. 90
3.5 Comparison between various rule-based classifiers. 97
3.6 The vertebrate data set. 99
3.7 k−nearest neighbor classification algorithm. 103
3.8 Data set for Problem 2. 158
3.9 Data set for Problem 7. 161

4.1 An example of market-basket transactions. 167
4.2 A binary 0/1 representation of market-basket data. 169
4.3 The Apriori algorithm. 176
4.4 Algorithm for generating rules from frequent itemsets. 190
4.5 Example of Web data for mining association rules. 191
4.6 Example of Web data after binarizing the categorical attributes. 192
4.7 Example of Web data after discretizing continuous attributes. 193
4.8 Example of mining association rules in text data. 196
4.9 Normalized document-term matrix. 197
4.10 A 2-way contingency table for variables A and B. 207
4.11 Definitions of objective interestingness measures. 209
4.12 Example of contingency tables. 210
4.13 Rankings of contingency tables using objective interestingness measures. 210
4.14 Example of a contingency table. 211
4.15 Properties of objective interestingness measures. 213
4.16 The Grade-Gender example. 215
4.17 Effect of high-support items on interest factor. 219
4.18 A transaction database for mining closed itemsets. 222
4.19 Example of market-basket transactions. 245

LIST OF TABLES xiv

4.20 Market basket transactions. 247
4.21 Example of market-basket transactions. 248
4.22 Example of market-basket transactions. 251
4.23 Example of numeric data set. 252
4.24 Example of numeric data set. 253

5.1 Similarity and dissimilarity for simple attributes 272
5.2 X-Y coordinates of four points. 273
5.3 Euclidean distance matrix for Table 5.2. 273
5.4 L1 distance matrix for Table 5.2. 273
5.5 L∞ distance matrix for Table 5.2. 273
5.6 X-Y coordinates of six points. 307
5.7 Distance Matrix for Six Points . 307
5.8 Table of Lance-William Coefficients for Common Hierarchical Clustering

Approaches . 318
5.9 K-means Clustering Results for LA Document Data Set 363
5.10 Confusion matrix for exercise 13 . 371
5.11 Table of cluster labels for Exercise 14 372
5.12 Similarity matrix for Exercise 14 . 372

6.1 A table of nine objects (rows) with six binary attributes (columns). . . 380
6.2 A table of nine objects (rows) with six binary attributes (columns) per-

muted so that the relationships of rows and columns is clear. 380

Chapter 1 1

Chapter 1

Introduction

Data, data everywhere

Rapid progress in data collection and data storage technology has enabled many
organizations to accumulate huge amount of observational, experimental, and oper-
ational data from their daily activities. For example, retailers are collecting large
volume of point-of-sale data at their departmental and online stores, while govern-
ment agencies such as NASA are constantly producing high-speed streaming data
from their Earth-observing satellites.
To illustrate how much the size of a database has grown over the years, Figure

1.1 shows an example of the number of Web pages indexed by a popular Internet
search engine since 1998. The graph is indicative of the remarkable growth the
Internet has shown in the past decade.

11/11/1998 8/15/2000 3/1/2001 11/25/2001 1/24/2002 2/3/2003
0

0.5

1

1.5

2

2.5

3

3.5
x 109 Number of Web pages indexed by Google Search Engine

Figure 1.1. Number of Web pages indexed by the Google c© search engine (Source: Internet Archive, http:

www.archive.org).

1.1 What is Data Mining? 2

The data collected by various organizations are useful for different purposes.
Business enterprises are interested in utilizing such data to provide a better, cus-
tomized service to their customers just to gain a significant edge over their com-
petitors. The satellite images and remote sensing data collected by NASA can help
scientists to advance their current understanding of how the universe works and how
the Earth system is responding to natural and human-induced changes.
However, getting information out of such massive data sets is like drinking from a

fire hose. As the amount of data collected by these organizations continues to grow,
it is becoming increasingly difficult for analysts to manually sift through the data
and find useful information. In particular, the sheer size of the data overwhelms
the capacity of many traditional statistical data analysis techniques. Fueled by
the tremendous need to rapidly analyze and summarize the data, researchers have
turned to data mining techniques.
This book aims to provide a theoretical and practical foundation to the field of

data mining. It is intended for both beginners and practitioners of data mining,
and written in a self-contained way to help readers who may not be familiar with
the mathematical rigor that underpins many of the techniques used in data mining.
Most notably, the fundamental concepts behind a variety of data mining techniques
and algorithms are explained. The practical challenges encountered when applying
these techniques to real applications will also be highlighted.

1.1 What is Data Mining?

Imagine a sailor drifting aimlessly in the ocean. Even though he is sur-
rounded by water, he still feels thirsty because the water surrounding him
is not fit to drink.

In a nutshell, data mining is the task of discovering interesting knowledge auto-
matically from large data repositories. Interesting knowledge has different meanings
to different people. From a business perspective, the knowledge is interesting if it
can be used by analysts or managers to make the right business decisions. For Earth
Scientists, the knowledge is interesting if it reveals previously unknown information
about changes in the Earth system. For system administrators, the knowledge is
interesting if it indicates unauthorized or illegitimate use of system resources.
Data mining is often considered to be an integral part of another process, called

Knowledge Discovery in Databases (or KDD). KDD refers to the overall process of
turning raw data into interesting knowledge and comprises of a series of transfor-
mation steps, including data preprocessing, data mining, and postprocessing.
The objective of data preprocessing is to convert the data into the right format

for subsequent analysis by selecting the appropriate data segments and extracting
attributes that are relevant to the data mining task (feature selection and construc-
tion). For many practical applications, more than half of the knowledge discovery
efforts are devoted to data preprocessing. A more detailed discussion about data
and its preprocessing issues is presented in Chapter 2.

1.1.1 Data Mining Tasks 3

Postprocessing includes all additional operations one can perform to make the
data mining results more accessible and easier to be interpreted by analysts. For
example, the results can be sorted or filtered according to various measures to
remove uninteresting patterns. In addition, visualization techniques can be applied
to help analysts explore and interact with the data mining results.

1.1.1 Data Mining Tasks

In general, data mining tasks can be divided into two major categories:

Predictive Task. The task is to use some of the variables in the data to predict the
values of other variables. For example, in Web mining, e-tailers are interested
in predicting online users who will make a purchase at their Web site. Other
examples include biologists who would like to predict the functionalities of
protein structures in the human genome and stock market analysts who would
like to forecast the future prices of various stocks.

Descriptive Task. The task is to find human-interpretable patterns that can de-
scribe the underlying relationships in the data. For example, Earth Scientists
are interested to know what are the primary forcings influencing the climate
patterns observed at various parts of the Earth. In network intrusion detec-
tion, analysts want to know the kinds of cyber-attacks launched against their
network system. In document analysis, one could be interested in finding the
set of documents that share similar topics.

1.1.2 Data Mining Techniques

The data mining tasks can be accomplished using a variety of data mining tech-
niques, as shown in Figure 1.2.

Predictive Modeling. This technique is used primarily for predictive data mining
tasks. The input data for predictive modeling techniques consists of two dis-
tinct types of variables: (1) explanatory variables, which define the essential
properties of the data, and (2) target variable, whose value is to be predicted
by the data mining task. For the Web Mining example given in the previous
section, the input variables correspond to the demographic features of online
users (such as age, gender, and salary) along with their browsing activities
(e.g., what are the pages accessed and how long are the pages being viewed.)
The target variable is Buy, which has binary values, Yes or No, to denote
whether the user will buy or not buy from the Web site. Predictive model-
ing techniques can be further divided into two categories: classification and
regression. Classification techniques are used to predict the values of discrete
target variables; such as the Buy variable for online users at a Web site. For
example, they can be used to predict whether a customer will most likely be
lost to a competitor (i.e., customer churn or attrition) and to determine the

1.1.2 Data Mining Techniques 4

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes

11 No Married 60K No

12 Yes Divorced 220K No

13 No Single 85K Yes

14 No Married 75K No

15 No Single 90K Yes
10

Data

Clustering Predict
ive

Modelin
g

Anomaly
Detection

Asso
cia

tio
n

Rule M
ining

Milk

Figure 1.2. Data mining techniques.

category of a star or galaxy for sky survey cataloging. Regression techniques
are used to predict the values of continuous target variables. For example,
they can be applied to forecast the future price of a stock.

Association Rule Mining. This technique produces a set of dependence rules
that predict the occurrence of a variable given the occurrences of other vari-
ables. For example, it can be used to identify products that are often bought
together by sufficiently many customers, a task that is also known as market
basket analysis.

Clustering. This technique tries to find homogeneous groupings of data points so
that data points that belong in one cluster are more similar to each other com-
pared to data points from a separate cluster. For example, clustering can be
used to perform market segmentation of customers, document categorization,
and land segmentation according to vegetation cover.

Anomaly Detection. This technique tries to find outliers or data points that are
significantly different than the rest of the points in the data set. Anomaly
detection techniques has been used to detect network intrusions and to predict
fraudulent credit card transactions.

1.2 What is not Data Mining? 5

1.2 What is not Data Mining?

Besides data mining, there are other ways to extract information from large data
repositories. Below, we illustrate some examples of activities that are not considered
to be data mining

• Searching the Internet for Web pages about certain topics. This type of activ-
ity is considered to be more of an information retrieval task rather than a data
mining task. Nevertheless, the technology employed by the search engines to
determine which Web page is relevant to the query is based on data mining
techniques. For example, clustering techniques can be used to group together
related pages to facilitate the indexing of Web pages while classification can
be used to predict which page is relevant to the query.

• Looking up the telephone number of a person. Directory lookup operations
or database querying are not considered to be part of a data mining task.
(However, these operations are needed during the mining process by the data
mining algorithms.) Finding the address where John Doe lives is not a data
mining task. Finding certain names that are most prevalent in certain parts
of the United States (e.g., O’Brien, O’Rurke, or O’Reilly in Boston areas) is
a data mining task.

Some of the key features of data mining that distinguishes it from other information
extraction tasks include:

Intelligence. Some intelligence is needed to automatically extract information from
the data, which is why a simple directory lookup or database querying is not
data mining.

Scale of data. The amount of data from which knowledge should be extracted is
large enough so that it is impossible for domain experts to extract such pattern
manually (before knowing that such patterns actually exist in the data). For
example, computing the average GPA score of five students is not data mining.

Complexity of Analysis. A data mining task is usually too complicated to be
solved using simple pen-and-paper techniques. Thus, predicting the behavior
of online users is part of data mining, whereas counting the number of hits
each Web page receives is not.

1.3 Challenges of Data Mining

There are various challenges to data mining:

Scalability. Scalable techniques are needed to handle the massive scale of data.
This may require the use of efficient data structures for data storing and
indexing, efficient disk-resident and perhaps, parallel algorithms for .

1.4 Other Issues in Data Mining 6

Dimensionality. In some application domains, the number of dimensions (or at-
tributes of a record) can be very large, which makes it difficult to be analyzed
efficiently. For example, in bioinformatics, the development of advanced mi-
croarray technologies allows us to analyze gene expression data with thousands
of attributes. The dimensionality of a data mining problem may also increase
substantially due to the temporal, spatial, and sequential nature of the data.

Heterogeneity. Traditional statistical methods often have to deal with simple data
types such as continuous and categorical attributes of the same type. However,
recent years have seen more complicated data types being introduced such as
graph-based data, free-form text data, structured and semi-structured data
types. Traditional data analysis techniques may have to be modified to handle
the heterogeneity of the data.

Imperfection. Many data sets are not perfect, as it may contain some missing
values due to difficulties in obtaining the data, or noise, due to difficulties in
getting precise values of certain measurements. As a result, even if a perfect
data mining algorithm can be developed, information discovered from the data
may be wrong due to imperfection in the data.

Data Ownership and Distribution. As the volume of data increases, it is no
longer possible or safe to keep all the data in the same place. Therefore, the
need for distributed data mining approaches has increased. The challenges
for developing a distributed data mining solution include the need for efficient
algorithm to cope with the distributed and possibly, heteregeneous data sets,
the need to minimize the cost of communication, along with data security and
data ownership issues.

1.4 Other Issues in Data Mining

This section describes some of the important issues concerning the use of data
mining.

1.4.1 Privacy and Data Mining

Privacy and data mining are two notions with seemingly contradicting goals. While
privacy intends to conceal information from others, data mining attempts to reveal
interesting information about the data. A good example of such conflicting view-
points can be found in the Web domain, where the availability of technology for
tracking and analyzing user activities up to individual mouse-click level has worried
many privacy advocates. On the one hand, data miners want to get their hand on as
much information as possible about the users, while on the other, users want to surf
as anonymously as possible across the Internet. Concerns about information privacy
has become a subject of intense debate. Clarke coined the term data surveillance
to refer to the “systematic use of personal data systems in the investigation and

1.4.2 Data Mining and Other Learning Techniques 7

monitoring of the actions or communications of one or more persons”. This type of
activity encompasses the personal surveillance of an identified individual and mass
surveillance of groups of people. The significance of this issue is so important that
in 1995, the European Union (EU) has enacted a directive that requires its mem-
ber countries to implement legislation for protecting the privacy of personal data
collected by any organizations. Such a directive prevents the transfer of personal
data of EU residents to non-EU countries that do not have similar laws. From a
data mining perspective, various methods have been proposed to address the pri-
vacy concerns. First is the idea of aggregating attribute values of individuals into
coarser concepts so as to avoid the direct access and manipulation of the personal
data. Second is the idea of perturbing the data by swapping some of its values,
replacing the data set with samples from the same population distribution, and
adding noise to the original data. There is another school of thought who believes
that many people are willing to disclose their personal information as long as they
receive ample compensation.

1.4.2 Data Mining and Other Learning Techniques

Data mining draws upon many of the ideas originating from multidisciplinary re-
search areas including machine learning, pattern recognition, database systems, and
statistics. Techniques from these areas may not be easily applied due to the enor-
mity of the data. For example, the first assembly of human genome by Celera
Genomics c©corporation consumes more than 80 terabytes of data, which would be
almost impossible to analyze without using data mining techniques.

1.5 Bibliographic Notes

There are several textbooks in data mining including the work by Han et al. [74],
Hand et al. [77], Witten et al. [197], and Dunham [51]. Other books related to
several important topics in data mining include the books by Hastie et al. [78],
Duda et al. [49], Cherkassky et al. [32].
There is also an extensive number of conferences related to data mining. The

main conferences dedicated to the field of data mining include the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, the IEEE In-
ternational Conference on Data Mining, and the SIAM International Conference
on Data Mining. Data mining papers can also be found in other major confer-
ences such as the ACM SIGMOD/PODS conference, the International Conference
on Very Large Data Bases (VLDB), the International Conference on Data Engi-
neering (ICDE), the International Conference on Machine Learning (ICML), and
the National Conference on Artificial Intelligence (AAAI).
The journal publications on data mining include the Data Mining and Knowl-

edge Discovery (DMKD), IEEE Transactions on Knowledge and Data Engineering
(TKDE), Intelligent Data Analysis, Knowledge and Information Systems (KAIS),
and Journal of Intelligent Information Systems.

1.6 Exercises 8

1.6 Exercises

1. For each activity described below, determine whether it is a data mining task:

(a) Dividing customers of a company according to their gender.

(b) Dividing customers of a company according to their profitability.

(c) Computing the total sales of a company.

(d) Sorting the student database based on the student ids.

(e) Predicting the outcomes of tossing a fair dice.

(f) Predicting the future stock price of a company using its historical records.

(g) Monitoring the heart rate of a patient for abnormalities.

(h) Monitoring the seismic wave for earthquake activities.

(i) Extracting the frequencies of a sound wave.

2. Suppose you are working as a data mining consultant for an Internet Search
Engine company. Describe how data mining can help the company. Give
examples for which techniques such as (1) clustering, (2) classification, (3)
association rule mining, (4) anomaly detection can be applied.

3. For each of the data given below, explain whether data privacy is an important
issue.

(a) Census data collected from 1900-1950.

(b) IP addresses and visit times of Web users who are visiting your Web site.

(c) Images from NASA observation satellites.

(d) Name and addresses of people from the telephone book.

(e) Name and email addresses collected from the Web.

Chapter 2 9

Chapter 2

Data

This chapter is about data. More specifically, it is about several data-related ques-
tions that are important for successful data mining:

What type of data do we have?
What is the quality of the data?
What preprocessing steps can or should we apply to the data to make it
more suitable for data mining?

To illustrate the importance of these questions, consider the following (com-
pletely) hypothetical situation. You receive an email from a medical researcher
concerning a project that he previously discussed with you.

Hi,

I’ve attached the data file that I mentioned in the previous email. Each
line contains the information for a single patient and consists of five
fields. We want to predict the last field using the other fields. I don’t
have time to provide any more information about the data since I’m
going out of town for a couple of days, but hopefully that won’t slow
you down too much. And if you don’t mind, could we meet when I
get back to discuss your preliminary results? I might invite a few other
members of my team.

Thanks and see you in a couple of days.

Despite some misgivings, you proceed to analyze the data. The first few rows of
the file are as follows:

012 232 33.5 0 10.7
020 121 16.9 2 210.1
027 165 24.0 0 427.6
...

Chapter 2 10

A brief look at the data reveals nothing strange. You put your doubts aside and
start the analysis. There are only 100 lines, a smaller data file than you had hoped
for, but two days later, you feel that you have made some progress. You arrive for
the meeting and while waiting for other people to arrive, you happen to strike up
a conversation with a statistician who is working on the project. When she learns
that you have also been working on data from the project, she asks if you would
mind giving her a brief overview of your results.

Statistician: So, you got the data for all 500 patients?
Data Miner: 500? I only received data for 100 patients.
Statistician: I wonder if those are the 100 cases that I was having a
hard time with?

Data Miner: Possibly. I did manage to get some results though.
Statistician: Amazing. There were so many data issues with this set
of 100 patients that I couldn’t do much.

Data Miner: Oh? I didn’t hear about any possible problems.
Statistician: Well, first there is field 5, the variable we want to
predict. It’s common knowledge among people who analyze this
type of data that results are better if you work with the log of the
values, but I didn’t discover this until later. Was it mentioned to
you?

Data Miner: No.
Statistician: But surely you heard about what happened to field 4?
It’s supposed to be measured on a scale from 1 to 10, with 0 serving
as a missing value, but due to a data entry error, all 10’s were
changed into 0’s. Unfortunately, since some of the patients have
missing values for this field, it’s impossible to say whether a 0 in
this field is a real 0 or a 10. Quite a few of the records out of the
100 that you were given have that problem. For the other 400 cases,
field 4 was quite important in achieving good prediction.

Data Miner: Interesting. Were there any other problems?
Statistician: Yes, fields 2 and 3 are basically the same, but I assume
that you probably noticed that.

Data Miner: Yes, but these fields were only weak predictors of field 5.
Statistician: Anyway, given all those problems, I’m surprised you
were able to accomplish anything.

Data Miner: True, but my results were really quite good. Field 1 was
a very strong predictor of field 5. I’m surprised that this wasn’t
noticed before.

Statistician: What? Field 1 is just an identification number.
Data Miner: Nonetheless, my results speak for themselves.
Statistician: Oh, no! I just remembered. We assigned ID numbers
after we sorted the records based on field 5. There is a strong
connection, but it’s meaningless. Sorry.

2.1 Types of Data 11

While the previous scenario represents an extreme situation, it emphasizes the
importance of “knowing your data.” To that end, this chapter will address each of
the three questions mentioned above, outlining some of the basic issues and standard
approaches.

2.1 Types of Data

There are two fundamental types of data — simple attributes and structured data.
(But, do not confuse ‘types of data’ with ‘data types’ in programming languages.)
Attributes — the ‘simple’ is omitted from here on — capture basic characteristics
of an object or an event, e.g., the mass of a physical object or the time at which
an event occurred, and can be regarded as indivisible chunks of information, at
least for the purposes of a particular data analysis. (Other names for attribute are
variable, characteristic, feature, or observation.) A collection of attributes describes
an object. (Other names for an object are record, point, case, sample, entity, or
item). Structured data consists of collections of objects, and optionally, information
about relationships among objects and/or relationships among attributes. Examples
are records in a relational database, a set of HTML pages on the World Wide
Web, a financial index, such as the Dow Jones Industrial Average, and proteins, as
represented in a protein data bank. A more detailed discussion of structured data
will be provided shortly, after a discussion of the different types of attributes.

2.1.1 Attributes and Measurement

In this section we indicate how to partially answer the question, “What type of data
do we have?”, by answering the question, “What type of attributes do we have”?
In particular, we consider the following questions:

What is an attribute?
What do we mean by the type of an attribute and why is it important?
What are the different types of attributes?

What is an attribute?

We start with a slightly more detailed definition of an attribute.

Definition 1 An attribute is a property or characteristic of an object, system, or
event that may vary, either from object to object, e.g., the eye color of a person, or
from time to time, e.g., the temperature of an object.

Therefore, at the most basic level, attributes are not about numbers at all.
However, to deal with attributes more precisely and to bring to bear the tools of
mathematics and data mining, it is necessary to associate numbers or symbols with
attributes. This involves measurement and measurement scales, which we define
next.

2.1.1 Attributes and Measurement 12

Definition 2 Measurement is the process of assigning a number or symbol to an
attribute of an object.

Definition 3 Ameasurement scale is a rule (function) for specifying which num-
ber or symbol is associated with an attribute of an object.

A measurement scale is a function that associates a number or symbol with an
attribute of an object, and the process of measurement is the application of that
function to a specific object.
In everyday usage, the measurements, i.e., the numbers or symbols, assigned to

an attribute are called ‘values.’ However, what then, is the proper term for the
different ‘states’ of an attribute to which these measurements correspond? Unfor-
tunately there seems to be no general convention, and this is one reason that many
discussions involving measurement are hard to understand. Thus, to avoid confu-
sion, the reader should always keep in mind the distinction between an attribute
and the values (numbers or symbols) that are used to represent different ‘states’ of
the attribute.
While above definitions might seem a bit abstract, we engage in the process of

measurement all the time, e.g., when we step on a bathroom scale to check our
weight or when we count the number of chairs in a room to see if there will be
enough to seat all the people coming to a meeting. We are also quite familiar with
the fact that an attribute can be measured on different measurement scales, e.g.,
length in meters or feet and mass in pounds or kilograms. Indeed, the fact that an
attribute can be measured on different scales is another demonstration of the fact
that an attribute is distinct from the numbers used to measure it.

What do we mean by the type of an attribute and why is it important?

A consequence of the previous section is that the properties of an attribute need
not be the same as the properties of the numbers or symbols used to measure it.
(To simplify our terminology, we will, for the rest of this discussion, consider only
measurements that are numbers.) In other words, the numbers used to represent an
attribute, i.e., the values of an attribute, may have properties that are not properties
of the attribute itself, and conversely, the properties of an attribute may not be
reflected by its values. We will illustrate these possibilities with a couple of examples
First, consider two attributes that might be associated with an employee: ID

and age, in years. Both of these attributes can be represented as integers, but while
it is reasonable to talk about the average age of an employee, it makes no sense to
talk about the average employee ID. Indeed, the only aspect of employees that we
want to capture with the ID attribute is that they are distinct, and consequently,
the only valid operation for employee IDs should be to test whether they are equal.
However, there is no hint of this limitation when integers are used to represent the
employee ID attribute. For the age attribute, however, the properties of the integers
used to represent age are very much the properties of the attribute. Even so, the
correspondence is not complete, e.g., ages have a maximum, while integers do not.

2.1.1 Attributes and Measurement 13

1

2

3

5

5

7

8

15

10 4

A

B

C

D

E

Figure 2.1. The measurement of the length of line segments on two different scales of measurement.

Second, consider Figure 2.1, which shows some objects, i.e., line segments, and
how an attribute of these objects, i.e., length, can be associated with (mapped to)
numbers in two different ways. If we append line segment A to itself, the resulting
line segment will be the same length as line segment B. Thus, in a very real (physical)
sense, line segment A is twice the length of line segment B. This is captured by the
measurements on the right hand side of the figure, but not by those on the left hand
side. This illustrates that an attribute can be measured in a way that does not
capture all the properties of the attribute.
We can now answer the question, “What do we mean by the type of an attribute

and why is it important?”, at least in general terms. The type of an attribute
should tell us what properties of the attribute are reflected in the values used to
measure it. Thus, knowing the type of an attribute is important because it tells us
which properties of an attribute’s values map to the underlying properties of the
attribute, and thus, allows us to avoid doing foolish things, such as computing the
average employee ID.
As we have defined it, the type of an attribute depends both on the attribute and

on how it is measured, i.e., it’s measurement scale. Since a particular measurement
scale is always associated with one attribute, it is perhaps more precise to speak of
the type of a measurement scale or more simply, the type of a scale, and indeed, this
is common terminology. However, for consistency with the preceding discussion, we
will stick with our original terminology, but when we use the term ‘attribute type,’
a particular measurement scale is always implied.

2.1.1 Attributes and Measurement 14

What are the different types of attributes?

A useful (and simple) way to specify the type of an attribute is to specify which
properties of numbers correspond to underlying properties of the attribute. For
example, an attribute such as length has many of the properties of numbers, e.g., it
makes sense to compare and order objects by length, as well as to talk about the dif-
ferences and ratios of length. More specifically, the following properties (operations)
of numbers are typically used.

1. Distinctness = and 6=.

2. Order <, ≤, >, and ≥.

3. Addition + and −.

4. Multiplication ∗ and /.

Given these properties, we can define four types of attributes: nominal, ordinal,
interval, and ratio. Table 2.1 gives a definition of these types, along with informa-
tion on the statistical operations that are valid for each type. (One of the initial
motivations for defining these types was to be precise about which statistical opera-
tions were valid for what sorts of data. The appropriateness of various data mining
techniques for different types of attributes is discussed when these techniques are
described later in the book.) To understand this table, it is necessary to note that
each attribute type possesses all the properties and operations of the attribute types
below it. Thus, any property or operation that is valid for nominal, ordinal, and
interval attributes is also valid for ratio attributes. Said another way, the definition
of the attribute types is cumulative. (Hence, while there are four properties and
four attribute types, there is not a one to one correspondence between properties
and attribute types.) For this reason, these attribute types can be referred to as
attribute levels., although the terms ‘measurement levels’ and ‘scale types’ are more
common.
Nominal and ordinal attributes are collectively referred to as categorical or quali-

tative attributes. As the name suggests, qualitative attributes, such as employee ID,
do not possess most of the properties of numbers. Even if represented by numbers,
they should be treated more like symbols. The remaining two types of attributes,
interval and ratio, are collectively referred to as quantitative (numeric or continu-
ous) attributes. Quantitative attributes are represented by numbers and have most
of the properties of numbers.
We can also describe the types of attributes in terms of transformations that do

not change the meaning of an attribute. (Indeed, S. S. Stevens, the psychologist
who originally defined the types of attributes shown in Table 2.1, defined them in
terms of these permissible transformations.) For example, the meaning of a length
attribute is unchanged if it is measured in meters instead of feet. This ‘invariance’
is important because the statistical operations that make sense for a particular
type of attribute are those that will yield the same results even if the attribute is

2.1.1 Attributes and Measurement 15

Table 2.1. Definition of different attribute types.
Attribute

Type

Description Examples Operations

Nominal The values of a nomi-

nal attribute are just dif-

ferent names, i.e., nomi-

nal attributes provide only

enough information to dis-

tinguish one object from

another.

(=, 6=)

zip codes, em-

ployee ID numbers,

eye color, sex:

{male, female}

mode, entropy,

contingency

correlation, χ2

test

Ordinal The values of an ordinal at-

tribute provide enough in-

formation to order objects.

(<, >)

hardness of minerals,

{good, better, best},
grades, street num-

bers

median, per-

centiles, rank

correlation,

run tests, sign

tests

Interval For interval attributes, the

differences between values

are meaningful, i.e., a unit

of measurement exists.

(+, -)

calendar dates, tem-

perature in Celsius

or Fahrenheit

mean, stan-

dard devia-

tion, Pearson’s

correlation, t

and F tests

Ratio For ratio variables, both

differences and ratios are

meaningful.

(*, /)

temperature in

Kelvin, monetary

quantities, counts,

age, mass, length,

electrical current

geometric

mean, har-

monic mean,

percent varia-

tion

2.1.1 Attributes and Measurement 16

Table 2.2. Transformations that define attribute levels.
Attribute Level Transformation Comments

Nominal Any one-to-one mapping,

e.g., a permutation of val-

ues

If all employee ID num-

bers were reassigned,

would it make any dif-

ference?

Ordinal An order preserving

change of values, i.e.,

new value = f(old value),

where f is a monotonic

function.

An attribute encom-

passing the notion of

good, better best can be

represented equally well

by the values {1, 2, 3} or
by {0.5, 1, 10}.

Interval new value = a ∗
old value+ b,

a and b constants.

The Fahrenheit and

Celsius temperature

scales differ in terms of

where their zero value

is and the size of a

degree (unit).

Ratio new value = a ∗ old value Length can be measured

in meters or feet.

transformed with a transformation that preserves the attributes meaning. More
generally, data analysis should not yield different results depending on the scale of
measurement that was used. (Note that this does not mean that the values of a
result will be the same regardless of scale, but that the meaning will be the same.
Thus, the average length of objects is different when measured in meters than in
feet, but both represent the same length.) Table 2.2 shows the permissible, i.e.,
meaning preserving, transformations for the four attribute types of Table 2.1.
Temperature provides a good illustration of some of the concepts that have just

been described. First, notice that temperature can be either an interval or a ratio
attribute, depending on its measurement scale. When measured on the Kelvin scale,
a temperature of 2◦ is, in a physically meaningful way, twice that of a temperature
of 1◦. However, this is not true when temperature is measured on either the Celsius
or Fahrenheit scale, because, physically, a temperature of 1◦ Fahrenheit (Celsius) is
not much different than a temperature of 2◦ Fahrenheit (Celsius). The problem is,
of course, that the zero points of the Fahrenheit and Celsius scales are, in a physical
sense, arbitrary and ratios of temperatures reflect no underlying property of the
temperature attribute.

2.1.2 Structured Data 17

Describing Attributes by the Number of Values

An independent way of distinguishing between attributes is by the number of values
they can take.

Discrete A discrete attribute has only a finite or countably infinite set of values,
e.g., zip codes, counts, or the set of words in a collection of documents. Dis-
crete attributes are often represented as integer variables. Note that binary
attributes are a special case of discrete attributes and assume only two values,
e.g., true/false, yes/no, male/female. Binary attributes are often represented
as Boolean variables, or as integer variables that take on the values 0 or 1.

Continuous A continuous attribute is one whose values are real numbers, e.g., tem-
perature, height, or weight. (Practically, real values can only be measured and
represented to a finite number of digits.) Continuous attributes are typically
represented as floating-point variables.

This is also a good place to mention asymmetric binary attributes. These are binary
attributes for which only one value is important, typically a value that represents the
presence of something, e.g., a word or an item. This type of attribute is particularly
important for association analysis, but is also important in other areas of data
mining.

2.1.2 Structured Data

The second part of the answer to the question, “What type of data do we have?”,
is provided by determining the higher level structure of the data, i.e., the type of
structured data that we have. There are many types of structured data, and as data
mining develops and matures, more types of data are becoming the object of data
mining efforts. In this section we provide a brief overview of some of the common
types of structured data, as well as some of the types of data that will be used in
examples throughout the book. To lend some organization to this discussion, we
have grouped the types of structured data into three groups: record data, graph-
based data and ordered data. This grouping is for convenience only.

General Characteristics of Structured Data

While the details of specific kinds of data are provided below, there are some char-
acteristics that cut across a wide variety of types of data and that have a significant
impact on the data mining approaches and techniques that are used. We briefly
discuss three of these characteristics: dimensionality, sparsity, and resolution.

Dimensionality The dimensionality of data is the number of attributes that the
objects in a data set possess. Not surprisingly, data with a small number of di-
mensions tends to be qualitatively different than moderate or high dimensional
data. Indeed, the difficulties associated with analyzing high dimensional data

2.1.2 Structured Data 18

are sometimes referred to as the curse of dimensionality. Because of this, an
important motivation in preprocessing the data is dimensionality reduction.
Both these issues are discussed in more depth later in this chapter.

Sparsity Some data, especially, but not exclusively, high dimensional data with
binary or count attributes, is sparse, i.e., most attributes of an object have
values of 0. In practical terms, sparsity is an advantage because often only the
nonzero values need to be stored and manipulated, therefore resulting in sig-
nificant savings with respect to computation time and storage. Indeed, some
data mining algorithms are only effective for sparse data. Furthermore, spar-
sity is also important conceptually since it is often associated with asymmetric
binary attributes.

Resolution It is often possible to obtain data at different levels of resolution, and
often the properties of the data are different at different resolutions. For
instance, surface of the Earth seems very uneven at a resolution of a few meters,
but relatively smooth at a resolution of tens of kilometers. Furthermore, the
patterns in the data will depend on the level of resolution. If the resolution
is too fine, a pattern may not be visible or may be buried in noise. If the
resolution is too coarse, the pattern may disappear.

Record Data

Much of the original data mining work and much of today’s current work is focused
around record data, i.e., data that consists of a collection of records (data objects),
each of which consists of a fixed set of data fields (attributes). To emphasize, the
key characteristics are that there is no explicit relationship between records or data
fields and every object has the same set of attributes. Typically record oriented
data is stored either in flat files or in relational databases. (Relational databases
are certainly more than just a collection of records, but data mining often does not
use any of the additional information available in a relational database. Rather, the
database serves as a convenient place to find records.) Different types of record data
are described below and are illustrated in Figure 2.2.

The Data Matrix If the data objects in a collection of data all have the same fixed
set of numeric attributes, then the data objects can be thought of as points
(vectors) in a multi-dimensional space, where each dimension represents a
distinct attribute describing the object. Thus, a set of data objects can be
interpreted as an m by n matrix, where there are m rows, one for each object,
and n columns, one for each attribute. (A representation that has data objects
as columns and attributes as rows is also fine.) This matrix is called a data
matrix or a pattern matrix, depending on the particular field. A data matrix
is a variation of record data, but because it consists of numeric attributes,
standard matrix operation can be applied to transform and manipulate the
data. the data matrix is the standard format for much statistical data. Figure
2.2b shows a sample data matrix.

2.1.2 Structured Data 19

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

(a) Record Data

1.12.216.226.2512.65

1.22.715.225.2710.23

Thickness LoadDistanceProjection
of y load

Projection
of x Load

1.12.216.226.2512.65

1.22.715.225.2710.23

Thickness LoadDistanceProjection
of y load

Projection
of x Load

(b) Data Matrix

Document 1

s
e

a
s
o

n

tim
e

o
u

t

lo
s
t

w
in

g
a

m
e

s
c
o

re

b
a

ll

p
la

y

c
o

a
c
h

te
a

m

Document 2

Document 3

3 0 5 0 2 6 0 2 0 2

0

0

7 0 2 1 0 0 3 0 0

1 0 0 1 2 2 0 3 0

(c) Document/Term Matrix

TID Items

1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk

(d) Transaction Data

Figure 2.2. Different variations of record data.

2.1.2 Structured Data 20

Document Data For many practical tasks, e.g., search engine queries and doc-
ument clustering, it is possible to ignore the structure of a document and
consider it to be a collection of terms (words). Taking this view, each doc-
ument becomes a ‘term’ vector, where each term is a component (attribute)
of the vector, and where the value of each component of the vector is the
number of times the corresponding term occurs in the document. More for-
mally, documents are represented using the vector-space model, where the ith

document, di, is represented by the vector, di = (tfi1, . . . , tfin), where tfij =
the frequency of the jth term in the ith document. The collection of all doc-
uments is often called a document-term matrix. Figure 2.2c shows a sample
document-term matrix.

Transaction or Market Basket Data Transaction data is a special type of record
data, where each record (transaction) involves a set of items. For example,
consider a grocery store. The set of products purchased by a customer during
one shopping trip constitute a transaction, while the individual products that
were purchased are the items. (This type of data is called market basket data
because the items in each record are the products in a person’s ‘market basket.’
This data is actually a collection of sets of items, but in practice such data is
stored as a set of records whose fields are either binary or count attributes.
When transaction data is analyzed, particularly for association analysis, these
variables are treated as asymmetric binary attributes. This seems quite rea-
sonable, since store owners are interested in what people bought, not what
they didn’t buy. Figure 2.2d shows some sample transaction data. Each row
in the table represents the purchases of a particular customer at a particular
time.

Graph-Based Data

Often, the relationships among objects convey important information. In such cases,
a graph is a convenient and powerful representation. Specifically, the data objects
are mapped to nodes of the graph, while the relationships between objects are
captured by the links between objects and the link properties, i.e., direction and
weight. (See Figure 2.3a.) Alternatively, if the objects have structure, i.e., the
objects have sub-objects that have relationships, then sometimes the objects them-
selves are graphs and the goal is to compare the structures of these complicated
objects. Different types of graph data are described below and are shown in Figure
2.3.

Web Data Web pages on the World Wide Web contain both text and links to
other pages. In order to process search queries, Web search engines, collect
and process web pages to extract their contents. However, it is now well known
that the links to and from each page provide a great deal of information about
the relevance of a particular web page to a query, and must also be taken into
consideration. Figure 2.3b shows a portion of an HTML file that defines a web
page with links to other web pages.

2.1.2 Structured Data 21

5

2

1
 2

5

(a) Generic Graph

Data Mining

Graph Partitioning

Parallel Solution of Sparse Linear System of Equations

N-Body Computation and Dense Linear System Solvers

(b) Web Data (c) Chemistry Data

Figure 2.3. Different variations of graph data.

Chemistry Data Over the years, chemists have accumulated a great deal of data
concerning the structure and properties of chemical compounds. While chem-
ical compounds can be described to some extent by their properties, e.g.,
melting point and heat of formation, their structural information is best rep-
resented by a graph, where the nodes are atoms and the links between nodes
are chemical bonds. Figure 2.3d shows a ball and stick diagram of the chemi-
cal compound, benzene, containing carbon (black) and hydrogen (gray).

While it may seem that chemical data is completely different than the other
types of data described so far, there are similarities that are not apparent. For
instance, an important way to compare two chemical compounds is to look at
the substructures (subgraphs) that they share. Furthermore, it interesting to
see which substructures occur frequently in a set of compounds and whether
the presence of any of these substructures is associated with the presence or
absence of certain chemical properties. Thus, for a given set of compounds
and their chemical substructures, the information about which compound con-
tains which substructures can be represented as transaction data, where the
transactions are compounds and the items are the substructures.

Ordered Data

For graph-based data, the important relationships are among the objects. However,
for other types of data, it is the attributes that are strongly related. In many such
cases, these relationships among attributes involve order in time or space. In the
simplest situation, an object might consist of attributes, each of which represents a
sequence of measurements on the same quantity in time or space. In more compli-
cated cases, we might have a data set constructed by measuring the attributes of a
set of objects at various times, i.e., the data sets contains different versions of an
object. Different types of ordered data are described below and are shown in Figure
2.4.

2.1.2 Structured Data 22

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
−20

−15

−10

−5

0

5

10

15

20

25

30

Year

Minneapolis Average Monthly Temperature (1982−1993)

(a) Time Series

(A B) (D) (C E)
(B D) (C) (E)
(C D) (B) (A E)

(b) Sequential Data

GGTTCCGCCTTCAGCCCCGCGCC
CGCAGGGCCCGCCCCGCGCCGTC
GAGAAGGGCCCGCCTGGCGGGCG
GGGGGAGGCGGGGCCGCCCGAGC
CCAACCGAGTCCGACCAGGTGCC
CCCTCTGCTCGGCCTAGACCTGA
GCTCATTAGGCGGCAGCGGACAG
GCCAAGTAGAACACGCGAAGCGC
TGGGCTGCCTGCTGCGACCAGGG

(c) Human Genome

−200 −150 −100 −50 0 50 100 150 200
−100

−80

−60

−40

−20

0

20

40

60

80

100

(d) Spatial Data

Figure 2.4. Different variations of ordered data.

2.1.2 Structured Data 23

Temporal data Temporal data is data whose objects have attributes that repre-
sent measurements taken over time. For example, consider a financial data set
whose objects are time series that give the daily prices of various stocks. (A
time series is a sequence of measurements of some attribute, e.g., stock price
or rainfall, taken at (usually regular) points in time.) As another example, in
climate or weather data, points (or regions) on the surface of the Earth are
associated with multiple time series that measure how temperature, pressure,
etc. are changing at that point (region). When working with temporal data,
it is important to consider temporal autocorrelation, i.e., if two measurements
are close in time, then the values of those measurements are often very similar.
Figure 2.4a shows an example time series of the average monthly temperature
for Minneapolis from the years 1982 to 1994.

Sequential Data Sequential data can be thought of as an extension of transaction
data. The data still consists of a set of transactions and items, but time and
customer ID attributes are associated with each transaction. In this way, a
temporal dimension is added to the original data and it is possible to find
patterns that involve time, e.g., people who buy DVD players tend to buy a
lot of DVDs in the month immediately following the purchase. Many types
of data besides retail data also fit this model, e.g., the transactions could be
geographical regions and the items could be events such as droughts, excessive
rainfall, or fires. Figure 2.4b shows an example of transaction data. Each of
the three rows corresponds to a different object (shopper), and within each
row, there are three transactions consisting of the some subset of five items,
A, B, C, D, and E, and corresponding to different times.

Genetic Sequence Data Recently, biologists have accumulated large amounts of
data about the genetic structure of a variety of plants and animals. This ge-
netic information is in the form of sequences of amino acids and many of the
problems associated with this data involve trying to find ways to predict sim-
ilarities in structure and function from similarities between genetic sequences.
Figure 2.4c shows an a section of the human genetic code expressed using the
four nucleotides from which all DNA is constructed, A, T, G and C.

Spatial data Spatial data is data whose objects have spatial attributes, e.g., po-
sitions or areas, either exclusively, or in addition to other sorts of attributes.
Examples of spatial data are the locations of schools and weather data, e.g.,
measurements of precipitation, temperature, or pressure which is collected for
a variety of geographical locations. To illustrate the distinctive properties of
spatial data, we mention spatial autocorrelation, the fact that two objects that
are physically close tend to be similar in other ways as well, e.g., two points
on the Earth that are close to each other usually have similar temperatures
and rainfall.

A very important example of spatial data are the many data sets in science or

2.2 Data Quality 24

engineering which are the result of measurements that are taken at regularly
or irregularly distributed points on a two or three-dimensional grid or mesh.
For example, Earth science data sets that record the temperature or pressure
measured at points (grid cells) on latitude-longitude spherical grids of various
resolutions, e.g., 1◦ by 1◦. (See Figure 2.4d.) As another example, in the
simulation of the flow of a gas, the speed and direction of flow can be recorded
at each grid point in the simulation.

Data from Models

Not all data sets that are encountered arise directly from measurement. Instead,
some or all of the data might be the result of a mathematical or simulation model.
For example, if a physical structure is being simulated, then the data may be me-
chanical stress associated with each grid point in the simulation. As another ex-
ample, a set of measured data is sometimes fitted to a model to remove some of
the extraneous variation that results from the measurement process by enforcing
well-known physical constraints between adjacent points. For example, the values
of air pressure at various points on the Earth should satisfy certain physical models
developed by Earth scientists. Finally, the quantity of interest might be the result
of a model that has both real and modeled inputs, e.g., an economic model that
predicts the Gross National Product (GNP) of a country.

2.2 Data Quality

The question, “What is the quality of the data?”, leads directly to the following
three questions:

What kinds of data problems are possible, i.e., what sorts of situations
correspond to poor data quality?
How can we detect problems with the data?
What can we do about these problems?

With respect to the first question, the following is a (non-exhaustive) list of some
well-known data problems:

• errors, noise and outliers

• missing values

• duplicate data

• inconsistent values

Of course, once we know what sort of problems might occur and these problems
have been detected, the third question, “What can we do about these problems?”,
needs to be answered. One approach is to ignore these problems. This may seem

2.2.1 Errors, Noise and Outliers 25

naive, but this is the most common approach. Furthermore, depending on the
number and types of problems and the data analysis technique being used, the results
may not be significantly impacted by the presence of quality problems. Indeed,
it is unrealistic to expect most data sets, especially large ones, to be error free.
Often, while the owner or collector of the data may know that there are errors
in the data, they may not have any way of detecting the errors, and the data
may be ‘best available.’ The message for a data miner is ‘expect errors in data.’
Consequently, error tolerance is an important criterion for the evaluation of data
mining algorithms.
The following four sections provide an overview of the problem areas of data

quality that were listed above and the standard approaches used to deal with these
problems. In every area, there is a tension between the desire to keep as much
information as possible — more information typically translates into better data
mining results — and the desire to eliminate data quality problems by eliminating
the ‘problem’ data. Indeed, other than ignoring the issue of data quality altogether,
eliminating problem data is often the simplest approach to dealing with data quality
issues, provided the amount of problem data is relatively small with respect to the
total amount of data.

2.2.1 Errors, Noise and Outliers

In a general sense, the term ‘error’ could encompass most data problems. However,
here we will use it to cover the host of more specific situations not covered elsewhere
by the other, more general types of data problems. An important aspect of these
more specific types of errors is that, within particular domains, there are certain
types of data errors that are commonplace, and sometimes there exist well-developed
techniques for detecting and/or correcting these errors. For example, keyboard
errors are common, and as a result, word processing programs have spell checkers
that do a reasonable job of detecting and, with human intervention, correcting these
errors.
Noise is very generic type of error and the term is often loosely used. In its most

precise sense, it refers to a modification of the original attribute values, e.g., the
distortion of a person’s voice when talking on a poor phone connection or ‘snow’
on a television screen, or to the presence of data points that are scattered among
regular data points, but are not of interest. To illustrate, consider Figure 2.5, which
shows a time series, before and after it has been disrupted by random noise, and
Figure 2.6, which shows a set of data points before and after some noise points have
been added. For this second example, notice how the noise points are intermixed
with the non-noise points.
Noise may be random, i.e., generated by some process that is random in nature,

or it may be the result of a more deterministic phenomena, e.g., a streak in the same
place on a set of photographs. In the latter case, the data error is more commonly
called an artifact. Furthermore, the term ‘noise’ is often is used in connection with
data that has a spatial or temporal component. In such cases, techniques from

2.2.1 Errors, Noise and Outliers 26

(a) sine wave (b) sine wave with noise

Figure 2.5. Noise in a time series context.

(a) three clusters (b) three clusters with noise

Figure 2.6. Noise in a spatial context.

2.2.2 Missing Values 27

signal or image processing can sometimes be used to reduce noise and thus, help
to discover patterns (signals) that might be ‘lost in the noise.’ However, since the
elimination of noise is frequently difficult, much work in data mining focuses on
algorithms that work even when noise is present.
Outliers are data objects that, in some sense, have characteristics that are ‘dif-

ferent’ from ‘most’ of the other points in the dataset. Thus, there is considerable
leeway in the definition of an outlier, and many different definitions have been pro-
posed by the statistics and data mining communities. Furthermore, it is important
to distinguish between the notions of noise and outliers. Most commonly, ‘outliers’
refers to a relatively small number of points that are distinct from the main mass of
points. Also, unlike noise, outliers may sometimes be of interest, e.g., fraud detection
and network intrusion detection consist mostly of finding unusual instances among
a very large number of normal instances. Chapter 7 describes outlier detection in
more detail.

2.2.2 Missing Values

It is not unusual for an object to be missing one or more attribute values. In some
cases, the information was simply not collected, e.g., some people decline to give
their age or weight. In other cases, some attributes are not applicable to all objects,
e.g., often forms have ‘conditional’ parts that only need to be filled out when a
person answers a previous question in a certain way, but for simplicity, all fields
are stored. In either case, the absence of a value is often indicated by the use of a
special value that would not normally occur. Regardless, missing values need to be
taken into account during the data analysis.
There are several strategies (and variations on these strategies) for dealing with

missing data, each of which may be appropriate in certain circumstances. These
strategies are listed below, together with an indication of their advantages and
disadvantages.

Eliminate Data Objects A simple and effective strategy is to eliminate those
records with missing values. A related strategy is to eliminate attributes
which have missing values. However, even a partially specified data object
contains some information, and if many records have missing values, then a
reliable analysis may become difficult or impossible. In addition, if the data
objects have many ‘optional’ parts, then such an approach obviously will not
work. Nonetheless, if a data set has only a few objects or attributes that have
missing values, then it may be expedient to omit them.

Estimate Missing Values Sometimes the data set is such that missing data can
be reliably estimated. For example, consider a time series that changes in a
reasonably smooth fashion, but has a few, widely scattered missing values. In
such cases, the missing values can be estimated (interpolated) by using the
remaining values. As another example, consider a data set that has many
similar data points. In this situation, a nearest neighbor approach can be

2.2.3 Inconsistent Values 28

used to estimate the missing value. More specifically, the attribute values of
the points closest to the point with the missing value are used to estimate the
missing value. If the attribute is continuous, then the average attribute value of
the nearest neighbors is used, while if the attribute is categorical, then the most
commonly occurring attribute value can be taken. For a concrete illustration
of estimating missing values using nearest neighbors, consider precipitation
measurements that are recorded by ground stations. In relatively unpopulated
areas, where there are only a small number of ground stations, the precipitation
for areas that do not contain a ground station is often obtained by estimation
procedures that use the values observed at ground stations.

Ignore the Missing Value During Analysis Many data mining approaches can
be modified to operate by ignoring missing values. For example, suppose that
objects are being clustered and the similarity between pairs of data objects
needs to be calculated. If one or both objects of a pair have missing values for
some attributes, then the similarity can be calculated by using only the non-
missing attributes. It is true that the similarity will only be approximate, but
unless the number of attributes is small and/or the number of missing values
is high, this degree of inaccuracy may not matter much. Likewise, many
classification schemes can handle missing values relatively straightforwardly.

2.2.3 Inconsistent Values

Sometimes errors in data can be detected by checking to see if the data is consistent,
either with external knowledge, e.g., a person’s height should not be negative, or
between different pieces of information in the same data set, e.g., the sum of a set
of fields should agree with the field that is supposed to be their sum. Furthermore,
if there is some redundancy in the data and/or an external source of information,
then it may be possible to correct the data. For example, a product code may have
‘check’ digits, or it may be possible to double check a product code against a list
of known product codes, and then correct the code if it is incorrect, but close to a
known code.
In many cases, inconsistency can be detected, but it is less clear how to correct

the data. For instance, a ‘real’ object may be represented by two or more different
data objects, perhaps because the data comes from multiple sources. Resolving in-
consistencies between different versions of objects depends heavily on the particular
domain. (This situation should not be confused with the situation where the state
of an object at different times is captured by multiple data objects.)
More subtle types of data inconsistency are possible, and we present an example

involving time series. Specifically, our example concerns the sea surface temperature
(SST) at various points on the ocean. Before satellites, this data was collected by
ocean-based measurements, e.g., from ships or buoys, but more recently, satellites
are used to gather SST data. However, if a long-term data set is required, then both
data sets must be used, and the data for each time series consists of satellite and
non-satellite data. However, since the data comes from different sources, the two

2.2.4 Duplicate Data 29

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

60 65 70 75 80 85 90 95

60

65

70

75

80

85

90

95

Figure 2.7. Example of inconsistent time series data.

data sets are subtly different. Figure 2.7, shows the pairwise correlation (similarity)
between different years, i.e., each row and each column of the figure shows the
correlation of the SST patterns for the corresponding pair of years displayed as
colors, blue (low) and red (high). There is clearly a change in similarity where the
data has been put together in 1983. However, this does not mean that this data
should not be used, only that the analyst should consider the potential impact of
such discrepancies on the data mining results.

2.2.4 Duplicate Data

Sometimes, a data set includes data objects that are duplicates, or almost duplicates
of one another. For example, many people receive duplicate mailings because they
are entered into a database with slightly different names. In this case, the dupli-
cation is an error and increases a company’s cost of doing business. Consequently,
considerable research has been expended towards finding and eliminating such du-
plicates. However, if there are two objects that actually represent a single object,
then there is also the possibility that the values of corresponding attributes may
differ, and thus, inconsistent values must also be resolved if duplicate data objects
are to be combined into one object. Note, however, that care needs to be taken to
avoid accidentally combining data objects that are similar, but not duplicates. The
term data cleaning is often used to refer to the process of dealing with these issues.
In some situations, two or more objects are identical with respect to the at-

tributes measured by the database, but represent different objects. In this case,
duplicates are quite legitimate, but may still cause problems if the possibility of
identical objects is not specifically accounted for in the design of the data mining
algorithm.

2.2.5 Design of Experiments 30

2.2.5 Design of Experiments

From the previous sections, it is clear that dealing with data quality problems can
be complex and time consuming, and therefore, if possible, it would be nice to
avoid such problems in the first place. Indeed, in many fields, e.g., statistics and
experimental sciences, experiments or observations are carefully planned in advance
to ensure that the data collected contains the information of interest and is of high
quality. (A common class offered in statistics is “Design of Experiments.”) As
previously mentioned, data mining typically works with data that has already been
gathered and sometimes the patterns sought have little to do with why the data was
originally gathered. Nonetheless, two points should be made:

• It is useful to participate in the decision about what information should be
gathered. Mistakes made in gathering data often mean that information is
irretrievably lost or data quality is compromised.

• Certain basic questions that are asked by those who design experiments are
also useful for evaluating what can be done with a given set of data. While it
is beyond the scope of this book to discuss experimental design in any detail,
these include questions such as “How much data needs to be gathered?” and
“What combinations of variables need to be considered?” Thus, for the later
question, data on the purchasing behavior of families with children probably
will not be very useful in predicting the purchasing behavior of teenagers.

2.2.6 Some final comments on data quality.

While good quality data is helpful, data mining can and has yielded good results
on data with quality problems, and conversely, sometimes it is impossible to extract
any useful patterns even from good quality data. Furthermore, data quality has a
cost, which is often the reason for poor quality data, and the cost of fixing these
problems needs to be evaluated in terms of whether it is ‘worth it,’ i.e., if these
efforts will make the project cost too much or if the improvements in results will
justify the effort expended.

2.3 Data Preprocessing

In this section, we address the final question posed at the beginning of this chapter, “
What preprocessing steps can or should we apply to the data to make it more suitable
for data mining?” Data preprocessing is a large area and is consists of a number of
different strategies and techniques that are interrelated in a fairly complicated way.
This makes it difficult to present the important ideas and approaches in a nicely
structured way. Rather than impose a rather artificial structure on this material,
we will present some of the most important ideas and approaches and try to point
out the interrelationships, of which there are many.
In particular, we shall focus on the following topics:

2.3.1 Aggregation 31

• aggregation

• sampling

• dimensionality reduction

• feature subset selection

• feature creation (feature extraction, new spaces, and feature construction)

• discretization and binarization

• attribute transformation

Roughly speaking, these items fall into two categories: selecting data objects
and attributes for the analysis or creating/changing the attributes. In both cases
the goal is to make the data mining analysis better, less expensive or quicker. The
details are provided in the following sections.
A quick note on terminology. Some preprocessing techniques use the ‘feature,’

instead of ‘attribute.’ Since this terminology is so common, we also use this termi-
nology in the appropriate sections.

2.3.1 Aggregation

Sometimes ‘less is more’ and this is the case with aggregation, which refers to com-
bining two or more attributes (or objects) into a single attribute (or object). For
example, consider a data set consisting of transactions (the data objects) record-
ing the daily sales of products in various departments for different days (the data
attributes) over the course of a year. One way to aggregate transactions would be
to replace all the transactions of a single department by a single ‘departmental’
transaction. This would reduce thousands of transactions to tens of transactions.
Similarly, daily sales (attributes), could be aggregated by replacing all the sales
for a single month with a ‘monthly’ sales total. This would reduce the number of
attributes for the data set to a dozen.
There are several motivations for aggregation. Data reduction, as illustrated in

the previous example is one. Smaller data sets require less memory and processing
time, and thus, aggregation may allow the use of more expensive data mining algo-
rithms. However, this data reduction can provide an additional benefit, i.e., if the
aggregation is done properly — related attributes or objects are combined — then
the aggregation can act as a change of scope or scale, providing a high level view of
the data instead of a low level view.
Another benefit of aggregation is that the behavior of groups of objects or at-

tributes is often more ‘stable’ that that of individual objects or attributes. This
statement reflects the statistical fact that the aggregate quantities, such as averages
or totals, have less variability or relative variability (on average) than the individ-
ual objects being aggregated. For totals, the actual amount of variation is larger

2.3.2 Sampling 32

than that of individual objects (on average), but the percentage of the variation is
smaller, while for means, the actual amount of variation is less (on average).
These ideas are illustrated in the following example, which concerns precipitation

in Australia. In Figure 2.8a we show a histogram for the standard deviation of
average monthly precipitation for 3030 1

2

◦
by 1

2

◦
grid cells in Australia, while in

Figure 2.8b we show a histogram for the standard deviation of the average yearly
precipitation for the same locations. Clearly the average yearly precipitation is less
variable then the average monthly precipitation. (Notice that the same scale is used
on both graphs to allow for easy comparison, but this makes it look as though (b)
has fewer points than (a), which is not the case.) Likewise, Figure 2.8c and 2.8d
show, respectively, the histograms for the coefficient of variation for the average
monthly precipitation and the yearly total precipitation for the same locations.
(The coefficient of variation is the ratio of the standard deviation to the mean and
measures the degree to which a quantity varies from its average level.) It is clear that
the relative variation of the total yearly precipitation is much less than the relative
variation of the average monthly precipitation. Although, not shown, aggregating
precipitation spatially, i.e., considering the averages and sums of a collection of grid
locations, also results in less variable measures of precipitation.

2.3.2 Sampling

While commonsense and domain knowledge can be useful approaches to data selec-
tion, typically sampling is the main technique employed; it is often used for both
the preliminary investigation of the data and the final data analysis. Sampling has
long been used to good effect in statistics and other areas, and can be very useful in
data mining as well. (However, the motivation for sampling in statistics and data
mining is quite different, i.e., statisticians sample because obtaining the entire set
of data of interest is too expensive or time consuming, while sampling is used in
data mining because it is too expensive or time consuming to process all the data.)
Indeed, in some cases, using a sampling algorithm can reduce the data size to the
point where a better, but more expensive algorithm can be used.
The key principle for effective sampling is the following: using a sample will

work almost as well as using the entire data sets, if the sample is ‘representative.’
In turn, a sample is representative if it has approximately the same property (of
interest) as the original set of data. Thus, if the standard deviation is the property
of interest, then a sample is representative if the sample has a standard deviation
that is close to that of the original data. Since sampling is a statistical process, the
‘representativeness’ of any particular sample will vary, and thus, the best that can be
said of a particular sampling scheme is that, on average, it produces a representative
sample with a high probability. Therefore, a sampling scheme needs to be chosen
that will guarantee a high probability of getting a representative sample. This
involves choosing the appropriate sample size and sampling techniques, as discussed
below.

2.3.2 Sampling 33

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

180

N
u
m

b
e
r

o
f
L
a
n
d
 L

o
c
a
ti
o
n
s

Standard Deviation

(a) Standard Deviation of Aver-

age Monthly Precipitation

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

N
u

m
b

e
r

o
f

L
a

n
d

 L
o

c
a

ti
o

n
s

Standard Deviation

(b) Standard Deviation of Av-

erage Yearly Precipitation

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

100

120

N
u
m

b
e
r

o
f
L
a
n
d
 L

o
c
a
ti
o
n
s

Coefficient of Variation

(c) Coefficient of Variation for

Average Monthly Precipitation

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

100

120

N
u

m
b

e
r

o
f

L
a

n
d

 L
o

c
a

ti
o

n
s

Coefficient of Variation

(d) Coefficient of Variation for

Total Yearly Precipitation

Figure 2.8. Standard Deviation and Coefficient of Variation for Monthly and Yearly Precipitation in Australia.

2.3.2 Sampling 34

Sampling Approaches

There are a wide variety of sampling techniques, and only a few of the most basic
and their variations, will be covered here. The most basic type of sampling is
simple random sampling. In this type of sampling there is an equal probability of
selecting any particular item. There are two variations on random sampling (and
other sampling techniques as well): sampling without replacement, i.e., as each item
is selected it is removed from the set of all objects (the population), and sampling
with replacement, i.e., objects are not removed from the population as they are
selected for the sample. In sampling with replacement, the same object can be
picked up more than once. Sampling without replacement is usually preferable, but
the samples produced by the two methods are not much different when samples are
relatively small compared to the data set size, and sampling with replacement is
sometimes simpler.
While simple random samples are often fine, there is a problem in looking for

patterns that involve different types of objects when the different types (classes)
have widely different numbers of objects. For classification, rare classes may be
missed, and as a result, a sampling scheme that can accommodate differing frequen-
cies for the items of interest is needed. Stratified sampling is such an approach.
Basically, stratified sampling starts with different groups of object, which must be
pre-specified, e.g., by class labels. In the simplest version, equal numbers of objects
are then drawn from each group even though the groups are of different sizes.
Many other sampling schemes are possible. Some of the sampling techniques

for clustering and association analysis will be discussed later in the book, but for
information beyond that, the reader is referred to the references in the bibliographic
remarks.

Sample Size

Even if the proper sampling technique is known, it is still necessary to choose the
sample size. Larger sample sizes increase the probability that a sample will be
representative, but also eliminate much of the advantage of sampling. Conversely,
with smaller sample sizes, patterns may be missed or erroneous patterns detected.
To illustrate this consider Figure 2.9. Part (a) of this figure shows the full two-
dimensional point set, which contains 8000 points, while parts (b) and (c) show,
respectively samples of size 2000 and 500. While much of the structure of this point
set is present in the sample of 2000 points, much of the structure is missing in the
sample of 500 points.
Since the proper sample size is difficult to determine, adaptive or progressive

sampling schemes can sometimes be used. These approaches start with a small
sample, and then increase the sample size until a sample of sufficient size has been
reached. While this technique eliminates the need to determine the correct sample
size initially, it assumes that there is a way to evaluate the sample to judge if it is
large enough.
For example, suppose that we want to use progressive sampling to learn a pre-

2.3.2 Sampling 35

(a) 8000 points (b) 2000 points (c) 500 points

Figure 2.9. Example of the Loss of Structure with Sampling.

dictive model. The graph of prediction accuracy versus sample size is the learning
curve and it is known that the while accuracy of predictive models increases as the
sample size increases, at some point the increase in accuracy, i.e., the learning curve
levels off. We want to stop increasing the sample size at this leveling off point. By
keeping track of the change in accuracy as we take progressively larger samples,
and by taking other samples in the neighborhood of the current one, we can get an
estimate as to how close we are to flat part of the learning curve and thus, stop
sampling.

Sample Size Example

We conclude this section with an extended example to illustrate that determining
the proper sample size requires a methodical approach, not just guesswork.

Given a set of data which is thought to be divided into a small number of
almost equal sized groups, find at least one representative point for each
of the groups. Assume that the objects in each group are highly similar
to each other, but not very similar to objects in different groups. Also
assume that there are a relatively small number of groups, say around
10. Figure 2.10a shows a possible set of groups of clusters from which
these points might be drawn.

On the surface it would seem that we could solve this problem as follows: Take a
small sample of data points, compute the pairwise similarities between points, and
then form groups of points that are highly similar. But the question is, how big
would the sample have to be?
Some people might answer 10, thinking that if a sample is random, it is also

uniform, i.e., that one object will be selected from each group. Other, people might
hesitate, realizing that there is some chance of getting more than one object from
some groups, while other groups are missed. We can imagine someone guessing,
“Fifteen or twenty, but certainly thirty. Am I right?”

2.3.3 Dimensionality Reduction 36

(a) Ten Clusters

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample Size

P
ro

ba
bi

lit
y

(b) Probability a Sample Contains

Points From Each of Ten Groups

Figure 2.10. Finding representative points from 10 groups.

The answer is ‘only partly.’ Figure 2.10b shows the probability of getting one
object from each of the 10 groups as the sample size runs from 10 to 60. Interestingly,
with a sample size of 20, there is little chance (20%) of getting a sample that includes
all 10 groups. Even with a sample of size 30, there is still a moderate chance (almost
40%) of getting a sample that doesn’t contain objects from all 10 groups.

2.3.3 Dimensionality Reduction

Many times the data sets of interest have a large numbers of features. For example,
consider our previous example of a set of documents, where each document is rep-
resented as a vector whose components are the frequencies with which each word
occurs. In such cases, there are typically thousands or tens of thousand of attributes
(components), one for each word in the vocabulary. As another example, consider a
set of time series that record the daily closing price of various stocks over a period
of 30 years. In this case the attributes, which are the prices on specific days, again
number in the thousands.
The relevance of high dimensionality is that many data mining algorithms ‘work

better’ if the dimensionality, i.e., the number of attributes in the data, is lower. As
mentioned previously, this is due to the ‘curse of dimensionality,” which generally
speaking, refers to the phenomenon that many types of data analysis become sig-
nificantly harder as the dimensionality of the data increases. More specifically, as
dimensionality increases, the data becomes increasingly sparse in the space that it
occupies. For classification this means that there are not enough sample data points
to allow for reliable assignment of a class to all possible values, while for cluster-
ing, the definitions of density and the distance between points, which is critical for
clustering, become less meaningful. As a result, many clustering and classification
algorithms (and statistical algorithms as well) have trouble with high dimensional

2.3.3 Dimensionality Reduction 37

2 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

Number of dimensions

log
10

((M
AX

_D
IS

T
− M

IN
_D

IS
T)

 / M
IN

_D
IS

T)
)

Figure 2.11. Decrease in relative distance between min and max distance with increasing dimensionality.

data, e.g., reduced classification accuracy and poorer quality clusters.
To illustrate the curse of dimensionality more directly, consider, Figure 2.11,

which is an illustration of the fact that the relative distance between points de-
creases as dimensionality increases. To generate this figure, we randomly generated
500 points for each different number of dimensions — 2 to 50 — and for each set
of points, computed the pairwise distance between all pairs of points. We then
found the minimum and maximum distances, MIN DIST and MAX DIST , re-
spectively, and formed the ratio, MAX DIST−MIN DIST

MIN DIST , (All attributes (dimensions)
were independent and identically distributed as a normal distribution with mean 0
and variance 1 and the plot is the average of 10 runs.) Figure 2.11 show the log10
value of the ratio. When the number of dimensions is low, 2 - 5, the relative dif-
ference between the minimum and maximum distance of points is high, but as the
dimensionality increases, the ratio drops rapidly. When the number of dimensions
is 50, the ratio is 1.4 (the corresponding log10 ratio is 0.16).
There are other benefits to dimensionality reduction besides avoiding the curse

of dimensionality. The amount of time and memory required by the data mining
algorithm is reduced with a reduction in dimensionality, and sometimes this allows
the use of algorithms that would have otherwise been infeasible. Furthermore, a
reduction of dimensionality may allow the data to be more easily visualized. (Note
that even if a dimensionality reduction doesn’t reduce the data to two or three
dimensions, data is often visualized by looking at pairs or triplets of attributes,
and the number of such combination is greatly reduced.) Also, if dimensionality
reduction eliminates irrelevant features or reduces noise, then the quality of results
may improve. Finally, dimensionality reduction can lead to a more understandable
model.

2.3.4 Feature Subset Selection 38

Principal Components Analysis (PCA) and Singular Value Decomposition
(SVD)

Some of the most common approaches for dimensionality reduction, particularly for
continuous data, use a linear or non-linear projection of the data the data from a
high dimensional space to a lower dimensional space. For instance, principal com-
ponents analysis (PCA) is a linear algebra technique for continuous attributes that
finds new attributes (principal components) that a) are a linear combinations of
the original attributes, b) are orthogonal (‘perpendicular’) to each other and c)
capture the maximum amount of the variation in the data, e.g., the first two prin-
cipal components capture as much of the variation in the data as it is possible with
orthogonal attributes that are linear combinations of the original attributes. Sin-
gular value decomposition (SVD) is another linear algebra technique that is related
to PCA and is also commonly used for dimensionality reduction. For additional
details, see Appendix B.

2.3.4 Feature Subset Selection

Another way to reduce the dimensionality is to use only a subset of the features.
While it might seem that such an approach would lose information, this is not the
case for two types of features:

Redundant features duplicate much or all of the information contained in one or
more other attributes, e.g., the purchase price of a product and the amount
of sales tax paid contain much the same information.

Irrelevant features contain no information that is useful for the data mining task
at hand, e.g., students’ ID numbers should be irrelevant to the task of pre-
dicting students’ grade point averages.

Irrelevant and redundant features can reduce prediction accuracy or robustness and
lead to poor quality clusters. While some of these attributes may be eliminated (or
more precisely not used in the data mining process) immediately by using common
sense or domain knowledge, selecting a subset of features frequently requires an
automatic approach.
The ideal approach to feature selection is to try all possible subsets of features

as input to the data mining algorithm of interest, and to take the subset that
produces the ‘best’ result as the best set of features. This does have the advantage
of reflecting the objective and bias of the data mining algorithm that will eventually
be used. However, since the number of subsets involving n attributes is 2n, such an
approach is impractical for most data mining situations, and alternative approaches
are needed.
In particular, there are three standard approaches to feature selection:

Embedded approaches Feature selection occurs naturally as part of the data
mining algorithm, e.g., algorithms for building decision trees select a subset of
attributes to use during the process of building the tree.

2.3.4 Feature Subset Selection 39

Search
StrategyAttributes Subset of

Attributes

EvaluationSelected
Attributes

Stopping
Criterion

Not
Done

Done

Validation
Procedure

Figure 2.12. Flowchart of a feature subset selection process.

Filter approaches Features are selected before the data mining algorithm is run.

Wrapper approaches These methods use the target data mining algorithm as a
black box to find the best subset of attributes, in a way similar to that of
the ideal algorithm described above, but typically without enumerating all
possible subsets.

Since the embedded approaches are algorithm specific, only the filter and wrapper
approaches will be discussed further.

An Architecture for Feature Subset Selection

It is possible to encompass both the filter and wrapper approaches within a com-
mon architecture. Specifically, the feature selection process is viewed as consisting
of four parts: a measure for evaluating a subset, a search strategy that controls the
generation of a new subset of features, a stopping criterion, and a validation proce-
dure. Filter methods and wrapper methods differ only in the method for evaluating
a subset, i.e., for a wrapper method, the subset evaluation method uses the target
data mining algorithm, while for a filter approach, a different evaluation approach
is used. The following paragraphs provide some details of this approach, which is
summarized in Figure 2.12.

Search strategy Two important requirements on the search strategy are that it
should be computationally feasible and that it should find optimal or near
optimal sets of features. Not surprisingly, it is usually not possible to sat-
isfy both requirements and thus, tradeoffs are necessary. For instance, an
exhaustive (or exponential) search will find the optimal solution according to
whatever criteria is used, but is only feasible for small feature sets. (However,
various backtracking and branch and bound techniques are sometimes be used

2.3.4 Feature Subset Selection 40

to improve the efficiency of exhaustive search.) A sequential search, on the
other hand, proceeds from one subset to another without backtracking. In
particular, a sequential forward generation procedure starts with an empty
set of features and continues to add features based on which feature increases
the value of the subset evaluation measure. Likewise, a sequential backward
generation procedure starts with all the features and eliminates the ones that
lead to the smallest decrease in the subset evaluation measure. Of course,
the backward and forward procedure can be combined and multiple features
can be added and/or deleted in one step. Finally, a random search generates
subsets randomly, and thus, may produce different sets of features from one
run to another.

Evaluation The evaluation measure for a subset attempts to evaluate the ‘good-
ness’ of a subset with respect to a particular data mining task, e.g., classifica-
tion or clustering. For example, the consistency measure, which is used when
the task is classification, counts the number of cases where two objects are
equal (using only the attributes in the subset under consideration), but are
from different classes. Intuitively, subsets where this measure is high are not
likely to perform well for classification. Many other measures for classification
are possible.

The key point to notice about subset evaluation measures is that they are
surrogate, i.e., stand in, measures that attempt to predict how well the ac-
tual data mining algorithm will perform on a given set of attributes. It is the
performance of the data mining algorithm, e.g., the classification accuracy or
cluster cohesion, that is the measure that counts. Thus, while subset evalu-
ation measures reflect different approaches to evaluating the properties a set
of attributes should have, the best subset of features as determined by the
evaluation measure may very well be different than the optimal feature subset
according to the target data mining algorithm. Indeed, a key advantage of the
wrapper approach is that subset evaluation function matches the criteria used
to measure the result of the data mining.

Stopping Strategy The stopping strategy typically involves one or more condi-
tions involving the following: the number of iterations, whether the value of the
subset evaluation measure is optimal or exceeds a certain threshold, whether
a subset of a certain size has been obtained, whether simultaneous size and
evaluation criteria have been achieved, and whether any improvement can be
achieved by the options available to the search strategy.

Validation When a subset of features has been selected, the results of the tar-
get data mining algorithm on the selected subset should be evaluated. For
example, a simple sanity check is to run the algorithm with the full set of
features and compare the full results to the subset results. Alternatively, dif-
ferent feature selection algorithms can be used, and results can be compared.

2.3.5 Feature Creation 41

This comparison is not always straightforward. For example, if the goal is to
build a decision tree and the selected subset of features provides slightly lower
accuracy than the full set of features, but produces a more compact and un-
derstandable tree, say according to a domain expert, then the smaller subset
of features may still be more desirable.

2.3.5 Feature Creation

Sometimes a small number of new attributes can capture the important information
in a data set much more efficiently than the original attributes. Also, the number
of new attributes can often be much smaller than the number of original attributes,
and thus, we reap all the previously described benefits of dimensionality reduction.
Three general methodologies for created new attributes are described below.

Feature Extraction

One approach to dimensionality reduction is feature extraction, which is the creation
of a new, smaller set of features from the original set of features. For example,
consider a set of photographs, where each photograph is to be classified according
to whether it contains a human face or not. The raw data is a set of pixels, and
as such, is not suitable for many types of classification algorithms. However, if the
data is processed to provide ‘higher-level’ features, e.g., the presence or absence of
certain types of edges and areas correlated with presence of human faces, then a
much broader set of classification techniques can be applied to this problem.
Unfortunately, feature extraction, in the sense in which it is most commonly used,

is not a very automated procedure. For a particular field, e.g., image processing,
various features and the techniques to extract them are developed over a period of
time, and often these techniques have limited applicability to other fields. Thus,
whenever data mining is being applied to a relatively new area, a key task is the
development of new features and feature extraction methods.

Mapping the Data to a New Space

Sometimes, a totally different view of the data can reveal important and interesting
features. Consider, for example, time series data. Frequently time series data has
a very periodic pattern. If there is only one such pattern and not a lot of noise,
then such patterns are easily detected by visualization. However, if there are a
number of periodic patterns and noise as well, then these patterns are hard to
detect. Nonetheless, such patterns can be often be detected by applying a Fourier
transformation to the data, which provides a representation in which frequency
information is explicit. For what follows, it will not be necessary to know the details
of the Fourier transform. Instead, it is enough to know that, for each time series,
the Fourier transform produces a new data object, whose attributes are related to
frequencies.
Consider the following example shown in Figure 2.13. The time series presented

in (b) is the sum of three other time series, two of which are shown in (a) and which

2.3.5 Feature Creation 42

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (seconds)

(a) Original Time Se-

ries

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

Time (seconds)

(b) Time Series Plus

Noise

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

(c) Spectrum

Figure 2.13. Different variations of record data.

have frequencies of 7 and 17 cycles per second. The third time series is random
noise. In (c), we see the power spectrum that can be computed after applying a
Fourier transform to the original time series. (Informally, this plot is proportional
to the square of each frequency attribute.) In spite of the noise, there are two peaks
that correspond to the periods of the two original, non-noise time series. Thus,
better features can more easily reveal important aspects of the data.
Many other sorts of transformations are possible. Besides the Fourier transform,

the wavelet transform has also proven very useful, for time series and other types of
the data.
Statistical models are another way to obtain a different view of data. In partic-

ular, a statistical model is proposed for the objects in a set of data, and then the
parameters of this model are estimated for each object. These statistical parameters
can then be used as attributes of the objects. Once again, the new attributes can
be more useful than the old, e.g., a particular type of statistical model, called an
ARIMA model can be fit to time series, and the parameters of that model can then
be used to evaluate the similarity of time series to each other.

Feature Construction

Sometimes features have the necessary information, but not in the form necessary
for the data mining algorithm. In this case, one or more new features constructed
out of the original features may be more useful. To illustrate this, consider two
attributes that record the volume and mass of a set of objects. Suppose that there
exists a classification of a set of training objects that is based on the material of
which the objects are constructed (the objects are the same in terms of physical
dimensions), then a density feature constructed from the original two features would
clearly facilitate an accurate classification. Another example would be the logical
combination of Boolean variables. While some research has been conducted with
respect to automatic feature construction, the most common and effective approach
is to construct features using domain expertise.

2.3.6 Discretization and Binarization 43

Table 2.3. Conversion of a categorical attribute to a three binary attributes.
Categorical Value Integer Value x1 x2 x3

awful 0 0 0 0

poor 1 0 0 1

OK 2 0 1 0

good 3 0 1 1

great 4 1 0 0

2.3.6 Discretization and Binarization

Some data mining algorithms, e.g., classification algorithms, require that the data be
in the form of categorical attributes. Some other algorithms, especially algorithms
that find association patterns, require the data in the form of binary attributes.
Thus, it is often necessary to transform a continuous attribute into a categorical
attribute, and both continuous and discrete attributes may need to be transformed
into one or more binary attributes. Furthermore, some classification algorithms also
see performance degradation even when working with categorical attributes, if the
number of categories is too large. In such cases, it may be necessary to combine
some of the categories.
Discretization and binarization are similar to feature selection in that the ‘best’

way to discretize or binarize an attribute is ‘whatever produces the best result for the
data mining algorithm that will be used to analyze the data.’ And, as with feature
selection, it is typically not practical to apply such a criterion. Consequently, dis-
cretization or binarization is done in a way that satisfies a criterion that is thought to
have a relationship to good performance for the data mining task being considered.

Binarization

A straightforward way to binarize a categorical attribute is as follows: If there are
n categorical values, then uniquely assign each original value to an integer in the
interval [0, n − 1]. If the attribute is ordinal, then order must be maintained by
the assignment. (Note that even if the attribute is originally represented using
integers, this process is necessary if the integers are not in the interval [0, n − 1].)
Next, convert each of these n integers to binary. Finally, noting that m = dlog2(n)e
binary digits will be required to represent these integers, represent these binary
numbers using m binary attributes. Thus, a categorical variable with 5 values
{awful, poor,OK, good, great}, would require 3 binary variables x1, x2, and x3.
The conversion is shown in Table 2.3.
However, such a transformation can cause complications. For example, it can

create unintended relationships among the transformed attributes. Furthermore,
in association analysis, the binary attributes are actually asymmetric binary at-
tributes, i.e., only the ‘presence’ of the attribute (value = 1) is important. Thus,
for association problems, it is necessary to introduce one binary attribute for each

2.3.6 Discretization and Binarization 44

categorical value. If the number of resulting attributes is too large, then the tech-
niques described below can be used to reduce the number of categorical values before
binarization.
Likewise, it may be necessary to replace a single binary attribute with two asym-

metric binary attributes for association problems. For instance, consider a binary
attribute that records a person’s gender. For traditional association rule algorithms
to properly use this information, it would need to be transformed into two asym-
metric binary attributes, one that is a 1 only when the person is male and one that
is a 1 only when the person is female. (For asymmetric binary attributes, the infor-
mation representation is horribly inefficient, i.e., two bits of storage are required to
represent each bit of information.)

Discretization of Continuous Attributes

Discretization is typically applied to attributes that are used in classification prob-
lems. In general, the ‘best’ discretization depends on the classification algorithm
being used, as well as the other attributes being considered. However, this context
is typically ignored, and the discretization of an attribute is often considered in
isolation.
Transformation of a continuous attribute to a categorical attribute involves two

subtasks: deciding how many categories to have and deciding how to map the values
of the continuous attribute to the categorical attribute. In the first step, after the
values of the continuous attribute are sorted, they are then divided into m intervals
by specifying m − 1 ‘split’ points. In the second, rather trivial, step, all the values
in one interval are mapped to the same categorical value. Therefore, the problem
of discretization is one of deciding how many split points to choose and where to
place these split points. The result can be represented either as a set of intervals
{(x0, x1], (x1, x2], . . . , (xm−1, xm)}, where x0 and xm may, respectively be +∞ or
−∞, or equivalently, as a series of inequalities x0 < x ≤ x1,. . . , xm−1 < x < xm.
A basic distinction between discretization methods for classification is whether

class information is used (supervised) or not (unsupervised). If class information
is not used, then relatively simple approaches are common. For example, the equal
interval width approach, divides the range of the attribute into a user specified
number of intervals. Such an approach can be badly affected by outliers, but an equal
frequency approach, which tries to put the same number of objects into each interval,
usually works better for such situations. As a another example of unsupervised
discretization, a clustering method, such as K-means (see chapter 5), can also be
used. Finally, ‘eyeballing’ the data can sometimes be an effective technique for
discretization.
We present an example to demonstrate how these approaches might work on a

data set. In Figure 2.14a, we show data points belonging to four different groups,
along with two outliers — the large dots on either end. We applied the techniques
of the previous paragraph to discretize the x values of these data points into four
categorical values. (The data set is two dimensional mainly to make it easy to
see how many points are in each group. The y values were assigned randomly.)

2.3.6 Discretization and Binarization 45

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Data

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Equal Interval

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Equal Frequency

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) K-means

Figure 2.14. Different discretization techniques.

Eyeballing works quite well, but is not automatic, and we focus on the other three
approaches. The split points produced by the techniques, equal interval width, equal
frequency, and K-means, are shown in subfigures (b), (c), and (d), respectively. (The
split points are represented as lines.) K-means performs best, followed by equal
frequency, and finally, by equal interval width.
The discretization methods described above are usually better than no discretiza-

tion, but as with feature selection, keeping the end purpose in mind and using the
class label information often produces better results. This should not be surpris-
ing, since an interval constructed with no knowledge of class labels may contain
a mixture of class labels. A conceptually simple approach is to try to place the
splits so as to maximize the purity of the intervals. In practice, however, such an
approach requires potentially arbitrary decisions about the purity of an interval
and the minimum size of an interval. To overcome such concerns, some statisti-

2.3.6 Discretization and Binarization 46

cally based approaches start with each attribute value as a separate interval and
create larger intervals by merging adjacent intervals that are similar according to
a statistical test. However, entropy based approaches are perhaps one of the most
promising approaches to discretization, and a simple approach based on entropy will
be presented as an example.
But first, it is necessary to define entropy. Let k be the number of different class

labels, ni be the number of values in the i
th interval of a partition, and nij be the

number of values of class j in interval i. Then the entropy of the ith interval, ei is
given by the equation

ei =
k∑

i=1

pij log2 pij

where pij = nij/ni is the probability (fraction of values) of class j in the I
th interval.

The total entropy, e, of the partition is the weighted average of the individual interval
entropies, i.e.,

e =

m∑

i=1

fiei

where fi = ni/n is the fraction of points in the ith interval. Intuitively, the entropy
of an interval is a measure of the purity of an interval. If an interval contains only
one class, i.e., is perfectly pure, then the entropy is 0 and it contributes nothing to
the overall entropy. If the classes in an interval occur equally often, i.e., the interval
is as impure as possible, then the entropy is a maximum.
A simple approach for partitioning a continuous attribute starts by bisecting

the initial values so that the resulting two intervals give minimum entropy. This
technique only requires considering each value as a possible split point, since it
is assumed that intervals contain ordered sets of values. The splitting process is
then repeated with another interval, typically choosing the interval with the worst
(highest) entropy, until a user specified number of intervals is reached, or until a
stopping criterion is satisfied.
To demonstrate this method, we used it to independently discretize both contin-

uous attributes of the two-dimensional data shown in 2.15. In the first discretization,
shown in Figure 2.15a, both the x and y attributes were split into three intervals.
(The dashed lines indicate the split points.) In the second discretization, shown in
Figure 2.15b, both the x and y attributes were split into five intervals.
This simple example illustrates a couple of issues. First, in two dimensions, the

classes of points are well separated, but in one dimension, this is not so. Thus, in
general, discretizing each attribute separately often guarantees suboptimal results.
Secondly, five intervals work better than three, but six intervals do not improve
the discretization much, at least in terms of entropy. (Entropy values and results
for six intervals are not shown.) Consequently, it is desirable to have a stopping
criterion that tries to automatically find the right number of partitions. Since these
issues are very similar to those involved in finding good classification models, further
discussion is deferred to Chapter 3.

2.3.7 Attribute Transformation 47

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

(a) Three Intervals

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

(b) Five Intervals

Figure 2.15. Discretizing x and y attributes for four groups (classes) of points.

Categorical Attributes With Too Many Values

As mentioned, categorical attributes can sometimes have ‘too many’ values. If the
categorical attribute is an ordinal attribue, then techniques similar to those for con-
tinuous attributes can be used. If the categorical attribute is nominal, however, then
other approaches are needed. For example, a university often has a large number
of departments, and consequently, a department name attribute might have dozens
of different values. In this situation, by using domain knowledge, i.e., knowledge
about the relationships among different departments, these departments could be
combined into larger groups, e.g., all engineering departments could be grouped
as ’engineering.’ If domain knowledge does not serve as a useful guide or such an
approach results in poor classification performance, then it is necessary to use a
more empirical approach, such as grouping values together, only if such a grouping
is beneficial for classification accuracy.

2.3.7 Attribute Transformation

An attribute transformation refers to a transformation that is applied to all the
values of an attribute, i.e., for each object, the transformation is applied to the
value of the attribute for that object. (This is more commonly known as a variable
transformation.) For example, if only the magnitude of an attribute is important,
then the values of the attribute may be transformed by taking the absolute value.
More generally, an attribute transformation can be viewed as an a function that
maps the entire set of values of a given attribute to a new set of replacement values
such that each old value can be identified with one of the new values. In the follow-
ing, we discuss two important types of attribute transformations: simple functional
transformations and standardization (normalization).

2.3.7 Attribute Transformation 48

Simple Functions

For this type of attribute transformation, a simple mathematical function is applied
to each value individually. If x is an attribute, then examples of such transforma-
tions include xk, log(x), ex,

√
x, 1/x, sinx, or |x|. In statistics, transformations,

especially, sqrt, log, and 1/x, are often used to transform data that does not have
a Gaussian (normal) distribution into data that does. While this can be important,
other reasons often take precedence in data mining.
For example, suppose that the attribute of interest is the number of data bytes

in a session, and that the number of bytes ranges from 1 to 1 billion. This is a
huge range, and it may well be advantageous to compress the range by using a log10
transformation. In this case, sessions that transferred 108 and 109 bytes would be
more similar to each other than sessions that transferred 10 and 1000 bytes (9−8 = 1
versus 3−1 = 2). For some applications, e.g., network intrusion detection, this may
be what is desired, since the first two sessions likely represent file transfers, while
the latter two sessions may well be two quite different types of sessions.
However, three important cautions are in order for these types of transforma-

tions, especially the transformations sqrt, log, and 1/x. First, a transformation
typically operates differently on different attributes values, and the effects can some-
times be surprising. For instance, the transformation 1/x will reverse the order of
the values, e.g., {1, 2, 3} goes to {1, 12 , 13}. If the goal was range compression, but
not a reversal of order, then a multiplication by −1 will also need to be applied to
achieve the desired effect. Furthermore, range compression will fail if some values
are between 0 and 1, since these values will become large after they are transformed.
Important questions to ask before applying a transformation are the following: Does
the order need to be maintained? Does the transformation apply to all values, espe-
cially negative values and 0? What is the effect of the transformation on the values
between 0 and 1? Sometimes it is desirable to transform values to the range [1,∞]
by adding a constant, at least if the values are mostly in the positive range.
The second caution is that transformations change the nature of the attribute

scale. Thus, if a difference of values was meaningful before the transformation,
then a difference of values may not be meaningful afterwards, and vice-versa. The
following example illustrates the complexities of this issue. Consider the kinetic
energy of an object measured at various velocities and recall that the formula for
kinetic energy is KE = 1

2MV 2, where M and V are the mass and velocity of the
object, respectively. Differences in the original scale, the energy scale, make sense
— they are the differences in the kinetic energy possessed by the object. If the
transformation

√
KE is applied to the data, then the resulting values measure the

velocity of the body, and the differences are again meaningful. However, if a 3
√
KE

transformation is applied, then, while the order of the values is still meaningful,
the differences and ratios are not. A ratio attribute has been transformed into an
ordinal attribute.
The final caution regards the interpretability of the results. It can be much

harder to interpret the meaning of a variable after it has been transformed. In this

2.3.7 Attribute Transformation 49

way, the situation is similar to the problems that arise when PCA or SVD are used.
An exception to this is the following: If the results of the data mining involve values
on the transformed scale, then the results can often be expressed on the original
scale. For instance, if the results with respect to the transformed attribute involve
an interval [y1, y2], and the values of the original attribute that correspond to y1
and y2 are, respectively, x1 and x2, then the corresponding interval for the original
attribute values is [x1, x2], provided that the attribute transformation is monotonic.

Standardization or Normalization

Another common type of attribute transformation is the standardization or nor-
malization of an attribute. (Statisticians use the term ‘standardization’ because
‘normalization’ might be confused with the transformations used for making a vari-
able ‘normal,’ i.e., Gaussian. In common usage, however, the terms are often used
interchangeably.) The goal of standardization or normalization is to make an entire
set of values have a particular property, and consequently, the transformation is
determined, to some extent, by the actual values of the attribute.
For example, if the values of an attribute are measures of similarity between

objects, but range from 1 (not at all similar) to 10 (completely similar), it might
be desired to make the values fall within the range [0, 1], which is more traditional
for similarities. In this specific case, the transformation is given by s′ = (s− 1)/10,
where s is the original similarity value and s′ is the new similarity value. In the
more general case, the transformation of similarities to the interval [0, 1] is given by
the expression s′ = (s−min)/(max−min), where max and min are the minimum
and maximum similarity values.
As another example, consider transforming a distance, e.g., the traditional Eu-

clidean distance that is defined in the next paragraph, into a similarity value. Since
two objects are ‘close’ if their distance is low or their similarity is high, the order
of distances needs to be reversed. The easiest transformation is multiplication of
distances by −1, and this works well in many cases. To illustrate, the distances
0, 1, 10, and 100 would be transformed into 0, −1, −10, and −100. However, the
resulting similarities are not restricted to the range [0, 1], and if that is desired, then
the transformations 1

x+1 or e
−distance2 can be used. For the 1

x+1 transformation, the
distances 0, 1, 10, and 100 are transformed, respectively, into 1, 0.5, 0.0909, and
0.0099, while for the e−distance

2
transformation, distances 0, 1, 10, and 100 are trans-

formed, respectively, into 1, 0.3679, 0, and 0 (to four decimal places). In general,
any monotonic decreasing function can be used to convert distances to similarities,
although the exact function will have a strong effect on the behavior of data mining
algorithms, e.g., clustering algorithms, that use similarities.
A more traditional example is that of ‘standardizing a variable’ in statistics. If

µ is the mean (average) of the attribute values and σ is their standard deviation,
then the transformation v′ = (v − µ)/σ creates a new attribute that has a mean of
0 and a standard deviation of 1. If different attributes will be combined in some
way, then such a transformation is often necessary to avoid having an attribute

2.4 Exercises 50

with large values dominate the results of the calculation. For instance, the Eu-
clidean distance between two objects, x and y, with numerical attributes, is given
by
√∑n

i=1(xi − yi)2, where xi and yi are the ith attributes of x and y, respectively.
Consider trying to measure the similarity between people based on two attributes,
age and income. Without standardization, the similarity between two people will
be dominated by income.
Because the mean and standard deviation are strongly affected by outliers, the

above transformation is often modified. First, the mean is replaced by the median,
i.e., the middle value. Secondly, the standard deviation is replaced by the absolute
standard deviation, i.e., σA =

∑n
i=1 |vi−µ|, where vi is the ith value of the attribute,

n is the number of objects, and µ is either the mean or median.
As a final illustration of normalization transformations, we present an example

involving document data. Here the problem is that similarities between documents
can be dominated by common words, which appear in many documents and inflate
the similarities between documents. While common words (called ‘stop’ words),
such as ‘the’ and ‘that,’ are normally eliminated automatically, the problem can
still remain. For example, if the documents are about sports, ‘team’ may appear in
almost every document. To deal with this problem, a transformation, called ‘inverse
document frequency’ can be applied.
This works as follows: For the each word, we count the number of documents

in which the word appears. This is the word’s document frequency, and for the ith

word, we represent this by dfi. Recall that tfij is the frequency of the i
th word

(term) in the jth document. If n is the number of documents, then a new value for
tfij is given by tf

′
ij = tfij ∗ log n

dfi
. If a word appears in all documents, i.e., has no

usefulness for distinguishing one document from another, then its normalized value
is 0.

2.4 Exercises

1. In the initial example of Chapter 2, the statistician says, “Yes, fields 2 and 3
are basically the same.” Can you tell from the three lines of sample data that
are shown why she says that? Explain.

2. Classify the following attributes as binary, discrete, or continuous. Further
classify the attributes as qualitative (nominal or ordinal) or quantitative (in-
terval or ratio). Some of the cases may have more than one interpretation, so
briefly indicate your reasoning if you think there may be some ambiguity.

Example: Age in years. Answer: Discrete, quantitative, ratio

(a) Time, in terms of AM or PM.

(b) Brightness as measured by a light meter.

(c) Brightness as measured by people’s judgments.

(d) Angles as measured in degrees between 0 and 360.

2.4 Exercises 51

(e) Bronze, Silver and Gold Medals as awarded at the Olympics.

(f) Height above sea level.

(g) Number of patients in a hospital.

(h) ISBN numbers for books. (Format of ISBN numbers is at
http://www.isbn.spk-berlin.de/html/userman/usm4.htm)

(i) Ability to pass light in terms of the following values: opaque, translucent,
transparent.

(j) Military rank.

(k) Distance from the center of campus.

(l) Density of a substance in grams per cubic centimeter.

(m) Coat check number. (Sometimes when you attend an event, you can give
your coat to someone and they will give you a number that you can use
to claim your coat when you leave.)

3. You are approached by the marketing director for a local company, who be-
lieves that he has devised a fool-proof way to measure customer satisfaction.
He explains his scheme as follows: “It’s so simple that I can’t believe that
no one has thought of it before. I just keep track of the number of customer
complaints for each product. I read in a data mining book that counts are
ratio attributes, and so, my measure of product satisfaction must be a ratio
attribute. But when I rated the products based on my new customer satisfac-
tion measure and showed them to my boss, he told me that I had overlooked
the obvious, and that my measure was worthless. I think that he was just
mad because our best selling product had the worst satisfaction, i.e., the most
complaints. Could you help me set him straight?”

(a) Who is right, the marketing director or his boss? If you answered, ‘his
boss,’ what would you do to ’fix’ the measure of satisfaction?

(b) What can you say about the attribute type of the original product satis-
faction attribute?

4. Can you think of a situation in which identification numbers would be useful
for prediction?

5. An educational psychologist wants to use association analysis to analyze test
results. The test consists of 100 questions with four possible answers each.

(a) How would you convert this data into a form ready for association anal-
ysis?

(b) In particular, what type of attributes would you have and how many of
them are there?

6. Which of the following quantities is likely to show more temporal autocorre-
lation: daily rainfall or daily temperature? Why?

2.5 Bibliographic Notes 52

2.5 Bibliographic Notes

As stressed in the chapter, it is important to have an idea of the nature of the
data that is being analyzed. At a very fundamental level, this is what measurement
theory is all about. Typically students have little exposure to measurement theory,
perhaps because the aspects that are important most situations can be summarized
in terms of the attribute types described in this chapter. However, the situation is
more complicated then we have described. In particular, log-interval scale and ab-
solute scales are possible, in addition to the four scales we described in this chapter.
For those who would like to investigate further, we recommend the following three
sources: [106], [176], and [196].
Sampling is a subject that has been well studied in statistics and in related

fields. In particular, many introductory statistics books [114] have some discussion
on sampling, and there are entire books devoted to the subject [36]. A survey of
sampling for data mining is provided in [64], while a survey of sampling for data
bases is provided in [138] . Other data mining and data base related sampling
references that may be of interest are [148,141,183,206].
While data quality is a broad subject that spans every discipline that uses data,

most of the easy accessible and generic information on data quality has been pub-
lished in the database area [42,195,128]. However, often the knowledge to deal with
specific data quality issues in a specific domain is best obtained by investigating
what steps researchers in that field take to ensure data quality. For example, read-
ing a general book on data quality may not give you much information on the steps
that NASA takes to ensure that two satellite images are comparable even though
they are taken at different times, under different cloud conditions, etc. I
In statistics, the traditional techniques that have been used for dimensionality

reduction are Principal Components Analysis (PCA) [97], which is similar to the
important linear algebra technique of Singular Value Decomposition (SVD) [43],
and Multidimensional Scaling [107]. These techniques are based on the observation
that the data can often be represented by a linear approximation in relatively small
set of dimensions. More recently researchers have also investigated the usefulness of
nonlinear transformations for dimensionality reduction [152,181].
Discretization is a topic that has been well investigated in data mining. In

particular, some classification and association rule algorithms will only work on
categorical data, and thus, there is a significant motivation to investigate how to
best categorize continuous variables. For association rules we refer the reader to
[171], while some useful references for discretization in the area of classification
include [56,48,89,52].
Feature selection is another topic well investigated in data mining. A survey of

this area can be found in [130], while some useful references are [104, 20, 120]. A
couple of books on the subject are [119,118].
The subject of variable transformations is also a difficult topic for which to

provide general references, as practices vary from on discipline to another. Many
statistics books have a discussion of transformations, but typically the discussion

2.5 Bibliographic Notes 53

is restricted to a particular purpose, e.g., ensuring the normality of a variable or
that variables have equal variance. Thus, we offer only the following two references
[139,188].
With some of the other topics in this chapter, it is much more difficult to give

specific references. For instance, to find out about the different types of data in
more detail, it is necessary to look at either domain specific literature of data mining
literature that has addresses the data in question. Finally, aggregation is another
topic that is very domain specific and must be handled on a case by case basis.

Chapter 3 54

Chapter 3

Classification

Classification is the task of assigning objects to their respective categories. Classi-
fication is useful because it helps us to understand the similarities and differences
between objects that belong to different categories. For example, stock analysts are
interested in classifying the stocks of publicly-owned companies as buy, hold, or
sell, based on the financial outlook of these companies. Stocks classified as buy
are expected to have stronger future revenue growth compared to those classified as
sell.
Classification is also an integral part of the decision making process. Suppose

a mobile phone company would like to promote a new cell-phone product to its
existing customer base. Instead of mailing the promotional catalog to everyone, the
company may want to reduce mailing costs by targeting only a small subset of the
population. To do this, the company needs to know who are the people expected
to buy the new product and distinguishes them from those who will not buy. After
classifying their customers, the company can then take the appropriate action by
mailing out the catalogs only to those persons classified as buy.
But how does the company decide whether a person should be classified as buy

or won’t buy? Each person is usually classified on the basis of their personal in-
formation such as household income, occupation, lifestyle, credit ratings, and where
they live. Classifying the people manually is a challenging task due to several rea-
sons. First, there are many driving factors that can affect the classification decision.
It will be very difficult for analysts to take all these factors into consideration when
classifying a person. Second, the number of people that needs to be classified is
large. It will take human analysts a long time before they can complete this task.
This chapter focuses on automated techniques for solving the classification prob-

lem. As many techniques have been developed, choosing the right one for a given
data set can be quite challenging. Therefore, it is important to know the strengths
and limitations of each technique, particularly in the context of handling practical is-
sues such as noisy data and missing values. Methods for comparing the performance
of various classification techniques are also presented in this chapter.

3.1 Problem Definition 55

3.1 Problem Definition

We assume that the data set consists of a collection of records. Each record, also
known as an instance or example, is characterized by a tuple (x, y), where x is the
attribute set and y is the class label. A record is labeled if the value of y is known;
otherwise, the record is said to be unlabeled. Each attribute xk ∈ x can be discrete
or continuous. On the other hand, the class label y must be a discrete variable
whose value is chosen from a finite set {y1, y2, · · · yc}. If y is a continuous variable,
then this problem is known as regression.

Example 1 Table 3.1 illustrates an example of the vertebrate data set. Each row
represents a vertebrate and each column is an attribute of the vertebrate, with the
last column representing the class label. For instance, the first record of this table
contains the attributes and class label of a human being.

Table 3.1. The vertebrate data set.

Name Blood Skin Gives Lays Can Lives in Has Hibernates Class

type cover birth eggs fly water legs label

human warm hair yes no no no yes no mammal

python cold scales no yes no no no yes reptile

salmon cold scales no yes no yes no no fish

whale warm hair yes no no yes no no mammal

frog cold none no yes no sometimes yes yes amphibian

komodo dragon cold scales no yes no no yes no reptile

bat warm hair yes no yes no yes yes mammal

pigeon warm feather no yes yes no yes no bird

cat warm fur yes no no no yes no mammal

leopard shark cold scales yes no no yes no no fish

turtle cold scales no yes no sometimes yes no reptile

penguin warm feather no yes no sometimes yes no bird

porcupine warm quills yes no no no yes yes mammal

eel cold scales no yes no yes no no fish

salamander cold none no yes no sometimes yes yes amphibian

The classification problem can be stated formally as follows:

Classification is the task of learning a function, f : x → y, that maps
each attribute set x into one of the class labels for y.

f is known as the target function or classification model. We will use both terms
interchangeably throughout this chapter.
In general, f is chosen from a set of permissible functions H, which is better

known as the hypothesis space. Examples of hypothesis space include the set of
boolean functions, polynomial functions, and mixtures of gaussian kernel functions.
A hypothesis space is expressive if it can represent any types of relationships between

3.2 General Approach to Solving a Classification Problem 56

Classification
model

Input

Attributes
of an

object (x)

Output

Class label
(y)

Figure 3.1. Using a classification model for prediction.

the attribute set and the class label. An expressive hypothesis space is desirable
because it can model any relationships that exist in the data. The drawback is that
such an expressive hypothesis space may require a huge amount of data to learn the
correct model.
In general, a classification model can be used for the following purposes.

• It can serve as an explanatory tool for distinguishing objects of different
classes. For example, it would be useful - for biologists and others - to have a
model that summarizes the data shown in Table 3.1 and explains why each ver-
tebrate should be categorized as a mammal, reptile, bird, fish, or amphibian.
This is the descriptive element of the classification model.

• It can be used to predict the class labels of new records. This is the predictive
element of the classification model. During prediction, a classification model
can be treated as a black box that automatically generates an appropriate class
label when attributes of the new record are presented to the model, as shown
in Figure 3.1. For example, suppose we are given only partial information
about the following vertebrate:

Name Blood Skin Gives Lays Can Lives in Has Hibernates Class
type cover birth eggs fly water legs label

gila monster cold scales no yes no no yes yes ?

How do we determine its class label? If a classification model is built from the
data shown in Table 3.1, then we can apply this model to predict the type of
species to which a gila monster belongs.

3.2 General Approach to Solving a Classification Problem

This section presents a general approach to solving the classification problem. We
begin with an example illustrating how an organization such as the Internal Revenue
Service (IRS) may want to build a classification model for predicting taxpayers who
try to evade paying their taxes. The IRS keeps historical records containing personal
information about the audited taxpayers. Each record is assigned a class label to
indicate whether the audited taxpayer has evaded on his or her taxes. The goal of
this classification problem is to build a model from the historical audit data and use
it to predict the class label of new taxpayer records, as shown in Figure 3.2

3.2 General Approach to Solving a Classification Problem 57

Labeled
data

Tid Refund Marital
Status

Taxable
Income Evade

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

categoric
al

categoric
al

contin
uous

class

Refund Marital
Status

Taxable
Income Evade

No Single 75K ?

Yes Married 50K ?

No Married 150K ?

Yes Divorced 90K ?

No Single 40K ?

No Married 80K ?
10

Apply
Model

Unlabeled
Data

Induction

Deduction

Learn
Model

Model

Figure 3.2. Building a classification model for predicting tax evasion.

To build such a classification model, the labeled data set is initially partitioned
into two disjoint sets, known as the training set and test set, respectively. Next,
a classification technique is applied to the training set to induce a classification
model. Each classification technique employs a learning algorithm to search the
hypothesis space H and selects the model that produces outputs consistent with the
class labels of the training examples. The output of a model f is consistent with a
training example (x, y) if and only if f(x) = y.
However, a model that fits perfectly to the training set may not necessarily

perform well on new examples it has never seen before. Thus, the goal of a learning
algorithm is to build a model that has good generalization capability, i.e., it must
not only fit the training set well, but can also predict correctly the class labels of
many previously unseen examples. To evaluate how well the induced model performs
on examples it has not seen before, we can apply it to the test set.
The performance of a model can be summarized by using a c × c confusion

matrix, where c is the number of classes. The confusion matrix for a 2-class problem
is shown in Table 3.2. In this table, the total number of correct predictions made
by the classification model is (a + d), while the total number of wrong predictions
is (b+ c). Thus, we can define the accuracy of the model as

Accuracy =
a+ d

a+ b+ c+ d
=
a+ d

N
, (3.1)

where N is the total number of predictions. Similarly, the error rate of the model

3.3 Decision Tree Induction 58

is given by

Error rate =
b+ c

a+ b+ c+ d
=
b+ c

N
(3.2)

A good classification model must have high accuracy, or equivalently, low error rate
when applied to the test set.

Table 3.2. Confusion matrix for a 2-class problem.

Predicted Class

Class = y1 Class = y2

Actual Class = y1 a b

Class Class = y2 c d

In the next several sections, we will describe a variety of classification techniques
used for building classification models.

3.3 Decision Tree Induction

The first classification technique we present in this chapter is called decision tree
induction. This technique is introduced first because it is one of the most widely-
used technique for classification and its concepts are relatively simple to understand.
In this section, we will not only explain how decision tree induction works but will
also discuss some of the general issues involved in building decision trees from data.

3.3.1 How Decision Tree Works?

To get an idea of how classification with decision tree works, let us consider the
problem of classifying vertebrates as mammals and non-mammals. Suppose a new
type of vertebrate has just been discovered deep in the jungles of the Amazon forest.
How do we determine whether it is a mammal or non-mammal? A simple way to
do this is to pose a series of questions to learn about the characteristics of the
creature. First, one can ask whether it is a warm- or cold-blooded creature. If the
vertebrate is cold-blooded, then it is definitely not a mammal. On the other hand,
if the vertebrate is warm-blooded, then it could either be a bird or a mammal. We
could ask a follow-up question to distinguish between a bird and a mammal - does
the female species of the vertebrate give birth to the young? If the answer is yes,
then it is definitely a mammal; otherwise, it is most likely a non-mammal (with the
exception of egg-laying mammals such as platypus and spiny anteater).
The previous example illustrates how classification can be performed by simply

asking a series of carefully crafted questions about the attributes of the unknown
instances. Each time an answer is given, a follow-up question is asked until we reach
a conclusion about the most likely class label of the instance. The series of questions
and their possible answers can be represented in the form of a decision tree, which

3.3.1 How Decision Tree Works? 59

is a hierarchical structure consisting of nodes and directed edges. There are three
types of nodes in a decision tree:

• A root node, which has no incoming edges and zero or more outgoing edges.

• Internal nodes, each of which have exactly one incoming edge and two or more
outgoing edges.

• Leaf nodes, each of which have exactly one incoming edge and no outgoing
edges. Each leaf node also has a class label attached to it.

Blood
Type?

Give birth?

Warm Cold

Yes No

Mammals Non-
Mammals

Non-
Mammals

Root
node

Internal
node

Leaf
nodes

Figure 3.3. An illustrative example of the decision tree for mammal classification problem.

Figure 3.3 illustrates an example of a decision tree for the mammal classification
problem. The tree contains a root node, an internal node, and three leaf nodes. The
non-terminal nodes, which consist of the root node and internal nodes, are used to
partition the examples into smaller subsets that are more homogeneous with respect
to class. For example, the root node (Blood Type?) is used to eliminate cold-blooded
non-mammals and the internal node (Gives Birth?) is used to distinguish between
mammals and other warm-blooded non-mammals, which are mostly birds.
Once a decision tree is constructed, classifying new examples is a straightforward

task. Starting from the test condition at the root node, we evaluate the attributes
of the unlabeled example and follow the appropriate outgoing link based on the
outcome of the test. This will lead us either to another internal node, for which
a new test condition is applied, or eventually, to a leaf node. When a leaf node is
encountered, the new example is classified according to the class label of the leaf
node, as shown in Figure 3.4.
In general, decision tree induction is a useful classification technique for the

following reasons:

1. It is highly expressive in terms of capturing relationships among discrete vari-
ables.

2. It is relatively inexpensive to construct and extremely fast at classifying new
instances.

3.3.2 How to Build a Decision Tree? 60

Blood
Type?

Give birth?

Warm Cold

Yes No

Mammals Non-
Mammals

Non-
Mammals

Name Blood TypeGive birth … Class
Flamingo Warm No … ?

Unlabeled
data

Non-
Mammals

Figure 3.4. Classifying an unlabeled vertebrate.

3. For small-sized trees, it is relatively easy to interpret.

4. It can effectively handle both missing values and noisy data, as will be dis-
cussed later in this section.

5. It can achieve accuracy comparable to other classification techniques in many
application domains.

3.3.2 How to Build a Decision Tree?

Hunt’s Algorithm

Most of the decision-tree induction algorithms are based on the original ideas pro-
posed in the Hunt’s algorithm. The following is a recursive definition of Hunt’s
algorithm. Let Dt be the set of training instances and y = {y1, y2, · · · , yc} be the
class labels.

1. If Dt contains instances that belong to the same class, yk, then its decision
tree consists of a leaf node labeled as yk.

2. If Dt is an empty set, then its decision tree is a leaf node whose class label is
determined from other information such as the majority class of the instances.

3. If Dt contains instances that belong to several classes, then a test condition,
based on one of the attributes of Dt, is applied to split the data into more
homogeneous subsets. The test condition is associated with the root node of
the decision tree for Dt. Dt is then partitioned into smaller subsets, with one
subset for each outcome of the test condition. The outcomes are indicated by
the outgoing links originating from the root node. We then recursively apply
this method to each subset created by the test condition.

Figure 3.5 illustrates an example of how to apply the Hunt’s algorithm to the
tax evasion problem defined in Section 3.1. Initially, the tree consists of a single
root node with class label Evade = No as most of the audited taxpayers shown

3.3.2 How to Build a Decision Tree? 61

Step 1
Step 2

Step 3

Evade = No

Refund
Yes No

Evade = No Evade = No

Refund
Yes No

Marital
Status

Single,
Divorced Married

Evade = No

Evade = Yes Evade = No

Step 4

Refund

Evade = No

Yes No

Marital
Status

Single,
Divorced Married

Taxable
Income

< 80K >= 80K

Evade = No

Evade = YesEvade = No

Figure 3.5. Hunt’s Algorithm for inducing decision trees.

in Figure 3.2 do not evade on their taxes. Since the data contains instances from
both classes, we may decide to split the data into smaller subsets according to the
Refund attribute (Step 2). Notice that all the instances with (Refund = No)
belong to the same class. As a result, a leaf node will be created and we do not have
to split the instances any further. However, for Refund = Y es, the instances are
still not quite pure. We then apply the recursive definition above repeatedly until
all the the instances associated with the leaf nodes belong to the same class (Steps
3 and 4).
As another example, consider the diagram shown in Figure 3.6. The data set

consists of two-dimensional data points, marked as triangles and circles. Let us
assume that the triangles belong to class 0 and the circles belong to class 1. Initially,
the input space contains 8 triangles and 7 circles. This information is depicted by
the rectangular node shown in Figure 3.6(b)(i), where C0 is the number of points
that belong to class 0 and C1 is the number of points that belong to class 1. Suppose
we decide to split the data along the horizontal axis at x1 = 0.43, as shown in the
second diagram of Figure 3.6(a). Splitting the data at this point is equivalent to
converting the initial node into a root node that tests for the condition x1 < 0.43
(see Figure 3.6(b)(ii)). Any data points that satisfy this condition will be assigned
to the left child of the new node, while those that do not satisfy this condition will
be assigned to the right child of the node.
For the left partition, observe that all the circles reside on the top half, while the

triangles reside only on the bottom half. This observation suggests that a decision
boundary can be created at x2 = 0.47 to split the left partition into two regions of
homogeneous classes, as shown in the third diagram of Figure 3.6(a). Splitting the
left partition at this point is equivalent to transforming the left child of the root
node into an internal node that tests for the condition x2 < 0.47. Any data points

3.3.2 How to Build a Decision Tree? 62

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x 2

Original Data

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x 2

First Partition

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x 2

Second Partition

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x 2

Third Partition

(a) Partitioning the input space

x2 < 0.33?x2 < 0.47?
x1 < 0.43?

C0: 8
C1: 7

C0: 4
C1: 4

C0: 4
C1: 3

C0: 4
C1: 0

C0: 4
C1: 3

C0: 0
C1: 4

C0: 0
C1: 3

C0: 4
C1: 0

(i) Original Data (ii) First Partition (iii) Second Partition (iv) Third Partition

Yes No

x1 < 0.43?

Yes

Yes

No

No

x2 < 0.47?

C0: 4
C1: 0

C0: 0
C1: 4

x1 < 0.43?

Yes

Yes

No

No Yes No

(b) Decision tree induction

Class 0 Class 1Class 1 Class 0

x2 < 0.33?x2 < 0.47?

x1 < 0.43?

Yes

Yes

No

No Yes No

(c) Final decision tree

Figure 3.6. Example of decision tree induction for a 2-dimensional data set.

3.3.2 How to Build a Decision Tree? 63

YESYESNONO

NONO

NONO

Yes No

{Married}
{Single,

Divorced}

< 80K > 80K

Taxable
Income

Marital
Status

Refund
Tid Refund Marital

Status
Taxable
Income Evade

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

categoric
al

categoric
al

contin
uous

class

Figure 3.7. Decision tree for the taxpayer classification problem.

that satisfy this condition are assigned to the left child of the internal node, while
those that do not satisfy the condition are associated with the right child. The
current shape of the tree is shown in Figure 3.6(b)(iii).
We continue to partition the attribute space until each region contains mostly

data points from the same class (see Figure 3.6(b)(iv)). The final decision tree is
obtained by converting the class distributions of the leaf nodes into class labels that
represent the majority class of points, as shown in Figure 3.6(c).

General Approach for Tree Induction

So far, we have described how a decision tree works without delving too deeply into
the details of decision tree construction. In this section, we take a step back and
examine how decision trees can be induced from data. For illustrative purposes, we
consider the taxpayer classification problem, which was first introduced in Section
3.1. The decision tree for this problem is shown in Figure 3.7.
While various decision tree induction algorithms have been developed in recent

years, the greedy, top-down recursive partitioning approach is still the most popular
strategy and our discussion on decision tree induction will focus on this approach.
In general, growing a decision tree involves the following tasks:

1. Determine how to split the instances. Decision tree algorithms often use
greedy heuristics to make a series of locally optimum decisions about which
attribute to use for partitioning the data. Such a greedy strategy may result
in suboptimal solutions, especially when no backtracking is allowed by the
algorithm. (One of the exercises in this chapter will illustrate a suboptimal
solution of a decision tree.)

At each step of the greedy algorithm, a test condition is applied to split the
data into subsets with a more homogeneous class distribution. Among the key
issues to be addressed in this step include:

(a) The different ways to do the splitting. Since decision tree induction works
for various types of attributes, it is important to know how to specify the

3.3.3 Methods for Splitting 64

Marital
Status?

Single Divorced

OR

{Single} {Married,
Divorced}

Marital
Status?

(a) Multi-way split (b) Binary split (nominal)

{Small,
Large}

Size?

{Tiny,
Medium}Married

{Single,
Divorced}

Marital
Status?

{Married}

(c) Binary split (ordinal)

Figure 3.8. Splitting instances based on categorical attributes.

test condition for each attribute type. We will address this issue when
we discuss methods of splitting in the next section

(b) How to determine the best split. An objective measure is needed to
determine how good a split is in terms of making the subsets purer. We
will address the various measures later in this chapter.

2. Determine when to stop splitting. A stopping condition is needed to
terminate the tree growing process. Two of the most widely-used stopping
conditions are (1) stop expanding a node if all the instances belong to the
same class, and (2) stop expanding a node if all the instances have similar
attribute values. While these two conditions are often sufficient, other stopping
conditions can be imposed to make the tree growing procedure stop earlier.
The advantages of early termination are discussed later in this chapter.

3.3.3 Methods for Splitting

A key step towards building a decision tree is to find an appropriate test condition
for splitting the data into purer subsets. Below, we describe the different methods
available to specify the test condition for splitting instances. The methods are
grouped by attribute type: categorical or continuous.

Categorical Attributes. For categorical attributes, the test condition can be
expressed as an attribute-value pair (A = v?) whose outcomes are Yes/No,
or as a question about the value of an attribute (A?). In the latter case,
the number of outcomes for the test condition depends on the number of
distinct attribute values. For example, since the attribute Marital Status
has three possible values (single, married, or divorced), there are as many as
three possible outcomes for the test condition (Marital Status?), as illustrated
in Figure 3.8(a). While this approach is simple to implement, it may lead to
undesirable effects, especially when the number of attribute values is too large.

For example, Figure 3.9 shows three different ways to split a data set that
contains 10 instances of class 0 and 10 instances of class 1. If the attributes
(Own Car?) and (CarType?) are compared, one could see that (CarType?)
seems to provide a better way to split the data because the class distributions

3.3.3 Methods for Splitting 65

Own
Car?

C0: 6
C1: 4

C0: 4
C1: 6

C0: 1
C1: 3

C0: 8
C1: 0

C0: 1
C1: 7

Car
Type?

C0: 1
C1: 0

C0: 1
C1: 0

C0: 0
C1: 1

Student
ID?

...

Yes No Family

Sports

Luxury c1
c10

c20

C0: 0
C1: 1

...

c11

Figure 3.9. Splitting the data set according to different attribute values.

in the descendent nodes are more homogeneous. If we compare both attributes
against (Student Id?), the latter seems to produce subsets with the most
homogeneous class distributions. However, (Student Id?) is not useful as a
test condition because the attribute value is unique for all instances. Such an
attribute may not generalize well to instances it has not seen before. This is
because whenever the number of instances covered by a node is too small, any
decisions the node makes may not be statistically significant and is sensitive
to noise. This is also known as the small disjunct problem.

One way to overcome this problem is to group together some of the attribute
values into larger subsets, as shown in Figure 3.8(b). Grouping of attribute
values is also required for a decision tree algorithm such as CART that uses
2-way splits. While grouping attribute values may overcome the small disjunct
problem, it incurs additional overhead to find the optimal way for grouping the
attribute values effectively. It is also important to distinguish between group-
ing ordinal and nominal categorical attributes. Unlike nominal attributes,
some of the groupings for ordinal attributes could be counter-intuitive espe-
cially if they violate the order property of the attribute. For example, the
binary split shown in Figure 3.8(c) violates the order property of the Size
attribute.

Continuous Attributes. For continuous attributes, the test condition can be
expressed in terms of a binary decision (A < v?) or (A ≥ v?), whose outcomes
are Yes/No, or as a range query whose outcomes are vi ≤ A < vi+1, for
i = 1, · · · , k (see Figure 3.10). For the binary case, one may consider all
possible split positions v and selects the one that gives the best split, i.e.,
partitions the instances into subsets of homogeneous class distributions. In
the second approach, the ranges of the continuous values are obtained by using
the discretization techniques described in Chapter 2. After discretization, a
new ordinal attribute value can be assigned to each discretized interval. One
may group some the new attribute values into larger subsets as long as the
order property is not violated.

3.3.4 Measures for Selecting the Best Split 66

Taxable
Income
> 80K?

Yes No

Taxable
Income?

(i) (ii)

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K

Figure 3.10. Splitting continuous attributes.

3.3.4 Measures for Selecting the Best Split

There are many test conditions one could apply to partition a collection of instances
into smaller subsets. We now discuss the various measures available to determine
which test condition provides the best split. The measures used to discriminate
instances belonging to different classes are defined in terms of (1) the class distri-
bution of instances in the parent node, and (2) the class distributions of instances
in the child nodes.
Let P (i|t) denotes the fraction of instances belonging to class i at a given node t.

We express this fraction as P (i|t) ≡ pi when the context (node) for which the value is
defined is clear. For a two-class problem, we denote the class distribution of instances
at a given node as (p1, p2), where p2 = 1− p1. For example, in Figure 3.9, the class
distribution for the parent node is (0.5, 0.5) since instances from both classes are
equally represented at the root node. For attribute A, the class distributions for its
two child nodes are (0.6, 0.4) and (0.4, 0.6), respectively. For attribute B, the class
distributions of its child nodes are (0.25, 0.75), (1, 0), and (0.125, 0.875), respectively.
For attribute C, the class distributions are (1, 0) for child nodes connected via the
links c1, c2, · · · , c10 and (0, 1) for child nodes connected via the links c11, c12, · · · , c20.
A splitting function decides which test condition to use by examining the degree

of impurity of its child nodes. For example, a node with class distribution (0, 1)
would have zero degree of impurity since all of its instances belong to the same
class. A test condition that produces such a node would be preferred over another
that produces nodes with uniform class distribution (0.5, 0.5).
Below, we define three impurity measures for a given node t.

Entropy(t) = −
c∑

i=1

p(i|t) log2 p(i|t) (3.3)

Gini(t) = 1−
c∑

i=1

[p(i|t)]2 (3.4)

Classification error(t) = 1−max
i
[p(i|t)] (3.5)

where c is the number of distinct classes. Figure 3.11 compares the values of the
different impurity measures when applied to a node containing instances from two

3.3.4 Measures for Selecting the Best Split 67

different classes. The horizontal axis corresponds to the estimated probability for
one of the classes while the vertical axis corresponds to the impurity measure for the
node. Note that each measure attains its maximum value when the class distribution
is uniform, and attains its minimum value when the estimated probability for one
of the classes is equal to 0 or 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

Entropy

Gini

Misclassification
error

Figure 3.11. Comparison between the impurity functions for two-class problems.

Below, we illustrate a few examples for calculating the different impurity mea-
sures for a given node. Note that 0 log2 0 = 0 in the entropy calculations.

Node N1 Count

Class=0 0

Class=1 6

Gini = 1− (0/6)2 − (6/6)2 = 0
Entropy = −(0/6) log2(0/6)− (6/6) log2(6/6) = 0
Error = 1−max[0/6, 1/6] = 0

Node N2 Count

Class=0 1

Class=1 5

Gini = 1− (1/6)2 − (5/6)2 = 0.278
Entropy = −(1/6) log2(1/6)− (5/6) log2(5/6) = 0.650
Error = 1−max[1/6, 5/6] = 0.167

Node N3 Count

Class=0 3

Class=1 3

Gini = 1− (3/6)2 − (3/6)2 = 0.5
Entropy = −(3/6) log2(3/6)− (3/6) log2(3/6) = 1
Error = 1−max[3/6, 3/6] = 0.5

To determine how good a test condition is, we need a splitting function that
compares the impurity measure of the parent node (prior to splitting) against the
weighted-averaged of the impurity measure of the child nodes (after splitting). The
conditions for a splitting function are stated below.

1. Intuitively, dividing instances into smaller groups can only make the groups
purer. As a result, when a node is partitioned into several child nodes, the

3.3.4 Measures for Selecting the Best Split 68

weighted average of the impurity measure for the child nodes should be lower
than the impurity measure for the parent node.

2. The larger the difference between the impurity measure of the parent node
and its child nodes, the more discriminating the test condition.

A splitting function that satisfies the above conditions is:

Splitting function, ∆ = I(parent)−
k∑

j=1

N(vj)

N
I(vj) (3.6)

where I(·) is the impurity measure of a given node, N is the total number of instances
at the parent node, k is the number of attribute values, and N(vj) is the number
of instances associated with a child node having attribute value vj . When entropy
is used as the impurity measure in Equation 3.6, the splitting function is known as
information gain, ∆gain.

Splitting function for Binary Attributes

Consider the diagram shown in Figure 3.12. Suppose there are two ways to split
the data into smaller subsets. Before splitting, the gini index is 0.5 since there
are equal number of instances in both classes. If we use the binary attribute A to
split the data, the gini index for node N1 is 0.4898 and node N2 is 0.48. Using
equation 3.6, the splitting function is ∆ = 0.5 − (7/12) ∗ 0.4898 − (5/12) ∗ 0.48 =
0.5− 0.486 = 0.014. Similarly, we can show that the splitting function for attribute
B is 0.5− 0.375 = 0.125. Since attribute B has a larger splitting function, it should
be used as the test condition for the root node.

A?

Yes No

Node N1 Node N2

B?

Yes No

Node N1 Node N2

 N1 N2
C1 4 2
C2 3 3
Gini=0.486

 N1 N2
C1 1 5
C2 4 2
Gini=0. 375

 Parent

C1 6

C2 6

Gini = 0.500

Figure 3.12. Splitting binary attributes.

3.3.4 Measures for Selecting the Best Split 69

Splitting function for Categorical Attributes

Consider the diagram shown in Figure 3.13. In this example, we compare the gini
index for multi-way splitting of categorical attributes against the gini index for two-
way splits. Since a two-way split merges some of the attribute values, its gini index
must be higher than the gini index for any multi-way split.

CarType
{Sports,
Luxury} {Family}

C1 3 1
C2 2 4

Gini 0.400

CarType

{Sports} {Family,
Luxury}

C1 2 2
C2 1 5

Gini 0.419

CarType
FamilySportsLuxury

C1 1 2 1
C2 4 1 1

Gini 0.393

CarType
Family

Sports
Luxury

CarType
Family

Sports
Luxury

CarType
{Sports,
Luxury} {Family}

CarType
{Sports,
Luxury} {Family}

CarType
{Family,
Luxury} {Sports}

CarType
{Family,
Luxury} {Sports}

(a) Multi-way split (b) Two-way split

Figure 3.13. Splitting categorical attributes.

Splitting function for Continuous Attributes

Consider the example shown in Figure 3.14, where we are attempting to find the opti-
mal split position (v) for the test condition Taxable Income < v or Taxable Income ≥
v. We assume that the split position is optimal if it minimizes the gini index. A
trivial way to select v is to use the attribute values for all the N instances as the
candidate split positions. We then compute the gini index for each candidate and
choose the one that gives the lowest gini index. While this approach seems trivial,
it can be expensive. This is because, for each candidate split position, computing
the gini index requires another scan over the entire data set to count the number
of instances less than or greater than v. Thus, each candidate split position would
require O(N) operations. Since there are N candidates, the overall complexity of
this trivial approach is O(N 2).
We can reduce the cost of this step from a quadratic complexity to O(N logN).

First, the attribute values are sorted. The candidate split positions now correspond
to values located between two adjacent sorted values. At the beginning, none of the
classes have instances smaller than the first candidate split position, which is why
the counts for both Y es and No classes are 0. We then compute the gini index at
each adjacent split positions by scanning the sorted array from left to right while
updating the counts for each class, as shown in Figure 3.14. The best split position
corresponds to the one that produces the smallest gini index, i.e., v = 97. This step
requires O(N logN) operations for sorting and O(N) for computing the gini index
at each candidate split position. The scanning step can be optimized further by
considering only candidate split positions located between two adjacent attribute

3.3.4 Measures for Selecting the Best Split 70

values with different class labels. With this approach, we can ignore the candidate
split positions at 55, 65, 72, 87, 92, 110, 122, 172, and 230 because they are located
between instances that have identical class labels.

Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split PositionsSplit Positions
Sorted Values

Figure 3.14. Splitting continuous attributes.

Example 2 Let us apply the information gain splitting function to the examples
shown in Figure 3.9. The entropy measure of the parent node is I(parent) =
−0.5 log2 0.5 − 0.5 log2 0.5 = 1. For attribute A, we need to compute the entropy
measures for both of its child nodes:

I(a1) = −0.6 log2 0.6− 0.4 log2 0.4 = 0.971 (3.7)

I(a2) = −0.4 log2 0.4− 0.6 log2 0.6 = 0.971 (3.8)

Since there are 10 instances with attribute value a1 and 10 instances with attribute
value a2, P (a1) = P (a2) = 0.5. Applying equation 3.6, the information gain for
attribute A is:

I(parent)− P (a1)I(a1)− P (a2)I(a2) = 1− 2× 0.5× 0.971 = 0.029

Similarly, for attribute B,

I(b1) = −1/4 log2(1/4)− 3/4 log2(3/4) = 0.811 (3.9)

I(b2) = −0 log2 0− 1 log2 1 = 0 (3.10)

I(b3) = −1/8 log2(1/8)− 7/8 log2(7/8) = 0.544 (3.11)

where 0 log 0 = 0. Furthermore, P (b1) = 4/20 = 0.2, P (b2) = 8/20 = 0.4, and
P (b3) = 8/20 = 0.4. As a result, the information gain for attribute B is:

I(parent)−P (b1)I(b1)−P (b2)I(b2)−P (b3)I(b3) = 1−0.2×0.811−0.4×0.544 = 0.620

Since the information gain for attribute B is higher than attribute A, one should
prefer attribute B over attribute A as the test condition.

3.3.5 General Issues in Model Construction 71

If we repeat the above analysis for attribute C, the information gain for C would
be higher than both A and B. This is because information gain tends to favor
attributes that have a large number of distinct values. A decision tree algorithm
called C4.5 attempts to address this problem by using a different splitting function
called gain ratio, which is obtained by dividing information gain with the splitting
information.

Gain ratio =
∆gain

Split Info
(3.12)

where Split Info = −∑k
i=1 P (vi) log2 P (vi). If each attribute value has the same

number of instances, then ∀i : P (vi) = 1/k and the split information would be
equal to log2 k. This suggests that if the number of attribute values is large (i.e.,
k is large), its splitting information would also be large. Gain ratio penalizes such
attributes by placing the splitting information in the denominator.

3.3.5 General Issues in Model Construction

There are several practical challenges when applying this technique to real data sets.
Below, we describe some of the well-known problems that need to be addressed by
any classification techniques.

Overfitting: Suppose the accuracy obtained for training a model is 99.9%. Does
this guarantee that the overall accuracy of the model for the entire data set
will also be 99.9%?

Example 3 Consider the problem of classifying vertebrates into mammals
and non-mammals. Suppose the training set contains the following instances:

Name Gives birth Can fly Hibernates Class
turtle no no no non-mammal
python no no yes non-mammal
pigeon no yes no non-mammal
owl no yes yes non-mammal
human yes no no mammal
bear yes no yes mammal
bat yes yes yes mammal

For simplicity, we use the entire table as our classification model - ignoring the
first attribute, which is the name of the vertebrate. As a result, our model is
100% accurate on the training set. Suppose the test data contains the following
instances:

Name Gives birth Can fly Hibernates Class
platypus no no no mammal
leopard shark yes no no non-mammal

3.3.5 General Issues in Model Construction 72

The attributes of a platypus are similar to those of a turtle, so it will be clas-
sified as a non-mammal, while the attributes of a leopard shark are similar
to those of a human, so it will be classified as a mammal. In this extreme
example, the accuracy obtained for the test set is 0%!

If the accuracy of a model degrades significantly when applied to the test
set, then we say that the model overfits the training data. There are two
situations in which overfitting may occur during model building. First, it may
result from the presence of noise or errors in the training data. As a result,
learning algorithms that attempt to fit perfectly to the training data would end
up with the wrong model. For example, Figure 3.15(a) shows how a mislabeled
data point can distort the decision boundary, producing a classification model
that is more complex than necessary. (The decision boundary of a classification
model corresponds to the border line that separates the different classes.) Such
complex models often do not have a good generalization ability. If the noise
point is labeled correctly, then the two classes can be distinguished easily by
drawing a straight line that passes through the points (0,4) and (4,0). Second,
even if the data is free of noise points, another possible reason for overfitting
is the lack of training instances to learn the correct model. Figure 3.15(b)
illustrates a training set that contains only four of the circular (opaque) points
and five of the ”+” points. The test set contains four circular (transparent)
points. Since all the circular points of the training set are selected from the
left side of the diagram, the decision boundary has changed dramatically. This
causes many of the test circular points to be misclassified. We will examine
the various ways to handle the overfitting problem later in the next section.

Missing Values: Many of the real data sets may contain missing values because
no measurement is available on some of the attributes. These attributes could
be missing because (1) it is costly to measure such attributes, (2) the mea-
sured value cannot be trusted, or (3) the attribute value is unavailable due
to some other reasons. There are several generic approaches to handle this
problem. First, one can ignore instances with missing values. However, this
is not recommended, especially if we do not have enough examples for train-
ing. Alternatively, one could try to replace the missing attribute value with
either the most common value throughout the data set, or with the most
common value among instances from the same class. A third approach is to
assign the missing value a probabilistic vector which gives a probability for
each possible attribute value. This approach works only if the classification
technique can handle attributes with probability vectors when computing the
decision boundaries among classes. Finally, note that this problem must also
be addressed during model application when unlabeled data contains missing
attribute values.

Data Heterogeneity: Most of the examples from earlier sections have data
sets with only one attribute type - either they are all continuous (for the

3.3.5 General Issues in Model Construction 73

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Noise point

(a) Overfitting due to noise

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Misclassified
 points

(b) Overfitting due to insufficient number of training

points

Figure 3.15. Overfitting problem during model building.

3.3.6 Handling Overfitting 74

2-dimensional data set) or discrete (for the vertebrate data set). In reality,
the data may contain a mixture of both continuous and discrete attributes.
For such data sets, it is important to know how the different classification
techniques will handle the different attribute types. Some techniques may
require discretization of the continuous attributes, while others may require
changing the continuous, distance-based metrics into similarity measures for
discrete attributes.

Costs: How to deal with attributes that have different costs of measurement
or classes that incur different costs of misclassification? For example, in the
vertebrate data set, it is more expensive to measure the average length of
each adult vertebrate than to determine whether the vertebrate can fly. In
this case, the criteria for evaluating a classification model should take into
account both model accuracy and the overall cost of the model. In other
applications, such as detecting credit card frauds, the cost of misclassifying
a fraudulent transaction as a valid transaction is more expensive than vice-
versa. Therefore, one should prefer models that incur smaller misclassification
costs. Some classification techniques may incorporate the cost of attributes or
misclassification costs explicitly into their metrics during model building, while
others may evaluate the overall cost only after the model has been constructed.

3.3.6 Handling Overfitting

So far, we have described how the training set can be used to induce a decision tree.
We have also explained the role of the test set, which is to provide an unbiased
estimate of the performance of the induced model. We now discuss the problem of
overfitting and how decision tree induction algorithms attempt to fix this problem.
We begin with an example of a two-dimensional data set consisting of 500 trian-

gular and 500 circular data points, as shown in Figure 3.16(a). The circular points
are located between 0.5 ≤

√
x21 + x22 ≤ 1 while the triangular points are located

at
√
x21 + x22 < 0.5 and

√
x21 + x22 > 1. Two-third of the data points are used for

training while the rest are used for testing. The C4.5 decision tree algorithm is
applied to the data set with different threshold parameters to control the size of
the decision tree. We then compute the misclassification error rate for both the
training and test sets. Misclassification errors on the training set are often known
as resubstitution errors while misclassification errors on test set are also known as
generalization errors. The results of this experiment are shown in Figure 3.16(b).
Observe that when the size of the tree is too small, underfitting occurs and

the model performs poorly on both training and test sets. If the size of the tree
increases, then both training and test errors improve. However, if the decision tree is
too large, the test errors increase even though the training errors are decreasing. In
this case, overfitting has occurred and the model will not generalize well to unseen
instances.
The above example illustrates how the complexity of a model affects its gener-

alization ability. If the model is too simple, it may not fit the training and test

3.3.6 Handling Overfitting 75

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

(a) Data set for experiment.

0 50 100 150 200 250 300
5

10

15

20

25

30

35

40

45

Number of nodes

E
rr

or
 (%

)

Training set
Test set

(b) Training and Test errors for decision trees at different model

complexity.

Figure 3.16. Overfitting and Underfitting.

3.3.6 Handling Overfitting 76

sets well. Likewise, if the model is too complex, overfitting may occur and reduce
its ability to generalize beyond the training instances. During model building, the
learning algorithm has access only to the training data. As a result, it cannot de-
termine how well the model it has selected would perform on the overall data set.
This requires some means to estimate the generalization error of a model. Here
are several well-known techniques used to approximate the generalization error of a
decision tree:

Optimistic approach. This approach assumes that the training data is a good
representation of the overall data. It uses the training error as an optimistic
estimate of the generalization error. In this approach, no test data is needed
and the best model is one that minimizes the training data.

Pessimistic Approach. Analogous to the previous approach, this method as-
sumes that the generalization error can be estimated directly from the training
data. However, the difference is that the generalization error is estimated after
making some statistical corrections to the training error. Quinlan had initially
estimated the generalization error rate for a node t, r′(t), by using the continu-
ity correction to a Binomial distribution, i.e., r′(t) = [e(t) + 1/2]/n(t), where
e(t) is the number of misclassification errors on the training data and n(t) is
the total number of instances classified by the node t. Note that for large
n(t), r′(t) 7→ e(t)/n(t). If T corresponds to the entire tree with leaf nodes
(t1, t2, · · · , tk), then the estimated generalization error rate of the tree is:

r′(T) =

∑k
i=1[e(ti) + 1/2]∑k

i=1 n(ti)
=
[e(T) + k/2]
∑k

i=1 n(ti)

For example, a decision tree that contains 30 leaf nodes and misclassifies 50 of
the 1000 training instances would have a resubstitution error rate of 5% and
a pessimistic error rate of (50 + 0.5× 30)/1000 = 6.5%.
The above analysis shows that the above pessimistic pruning strategy would
penalize complicated models by assigning a cost penalty to each leaf node of
the decision tree. For his C4.5 decision tree algorithm, Quinlan re-defined the
pessimistic error rate to be e′(t)/n(t) = e(t)/n(t) + ε, where ε is the upper
bound of the error term computed from a Binomial distribution.

Reduced Error Pruning Approach. In this approach, the generalization error
is not computed from the training data. Instead, the training set is divided
into two smaller subsets: one of which is used for training while the other,
known as the validation set, is used for estimating the generalization error.
A conventional way to do this is to reserve one-third of the training data for
validation, while the remaining two-thirds are used for building the model. The
generalization error can be computed as an optimistic or pessimistic estimate
of the error made on the validation data set. The drawback of this approach
is that less data is available for training. One way to address this problem

3.3.6 Handling Overfitting 77

is by using a method known as k-fold cross-validation, where we divide the
training data into k blocks. We build the decision tree on k − 1 blocks and
then estimate the error by testing the model on the remaining block. This
procedure is repeated until each block is used once as the validation data set.
In this case, the generalization error is given by the average error made for
the k runs.

The example at the beginning of this section illustrates that overfitting is a
problem when the complexity of the model is higher than necessary. This problem
arises primarily because the model has accidently fitted some of the noise points
in the training set. As a result, its generalization ability suffers. This example
indicates that it pays to choose smaller decision trees than larger ones, which agrees
with a well-known principle known as Occam’s razor or the principle of parsimony :

Definition 4 Occam’s Razor: Given two models of similar generalization errors,
one should prefer the simpler model over the more complex model.

Occam’s razor principle makes sense because, for a complex model, there is a greater
chance that it was fitted accidently by the data. In the words of Einstein, “Every-
thing should be made as simple as possible, but not simpler.”
The above discussion suggests that it would be advantageous to incorporate

model complexity when selecting an appropriate model to represent the data. One
way to explicitly incorporate model complexity is to use a cost function that takes
into account both the misclassification error on training data as well as the com-
plexity of the model. This approach is known as the Minimum Description Length
(MDL) principle.
To illustrate the MDL principle, consider the example shown in Figure 3.17.

In this example, both persons A and B are given a set of instances with attribute

X y
X1 ?
X2 ?
X3 ?
X4 ?

… …
Xn ?

Labeled Unlabeled

A B

X y
X1 1
X2 0
X3 0
X4 1

… …
Xn 1

A?

B?

C?

10

0

1

Yes No

B1 B2

C1 C2

Figure 3.17. Minimum Description Length (MDL) principle.

values x. In addition, person A knows the exact class label for each instance but not

3.3.6 Handling Overfitting 78

person B. The class label is assumed to be binary (0 or 1). One way for B to know
the exact classification for each class would be to request A to transmit the class
labels sequentially. Such a message would require Θ(n) bits of information. One
way to reduce the message length is to build a decision tree that summarizes the
relationship between x and y, encodes the tree in a compact form, and transmits
the code to B. According to the MDL principle, we should seek for a model that
requires minimum description, i.e., produces the shortest code. The overall cost (or
description length) for transmitting the information is:

Cost(model, data) = Cost(model) + Cost(data|model) (3.13)

If the model is 100% accurate, then Cost(data|model) = 0. Otherwise, besides send-
ing the model, we need to transmit information about which of the instances were
misclassified by the model. The cost for doing this is given by Cost(data|model).
Thus, the MDL principle can be used to guide decision tree pruning by seeking for a
decision tree that minimizes the overall cost given in Equation 3.13. An example for
computing the description length of a decision tree is given as one of the exercises
in this chapter.
The previous discussion illustrates the different ways to estimate the general-

ization ability of a decision tree. A decision tree with poor generalization ability
tends to overfit the training data and should be less favorable than another with
better generalization ability. Below, we describe several methods to overcome the
overfitting problem.

Pre-pruning (Early Stopping Rule): In this approach, the tree growing algo-
rithm is halted before it generates a fully-grown tree that fits the entire training
data. This requires us to specify a stricter stopping condition than the ones
described earlier in this section. Some of the conditions for stopping the tree
expansion process prematurely are: (1) if the number of instances is too small
to make any statistically significant decision, (2) if the distribution of instances
in the current node are independent of the available features, e.g., they fail the
standard χ2 test of independence, and (3) if expanding the current node only
increases the complexity of the model without improving the quality of pre-
diction by a significant amount. We can use some of the techniques described
previously (e.g. pessimistic pruning or reduced error pruning) to determine
whether expanding a node into a subtree is better than leaving it as a leaf
node.

Post-pruning: In this approach, the decision tree is initially grown to its entirety.
This is immediately followed by a pruning step, which proceeds to trim some
of the nodes of the current tree. Trimming is done by replacing a subtree with
a new leaf node, whose class label is determined from the majority class of
instances affiliated with the subtree. If the generalization error improves after
trimming, the subtree will be replaced by the leaf node. The generalization
error can be estimated using the optimistic or pessimistic approaches described

3.3.7 Handling Missing Attribute Values 79

above. Pruning will stop when no further improvements can be achieved.
Instead of estimating the generalization error explicitly from training data, an
alternative strategy is to use Occam’s razor principle and explicitly determine
the model complexity. The assumption here is that the generalization error
will be small when both training error and model complexity are low. We can
use the minimum description length principle to determine whether pruning
is needed.

3.3.7 Handling Missing Attribute Values

Decision tree induction can handle the missing attribute value problem using one of
the generic approaches described in Section 3.3.5 or more sophisticated techniques
that are specific to the decision tree induction algorithm. An example of the latter
approach is given below for the C4.5 decision tree algorithm. Instances with missing
attribute values can affect decision tree construction in three different ways: (1) they
affect how the impurity measures are computed, (2) they affect how an instance with
missing value is distributed to the child nodes, (3) they affect how a test instance
with missing value is classified.

Computing Impurity Measure: Consider once again the taxpayer classification
problem depicted in Figure 3.7. Suppose we replace the attribute value for
Refund in the last record from “No” to “?” (missing). How would this affect
the gain ratio calculations? Initially, our data set contains 7 instances of class
Y es and 3 instances of class No. If we consider the attribute Refund as the
test condition, the instances can be partitioned in the following way:

Evade= Y es Evade= No Total

Refund = Y es 0 3 3
Refund = No 2 4 6
Refund =? 1 0 1

Total 3 7 10

We implicitly assume that an additional value is “reserved” for the missing
attribute value. Since the Refund value for the last record is missing, it will
not contribute directly to the entropy calculations of the child nodes. Before
splitting the attributes, the entropy of the parent node is −(3/10) log2(3/10)−
(7/10) log2(7/10) = 0.8813. After splitting, the entropy for each child node is:

Entropy(Refund = Y es) = −0 log2(0)− (3/3) log2(3/3) = 0 (3.14)

Entropy(Refund = No) = −(2/6) log2(2/6)− (4/6) log2(4/6)
= 0.9183 (3.15)

3.3.7 Handling Missing Attribute Values 80

The weighted average of entropy for the child nodes (excluding instances with
missing value) is 0.3 ∗ 0 + 0.6 ∗ 0.9183 = 0.5510. The formula for information
gain has changed to:

∆gain = g × [Entropy(All)− Entropy(Children)]
where g is the fraction of instances whose attribute value for Refund is known,
i.e., g = 9/10 = 0.9. Replacing all the terms into the above formula yields
∆gain = 0.9× (0.8813− 0.5510) = 0.3303. Let us examine what happen if the
Refund attribute for the last record is known to be “No”. The information
gain for this case is ∆gain = (0.8813 − 0.6897) = 0.1916. This is an example
where the information gain has improved because the missing attribute value
somehow causes the child node for Refund = No to become purer. (Can
you think of a counter-example where missing attribute values can hurt the
information gain?) The split information is computed by treating “Missing”
as another attribute value:

Split Info = −0.3 log2(0.3)− 0.6 log2(0.6)− 0.1 log2(0.1) = 1.2955
Therefore, the gain ratio for Refund is 0.3303/1.2955 = 0.2550.

Distribution of Instances. Assuming that Refund still has the highest gain ratio
among the three attributes (actual calculations would reveal that the attribute
TaxableIncome has the highest gain ratio), it will be selected as the test
condition for the root node. Next, we need to distribute the instances down
the branches of the root node. For instances that have known values for
Refund, we can distribute them to one of the branches in the same manner
as before. On the other hand, if the value for Refund is missing, we would
distribute the instance to the (Refund = Y es) branch with a fractional weight
of 3/9 and the (Refund = No) branch with a fractional weight of 6/9. After
distributing the last record, the Refund = Y es branch has 1/3 instances of
class Y es and 3 instances of class No. On the other hand, the Refund = No
branch has 2 + 2/3 = 2.67 instances of class Y es and 4 instances of class No.

Suppose we need to split the instances further according to theMarital Status
attribute. This attribute has three possible values, Single, Married, and
Divorced. Of the 6.67 instances that reaches the Marital Status node, their
class distributions are shown below:

Married Single Divorced Total

Class = No 3 1 0 4
Class = Y es 0.67 1 1 2.67

Total 3.67 2 1 6.67

We can compute the gain ratio for this attribute in the same manner as before,
except that each branch has a fractional count of instances.

3.3.8 Algorithm for Decision Tree Construction 81

Table 3.3. Decision Tree Algorithm.

Tree−Growth(E: set of training instances, F : set of features)
1. if stopping cond(E,F) = true then

1a. leaf = createNode()

1b. leaf.label = getMajorityClass(E)

1c. return leaf

2. else

2a. root = createNode()

2b. root.test cond = find best split(E, F)

2c. let V = {v|v is a possible outcome of root.test cond }
2d. for each v ∈ V do
2e. Ev = {e | root.test cond(e) = v and e ∈ E}
2f. child = TreeGrowth(Ev, F)

2g. add child as descendent of root and label the edge root→ child as v

2h. end

3. end

4. return root

Classifying Instances. Suppose an unlabeled instance has the following attributes:
(Refund = No, Marital Status =?, Taxable Income = 80), where the
value for Marital Status is missing. Assuming that the final tree is simi-
lar to the one shown in Figure 3.7, the instance will first move to the right
child of the Refund node. The next test condition applied to the instance is
(Marital Status?). During the tree construction step described in the previ-
ous paragraph, the left branch {Single,Divorced} has 3 instances while the
right branch {Married} has 3.67 instances (see the table above). Therefore,
the instance will be assigned to the left child with a fractional weight of 3/6.67
and the right child with a fractional weight of 3.67/6.67. These fractions will
propagate down the tree until they reach the leaf nodes, where the class label
is determined by combining the predicted probabilities of the leaf nodes.

3.3.8 Algorithm for Decision Tree Construction

An algorithm for growing decision trees is summarized in Table 3.3. The algorithm
works by recursively selecting the best feature to split the data (Step 2b) and creating
internal nodes (Steps 2f and 2g) until a stopping criterion is met (Step 1).
The details of the above decision tree algorithm are explained below:

1. The createNode() function expands the decision tree by creating a new node.
Each node in the tree can either have a test condition, denoted as node.test cond,
or a class label, denoted as node.label.

2. The find best split() function determines which feature should be selected as
the test condition for splitting the training instances. As previously noted,

3.3.9 Characteristics of Decision Tree Induction 82

determining the test condition is equivalent to deciding which region of the
input space should be partitioned next. In recent years, various forms of
splitting functions have been proposed including entropy, the Gini index, and
the χ2 measure.

3. The getMajorityClass() function takes the current set of labeled instances and
decides on the most likely class label to be assigned to the node. A typical
implementation of this function would take the majority class label of the given
instances. However, for classification schemes that are cost-sensitive, the cost
metric can also be incorporated into this function.

4. Finally, the stopping condition function, stopping cond(), is used to prevent
the tree from growing any further. This condition is met when all the instances
E that reach the current node have the same class label, or when the instances
have satisfied some tree pruning criterion. Examples of the latter include the
number of instances have fallen below some minimum threshold or the class
distribution of the instances have satisfied some skewness criterion.

3.3.9 Characteristics of Decision Tree Induction

Some of the main characteristics of decision tree induction are summarized below:

1. Decision tree induction is a non-parametric approach for building classification
models because it does not require making any a priori assumption about the
probability distributions of classes and attributes.

2. Decision trees have an expressive representation for learning any discrete-
valued function. However, they do not generalize well to certain types of
Boolean functions such as parity functions, whose values are 1 when there is
an even number of input (Boolean) variables with the value True, and 0 when
there is an odd number of input (Boolean) variables with the value True. Such
functions require the full-sized tree (having 2d nodes, where d is the number
of Boolean attributes) to be grown.

3. Finding an optimal decision tree is an NP-complete problem. Many decision
tree algorithms employ a heuristic-based search strategy to guide their search
in the vast hypothesis space. The bias introduced by the algorithm as a result
of its search strategy is known as preference bias in the machine learning
literature.

4. Most decision tree induction algorithms use a greedy, top-down, recursive par-
titioning approach for growing the tree. Nevertheless, algorithms that use
bottom-up or bi-directional tree-growing search strategies do exist.

5. Decision tree algorithms are quite robust to noise, particularly when the pre-
pruning or post-pruning methods described in the previous section are used.

3.3.9 Characteristics of Decision Tree Induction 83

P

Q R

S 0 1

0 1

Q

S 0

0 1

Figure 3.18. Replication problem of decision trees.

6. One major drawback of decision tree induction is the data fragmentation prob-
lem. In a top-down, recursive partitioning approach, the number of instances
becomes smaller as you traverse down the tree. At the leaf nodes, the number
of instances could be too small to make any statistically significant decision
about the class representation of the instances. One possible solution is to
disallow further splitting when the number of instances is too low. In ad-
dition, instead of having a decision tree that produces crisp decisions at the
leaf nodes, the leaf nodes can be used to provide probability estimates about
the class representation of a given instance. In addition, a soft splitting crite-
rion can be used during decision tree construction, where an instance can be
assigned to different partitions with different probabilities.

7. A subtree can be replicated multiple times at different branches of a deci-
sion tree, as illustrated in Figure 3.18. This makes the decision tree more
complicated than necessary and more difficult to understand. This problem
arises as a result of decision tree representations that rely on single attribute
test at each node. Since many of the decision tree algorithms use a divide-
and-conquer partitioning strategy, the same test condition can be applied to
different parts of the attribute space, which leads to the subtree replication
problem.

8. Studies have shown that redundant attributes do not adversely affect the ac-
curacy of decision trees [96]. However, data sets with redundant attributes do
tend to produce trees that are larger than necessary.

9. The test conditions described in this section involve only one attribute at a
time. Such a test condition will partition the attribute space into rectangular
regions whose decision boundaries are parallel to the coordinate axes. Figure
3.19 illustrates an example of a data set that cannot be partitioned optimally
by a decision tree algorithm that uses a greedy approach and test conditions
involving only a single attribute at a time.

3.3.9 Characteristics of Decision Tree Induction 84

Figure 3.19. Example of data set that cannot be partitioned optimally using test conditions involving single

attributes.

Oblique decision trees are decision trees that allow for test conditions involving
more than one attribute. For example, the data set given in Figure 3.19 can
be easily represented by an oblique decision tree containing a single node with
test condition

x+ y < 1.

Although such techniques can produce smaller trees, finding the optimal split
for a given node is an expensive operation. Another way to induce decision
trees that produce non-rectangular regions is to use a technique known as
constructive induction. The central idea behind constructive induction is to
create new attributes representing an arithmetic or logical combination of the
existing attributes. The new attributes would provide a better discrimination
of the classes and are treated in the same way as other attributes during
tree construction. Unlike the oblique decision tree approach, constructive
induction is less expensive because it identifies all the relevant combinations
of attributes once, prior to decision tree construction. In constrast, oblique
decision trees have to determine the right combination dynamically, each time
when a tree node is to be expanded. Constructive induction may introduce
attribute redundancy in the data since the new attribute is a combination of
several existing attributes.

10. Recent studies have shown that the choice of impurity measure has little ef-
fect on the performance of decision tree induction algorithms. Instead, perfor-
mance depends more on the techniques used for pruning the decision tree. This
is because most impurity measures are quite consistent with each other, while
the final size of the tree depends primarily on the pruning strategy employed
by the learning algorithm.

3.4 Rule-based classifiers 85

3.4 Rule-based classifiers

A rule-based classifier is a technique for classifying instances by using a collection
of “if · · · then· · · ” rules. The rules are represented in a disjunctive normal form,
R = (r1∨ r2∨ · · · rk), where R is known as the rule set and ri’s are the classification
rules or disjuncts. Each classification rule can be expressed in the following way:

ri : (Conditioni) −→ y (3.16)

The left-hand side of the rule is called the rule antecedent or pre-condition. It
contains a conjunction of attribute tests:

Conditioni = (A1 op v1) ∧ (A2 op v2) ∧ · · · (Ak op vk), (3.17)

where (Aj , vj) is an attribute-value pair and op is a logical operator selected from
the set {=, 6=, <,>,≤,≥}. Each attribute test (Aj op vj) is known as a conjunct.
The right hand side of the rule is called the rule consequent and contains the class
label predicted by the rule.
A classification rule can be applied in the following way: if the attributes of an

instance satisfy the pre-condition of a rule, then the instance is assigned to the class
designated by the rule consequent. For example, the rule:

r : (Age < 35) ∧ (Marital Status =Married) −→ Evade = No (3.18)

suggests that every married taxpayer whose age is less than 35 years old will not
likely evade paying taxes.

3.4.1 How Rule-Based Classifier Works?

This section describes how to apply a rule-based classifier to an unlabeled instance.
We say that a rule r covers an instance x if the attributes of the instance match
the pre-condition of r. Put another way, a rule is said to be fired or triggered if the
attributes of the instance satisfy the pre-condition of the rule.

Example 4 Consider the following two unlabeled instances:

x1: (Age = 29, Marital Status =Married, Refund = No)
x2: (Age = 28, Marital Status = Single, Refund = Y es)

The rule r given in equation (3.18) covers x1 because the taxpayer is married and is
less than 35 years old. On the other hand, r does not cover x2 because the taxpayer
is not married; thus, violating one of the attribute tests for r.

To illustrate how a rule-based classifier works, consider the rule set shown below.

3.4.1 How Rule-Based Classifier Works? 86

Rule set R = (r1 ∨ r2 ∨ r3)
r1 : (Blood Type = Cold) −→ Non-mammal
r2 : (Blood Type = Warm) ∧ (Gives Birth = Y es) −→ Mammal
r3 : (Blood Type = Warm) ∧ (Gives Birth = No) −→ Non-mammal

An unlabeled instance is classified by the rule it triggers. For example, a gila mon-
ster, which is a cold-blooded animal, triggers only the first rule and is therefore
classified as a non-mammal. Such a rule-based classifier has the following proper-
ties:

1. It contains mutually exclusive rules, i.e., rules that are independent of each
other. As a result, every instance is covered by at most one rule.

2. It has an exhaustive coverage, i.e., the rule set covers all possible combinations
of attribute values. As a result, every instance is covered by at least one rule.

Together, these properties ensure that each test instance is classified by exactly one
rule. There are many situations in which the rule set may not be mutually exclusive
nor exhaustive. This may happen if the classifier attempts to simplify the rules by
merging some of them. For example, if r1 and r3 are merged and replaced by the
following rule:

r′1 : (Gives Birth = No) −→ Non−mammal,
then the classifier is no longer exhaustive. We will illustrate more examples of rule
simplification in Section 3.4.5.
If the rule set is not exhaustive, then a default rule rd : () −→ yd can be added

to cover the remaining instances. The default rule has an empty antecedent and is
applicable when all other rules have failed. yd is known as the default class and is
often assigned to the majority class among the remaining training instances.
If the rule set is not mutually exclusive, then an instance can be covered by

multiple rules, some of which may predict conflicting class labels. Below, we describe
several approaches to address this problem.

Strict enforcement of mutual exclusiveness. The simplest approach is to avoid
generating rules that have overlapping coverage with previously selected rules.
However, since most of the selected rules may not be 100% accurate, there
are certain “regions” in the input space for which their predictions could go
wrong. (Much like decision trees, rules are often generalized to prevent overfit-
ting. Generalized rules tend to be shorter and may not have perfect accuracy
on the training and test sets.) Even though there may exist better rules for
such regions, these rules are not selected because their coverage overlap with
the existing rules. Therefore, this approach can lead to suboptimal classifiers.

Ordered Rules. In this method, the rules are rank ordered according to their
priority. The ordered rule set is known as a decision list and is denoted as
R(o) = (r1 ∨ r2 ∨ · · · rk), where ∀i : ri Â ri+1 (i.e., ri precedes ri+1 in the
rule set) and rk is the default rule. When a test instance is presented to the

3.4.1 How Rule-Based Classifier Works? 87

Tid Refund Marital
Status

Taxable
Income Evade

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

ca
teg

oric
al

ca
teg

oric
al

co
ntin

uous

cla
ss

r1: (Refund=No) & (Marital Status=Single)
 & (Taxable Income > 80K) ==> Yes

r2: (Refund=No) & (Marital Status=Divorced)
 & (Taxable Income > 80K) ==> Yes

Default:: () ==> No

Figure 3.20. Example of a Rule-Based Classifier for the taxpayer classification problem.

classifier, it is assigned to the class label of the highest ranked rule it has
triggered. If none of the rules fires, the instance is assigned to the default
class. For example, Figure 3.20 shows a rule-based classifier for the taxpayer
classification problem described in the earlier sections. The classifier contains
two rules for predicting the Yes class and a default rule that predicts the No
class. Given a test instance, the rule r1 is applied first. If the taxpayer satisfies
the pre-condition of r1, he or she is classified as Yes. Otherwise, the rule r2 is
applied to the taxpayer. If this rule does not fire, then the taxpayer is classified
by the default rule as No. The advantage of an ordered rule set is that one
may not have to apply every rule to the test instance. The first rule that fires
is used for doing the prediction. The drawback of this method is that rules
are more difficult to interpret as each rule implicitly assumes the negation of
its preceding rules. For example, given the following ordered rule set:

Rule set R(o) = (r1 ∨ r2)
r1: (Marital Status = Single) ∧ (Refund = No) −→ (Evade = No)
r2: (Age < 35) −→ (Evade = No)

The second rule should be interpreted as:

(Age < 35)∧[(Marital Status 6= Single)∨(Refund 6= No)] −→ (Evade = No),

where we have used De Morgan’s theorem (A ∧B = A ∨ B) to simplify the
rule expression.

Unordered Rules. This method allows an instance to trigger multiple classifica-
tion rules and considers the consequent of each triggered rule as a vote for that
particular class. The votes are then combined to obtain the final predicted

3.4.2 How to Build a Rule-Based Classifier? 88

class. In most cases, the final prediction is given by the class that receives the
highest number of votes. Alternatively, we can apply a voting scheme that
weights the vote for each predicted class by the accuracy of the rule. The
advantage of the unordered method is that rules no longer have to be sorted
or generated in certain order. The drawback of this method is that every rule
in the rule set must be applied to obtain the class label of a test instance.
This will increase the computation time during classification; thus affecting
prediction tasks that require real-time responses.

3.4.2 How to Build a Rule-Based Classifier?

To build a rule-based classifier, we need to extract rules that identify key relation-
ships between attributes of a data set and the class label. There are two broad
classes of methods for extracting classification rules:

1. Direct Methods extract classification rules directly from data. These meth-
ods often apply a sequential covering algorithm for creating the rule set. Each
rule is grown in a greedy fashion, optimizing certain objective function. Once
a rule has been extracted, the algorithm eliminates training instances covered
by the rule and repeats the procedure for growing the next rule. A detailed
discussion of the sequential covering algorithm is presented in Section 3.4.4.

2. Indirect Methods extract classification rules from other classification mod-
els, such as decision trees and neural networks. Rules are extracted to produce
more interpretable models. A detailed discussion of methods for extracting
classification rules from decision trees is presented in Section 3.4.5.

There are many measures available to evaluate the quality of a classification rule.
Two such measures are coverage and accuracy. Given a set of instances D and a
classification rule r : A −→ y, the coverage of the rule is defined as the fraction of
instances in D that are covered by r. On the other hand, accuracy or confidence
factor is defined as the fraction of instances covered by r whose class labels are equal
to y. The definitions of these measures are summarized below.

Coverage(r) =
|A|
|D|

Accuracy(r) =
|r|
|A| (3.19)

where |A| is the total number of instances that satisfy the rule antecedent, |r| is the
number of instances that satisfy both the antecedent and consequent of r, and |D|
is the total number of instances. (Note that for sequential covering algorithms, |D|
is not a constant factor. In fact, it will decrease as the rule becomes longer.)

Example 5 Consider the data set shown in Figure 3.7. The rule

Marital Status = Single −→ Evade = No

3.4.3 Rule Ordering 89

has a coverage of 40% since four out of the ten audited taxpayers are single. The
accuracy of this rule is 50% as two of the four single taxpayers have class labels
equal to No.

3.4.3 Rule Ordering

Once the classification rules have been extracted, they can be rank ordered according
to their priority. Rules generated using direct methods can be ranked in the order
they are created while those generated using indirect methods can be sorted based
on a variety of objective measures such as accuracy and entropy.
In general, the extracted rules can be ordered on a rule-by-rule basis or a class-

by-class basis.

1. In the rule-based ordering scheme, individual rules are ranked based on their
quality. The better is the quality, the higher is the rank. The advantage
of this scheme is that each unlabeled instance is classified by the best rule
it has triggered. The disadvantage of this scheme is that ordered rules are
more difficult to interpret since each lower priority rule implicitly assumes the
negation of its higher priority rules.

2. In the class-based ordering scheme, rules that belong to the same class appear
together in the rule set R. The rules are collectively sorted on the basis of their
class information. The advantage of this method is that rules within each class
do not have to be ordered, and thus, are easier to interpret. The disadvantage
of this method is that the classifier is biased towards higher ranked classes.
The class-based ordering scheme can be implemented in two ways. For direct
methods, the class-based ordering scheme is implemented by generating rules
one-class-at-a-time. For indirect methods, the class-based ordering scheme
can be implemented by computing the total description length for each class
and then sorting the classes according to this measure. The class that has the
lowest description length will be ranked highest, followed by the class with the
next lowest description length, and so on.

The difference between rule-based and class-based ordering schemes is shown in
Figure 3.21. For the class-based ordering scheme, notice that the rules for class No
appear next to each other and are ranked higher than the rule for class Y es.

3.4.4 Direct Methods for Rule Extraction

This section presents techniques for extracting classification rules directly from data.
We begin with a description of the sequential covering algorithm followed by dis-
cussion about two specific implementations of direct methods − Holte’s 1R and
RIPPER algorithms.

Sequential Covering Algorithm

Many rule-based classifiers employ a sequential covering algorithm to induce classi-
fication rules from data. A high-level description of this algorithm is shown in Table

3.4.4 Direct Methods for Rule Extraction 90

Rule-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Class-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Married}) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

Figure 3.21. Difference between rule-based and class-based ordering schemes.

3.4.
Initially, the algorithm starts from an empty rule set R. Next, the Learn-One-

Rule function is used to find the best rule that covers the current set of instances.
Once such a rule is found, the algorithm eliminates instances covered by the rule and
adds the rule to R. The rule growing and instance elimination steps are repeated
until a stopping criterion is met.
Figure 3.22 demonstrates an example of how the sequential covering algorithm

works. The data set contains instances that belong to two separate classes, one
designated as the positive class while the other is the negative class. Initially, the
rule that corresponds to Region R1 in Figure 3.22(b) is extracted first because it
contains a large number of examples that belong to the same class. Instances covered
by the rule are then removed and the algorithm continues to look for the next best
rules to extract (R2 and subsequently, R3).
The algorithm presented in Table 3.4 can be modified to take into account class

ordering. To do this, we can place lines 2-5 of the code inside another for loop, as
shown below:

Table 3.4. The Sequential Covering Algorithm.

Sequential Covering Algorithm (E: training examples, A: set of attributes)

1. Let R = {} be the initial rule set.
2. while stopping criterion is not met

3. r ← Learn-One-Rule(E,A)

4. Remove instances from E that are covered by r

5. Add r to rule set: R = R ∨ r

3.4.4 Direct Methods for Rule Extraction 91

(i) Original Data (ii) Step 1

(iii) Step 2 (iv) Step 3

R1

R1 R1

R2

R3

R2

Figure 3.22. An illustrative example of the sequential covering algorithm.

1b. for each class ∈ AllClasses
2. while stopping criterion is not met
3. r ← Learn-One-Rule(E,A, class)
4. ...

In addition, the Learn-One-Rule function is modified to extract rules for a par-
ticular class. The details of the Learn-One-Rule function and instance elimination
step are described next.

Learn-One-Rule

The objective of this function is to extract the best rule that covers the current set
of training instances. There are several issues to consider when growing a rule:

1. What is the strategy used for rule growing?

2. What is the evaluation criteria for rule growing?

3. What is the stopping criteria for rule growing?

4. What is the pruning criteria, if there is one, for generalizing the rule?

We will discuss each of the key issues above in the remainder of this section.

Rule Growing Strategy. In the Learn-One-Rule function, rules are grown in an
iterative manner. There are two common strategies for growing a rule: (1) general-
to-specific approach, or (2) specific-to-general approach. In the general-to-specific
approach, it is initially assumed that the best rule is the empty rule, r : {} −→ y,
where y is the majority class of the instances. It then iteratively adds new conjuncts
to the left-hand side of the rule until the stopping criterion is met. In the specific-
to-general approach, a positive instance is chosen as the initial seed for a rule. The

3.4.4 Direct Methods for Rule Extraction 92

function keeps refining this rule by generalizing the conjuncts until the stopping
criterion is met. A problem with this approach is that there are many initial points to
start from, unlike the general-to-specific approach. One way to address this problem
is to use several initial seeds as candidate rules, performs a specific-to-general search
to generalize each rule, and then selects the best candidate rule. In both general-
to-specific and specific-to-general approaches, the rules are often grown in a greedy
fashion. A well-known limitation of a greedy search algorithm is that it may get
trapped in a local minimum, thus producing a suboptimal rule. Alternatively, the
Learn-One-Rule function can perform a beam search, where, instead of keeping
only the best rule, the function also maintains k of the best candidate rules. Each
candidate will be grown separately by adding more conjuncts or generalizing the
conjuncts. The quality of each candidate is then evaluated and k of the best new
candidates are selected for the next iteration.

Rule Evaluation and Stopping Criteria. During rule growing, a rule evaluation
metric is used to determine the quality of each candidate rule. Recall that there are
two variants to the Learn-One-Rule function: (1) where the target class is specified,
and (2) where the target class is not specified. If the target class is specified, then
accuracy is a natural choice for the rule evaluation metric. However, one major
drawback of accuracy is that it tends to prefer specific (longer) rules over general
(shorter) ones. An ideal metric should take into account both the accuracy and
coverage of the rule. Another popular metric is entropy = −∑i pi log pi, where pi
is the fraction of instances covered by the rule that belong to class i. This metric is
often used by Learn-One-Rule functions for which the target class is not specified.
For example, the entropy is the same for both p0 = 1, p1 = 0 and p1 = 0, p1 = 1.
As long as most of the instances belong to one particular class, its entropy will be
maximized. Much like accuracy, entropy does not pay attention to the coverage of
the rule. For example, given the following pair of rules:

r1: covers 500 positive examples and 1 negative example,
r2: covers 2 positive examples and 0 negative example.

The entropy for r1 is smaller than r2, even though r1 appears to be the better
rule. Thus, if entropy is chosen as the rule evaluation metric, it must be com-
plemented by a statistical significance test to ensure that the extracted rule has
sufficient coverage. Other rule evaluation metrics include:

Laplace =
nc + 1

n+ k
(3.20)

m-estimate =
nc + kp

n+ k
(3.21)

where n is the number of instances covered by the rule, nc is the number of instances
in the predicted class c covered by the rule, k is the total number of classes, and p is
the prior probability (selected by the user). Note that Laplace measure is equivalent

3.4.4 Direct Methods for Rule Extraction 93

to m-estimate if p = 1/k. The advantage of this measure is that it implicitly accounts
for the coverage of the rule. For example, the Laplace measure for rule r1 is higher
than r2, even though the latter rule has higher accuracy and entropy.
A typical condition for terminating the rule growing process is to compare the

evaluation metric of the previous candidate rule to the newly grown rule. If there is
no significant performance improvement, then the new rule should be discarded and
the Learn-One-Rule function will terminate. (A special case of this condition occurs
when all remaining instances belong to the same class. Any further rule growing
will not improve the performance of this rule, thus terminating the function.)

Rule Pruning. Each extracted rule can be pruned to improve their ability to
generalize beyond the training instances. The pruning strategies described in Sec-
tion 3.3.6 for decision trees are also applicable to classification rules. For example,
pruning can be done by removing one of the conjuncts in the rule and then testing
it against a validation set to determine whether the rule’s generalization ability has
improved.

Instance Elimination

After extracting a rule, why is it necessary for the sequential covering algorithm to
eliminate instances covered by the rule? If we do not eliminate the instances, then
the next rule extracted by the function will be exactly identical to the previous rule.
Therefore, instance elimination can prevent the same rule from being generated
again.
The example shown in Figure 3.22 uses an instance elimination scheme that re-

moves both positive and negative instances from the data set. The positive instances
correspond to those that have the same class label as the consequent of the latest
extracted rule. But is this the only scheme available or can we remove only the
positive (or negative) instances? To answer this question, we need to understand
how instance elimination affects subsequent rule growing process.
Positive instances must be removed after each rule is extracted. This will ensure

that the next rule generated by the Learn-One-Rule function is different than its
previous rule. For negative instances, some rule-based classifiers (e.g., Ripper) would
remove them prior to generating the next rule while others (e.g., CN2 and AR
algorithms) would keep them. We illustrate the effect of removing negative instances
in the example below.

Example 6 Consider the situation shown in Figure 3.23. For brevity, we assume
that the classifier uses rule accuracy as its evaluation metric. The rule R1 is initially
extracted because it has the highest accuracy.

Accuracy(R1) =
12

15
= 80%.

In the next iteration, suppose the algorithm has two possible choices of candidate

3.4.4 Direct Methods for Rule Extraction 94

class = +

class = -

+

+ +

+
+
+

+
+

+
+

+
+

+

+

+

+

++

+

+

-

-

-
-

- -
-

-
-

- -

-

-

-

-

-
-

-

-

-

-

+

+

++

+

+

+

R1
R3 R2

+

+

Figure 3.23. Elimination of training instances by the sequential covering algorithm. R1,R2, andR3 represent

regions covered by three different rules.

rules: R2 or R3. The accuracy for R2 is

Accuracy(R2) =
7

10
= 70%.

Since R3 overlaps with the previous rule R1, the accuracy for R3 depends on whether
negative instances are removed after extracting R1. If the negative instances are
removed, then

Accuracy(R3) =
6

8
= 75%,

which is higher than the accuracy for R2. On the other hand, if the negative instances
are kept, then

Accuracy(R3) =
8

12
= 66.7%,

which is lower than the accuracy for R2. If the classifier eliminates negative in-
stances, then it will prefer R3 over R2. On the other hand, if negative instances are
kept, then it will prefer R2 over R3.

The above example illustrates the effect of removing negative instances on the
accuracy of a rule. If the rules are ordered using the rule-based ordering scheme,
then it makes more sense to prefer R3 over R2 since most of the errors committed
by R3 were already accounted for by its preceding rule, R1. If the negative instances
are not removed, then the accuracy of R3 would have been underestimated. Thus,
classifiers with ordered rule-set should remove both positive and negative instances
from the training data. Examples of rule-based classifiers that remove both positive
and negative instances include Ripper and the (ordered) CN2 algorithms.
If the rules are ordered using a class-based ordering scheme, there are both

advantages and disadvantages in removing negative instances. The advantage is to
avoid missing high quality rules because their accuracies were underestimated. The
disadvantage is that this will reduce the number of negative instances available to

3.4.4 Direct Methods for Rule Extraction 95

learn rules for the negative class. Examples of rule-based classifiers that do not
remove negative instances include AQR and the (unordered) CN2 algorithms.
Next, we present two specific implementations of rule-based classifiers that use

the direct approach to extract classification rules.

Holte’s 1R

Pareto Principle (80/20 Rule): A small number of causes is often
responsible for a large percentage of the effect — Vilfredo Pareto (1848-
1923)

Holte’s 1R is a rule-based classifier that contains only one classification rule.
In addition, the classification rule involves only a single attribute. 1R selects its
attribute in the following way. First, each continuous attribute is discretized into
several disjoint intervals. The interval must be wide enough to contain a sufficiently
large number of instances. A new feature is then created for each discretized interval.
The feature that produces the lowest misclassification error will be chosen as the
pre-condition of the classification rule. The majority class of instances satisfying
the pre-condition forms the rule consequent. If the data set contains missing values,
1R treats MISSING as another attribute value.
Despite its simplicity, Holte demonstrated that 1R performed almost as well as

other rule-based classifiers for certain data sets that exhibit a strong one-to-one
relationship between one of the attributes and the class label.

RIPPER Algorithm

RIPPER uses a greedy approach for creating its rule set R. For a 2-class problem,
it chooses the majority class of training instances as the default class and then
tries to learn specific rules for the minority class. For the multi-class problem, the
classes are ordered according to their class prevalence, i.e., fraction of instances
that belong to a particular class. Let the ordered classes be (y1, y2, · · · , yc), where
y1 is the least prevalent class and yc is the most prevalent class. During the first
iteration, y1 is treated as the positive class while the rest of the classes form the
negative class. RIPPER will attempt to build rules that can distinguish y1 from
other classes. After each rule is extracted, RIPPER eliminates both positive and
negative instances covered by the rule. In the next iteration, RIPPER will extract
rules for discriminating y2 from the remaining classes, y3, y4, · · · , yc. This process
is repeated until the most prevalent class remains, which is assigned to the default
class.

Growing a single rule. The Learn-One-Rule function for RIPPER starts from
an empty rule, and keeps adding conjuncts until the stopping criteria is met.
RIPPER uses FOIL’s information gain to determine which conjunct should
be added. This metric compares the performance of the rule before and after
adding a new conjunct. Suppose the rule r : A −→ y covers p0 positive

3.4.4 Direct Methods for Rule Extraction 96

instances and n0 negative instances. After adding a new conjunct B, the rule
r′ : A∧B −→ y covers p1 positive instances and n1 negative instances. FOIL’s
information gain can be defined as follows:

Foil’s Information Gain = t×
(
log2

p1
p1 + n1

− log2
p0

p0 + n0

)
, (3.22)

where t is the number of positive instances covered by both r and r′. For RIP-
PER, t = p1 since r

′ is a specialization of r. RIPPER stops adding conjuncts
when the rule no longer covers any negative instances. After a rule is grown,
it is pruned immediately by using the incremental reduced error pruning tech-
nique. (Unlike traditional reduced error pruning techniques, which performs
the pruning after the complete model has been generated, a rule is pruned
before the entire rule set is generated. This is why the technique is called
incremental reduced error pruning.) RIPPER uses the following measure for
pruning: (p − n)/(p + n), where p is the number of positive instances in the
validation set covered by the rule and n is the number of negative instances
in the validation set covered by the rule. Note that RIPPER prunes only a
suffix of the pre-condition. For example, given a rule ABCD −→ y, RIPPER
will examine if D should be pruned first, followed by CD, BCD, etc. After
pruning, the rule may cover some negative instances.

Building Rule Set. After a rule has been found, all the positive and negative in-
stances covered by the rule are removed and the rule growing process continues
until a stopping condition (based on the MDL principle) is met. Each time a
new rule is added, the description length of the rule set is computed. The new
description length is then compared against the smallest description length
obtained so far. If the new description length is larger by a factor of d bits,
then RIPPER stops adding new rules (d is typically chosen to be 64 bits). In
addition, RIPPER will also stop adding rules if the new rule has an error rate
greater than 50% on the validation set.

Optimization of Rule Set. Once the rule set has been established, RIPPER
performs an additional rule optimization step to check whether a better rule
set can be obtained by replacing or modifying some of the rules in the current
rule set. For each rule r in the rule set R (starting from the highest priority
rule), we consider two alternative rules for replacing it: (1) a replacement
rule rp, which is a completely new rule grown from an empty rule, and (2) a
revised rule rv, which is a modified rule grown starting from r. The minimum
description length principle is used to determine whether a rule should be kept
in the rule set or replaced by either a replacement or revised rule.

A summary of RIPPER and its comparison to three other rule-based classifiers
are shown in Table 3.5.

3.4.5 Indirect Methods for Rule Extraction 97

Table 3.5. Comparison between various rule-based classifiers.

RIPPER CN2 (unordered) CN2 (ordered) AQR

Rule growing General-to-specific General-to-specific General-to-specific General-to-specific

strategy (seeded by a

positive example

Evaluation FOIL’s Info gain Laplace Entropy with Number of positive

Metric likelihood ratio test true positives

Stopping All examples belong No performance No performance Rules cover only

condition for to the same class gain gain positive class

rule growing

Rule Pruning incremental reduced None None None

error pruning

Instance Positive and Positive only Positive only Positive and

Elimination Negative Negative

Stopping Error > 50% or No performance No performance All positive examples

condition for based on MDL Gain Gain are covered

adding rules

Pruning rule set None but can Statistical None None

replace/modify rules tests

Search strategy greedy beam search beam search beam search

3.4.5 Indirect Methods for Rule Extraction

This section is still being modified

In this section, we describe a method for generating rules from other classification
models. Specifically, we focus our attention on extracting rules automatically from
a decision tree using the c4.5rules algorithm. For decision trees, each path from
the root node to a leaf node can be expressed as a classification rule. The test
conditions of each non-terminal node encountered along the path are combined using
the logical AND operator to form the antecedent of the rule, while the class label
of the leaf node becomes the rule consequent. For example, Figure 3.24 illustrates
a decision tree with five leaf nodes, along with the five corresponding classification
rules representing the tree.
Large decision trees can be overly complex, which makes it difficult to interpret.

Rules can be generated to simplify the tree, as illustrated in the example below.

Example 7 Consider the five classification rules shown in Figure 3.24. The rule
set is exhaustive and contains mutually exclusive rules. Three of the rules are used
to predict the positive class.

r2 : (P = No) ∧ (Q = Y es) −→ +
r3 (P = Y es) ∧ (R = No) −→ +

r5 : (P = Y es) ∧ (R = Y es) ∧ (Q = Y es) −→ +

3.4.5 Indirect Methods for Rule Extraction 98

Rule Set

r1: (P=No,Q=No) ==> -
r2: (P=No,Q=Yes) ==> +
r3: (P=Yes,R=No) ==> +
r4: (P=Yes,R=Yes,Q=No) ==> -
r5: (P=Yes,R=Yes,Q=Yes) ==> +

P

Q R

Q- + +

- +

No

No No

No

Yes Yes

Yes

Yes

Figure 3.24. Converting a decision tree into classification rules.

These rules can be further simplified as follows. Observe that the class label is
always positive when the value of Q is known to be Y es.This observation suggests
that the rules can be simplified into the following pair of rules, r2′ : (Q = Y es) −→
+ and r3 : (P = Y es) ∧ (R = No) −→ +, where the second rule is retained to
cover the remaining case for the positive class. Both rules are no longer mutually
exclusive but are less complex, and thus, easier to interpret than the initial rules.

C4.5rules creates its initial set of classification rules from the unpruned decision
tree produced by the C4.5 algorithm. We describe the rule extraction step below.

Creating an initial set of rules. Each classification rule corresponds to one of
the leaf nodes in the decision tree. Hence, the conjuncts of the rules represent
the test conditions and outcomes encountered while traversing from the root
node to a leaf node of the decision tree. Next, for each rule r : A −→ y, we
consider an alternative rule, r′ : A′ −→ y where A′ is obtained by removing
one of the conjuncts in A. A pessimistic estimate of the generalization error
for all r′s are computed and compared against the generalization error rate for
r. If one of the r′s has a lower error rate, we choose that particular rule and
delete the corresponding condition. This step will be repeated until we can no
longer improve upon the generalization error. The pruning step is applied to
each classification rule derived from the decision tree. After pruning, some of
the rules may be identical and the duplicate rules are removed.

Ordering the Rules. Instead of ordering the rules, c4.5rules orders the rule sub-
sets, where each subset contains rules belonging to the same class (class-based
ordering). The description length for each subset is computed, and the sub-
sets are then ordered in increasing order of the description length (i.e., the
subset that has the smallest description length will precede the other subsets.)
Note that the description length definition was modified to allow the user to
weight model complexity against the amount of misclassification error of the
classifier. Specifically, the description length is given as Lexception+g×Lmodel,
where L(·) is the description length and g is a parameter (whose default value

3.5 Nearest-neighbor classifiers 99

is 0.5). The extra parameter was introduced by Quinlan to reduce the model
complexity due to the presence of redundant attributes.

For example, Figure 3.25 illustrates the decision tree and classification rules
obtained for the data set given in Table 3.6.

Table 3.6. The vertebrate data set.

Name Give birth Lay eggs Can fly Live in water Have legs Class

human yes no no no yes mammals

python no yes no no no reptiles

salmon no yes no yes no fishes

whale yes no no yes no mammals

frog no yes no sometimes yes amphibians

komodo dragon no yes no no yes reptiles

bat yes no yes no yes mammals

pigeon no yes yes no yes birds

cat yes no no no yes mammals

leopard shark yes no no yes no fishes

turtle no yes no sometimes yes reptiles

penguin no yes no sometimes yes birds

porcupine yes no no no yes mammals

eel no yes no yes no fishes

salamander no yes no sometimes yes amphibians

gila monster no yes no no yes reptiles

platypus no yes no no yes mammals

owl no yes yes no yes birds

dolphin yes no no yes no mammals

eagle no yes yes no yes birds.

3.5 Nearest-neighbor classifiers

This section is still being modified

So far, the classification framework presented in this chapter involves a two-step
process: (1) an inductive step for constructing classification models from data, and
(2) a deductive step for applying the derived model to previously unseen instances
(see Figure 3.2). For decision tree induction and rule-based learning systems, the
models are constructed immediately after the training set is provided. Such tech-
niques are known as eager learners because they intend to learn the model as soon
as possible, once the training data is available.
An opposite strategy would be to delay the process of generalizing the training

data until it is needed to classify the unseen instances. Techniques that employ
such strategy are known as lazy learners. An example of a lazy learner is the Rote
classifier, which memorizes the entire training data and performs classification only

3.5 Nearest-neighbor classifiers 100

Give
Birth?

Live In
Water?

Can
Fly?

Mammals

Fishes Amphibians

Birds Reptiles

Yes No

Yes

Sometimes

No

Yes No

C4.5rules:

(Give Birth=No, Can Fly=Yes) Birds

(Give Birth=No, Live in Water=Yes) Fishes

(Give Birth=Yes) Mammals

(Give Birth=No, Can Fly=No, Live in Water=No) Reptiles

() Amphibians

=>

=>

=>

=>
=>

Figure 3.25. Results of C4.5 and C4.5rules algorithms.

if the attributes of a test instance matches one of the training examples exactly. The
strict matching condition of a Rote classifier may cause many of the test instances
to remain unclassified.
One way to make this approach more flexible is to find all training examples

that are relatively similar to the attributes of the test instance. Such examples are
known as the nearest neighbors of the test instance. The test instance can then
be classified according to the class labels of its neighbors. This is the central idea
behind the nearest-neighbor classification scheme, which is useful for classifying data
sets with continuous attributes. The justification for nearest neighbor classification
is best exemplified by the following saying

“If it walks like a duck, quacks like a duck, and looks like a duck, then
it’s probably a duck.”

A nearest neighbor classifier represents each instance as a data point embedded
in a d-dimensional space, where d is the number of continuous attributes. Given
a test instance, we can compute its distance to the rest of the data points in the
training set by using the standard Euclidean distance measure.

Euclidean distance, d(p,q) =

√√√√
d∑

i=1

(pi − qi)2 (3.23)

As an example, let p = (1.5, 2.0) and q = (3.5, 2.5) be two data points, where
(x1, x2) denotes the coordinate of the data point in a two-dimensional space. Using
Equation (3.23), we can compute the distance between the two points as

d(p,q) =
√
(3.5− 1.5)2 + (2.5− 2.0)2 = 2.062

3.5 Nearest-neighbor classifiers 101

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

Figure 3.26. The 1-, 2- and 3-nearest neighbors of an instance.

The k-nearest neighbors of an instance z are defined as the data points having
the k smallest distance to z. Figure 3.26 illustrates an example of the 1-, 2- and 3-
nearest neighbors of an unknown instance × located at the center of the circle. The
instance can be assigned to the class label of its nearest neighbors. If the nearest
neighbors contain more than one class label, one takes a majority vote among the
class labels.
The nearest data point to the unknown instance shown in Figure 3.26(a) has

a negative class label. Thus, in a 1-nearest neighbor classification scheme, the
unknown instance would be assigned to a negative class. If we consider a larger
number of nearest neighbors, such as three, the list of nearest neighbors would
contain training examples from 2 positive classes and 1 negative class. Using the
majority voting scheme, the instance would be classified as a positive class. If the
number of instances from both classes are the same, as in the case of the 2-nearest
neighbor classification scheme shown in Figure 3.26(b), we could choose either one
of the classes (or the default class) as the class label.
The above discussion raises several issues concerning the k-nearest neighbor clas-

sification scheme:

1. How to define a good distance measure between two points. We have pre-
sented a simple approach based on Euclidean distance measure. However, this
measure may not be meaningful for high-dimensional data due to the curse of
dimensionality described in Chapter 2.

2. How to choose an appropriate value for k? If k = 1, we can illustrate the
decision boundary of each class by using a Voronoi diagram, as shown in Figure
3.27. Each polygon P is associated with a training instance xP , indicated by
a circle in the diagram. If a data point z is located in a region enclosed by
P , then z would closer to xP than to all other training instances xq in the
data set. The drawback of using such a small value of k is that the classifier
is sensitive to noise points in the training set. However, if k is too large, the
unseen instance can be misclassified because its list of nearest neighbors might

3.5.1 Algorithm 102

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
p

x
q

z

Figure 3.27. Voronoi diagram for 1-nearest neighbor.

X

Figure 3.28. k-nearest neighbor classification with large k.

includes data points located beyond the local neighborhood of the unseen
instance (see Figure 3.28).

3.5.1 Algorithm

A summary of the k-nearest neighbor classification algorithm is given in Table 3.7.
Given an unlabeled instance, we need to determine its distance or similarity to
all the training instances. This operation can be quite expensive and may require
efficient indexing techniques to reduce the amount of computation.
Once the list of nearest neighbors E ′ are found, one could take a majority vote

to select the most likely class label:

Majority Voting: class = argmax
v

|E′|∑

i=1

I(v, c′i) (3.24)

3.5.2 Characteristics of Nearest-neighbor classifiers 103

Table 3.7. k−nearest neighbor classification algorithm.

k-Nearest Neighbor (k:number of nearest neighbor, E:training instances,

z: unlabeled instance)

1. Compute the distance or similarity of z to all the training instances.

2. Let E′ ⊂ E be the set of k closest training instances to z

3. Return the predicted class label for z: class← V oting(E ′).

where v is one of the class labels, c′i is the class label of one of the nearest neighbors,
and I(p, q) is a function that returns the value 1 if p = q and 0 otherwise. This
approach may not be desirable because it assumes that the influence of the nearest
neighbors are the same. It would be better to weight the influence of each nearest
neighbor according to its distance. If the distance is too large, the influence should
be weaker. The following weighting scheme can be used to penalize neighbors that
are located far away from the unlabeled instance: wi = 1/d(z, ei)

2. In this distance-
weighted voting scheme, the class label is determined from the following equation:

Distance-Weighted Voting: class = argmax
v

|E′|∑

i=1

wi × I(v, c′i) (3.25)

3.5.2 Characteristics of Nearest-neighbor classifiers

• The k-nearest neighbor algorithm is part of a more general technique known
as instance-based learning, where the idea is to make predictions directly using
the training instances. The discussion presented so far in this section is appli-
cable to data sets containing continuous attributes. For nominal attributes,
we have to re-define the concept of distance between instances in terms of a
similarity measure.

• Lazy learners such as nearest neighbor classifiers do not perform any model
building task. Without a model, classifying new instances is an expensive
operation because we need to compute the distance (or similarity) between
instances on the fly as test instances are presented to the classifier. This is
in contrast to eager learners that spent the bulk of their computing resources
during the model building phase. Once a model has been built, classifying
new instances is extremely fast. Lazy learners often seek for models that are
applicable only to a limited region, while eager learners are typically interested
in finding global models that can explain the entire attribute space.

• The attributes may have to be scaled to prevent the distance measure from
being dominated by one of the attributes. For example, suppose each instance
corresponds to a person, with attributes height (measured in meters) and
weight (measured in pounds). In the training set, the height of a person
may vary from 1.5m to 1.85m, but the weight may vary from 90lb to 250lb.

3.6 Bayesian classifiers 104

1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

v1

v2

v3

v4

d(v1, v2) = 1.4142 d(v3, v4) = 1.4142

Figure 3.29. Euclidean distance between pairs of unnormalized vectors.

As a result, the distance between two instances is often dominated by their
difference in weight.

• Another issue to be considered is the normalization of the attribute vector.
Consider the two pairs of attribute vectors shown in Figure 3.29. If the vectors
are not normalized, both pairs have the same distance according to the Eu-
clidean measure. This could be a problem for domains such as text document
classification where two documents are close to each other because they share
many common words, not because they do not have many of the words in
the vocabulary. In this regard, the first pair of vectors should have a smaller
distance as compared to the second pair of vectors.

3.6 Bayesian classifiers

This section is still being modified

In this section, we describe a statistical approach for solving the classification
problem. Specifically, we present the Bayesian classification approach, which allows
us to combine the prior knowledge of a given domain with evidence gathered from
the data. We begin this section with the Bayes theorem, which is the fundamental
principle underlying this approach.

3.6.1 Bayes Theorem

Consider a football game between two rival teams, say team 0 and
team 1. Suppose team 0 wins 65% of the time and team 1 wins the
remaining matches. Among the games won by team 0, only 35% of
them comes from playing at team 1’s football field. On the other hand,
75% of the victories for team 1 are obtained while playing at home. If
team 1 is to host the next match between the two teams, what is the
probability that it will emerge as the winner?

3.6.1 Bayes Theorem 105

This type of question can be answered by using the well-known Bayes theorem.
To begin, we introduce some basic probability definitions. Let X be a random event,
i.e., an event that occurs by chance according to some probability P (X).

Example 8 Consider the diagram shown in Figure 3.30 where each point corre-
sponds to the outcome of a random experiment (e.g., tossing a die). Points that
belong to the oval X denote events of type X (e.g., the outcome is divisible by 2),
while those that belong to the oval Y denote events of type Y (e.g., the outcome is
larger than 4). In this example, the probability for event X is P (X) = 10/20 = 0.5
between ten out of the twenty points are located inside the oval X. Similarly, we can
show that the probability for event Y is P (Y) = 8/20 = 0.4.

X Y

Figure 3.30. Diagram to illustrate probability of events X , Y , X ∩ Y , X ∩ Y , and X ∩ Y .

The complement of an event corresponds to the opposite outcome of the event.
For example, X denotes the opposite of event X, i.e., the outcome of the toss is not
divisible by 2. In this diagram, X is represented by all points that lie outside the
oval X. An event of both types (e.g., outcome is divisible by 2 and is larger than 4)
is depicted by the intersection between the two ovals and is denoted as X ∩ Y .

A conditional probability is the probability of an event given that another event
has occurred. For example, P (Y |X) is the probability that the outcome is larger
than 4 (Y) given that it is known to be divisible by 2 (X). The conditional proba-
bility can be computed in the following way:

P (Y |X) =
P (X,Y)

P (X)
(3.26)

=
4/20

10/20
= 0.4

where P (X,Y) is the joint probability for X ∩ Y . Similarly, we can write the

3.6.1 Bayes Theorem 106

conditional probability for X given Y as

P (X|Y) = P (X,Y)

P (Y)
(3.27)

The conditional probabilities P (X|Y) and P (Y |X) are related according to the
following equation:

P (X,Y) = P (Y |X)× P (X) = P (X|Y)× P (X) (3.28)

We can re-arrange this equation to obtain:

P (Y |X) = P (X|Y)P (Y)
P (X)

(3.29)

Equation (3.29) is known as the Bayes theorem.
If {Z1, Z2, · · · , Zk} is the set of mutually exclusive and exhaustive outcomes of

a random experiment, then the law of total probability states that

P (X) =
k∑

i=1

P (X,Zi) =
k∑

i=1

P (X|Zi)P (Zi) (3.30)

As an example, the set {1, 2, 3, 4, 5, 6} is the set of possible outcomes from tossing
a die.
Let us get back to the question posed at the beginning of this section. Let Xi

(i = 0 or i = 1) corresponds to the team hosting the game and Yi denotes the
eventual winner of the game. We can summarize the above information as follows:

Probability that team 0 wins is P (Y0) = 0.65.
Probability that team 1 wins is P (Y1) = 1− P (Y0) = 0.35
Probability that team 1 hosted the match it had won is P (X1|Y1) = 0.75.
Probability that team 1 hosted the match won by team 0 is P (X1|Y0) = 0.35.

The above question can be solved by computing P (Y1|X1), which is the con-
ditional probability that team 1 wins the next match it hosts. Using the Bayes
theorem, we obtain:

P (Y1|X1) =
P (X1|Y1)× P (Y1)

P (X1)

=
P (X1|Y1)× P (Y1)

P (X1|Y1)P (Y1) + P (X1|Y0)P (Y0)

=
0.75× 0.35

0.75× 0.35 + 0.35× 0.65
= 0.5357

3.6.2 Using Bayes Theorem for Classification 107

where the law of total probability was applied in the second line. We can also use
the Bayes theorem to obtain P (Y0|X1) = 0.4643 = 1−P (Y1|X1). From this analysis,
we can conclude that team 1 has a higher probability of winning than team 0.
This is an example of a classification problem, where the goal is to predict who

will win the upcoming match. Initially, we know the proportion of matches won
by each team, P (Y = 0) = 0.65 and P (Y = 1) = 0.35. If no other information is
available, it is safe to bet for team 0 to win simply because P (Y = 0) > P (Y = 1).
This is why P (Y) is called the prior probability as it encodes our a priori knowledge
about the most likely outcome of Y .
Now, suppose we are told that team 1 will be hosting the next match between

both teams. How does this information affect our prediction for Y ? Using Bayes
theorem, we have shown that team 1 has a higher chance of winning because the
conditional probability P (Y = 1|X = 1) is larger than P (Y = 0|X = 1). P (Y |X) is
called the posterior probability for Y . Choosing an outcome of Y that leads to the
highest posterior probability is called the maximum a posteriori (MAP) principle.

3.6.2 Using Bayes Theorem for Classification

Given an unlabeled instance, how do we apply the Bayes theorem to perform the
classification task? The example given in the previous section describes one possible
approach:

1. Given an unlabeled instance z = (x, y), compute the posterior probability
P (y|x) for all values of y.

2. Select the value of y that produces the maximum posterior probability.

Much of the work in Bayesian classification involves the first step, i.e., estimating
the posterior probability of each class. The Bayes theorem is useful because it
allows us to express the posterior probability in terms of the prior probabilities
of each class P (y) and the likelihood function P (x|y). If we are interested in the
posterior probability P (y|x), why do we have to estimate it indirectly using the
Bayes theorem? The answer is because it is much easier to compute P (x|y) and
P (y) directly from data. Estimating the posterior probability P (y|x) requires us to
have an extremely large data set that covers every possible combination of attribute
values x. In contrast, estimating P (x|y) and P (y) requires that the coverage for
each class is sufficiently large.
There are two common approaches for estimating the posterior probability P (y|x):

Direct estimation: In this approach, given a data set D and an unlabeled in-
stance z = (x, y), we can estimate P (x|y) and P (y) directly from data. Note
that estimating P (x|y) can be quite tricky especially when the size of the
data set is somewhat limited. Fortunately, by making additional assumptions
about the dependencies between the attributes and the class label, one can
come up with a practical way for estimating P (y|x) using techniques such as
naive Bayes and Bayesian Belief Networks (BBN). The naive Bayes approach
is described in the next section.

3.6.3 Naive Bayes Classifier 108

Generative Models: We can estimate P (y|x) by assuming that the data is gen-
erated from a collection of models h in the hypothesis space H, where:

P (y|x) =
∑

h∈H

P (y|h)× P (h|x)

A classifier that uses this approach is known as a Bayes optimal classifier
because on average, there is no other classifier that can outperform such a
classifier. However, this method is expensive because one has to compute the
posterior probability for all the hypotheses. In addition, we need to know the
prior probabilities along with the parametric forms of the probability distri-
butions.

3.6.3 Naive Bayes Classifier

In the Bayesian approach, the task of classification corresponds to finding the class
label y that maximizes the posterior probability of the unknown instance. This
is also known as the maximum a posteriori principle (MAP). In this section, we
describe the naive Bayes classifier, which can be applied to estimate the posterior
probabilities for data containing discrete and continuous attributes.
Let x = (x1, x2, · · · , xd) be the set of attribute values for an unlabeled instance

z = (x, y). The posterior probability for y given x can be computed using the Bayes
theorem:

P (y|x) = P (y|x1, x2, · · · , xd) =
P (x1, x2, · · ·xd|y)× P (y)

P (x1, x2, · · · , xd)
. (3.31)

Since we are only interested in comparing the posterior probabilities for different
values of y, we can simply ignore the denominator term P (x1, x2, · · · , xd) during
our analysis.

P (y) can be estimated as the fraction of training instances that belong to class y.
The difficult part is to determine the conditional probability P (x1, x2, · · · , xd|y) for
every possible class. Although it is easier to compute than the posterior probability,
it is difficult to obtain a reliable estimate for this term unless the size of the training
set is sufficiently large.
A naive Bayes classifier attempts to resolve this problem by making additional

assumptions regarding the nature of the relationships among attributes. Specifically,
it assumes that the attributes are conditionally independent of each other when the
class label y is known. In other words: P (aiaj |y) = P (ai|y)×P (aj |y) for all i’s and
j’s. Therefore,

P (x1, x2, · · · , xd|y) =
d∏

i=1

P (xi|y) (3.32)

This equation is more practical because instead of computing the conditional prob-
ability for every possible combinations of x given y, we only have to estimate the
conditional probability for each pair P (xi|y).

3.6.3 Naive Bayes Classifier 109

To classify an unknown instance z = (x, y), the naive Bayes classifier computes
the posterior probability of y given x using

∏d
i=1 P (xi|y)P (y) and selects the value

of y that maximizes this product.

Probability Estimation

We now explain how the conditional probabilities P (xi|y) can be estimated from a
data set D:

Discrete Attributes: For discrete attributes, the conditional probability is es-
timated by the fraction of instances in class y that take on the particular
attribute value xi. For example, in the taxpayer classification problem illus-
trated in Figure 3.7, three out of seven law-abiding taxpayers receives a refund.
Hence, the conditional probability for P (Refund = Y es|Evade = No) is equal
to 3/7. Computing the conditional probability for grouped attribute values
is performed by summing up the individual probabilities since the attribute
values are mutually exclusive. For example:

P ({Single,Divorced}|No) = P (Single|No) + P (Divorced|No)
= 2/7 + 1/7 = 3/77

Continuous Attributes For continuous attributes, one could try to discretize the
attributes first and creates a new ordinal attribute for each interval. However,
this method is not advisable as it violates the independence assumption of a
naive Bayes classifier. Alternatively, we can use a two-way split but keep only
one of the splits as the new attribute (e.g., use A < v). Although this may
preserve the independence assumption, it requires additional computation to
determine the right splitting criterion. Another approach is to assume that
each continuous attribute satisfies a certain form of probability distribution.
Typically, a normal distribution is chosen to represent continuous attribute.
A normal distribution is characterized by two parameters, the mean of the
distribution µ, and the variance, σ2. Both µ and σ also depend on the class
label. Thus, we may write:

P (X = xi|Y = yj) =
1√
2πσij

exp
−

(xi−µij)
2

2σ2
ij (3.33)

(Note that a true interpretation for the right hand side of the above equation
is that X should lie somewhere between xi and xi + ε, where ε is a small
parameter.)

We can estimate µij in terms of the sample mean of all training instances
that have the attribute value xi and the class label yj . Similarly, σ

2
ij can be

estimated by the sample variance of such instances.

3.6.3 Naive Bayes Classifier 110

For example, consider the taxable income attribute shown in Figure 3.7. For
this attribute, its sample mean and variance for Evade = No are:

x =
125 + 100 + 70 + · · ·+ 75

7
= 110

s2 =
(125− 110)2 + (100− 110)2 + · · ·+ (75− 110)2

7(6)
= 2975

s =
√
2975 = 54.54

Thus, given an unlabeled instance z with taxable income equals to 120K, we
can estimate the conditional probability:

P (Income = 120|Evade = No) =
1√

2π(54.54)
exp−

(120−110)2

2×2975 = 0.0072

Note that the conditional probability P (xi|yj) must be estimated for every
pair of (attribute value, class label) combination.

Example 9 We shall use the following example to illustrate how naive Bayes classi-
fier works. Given the data set shown in Figure 3.31, we can compute the conditional
probabilities of each discrete attribute, along with the sample mean and variance for
each continuous attribute. These probabilities and sample statistics are computed
from the training set and are used to classify unseen instances.
Given the test instance x = (Refund = No,Marital Status =Married, Income =

120K, how would you predict its class label? Using the statistics shown in Figure
3.31,

P (x|Evade = No) = P (Refund = No|Evade = No)

×P (Marital Status =Married|Evade = No)

×P (Income = 120K|Evade = No)

= 4/7× 4/7× 0.0072 = 0.0024
P (x|Evade = Y es) = P (Refund = No|Evade = Y es)

×P (Marital Status =Married|Evade = Y es)

×P (Income = 120K|Evade = Y es)

= 1× 0× 1.2× 10−9 = 0

Since P (Evade = No) = 7/10, the posterior probability for P (Evade = No|x) is
proportional to 7/10×0.0024 = 0.0016, which is larger than the posterior probability
for P (Evade = Y es|x). Thus, the instance is classified as Evade = No.

The previous example illustrates one potential problem with estimating the con-
ditional probabilities. If the estimated probability for one of the attribute is zero,
then the entire posterior probability involving this attribute vanishes. One way to
resolve this is to modify the probability estimate by using the Laplace correction

P (xi|yj) =
nc +mp

n+m
(3.34)

3.7 Artificial Neural Networks (ANN) 111

Tid Refund Marital
Status

Taxable
Income Evade

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

categoric
al

categoric
al

contin
uous

class
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0

For taxable income:
If class=No: sample mean=110

sample variance=2975
If class=Yes: sample mean=90

sample variance=25

naive Bayes Classifier:

Figure 3.31. The naive Bayes classifier for the taxpayer classification problem.

where n is the total number of instances of class yj , nc is the number of instances of
class yj that take the attribute value xi, m is a parameter known as the equivalent
sample size, and p is the prior probability specified by the user. Even if nc or n is zero
due to insufficient samples, the overall conditional probability may not be zero. In
the previous example, the conditional probability for (Marital Status =Married)
given the class (Evade = Y es) is zero. However, if we set m = 3, and p = 1/3, the
conditional probability is no longer zero:

P (Marital Status =Married|Evade = Y es) = (0 + 3× 1/3)/(3 + 3) = 1/6

Characteristics of Naive Bayes Classifiers

• Naive Bayes classifiers are robust to isolated noise points as they are averaged
out when computing probability estimates from the data.

• Most naive Bayes classifiers would handle missing values by simply ignoring
the instance during the probability estimate calculations.

• Naive Bayes classifiers are robust to irrelevant attributes.

• In general, the independence assumption may not hold for many practical
data sets as most of the attributes are not entirely independent of each other.
Alternative techniques such as Bayesian Belief Networks (BBN) are designed
to provide a more flexible scheme, allowing the users to specify the prior
probabilities as well as the conditional independence among the attributes.

3.7 Artificial Neural Networks (ANN)

This section is still being modified

3.7 Artificial Neural Networks (ANN) 112

Consider the classification problem depicted in Figure 3.32. The table on the left
shows a data set containing three boolean variables X1, X2, and X3, along with an
output variable, Y . As previously mentioned, a classification model can be regarded

X1 X2 X3 Y
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 0
0 1 0 0
0 1 1 1
0 0 0 0

X1

X2

X3

Y

Black box

0.3

0.3

0.3 t=0.4

Output
node

Input
nodes

Figure 3.32. Classifying boolean function using neural network.

as a black box that reads the input values for X1, X2, and X3, and sends out an
output value f(X1, X2, X3) that is consistent with the true output Y . One obvious
question is how does the black box represents the target function?
The classification problem shown in Figure 3.32 can be solved in the following

way: if less than two of the three input variables are equal to 1, then Y = 0.
On the other hand, if at least two of the three input variables are equal to 1,
then Y = 1. To do this, we can use a black box that models the target function
f(X1, X2, X3) = 0.3X1 + 0.3X2 + 0.3X3 − 0.4. It is straightforward to verify that
f(X1, X2, X3) > 0 only if at least two of the three variables are equal to 1. Based
on this target function, the black box can produce an output value of 1 whenever
f(X1, X2, X3) > 0.
In the diagram shown in Figure 3.32, the black box attempts to model this target

function using an assembly of inter-connected nodes and weighted links. Specifically,
there are three input nodes in the black box, each of which is associated to one of
the three input variables. The input nodes are all connected to a single output node,
via directed links whose weights are equal to 0.3. A threshold value of t = 0.4 is
also applied to the output node.
With this configuration, the output node can be regarded as a mathematical

device that sums up each of its input value according to the weights of its links, and
then subtract off the threshold value from the input sum. This is how the output
node can be used by the black box to represent the target function f(X1, X2, X3).
Such a black box, which represents its target function using a set of nodes and
weighted links, is known as an artificial neural network.
The study of artificial neural networks was inspired by the attempts to model

the way human brain works. The human brain consists primarily of nerve cells
called neurons, linked together with other neurons via strands of fiber called axons.
Axons are used to transmit nerve impulses from one neuron to another whenever

3.7 Artificial Neural Networks (ANN) 113

Input
Layer

Hidden
Layer

Output
Layer

x1 x2 x3 x4 x5

y

Figure 3.33. Example of an artificial neural network (ANN).

the neurons are stimulated. A neuron is connected to the axons of other neurons via
dendrites, which are extensions from the cell body of the neuron. The contact point
between a dendrite and an axon is called a synapse. Neurologists have discovered
that the human brain learns by changing the strength of the synaptic connection
between neurons upon repeated stimulation by the same impulse.
Analogous to the human brain structure, an artificial neural network (ANN) is

composed of an inter-connected assembly of nodes and directed links. The nodes in
an ANN are often called neurons or units. Each link is associated with a real-valued
weight parameter to emulate the synaptic connection strength between neurons.
Figure 3.33 illustrates an example of a multi-layered feed-forward neural network. It
is called a multi-layered network because the nodes are arranged in a layered fashion.
Likewise, it has a feed-forward network topology because each layer contains nodes
that are connected only to the nodes in the next deeper layer. This differs from a
recurrent network topology where backward links exist to connect a node back to
its previous layer.
The input layer contains nodes that represent the input variables, while the

output layer contains nodes that represent the target (output) variables. As an
example, the neural network shown in Figure 3.33 contains 5 input nodes and 1
output node. Zero or more hidden layers may reside between the input and output
layers. Neural network that do not have any hidden layers are known as perceptrons.
By convention, the number of layers a neural network has depends only on the hidden
and output layers, i.e., it does not include the input layer which all neural networks
must have. For example, the neural network shown in Figure 3.33 has a 2-layered
architecture.
During model building, a neural network is trained by adjusting the weights

of the links until the outputs produced by the neural network are consistent with
the class labels of the training data. The role of the neurons in the input layer is
to simply transmit the value they receive from the incoming links to each of the

3.7 Artificial Neural Networks (ANN) 114

Activation
function

g(Si)
Si Oi

I1

I2

I3

wi1

wi2

wi3

Oi

Neuron iInput Output

threshold, t

Figure 3.34. Structure of a neuron (unit).

outgoing links without performing any transformation on the input signal. The rest
of the neurons are used to combine the input variables into composite features. The
structure for such neurons are shown in Figure 3.34. The new composite feature
is created by computing the weighted average of the input values (S), and then,
applying an activation function g and threshold t to the weighted average. To
illustrate how the output value is generated, consider the structure given in Figure
3.34. First, the neuron would sum up the input values, weighted by the weights of
the respective input links, i.e., Si =

∑d
k=1wikIk. Next, an activation function g is

applied to the weighted average Si in order to obtain its output value Oi. Some of
the typical activation functions used for many neural network applications include
the sign function and the sigmoid (logistic) function, as shown in the diagram below.
In this figure, both activation functions have been displaced to the right by a factor

0 t

−1

0

1

Sign function

0 t

−1

0

1

Sigmoid function

Figure 3.35. Types of activation functions for neurons.

of t to ensure that the output becomes 1 only if the weighted average of the inputs
is greater than the threshold t. For example, a sigmoid function can be written
as g(x) = 1/(1 + exp−x), where the transition from −1 to 1 occurs at x = 0. On
the other hand, the sigmoid function shown in Figure 3.35 corresponds to g(x− t),
where the transition from −1 to 1 is centered at x = t. Thus, given a neuron i with
threshold ti and activation function g, the output can be expressed as g(Si − ti),
where Si is the weighted average of the input signals. It is often convenient to
absorb the term −ti into the expression for Si and rewrite the equation for Si as∑d

k=0wikIk, where wi0 = −t and I0 = 1. This notation for Si will be adopted in

3.7.1 Back-Propagation Algorithm 115

the rest of this section.
Before we train a neural network to learn a classification task, the following steps

need to be performed first:

1. Determine the number of nodes in the input layer. Assign an input node to
each continuous or binary input variable. If the input variable is discrete,
we could either create one node for each discrete value or encode the k-ary
variable using dlog2 ke input nodes.

2. Determine the number of nodes in the output layer. For a two-class problem,
it is sufficient to use a single output node. For a k-class problem, there are k
output nodes.

3. Select the appropriate network topology (number of hidden layers and hidden
nodes, feed-forward or recurrent network architecture, etc). Note that the
target function representation depends on the weights of the links, the number
of hidden nodes and hidden layers, biases in the nodes and type of activation
function. Finding the right topology is not an easy task. One way to do
this is to start from a fully-connected network with sufficiently large number
of nodes and hidden layers, and then repeat the model building procedure
with smaller number of nodes, which can be time-consuming. Alternatively,
instead of repeating the model building procedure, we could remove some of
the nodes and repeat the model evaluation procedure to select the right model
complexity.

4. Initialize the weights and biases.

5. Remove training examples with missing values or replace them with their most
likely values.

3.7.1 Back-Propagation Algorithm

Training a neural network amounts to updating the weights of all the link connec-
tions until the predicted output of the network is consistent with the actual class
label of the training instances. In this section, we describe a well-known learning
algorithm called back-propagation for finding the appropriate weights of a neural
network.
How should a neural network modifies its weighted links? One obvious answer

is to modify the weights in such a way that will reduce the misclassification error
of the model. In the back-propagation algorithm, the error the network is trying to
minimize is

E =
N∑

k=1

(Yk − f(Xk))
2 (3.35)

where N is the total number of training instances and f(X) is the overall target
function represented by the neural network. In neural network learning, the weights

3.7.2 Characteristics of Neural Networks 116

can be updated in two ways: (1) batch mode, where the weights are updated once
after all the training instances have been presented, or (2) online mode (stochastic
approximation), where the weights are updated once every time a new training
instance is presented. Although both approaches seem quite similar, they are
In general, the weight update formula for each neuron can be written as:

wij = wij + λ
∂E

∂wij
(3.36)

where λ is the learning rate, which is a parameter that controls how rapidly the
weight should be updated. The partial derivative term determines how much the
weight should be adjusted in order to reduce the observed error of the current
configuration of the neural network. We omit the details for deriving the partial
derivative term, and present the results below. Interested readers should refer to
references such as [129].

For output nodes:
∂E

∂wij
= (Y −Oj)Oj(1−Oj)Xji (3.37)

For hidden nodes:
∂E

∂wij
= Oj(1−Oj)

∑

k∈Downstream(j)

δkwkj (3.38)

3.7.2 Characteristics of Neural Networks

The main characteristics of decision tree induction are summarized below:

1. Multi-layered neural networks are universal approximators, i.e., they can be
used to approximate any target functions. Since it has a very expressive hy-
pothesis space, it is important to choose the appropriate network topology of
the problem. For example, it can be shown that a neural network without any
hidden layers can approximate any linear functions. It is important to point
out that linearity of the function here is with respect to the parameters of the
function instead of the input variables.

2. Neural networks are robust to noise.

3. Training a neural network is compute-intensive. However, classifying an unla-
beled instance is very fast.

3.8 Support Vector Machine (SVM)

Another classification technique that has received considerable attention in recent
years is support vector machine (SVM). SVM has its roots in statistical learning
theory and has been shown to outperform existing classifiers in many practical
applications.
The basic idea behind support vector machine is illustrated with the example

shown in Figure 3.36. In this example, the data is assumed to be linearly separable,

3.8 Support Vector Machine (SVM) 117

i.e., there exists a linear hyperplane (or decision boundary) that separates the points
into two different classes. In the two-dimensional case, the hyperplane is simply a
straight line. In principle, there are infinitely many hyperplanes that can separate
the training data. Figure 3.36 shows two such hyperplanes, B1 and B2. Both
hyperplanes can divide the training examples into their respective classes without
committing any misclassification errors. The question is, which hyperplane should
we prefer?

B1

B2

b11

b12

b21
b22

margin

Figure 3.36. An example of a two-class problem with two separating hyperplanes, B1 and B2.

Note that B1 and B2 differ not only in terms of their orientation, but also the
distance between the nearest point of each class to the decision boundary. For
example, b11 and b12 are two lines that are parallel to B1 and intersect with the
closest points of each class. The distance between these lines is known as the margin
of the decision boundary. From this figure, B1 appears to have a much larger margin
compared to B2. We expect that the larger is the margin of separation, the better
is the generalization ability of the classifier because it is less sensitive to minor
perturbations of the decision boundary. Thus, B1 should be the preferred separating
hyperplane.
The training phase of SVM consists of finding a separating hyperplane that

maximizes the margin between two classes. Once the separating hyperplane is found,
test examples are classified depending on which side of the hyperplane they reside.
Although the above example is illustrated for data sets that are linearly separable,
SVM can also handle situations where the data is not linearly separable and decision
boundaries that are non-linear. The trick here is to transform the data into a higher-
dimensional space such that a linear separating hyperplane can be used to divide
the examples into their respective classes. We will describe the details of how SVM

3.8.1 Preliminaries 118

works in Section 3.8.2.

3.8.1 Preliminaries

We begin with a preliminary discussion of some fundamental concepts in geometry
and optimization. These concepts are needed to understand how support vector
machine works. Readers who are familiar with these concepts may skip this section
and go directly to Section 3.8.2.

Fundamental geometry

In this section, we will briefly describe the general form of a hyperplane equation and
how to compute its distance from the origin of the coordinate space. Although, the
example shown here is for two-dimensional data, the results are equally applicable
to higher-dimensional spaces.
Consider the diagram shown in Figure 3.37. We can compute the equation for

the straight-line L in the following way. The general form of a straight-line equation
can be expressed as x2 = m x1 + c, where m is the slope of the line and c is the
x2-intercept of the line. Since the slope of the line is −α/β, the equation for L is

x2 = −(α/β)x1 + α

or equivalently,
αx1 + βx2 = αβ.

This equation can be expressed in vector notation as

w · x+ b = 0,

where w = α̂i + β ĵ, x = x1̂i + x2̂j and b = −αβ. î and ĵ denote the unit vectors
along the x1 and x2 axes, respectively. (A unit vector is nothing more than a vector
of unit length.) Such a compact notation is useful because it can be generalized to
higher-dimensional spaces.
What is the meaning of the vector w? The following example will provide an

interpretation of this vector.

Example 10 Given that w = α̂i + β ĵ, the magnitude of this vector is ‖w‖ =√
α2 + β2, which is the length of the line segment from (0,α) to (β,0). Furthermore,

one can show that the direction of this vector is perpendicular to L, as shown in
Figure 3.37. In order to prove this, let L = −βî + αĵ denotes a vector that is
parallel to L and directed from (β, 0) to (0, α). The dot product of vectors L and w
is:

w · L = (αî+ βĵ) · (−βî+ αĵ) = −αβ + αβ = 0, (3.39)

Since the dot product vanishes, the direction of w must be perpendicular to L.

3.8.1 Preliminaries 119

x1

x2

d

O

L

w

Figure 3.37. Finding the equation for the straight-line L.

Next, we will show how to compute the shortest distance from L to the origin
of the coordinate space. The distance is denoted as d in Figure 3.37 and is perpen-
dicular to the line segment L. Let θ be the angle between L and the horizontal axis
x1, which is also the angle between the line segment for d and the x2 axis. From
trigonometry, we can write

sin θ =
d

β
and cos θ =

d

α
.

Since sin2 θ + cos2 θ = 1, therefore

d2

β2
+
d2

α2
= 1 or

d =
αβ√
α2 + β2

(3.40)

The numerator of this expression is |b| and its denominator is equivalent to ‖w‖.
Thus, the perpendicular distance from the straight line w · x + b = 0 to the origin
is d = |b|

‖w‖ .
One can also show that points that are located above L would satisfy the in-

equality
w · x+ b > 0

while those located below L would satisfy the inequality

w · x < 0.

In addition, any lines parallel to L would have the form

w · x+ b = k,

where k is its distance to L.

3.8.1 Preliminaries 120

Optimization Problem

Optimization is an important part of classification because many classification al-
gorithms seek to find an optimal value of an objective function that characterizes
the desirability of a model. Often, the objective function is stated in terms of the
misclassification error of the model. The goal of a classification algorithm is to
find an optimal solution that minimizes this function. There are various techniques
available to solve such problems. This section presents a brief overview of such
techniques.

Unconstrained Optimization Problem Suppose f(x) is a univariate function with
continuous first-order and second-order derivatives. In an unconstrained optimiza-
tion problem, the task is to find the solution x∗ that maximizes or minimizes f(x)
without having any constraints on x∗.
The stationary point x∗ can be found by taking the first derivative of f and

setting it to zero:
df

dx

∣∣∣∣
x=x∗

= 0.

We can tell whether x∗ corresponds to a maximum or minimum stationary point by
examining the second-order derivative of the function at x∗:

• x∗ is a maximum stationary point if d2f
dx2 < 0 at x = x∗.

• x∗ is a minimum stationary point if d2f
dx2 > 0 at x = x∗.

• x∗ is a point of inflection when d2f
dx2 = 0 at x = x∗.

Figure 3.38 illustrates an example of a function that contains all three stationary
points (maximum, minimum, and point of inflection).

Maximum

Minimum

Point of
Inflection

Figure 3.38. Stationary points of a function.

The above method can be extended to a multivariate function, f(x1, x2, · · · , xd).

3.8.1 Preliminaries 121

Again, the condition for finding the stationary point x∗ = [x∗1, x
∗
2, · · · , x∗d]T is

∂f

∂xi

∣∣∣∣
xi=x∗i

= 0, ∀i = 1, 2, · · · , d.

However, unlike univariate functions, it is more difficult to determine whether x∗

corresponds to a maximum or minimum stationary point. The difficulty arises be-

cause one has to consider the partial derivatives ∂2f
dxidxj

for all possible pairs of i and

j. The complete second-order partial derivatives is given by the Hessian matrix:

H(x) =

∂2f
∂x1∂x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xd

∂2f
∂x2∂x1

∂2f
∂x2∂x2

· · · ∂2f
∂x2∂xd

· · · · · · · · ·
∂2f

∂xd∂x1

∂2f
∂xd∂x2

· · · ∂2f
∂xd∂xd

 (3.41)

• A Hessian matrix H is positive definite if and only if xTHx > 0 for any non-
zero vector x. If H(x∗) is positive definite, then x∗ is a minimum stationary
point.

• A Hessian is negative definite if and only if xTHx < 0 for any non-zero vector
x. If H(x∗) is negative definite, then x∗ is a maximum stationary point.

• A Hessian is indefinite if xTHx is positive for some value of x and negative
for others. If H(x∗) is indefinite, then x∗ is a saddle point.

Example 11 Suppose f(x, y) = 3x2+2y3−2xy. The plot of this function is shown
in Figure 3.39. The conditions for finding the optimum value of the function are

∂f

∂x
= 6x− 2y = 0

∂f

∂y
= 6y2 − 2x = 0 (3.42)

whose solutions are x∗ = y∗ = 0 or x∗ = 1/27, y∗ = 1/9.
The Hessian of f is

H(x, y) =

[
6 −2
−2 12y

]
.

At x = y = 0,

H(0, 0) =

[
6 −2
−2 0

]
.

Since [x y] H(0, 0) [x y]T = 6x2 − 4xy = 2x(3x − 2y), which can either be positive
or negative, the Hessian is indefinite and (0, 0) is a saddle point.
At x = 1/27, y = 1/9,

H(1/27, 1/9) =

[
6 −2
−2 12/9

]
.

3.8.1 Preliminaries 122

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−0.5

0

0.5

1

1.5

2

2.5

3

xy

f(x
,y

)

Figure 3.39. Plot for the function f(x, y) == 3x2 + 2y3 − 2xy.

Since [x y] H(1/27, 1/9) [x y]T = 4x2 − 2xy + 4y2/3 = 4(x − y/4)2 + 13y2/4 > 0
for non-zero x and y, the Hessian is positive definite. Therefore, (1/27, 1/9) is a
minimum stationary point. The minimum value of f is -0.0014.

Constrained Optimization Problem Next, we will examine how to solve an opti-
mization problem when the variables are subjected to various types of constraints.
While the techniques presented here are used to minimize an objective function
f(x), they are also applicable to maximization problems. This is because a maxi-
mization problem can be easily turned into a minimization problem by converting
the function f(x) to −f(x).

Equality Constraints Consider the problem of finding the minimum value of
f(x1, x2, · · · , xd) subjected to equality constraints of the form

gi(x) = 0, i = 1, 2, · · · , p.

A method known as Lagrange multipliers can be used to solve the constrained
optimization problem. This method involves the following steps:

1. Define the Lagrangian, L(x, λ) = f(x) +
∑p

i=1 λigi(x), where λi is a
dummy variable called the Lagrange multiplier.

2. Set the first-order derivatives of the Lagrangian with respect to x and
the Lagrange multipliers to zero,

∂L

∂xi
= 0, ∀i = 1, 2, · · · , d

and
∂L

∂λi
= 0, ∀i = 1, 2, · · · , p.

3.8.1 Preliminaries 123

3. Solve the (d + p) equations in step 2 to obtain the stationary point x∗

and the corresponding values for λi’s.

We illustrate how the Lagrange multiplier method works with the following
example.

Example 12 Let f(x, y) = x + 2y. Suppose we want to minimize the func-
tion f(x, y) subject to the constraint x2+ y2− 4 = 0. The Lagrange multiplier
method can be used to solve this constrained optimization problem in the fol-
lowing way.

First, we introduce the Lagrangian:

L(x, y, λ) = x+ 2y + λ(x2 + y2 − 4),
where λ is the Lagrange multiplier. To determine its minimum value, we need
to differentiate the Lagrangian with respect to its parameters:

∂L

∂x
= 1 + 2λx = 0 (3.43)

∂L

∂y
= 2 + 2λy = 0 (3.44)

∂L

∂λ
= x2 + y2 − 4 = 0

Solving these equations yield λ = ±
√
5/4, x = ∓2/

√
5, and y = ∓4/

√
5.

When λ =
√
5/4, f(−2/

√
5,−4/

√
5) = −10/

√
5. Similarly, when λ = −

√
5/4,

f(2/
√
5, 4/
√
5) = 10/

√
5. Thus, the function f(x, y) has its minimum value

at x = −2/
√
5 and y = −4/

√
5.

Inequality Constraints Consider the problem of finding the minimum value of
f(x1, x2, · · · , xd) subjected to inequality constraints of the form

hi(x) ≤ 0, i = 1, 2, · · · , q.
The method for solving this problem is quite similar to the Lagrange method
described above. However, the inequality constraints impose additional con-
ditions to the optimization problem. Specifically, the optimization problem
stated above leads to the following Lagrangian:

L = f(x) +

q∑

i=1

λihi(x) (3.45)

and constraints known as the Karush-Kuhn-Tucker (KKT) conditions:

∂L

∂xi
= 0, ∀i = 1, 2, · · · , d (3.46)

hi(x) ≤ 0, ∀i = 1, 2, · · · , q (3.47)

λi ≥ 0, ∀i = 1, 2, · · · , q (3.48)

λihi(x) = 0, ∀i = 1, 2, · · · , q (3.49)

3.8.1 Preliminaries 124

Notice that the Lagrange multipliers are no longer unbounded in the presence
of inequality constraints.

Example 13 Suppose we need to minimize the function f(x, y) = (x− 1)2 +
(y − 3)2 subjected to the following constraints:

x+ y ≤ 2, and y ≥ x.

The Lagrangian for this problem is L = (x− 1)2 + (y − 3)2 + λ1(x+ y − 2) +
λ2(x− y) subjected to the following KKT constraints:

∂L

∂x
= 2(x− 1) + λ1 + λ2 = 0 (3.50)

∂L

∂y
= 2(y − 3) + λ1 − λ2 = 0 (3.51)

λ1(x+ y − 2) = 0 (3.52)

λ2(x− y) = 0 (3.53)

λ1 ≥ 0, λ2 ≥ 0, x+ y ≤ 2, y ≥ x (3.54)

To solve the above equations, we need to examine all the possible cases of
equations (3.52) and (3.53).

Case 1: λ1 = 0, λ2 = 0. In this case, we obtain the following equations:

2(x− 1) = 0 and 2(y − 3) = 0,

whose solutions are given by x = 1 and y = 3. Since x + y = 4, this is
not a feasible solution because it violates the constraint x+ y ≤ 2.

Case 2: λ1 = 0, λ2 6= 0. In this case, we obtain the following equations:

x− y = 0, 2(x− 1) + λ2 = 0, 2(y − 3)− λ2 = 0,

whose solutions are given by x = 2, y = 2, and λ2 = −2, which is not
feasible solution because it violates the conditions λ2 ≥ 0 and x+ y ≤ 2.

Case 3: λ1 6= 0, λ2 = 0. In this case, we obtain the following equations:

x+ y − 2 = 0, 2(x− 1) + λ1 = 0, −2(x+ 1) + λ1 = 0,

whose solutions are given by x = 0, y = 2, and λ1 = 2, which is a feasible
solution.

Case 4: λ1 6= 0, λ2 6= 0. In this case, we obtain the following equations:

x+ y− 2 = 0, x− y = 0, 2(x− 1)+ λ1+ λ2 = 0, 2(y− 3)+ λ1− λ2 = 0,

whose solutions are x = 1, y = 1, λ1 = 2, and λ2 = −2, which is not a
feasible solution.

3.8.2 How Support Vector Machine Works? 125

Therefore, the solution for this problem is x = 0 and y = 2.

Solving the KKT conditions can be quite a laborious task especially if the number
of constraining inequalities is large. In such cases, finding a closed-form solution is no
longer possible and one has to use numerical techniques such as linear and quadratic
programming.

3.8.2 How Support Vector Machine Works?

Now, let us turn to the question of how SVM works. We begin with the simplest case,
where the data is assumed to be linearly separable. We then proceed to the more
difficult cases, where the data is not linearly separable and for nonlinear decision
boundaries.

Linear SVM: Separable Case

Consider a binary classification problem consisting of n training examples. Each ex-
ample is denoted by the tuple (xi, yi) (i = 1, 2, · · · , n), where xi = (xi1, xi2, · · · , xid)T
corresponds to the attributes of the example and yi ∈ {−1, 1} denotes its class la-
bel. Assuming that the data is linearly separable, the decision boundary can be
expressed in the general form w · x+ b = 0, as shown in Figure 3.40.

w.x + b = 0

margin

w.x + b = 1

w.x + b = -1

Figure 3.40. Decision boundary of a linear SVM.

Furthermore, each training example can be classified according to the following
conditions:

w · xi + b ≥ 1 if yi = 1,

w · xi + b ≤ −1 if yi = −1 (3.55)

These conditions simply state that points located on or above the hyperplane w ·
x + b = 1 will be classified as y = 1 and those located on or below the hyperplane

3.8.2 How Support Vector Machine Works? 126

w · x+ b = −1 will be classified as y = −1. Both inequalities can be summarized in
a more compact form as follows

yi(w · xi + b) ≥ 1, i = 1, 2, · · · , n (3.56)

The margin of the decision boundary is given by the distance between the two hy-
perplanes w · x + b = 1 and w · x + b = −1, which is equal to 2/‖w‖. Recall that
SVM tries to find a decision boundary that maximizes this margin. However, max-
imizing the margin of separation is equivalent to minimizing the following objective
function:

f(w) =
‖w‖2
2

.

As a result, the training phase of SVM involves solving the above minimization
problem to learn the parameters w and b, subjected to the constraints given in
(3.56). Such a constrained optimization problem can be solved using the Lagrange
multiplier method described in the previous section. The Lagrangian of this problem
is

LP =
1

2
‖w‖2 −

n∑

i=1

λiyi(w · xi + b− 1) (3.57)

Notice that the second term is subtracted from the first because the inequality (3.56)
involves a ≥ symbol, instead of a ≤ symbol. Also, there are as many Lagrange
multipliers as the number of training instances in the data set.
Taking the derivative of LP with respect to w and b and setting them to zero

would give

w =
n∑

i=1

λiyixi (3.58)

n∑

i=1

λiyi = 0 (3.59)

In addition, the KKT approach described in Section 3.8.1 introduces the following
additional constraints

λi ≥ 0 ∀i = 1, 2, · · · , n (3.60)

λiyi(w · xi + b− 1) = 0 ∀i = 1, 2, · · · , n (3.61)

Equations (3.58) and (3.61) suggest that the decision boundary does not depend
on all the training examples. More precisely, only training examples for which λi > 0
affects the decision boundary. These examples are known as support vectors and lie
along the hyperplanes w · x+ b = ±1.
Solving the above optimization problem is a mathematically tedious task because

they involve a large number of parameters: w, b, and λi. It would be nice if we
can reformulate the problem in such a way that involves only the λi’s. To do this,

3.8.2 How Support Vector Machine Works? 127

we first substitute equations (3.58) and (3.59) into (3.57). This will produce a dual
formulation of the Lagrangian,

LD =
n∑

i=1

λi −
1

2

∑

i,j

λiλjyiyjxi · xj (3.62)

which is an expression involving only the Lagrange multipliers and the training data.
Notice that the quadratic term appears with a negative sign, which means that the
problem has turned into a maximization problem involving the λi’s. Once the λi’s
are found, we can use equations (3.58) and (3.61) to solve for w and b. The decision
boundary can be written as

[
n∑

i=1

λiyixi · x] + b = 0 (3.63)

During the testing phase, a test instance z can be classified by computing

f(z) = sign(w · z+ b) = sign(

n∑

i=1

λiyixi · z+ b).

Specifically, if f(z) = 1, then the test instance is classified as a positive class,
otherwise it is classified as a negative class.

Linear SVM: Nonseparable Case

For the nonseparable case, it is no longer possible to construct a decision boundary
that does not commit any misclassification errors in the training set. We now show
how the SVM formulation can be modified to handle the nonseparable case.
To do this, we need to introduce a slack variable into the constraints of the

problem. Specifically, equation (3.55) can be modified into the following form,

w · xi + b ≥ 1− ξi if yi = 1,
w · xi + b ≤ −1 + ξi if yi = −1 (3.64)

where ξi ≥ 0, ∀i.
In addition, the objective function is modified into the following form,

f(w) =
‖w‖2
2

+ C(
n∑

i=1

ξi)
k,

where C is a parameter chosen to balance the size of the margin and cost of misclas-
sification errors. For k = 1, one can show that the slack variables will not appear in
the dual Lagrangian formulation.
It follows that the Lagrangian for this problem is

LP =
1

2
‖w‖2 + C(

n∑

i=1

ξi)−
n∑

i=1

λi{yi(w · xi + b)− 1 + ξi} −
n∑

i=1

µiξi (3.65)

3.8.2 How Support Vector Machine Works? 128

where the last term is due to the non-negativity constraints on the values of ξi’s.
The Lagrangian is subjected to the following KKT conditions:

ξi ≥ 0, αi ≥ 0, µi ≥ 0
yi(w · xi + b)− 1 + ξi ≥ 0
λi{yi(w · xi + b)− 1 + ξi} = 0
µiξi = 0

Setting the first-order derivative of L with respect to w, b and ξi to zero would
result in the following equations:

∂L

∂wj
= wj −

n∑

i=1

λiyixij = 0 (3.66)

∂L

∂b
= −

n∑

i=1

λiyi = 0 (3.67)

∂L

∂ξi
= C − λi − µi = 0 (3.68)

Substituting equations (3.66), (3.67), and (3.68) into the Lagrangian will produce
a dual Lagrangian that is identical to Equation (3.59). The dual problem can then
be solved numerically using quadratic programming techniques.

Nonlinear SVM

So far, the above analysis assumes that a linear decision boundary can be constructed
to separate the instances into different classes. Nevertheless, there are many data
sets for which the optimal decision boundary is nonlinear. Can we still use SVM for
this type of data set? The answer is yes. The trick is to transform the data from its
original coordinate space in x to a higher-dimensional space Φ(x) in such a way that
the decision boundary separating the instances becomes linear in the transformed
space. That way, we can still apply the machinery presented in the previous sections
in the transformed space.
Although this approach seems promising, it raises several implementation issues.

First, it is not clear what is the right mapping function Φ(x) that ensures an accurate
linear decision boundary can be constructed in the higher dimensional space. One
possibility is to transform the data into an infinite-dimensional space, but such a
space may not be that easy to work with. Second, even if we do find the appropriate
transformation to a higher dimensional space, the amount of computation that is
needed to solve the constrained optimization problem in the higher-dimensional
space could become intractable.
An important observation from the results of the previous sections was that the

decision boundary and dual Lagrangian formulation involves only dot products of
the training instances xi ·xj (see for example, equations (3.62) and (3.63)). Thus, if

3.9 Ensemble Methods 129

we transform the coordinate space from x to Φ(x), the decision boundary is equal
to

f(x) =

n∑

i=1

λiyiΦ(xi) · Φ(x) + b (3.69)

and the Lagrangian for the separable case is

LD =

n∑

i=1

λi −
1

2

∑

i,j

λiλjyiyjΦ(xi) · Φ(xj) (3.70)

Computing the dot product Φ(xi) · Φ(xj) in higher dimensional space can be
quite expensive. However, if we can find a kernel function such that K(xi,xj) =
Φ(xi)·Φ(xj), then we do not have to explicitly compute the dot product between the
Φ’s in the high dimensional space. Instead, the dot product can be computed using
the kernel function itself, which is a much simpler operation that can be performed
in the original space x. This approach would address both of the issues described
above.
However, what is the right kernel function to use? The answer to this question

goes beyond the scope of this book. Interested readers should refer to the references
given in the bibliography remarks.
Some of the typical kernel functions used in various SVM implementations are

listed below:

K(x,y) = (x · y + 1)p (3.71)

K(x,y) = e−‖x−y‖2/(2σ2) (3.72)

K(x,y) = tanh(kx · y − δ) (3.73)

3.9 Ensemble Methods

This section is still being modified

Given a set of training examples, most of the techniques described so far in
this chapter assume that a single classification model is sufficient to represent the
data. However, there is considerable interest in improving the accuracy of learning
algorithms by aggregating the predictions made by multiple classifiers. These are
known as ensemble methods for classification. Ensemble methods construct a set of
classifiers from the training data and predict the classes of test examples by combin-
ing the predictions of these classifiers. In the following, we describe why ensemble
methods can perform better than individual classifiers and methods developed to
construct multiple classifiers from a given data set.

3.9.1 Why Ensemble Methods Work? 130

3.9.1 Why Ensemble Methods Work?

Would an ensemble of classifiers always perform better than a single classifier? It has
been shown that a necessary and sufficient condition for an ensemble to work better
is if it is composed of base classifiers that are reasonably accurate and independent of
each other. Specifically, each classifier has to perform better than random guessing
i.e., the error rate should be less than 50%, and the errors made by the base classifiers
should be uncorrelated.

Example 14 Suppose an ensemble of twenty-five base classifiers is constructed,
each of which have an error rate of ε = 0.35. The ensemble classifier takes a
majority vote among its base classifiers as its overall prediction. If all the base
classifiers are exactly identical, then the error rate of the ensemble remains as 0.35.
However, if the ensemble consists of independent base classifiers, the probability

that it makes a wrong prediction is given by

25∑

i=13

(
25

i

)
εi(1− ε)25−i = 0.06 (3.74)

which is much smaller than 0.35. Thus, ensemble methods depend not only on the
accuracy of the individual classifiers, but also on the independence of the classifiers.

3.9.2 Types of Ensemble Methods

Constructing an ensemble of classifiers usually involves the following steps:

1. Create multiple versions of the training data, D1, D2, · · · , Dt.

2. For each version Di, build a base classifier Ci.

3. Classify the test example, x, by combining the predictions made by the base
classifiers:

C∗(x) = V ote(C1(x), C2(x), · · · , Ct(x))
The voting scheme can simply take a majority vote of the individual predic-
tions or weighted by the accuracy of the base classifiers.

Below, we describe several types of ensemble classifiers:

Bayesian ensemble. The Bayesian classifier approach is an example of an ensem-
ble method that takes into account the predictions made by multiple classifiers.
Test examples are classified by choosing the class that has the highest posterior
probability.

Manipulate the data distribution. In this approach, the data is resampled sev-
eral times, each time using a different subset of training examples. The data
can be resampled using various approaches including bootstrap sampling, k-
fold cross-validation, or random subsampling. A classifier is then constructed

3.9.3 Bagging 131

for each subset. We will illustrate two of the more popular ensemble methods
called bagging and boosting in the next sections. These approaches work well
for unstable classifiers, i.e., base classifiers that are highly sensitive to small
perturbations in the training set.

Manipulate the input features. In this approach, a subset of the input features
is used to create the training set, Di. This approach works well especially
when many of the features are correlated with each other. Otherwise, the
performance of the ensemble is no better than using a single classifier.

Manipulate the class labels. This method can be used when the number of class
labels is sufficiently large. Each data set Di is constructed by randomly par-
titioning the classes into two subsets (e.g., A0 and A1), and then, relabel the
input data according to their new classes. More precisely, examples whose
class labels belong to A0 is relabeled as class 0 and those whose class labels
belong to A1 is relabeled as class 1. The data is then presented to the learning
algorithm for training. An ensemble of classifiers is obtained by repeating the
class relabeling step multiple times. When a new test example is presented,
each base classifier Ci is used to classify the example. If the test example
is predicted as class 0, then all class labels that belong to A0 will receive a
vote. On the other hand, if it is predicted as class 1, then all class labels that
belong to A1 will receive a vote. Eventually, the class label that receives the
highest vote will be assigned to the test example. This method is also known
as error-correcting output coding method.

Introduce randomness into the learning algorithm. Another type of ensem-
ble method is to randomize the learning algorithm so that different runs of the
algorithm on the same data can lead to different models. Injecting random-
ness to the algorithm could be as simple as randomizing the input parameters
of the algorithm or may require modifications to the base classification algo-
rithm. For example, in neural networks, the initial weights of the links can be
chosen randomly to produce different classifiers. In decision tree construction,
instead of choosing the best splitting condition at each node, we can randomly
choose one of the top k conditions for splitting. Studies have shown that such
randomized decision trees can perform better than having a single decision
tree.

3.9.3 Bagging

Bagging, which is also known as bootstrap aggregating, is a technique that re-
peatedly sample (with replacement) from data according to a uniform probability
distribution. Each bootstrap sample has the same size as the original data set. In
addition, some training examples can be duplicated while others could be missing
from the bootstrapped sample.
Given a data set D containing n examples, the basic algorithm for bagging

involves the following steps:

3.9.4 Boosting 132

1. Create k bootstrap samples of size n: D1, D2, · · · , Dk.

2. Train a base classifier Ci on each Di.

3. Apply each base classifier to a new test instance. The final classification for
the new instance is given by the majority vote of the base classifier Ci.

Bagging improves the generalization error by reducing the variance of its base classi-
fiers. This will help to make unstable learners become more stable. Bagging is also
useful for alleviating the overfitting problem in noisy environment. However, the
performance of bagging depends on the stability of the base classifier. If the base
classifier is stable, i.e., robust to small changes in the training data, the error of the
ensemble will be primarily caused by bias in the base classifier. In this situation,
bagging will not improve the performance of the base learner and may even degrade
its performance slightly because the effective size of the training set is smaller in
each bootstrap sample.

3.9.4 Boosting

Boosting is an iterative procedure to adaptively change the distribution of training
set by focusing more on previously misclassified examples. Initially, the examples are
assigned equal weights, so that they are equally likely to be included in the training
set. Once a classifier has been induced, it will be applied to all the examples. The
weights for examples that are wrongly classified will be increased, while those that
are classified correctly will be decreased. That way, the classifier will be forced to
focus more on examples that are difficult to classify. The updated weights will be
used to create a new training set for the next boosting round.
For new examples, instead of using a majority voting scheme as in the bagging

method, boosting will weight the classifier differently according to the performance
of the base classifiers.
There are several implementations of the boosting algorithm, the most popular

of which is known as Adaboost. In Adaboost, the importance of each base classifier
is computed based on its error rate. If εi is the error rate for classifier Ci, then the
importance of Ci is given by the following factor,

αi =
1

2
ln

(
1− εi
εi

)
.

Note that αi is positive if the error rate is smaller than 0.5 and negative if the error
rate is larger than 0.5, as shown in Figure 3.41.
Let wi,j be the weight assigned to example (xi, yi) during the j

th boosting round.
The weight update mechanism in Adaboost uses the following formula:

wi,j+1 =
w(i, j)

Zj
×
{
exp−αj if Cj(xi) = yi

expαj if Cj(xi) 6= yi
(3.75)

3.9.4 Boosting 133

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

ε

ln
 ((

1
−

ε)
 /

ε)

Figure 3.41. Plot of α as a function of training error ε.

where Zj is a normalization factor. The above update formula will increase the
weights of wrongly classified examples and decrease the weights of correctly classified
examples.
Below, we summarize the Adaboost algorithm:

1. Let wi1 = 1/n be the initial weights for all the examples (xi, yi). Draw a
random sample of size n from the training set D according to this initial
distribution. Denote D1 as the initial training set.

2. For i = 1 · · ·T :
• Construct a base classifier for Di.

• Estimate the error rate εi according to the misclassification errors on
training set.

• Calculate the αi parameter.
• Update the weight of each example according to equation (3.75).
• Create a new subset of training examples Di+1 by randomly sampling
the original data according to the adjusted weight factors.

3. The boosted classifier is C∗(x) = sign(
∑T

j=1 αjCj(x)).

Theoretically, it can be shown that if εi is always less than 0.5, then the training
error will decrease exponentially to zero. However, this does not guarantee that
the generalization error will decrease as rapidly too. Freund and Shapire has pro-
vided a bound on generalization error of the boosted classifier in terms of several
parameters including the training error, size of training set n, number of boosting
rounds T , and the VC-dimension (which is a measure of the complexity of the set
of target functions). Finally, it is important to point out that although boosting
can dramatically improves the performance of base classifiers, it is susceptible to
overfitting especially when the number of boosting rounds is large.

3.10 Model Evaluation 134

3.10 Model Evaluation

This section is still being modified

At this point, we have introduced several classification techniques and described
some of their strengths and limitations. For any given data set, one can generate
multiple models of the data

• by applying different classification techniques, or

• by choosing different parameters of the learning algorithm, e.g., the number of
nearest neighbors in a nearest-neighbor classifier or the threshold for pruning
decision trees and classification rules.

As a result, we are often faced with the problem of evaluating and comparing the
performance of multiple, competing models. A typical criterion for evaluating the
different models is how well the model predicts the class label of the entire data set,
including instances it has not seen during model building.
The purpose of this section is to highlight the various issues concerning the model

evaluation task and methods that have been developed to deal with these issues.
We begin with three important aspects of the model evaluation task.

Metrics for Performance Evaluation: A key issue is how to evaluate the per-
formance of a classification model. Typically, a performance metric is used
to assess the quality of a model. We have briefly touched upon this issue in
Section 3.2, where metrics such as accuracy and misclassification error rate
were introduced. The limitations of these metrics have led to the development
of numerous alternative measures for evaluating classification models.

Methods for Performance Evaluation: Since models are built from the train-
ing set, the performance metrics we compute are only estimates of the true
model performance for the entire data set. Whether the estimates are reliable
or not depends on how well the training and test sets represent the overall
data. Other factors that may influence the reliability of these estimates in-
clude sample size and the dimensionality of the data. In general, estimates
of the performance metric can be made more reliable by repeating the ex-
periments several times using different partitions of training and test sets.
The various resampling techniques for estimating the model performance are
described later in this section.

Methods for Model Comparison: A third aspect of the model evaluation task
is the comparison of the relative performance of different models. The easiest
way to do this is to take the difference in their performance measure as the
basis for comparison. Depending on the sampling scheme and size of the
training set, the magnitude of the difference may not be a true indicator of

3.10.1 Metric for Performance Evaluation 135

the significance of the observed differences. Unless the differences are shown
to be statistically significant, one cannot substantiate any claims about the
superiority of one model over another. While there are many statistical tests
one could apply, we only discuss several of the more popular tests in this
section.

The performance of a classification model can be strongly influenced by the
following factors:

Class Distribution: Data sets with unbalanced class distributions are common
in the real world. For example, the earth is populated by more non-mammal
species than mammals, and there are relatively more law-abiding taxpayers
than those who cheat on their taxes. A simple but effective strategy for classi-
fication would be to simply assign the majority class to all unknown instances.
Although this approach would achieve high classification accuracy, it may not
be desirable especially for applications that are more interested in detecting
the minority class.

Cost of Misclassification: Related to the issue of unbalanced class distribution
is the problem of having unequal misclassification costs. For example, diag-
nosing a sick person as healthy is often more costly than diagnosing a healthy
person as sick. If the cost of misclassifying instances is non-trivial, e.g., biased
towards certain classes, then accuracy is no longer a suitable measure for eval-
uating the performance of different models. Instead, one should incorporate
the cost directly into the objective function of the learning algorithm or uses
performance metrics that are biased towards certain misclassification errors.

Sample Size: In many classification problems, the training and test sets are sam-
ples taken from the entire population. One of the main challenges of the model
evaluation task is to infer the properties of the entire population based on in-
formation derived from training samples. If the sample size is too small, then
it will be difficult to trust the statistical significance of the performance mea-
sure. In addition, a small training set also raises the issue of bias and variance
in the derived model, two important questions that are discussed later in this
chapter.

3.10.1 Metric for Performance Evaluation

As noted in Section 3.2, a classification model can be evaluated on the basis of its
accuracy over the test set. Accuracy is a reasonable performance metric because
it captures the success rate of a classifier in terms of predicting the class label of
unseen instances. When the data set contains equal representatives from all classes,
and the costs associated with misclassifying instances are the same across all classes,
then accuracy is a sufficient measure to assess the performance of a model.
The statistics for computing the accuracy measure can be obtained from a con-

fusion matrix, as illustrated in the table below. A confusion matrix summarizes the

3.10.1 Metric for Performance Evaluation 136

number of instances classified correctly and incorrectly by the classifier in a tabular
format.

Predicted Class
Class = 1 Class = 0

Actual Class = 1 a b
Class Class = 0 c d

The counts a, b, c, and d are also known as:

• a: true positive (TP)

• b: false negative (FN)

• c: false positive (FP) or false alarm

• d: true negative (TN)

The true positive rate (TPR) or sensitivity is the fraction of positive instances
predicted correctly by the model, i.e., a/(a + b). Similarly, the true negative rate
(TNR) or specificity is the fraction of negative instances predicted correctly by the
classifier, i.e., d/(c + d). The false positive rate (FPR) is the fraction of negative
instances predicted as a positive class by the model, i.e., c/(c + d) and the false
negative rate (FNR) is the fraction of positive instances predicted as a negative
class by the model, i.e., b/(a+ b).
Accuracy may not be a reliable measure if one of the following conditions holds:

1. The class distribution is skewed, thus containing a lot more instances from
one class than the other. For example, in credit-card fraud detection, the
number of fraudulent transactions is significantly less than the number of valid
transactions.

2. There is a wide disparity in terms of misclassification costs for different classes.
For example, in diagnosing cancer cells, it is more costly to misclassify malig-
nant tissue as healthy tissue than the reverse.

Let C(i|j) denotes the cost of misclassifying an instance of class j as belonging to
class i. For example, C(−|+) is the cost of committing a false negative error and
C(+|−) is the cost of making a false alarm. Negative costs can be used to reward
models that make correct predictions.
Given a set of test instances, the total cost of a model is:

Ct(M) = TP × C(+|+) + FP × C(+|−) + FN × C(−|+) + TN × C(−|−) (3.76)

3.10.1 Metric for Performance Evaluation 137

If the benefits of making correct predictions are ignored, i.e., C(+|+) = C(−|−) = 0,
the above equation can be simplified as:

Ct(M) = FP × C(+|−) + FN × C(−|+)
= N(−)× FPR× C(+|−) +N(+)× (1− TPR)× C(−|+) (3.77)

where N(+) (N(−)) is the total number of positive (negative) instances. In the
above equation, we have expressed the total cost in terms of the true positive rate
and false positive rate of the model. If C(+|−) = C(−|+) = 1, then the model is
said to have a 0/1 cost function with a total cost given by

N(−)× FPR+N(+)× (1− TPR)

Example 15 Consider the cost matrix shown in the table below:

Predicted Class
Class = + Class = −

Actual Class = + -1 100
Class Class = − 1 0

The cost of committing a false negative error is a hundred times larger than
the cost of committing a false positive error. Thus, one could tolerate models that
commit up to ninety-nine false positive errors for each false negative error committed
by another model. This type of cost function is typically encountered in domains
where the positive class of interest is extremely rare. Thus, identifying correctly
positive instances amounts to finding a needle in the haystack. In this example, no
reward is given for classifying correctly the negative instances. Given two models:

M1: TP = 150, FP = 60, TN = 250, and FN = 40
M2: TP = 250, FP = 5, TN = 200, and FN = 45

The total cost of the models are:

Cost(M1) = 150× (−1) + 60× 1 + 40× 100 = 3910
Cost(M2) = 250× (−1) + 5× 1 + 45× 100 = 4255

One could see that despite the marked improvement in both true positive and false
positive counts, M2 is not desirable because the improvement comes at the expense
of increasing the more costly false negative errors. The standard accuracy measure
would prefer model M2 over M1 because it assumes a 0/1 cost function.

A cost-sensitive classifier takes the cost information into account during model
building and produces an output model that commits less costly errors. For example,
if false negative errors are more costly, a cost-sensitive classifier would reduce this
type of error by moving its decision boundary towards the direction of the negative

3.10.1 Metric for Performance Evaluation 138

class, This would allow the generated model to cover more positive instances even
though this may come at the expense of committing more false positive errors, as
illustrated in Figure 3.42. For Bayes classifiers, modifying the decision boundary
is equivalent to changing the cutoff threshold for declaring a positive class. In the
two-class problem, an instance is predicted to be a positive class if the posterior
probability is maximum, i.e.,

P (+|x) > P (−|x)
⇒ P (+|x) > (1− P (+|x))

⇒ 2× P (+|x) > 1

⇒ P (+|x) > 0.5 (3.78)

which is equivalent to choosing a cutoff threshold of 0.5 for P (+|x).

B1B2

Figure 3.42. Modifying the decision boundary (from B1 to B2) to reduce total misclassification cost of a

classifier.

A cost-sensitive learning algorithm makes its prediction by choosing the class yi
that minimizes the following quantity:

∑

j

P (yj |x)C(yi|yj)

For a two-class problem where ∀i : C(yi, yi) = 0, an instance is declared to be a
positive class if:

P (+|x)C(−|+) < P (−|x)C(+|−)
⇒ P (+|x)C(−|+) < (1− P (+|x))C(+|−)

P (+|x) <
C(+|−)

C(+|−) + C(−|+) (3.79)

3.10.2 Methods for Performance Evaluation 139

which is equivalent to modifying the threshold to t = C(+|−)/(C(+|−) +C(−|+)).
If C(+|−) < C(−|+), then we should choose a cutoff threshold t < 0.5 for P (+|x)
as making a false negative error is more costly.
Even if the learning algorithm is not cost-sensitive, there are measures available

to select appropriate models that are biased towards certain types of cost functions.
For example, the precision and recall measures given below can be used to assess how
good is a classifier in terms of reducing certain types of misclassification errors. For
instance, recall is a measure that analyzes the trade-off between true positives and
false negative errors. A model with high recall would commit fewer false negative
errors when making predictions. Analogously, precision is a measure that analyzes
the trade-off between false positive and true positive errors. A model with high
precision would commit fewer false positive errors when making predictions.

Precision, p =
a

a+ c
(3.80)

Recall, r =
a

a+ b
(3.81)

F-measure, F1 =
2rp

r + p
=

2× TP
2× TP + FP + FN

(3.82)

F-Measure is the harmonic mean of recall and precision:

F1 =
2

1
r +

1
p

To illustrate the meaning of a harmonic mean, consider two real numbers, a and
b. The harmonic mean between both numbers, say c, is located in the interval [a,b]
where (c− a)/a = (b− c)/b. Solving this equality would yield c = 2ab

a+b . Note that a
harmonic mean is located closer to the smaller value between a and b. A comparison
between harmonic, geometric, and arithmetic means is given below:

Example 16 Consider two positive numbers a = 1 and b = 5. Their arithmetic
mean is µa = (a + b)/2 = 3 and their geometric mean is µg =

√
ab = 2.236. Their

harmonic mean is µh = (2× 1× 5)/6 = 1.667. Thus, a harmonic mean is closer to
the smaller value between a and b than both arithmetic and geometric means.

3.10.2 Methods for Performance Evaluation

Once we have decided on the choice of a performance metric, the next step is to
conduct experiments that can evaluate the performance of a classification model.

Learning curve

A classification technique is stable if it induces models that make similar predictions
on test instances when the training set is slightly perturbed. If the size of the
training set is too small, the models induced by the classification technique can

3.10.2 Methods for Performance Evaluation 140

be quite unstable, thus producing erratic performance values. One way to check
whether the training set is large enough to produce consistent results is to plot
a learning curve, which depicts how the model accuracy on test set varies with
increasing number of training instances.
Figure 3.43 illustrates an example of a learning curve obtained using a geometric

sampling schedule. The size of the training set is incremented geometrically (2, 4,
8, 16, · · ·) rather than arithmetically (5, 10, 15, 20, · · ·) to reduce the number of
experiments needed for obtaining such a learning curve. At each sample size, we
repeated the experiments ten times by randomly selecting instances from the overall
data set to be its training set. (Note that the size of the test set is fixed throughout
the experiments.)

100 101 102 103 104
45

50

55

60

65

70

75

80

85

90

95

Sample Size

A
cc

ur
ac

y

Figure 3.43. A learning curve.

When the size of the training set is small, the model accuracy is poor, with
an average close to 60%. However, as the number of training instances increases,
model accuracy improves until it converges to 90%. Let acct be the true accuracy
of the classification technique and acce(s) be the empirical accuracy obtained for
sample size s. The bias of the model in terms of estimating accuracy is defined as
(acct − acce(s)). For the learning curve shown in Figure 3.43, the true accuracy
acct is located close to the convergence value of the learning curve. Thus, when
the sample size is small, the bias of the model would be large. The variance in the
accuracy measure is also extremely high. However, as we increase the sample size,
both bias and variance become smaller, indicating a more stable model.
In principle, we like to have as many instances as possible for training and testing

to ensure that the induced model is stable and that the performance measure is
reliable. A large training set is needed to reduce the bias and variance of the

3.10.2 Methods for Performance Evaluation 141

model. In addition, the model building and evaluation steps should be repeated
as many times as possible to reduce the variance of the measure. We also need as
many instances as possible for the test set to ensure that the estimate has a small
confidence interval.

Estimation Methods

Using the training set for estimating the performance measure is unacceptable be-
cause it may not generalize well to previously unseen instances. In addition, the
discussion in the previous section also suggests that the performance measure can
be quite sensitive to the choice of training and test instances. Thus, more robust
estimation methods such as resampling techniques are needed. Below, we describe
some of the methods commonly used to obtain more a reliable estimate of the per-
formance measure.

Holdout Method In this method, the data set is partitioned into two mutually
disjoint sets, called the training set and the test set. A classification model is
learned from the training set and its performance measure is evaluated using
the test set. Typically, one would reserve two-thirds of the data for training
and the rest for testing. The accuracy of the model is obtained using the
formula given in Equation (3.1). The disadvantages of this method are (1) it
reduces the amount of data available for training, and (2) the model can be
biased by the composition of the training set. The more instances left out of
the training set, the larger is the bias of the estimate. On the other hand,
the smaller the size of the test set, the larger the confidence interval of the
performance measure.

Random Subsampling The holdout method can be repeated several times in
order to reduce the bias of the training instances. This is also known as the
random subsampling method. The overall accuracy is estimated by taking

the average accuracy of each holdout, i.e., accsub =
∑k

i=1 acch,i
k , where acch,i is

the accuracy value for each holdout i. As with the previous method, random
subsampling typically does not use as much data as possible for training.

Cross-Validation An alternative to random subsampling is cross-validation. Ran-
dom subsampling can be undesirable because one has no control over the num-
ber of times each instance is used for testing and training. As a result, some
instances could be tested multiple times while others might be missed. We
can avoid this problem by using the cross-validation approach, where each
instance is used once for testing. To illustrate the idea of cross-validation,
suppose we partition the data into two mutually exclusive subsets, where one
is used for training while the other is used for testing. We then swap the role of
the subsets so that the training set now becomes the test set, and vice-versa.
This is called a 2-fold cross-validation approach. The final model accuracy
can be estimated by averaging the accuracy over the two runs. In general, a

3.10.2 Methods for Performance Evaluation 142

k-fold cross validation can be performed by segmenting the data into k disjoint
partitions. At each run, one of the partition will be chosen for testing while
the rest of them are used for training. Since the number of runs is equal to
the number of partitions k, each partition is used only once for testing. The
overall model accuracy is estimated by the average accuracy over the k runs.
A special case of k-fold cross-validation is to set k = N , the total number of
instances in the entire data set. In this leave-one-out approach, the test set
contains only one instance. The advantage of this approach is that as much
data as possible is used for training, and the test sets are mutually exclusive
and cover the entire data set. The drawback of this approach is that it can be
quite expensive to compute.

Stratification In this approach, the frequency of each class in a sample is changed
according to their cost of misclassification. Stratification can be done by over-
sampling the minority class or undersampling the majority class. For example,
given a data set that contains 100 positive instances and 1000 negative in-
stances, stratification by oversampling would duplicate each positive instance
10 times so that the resampled data set contains 1000 positive and negative
instances. In the case of stratification by undersampling, a random sample
of 100 negative instances will be chosen so that the resampled data set con-
tains 100 positive and negative instances. Undersampling reduces the amount
of data available for training while oversampling increases the computation
time. Stratification can be combined with other approaches such as cross-
validation and random subsampling. However, stratification is not applicable
to the leave-one-out approach because the test set contains only a single in-
stance.

Bootstrap All the methods described so far assume that the instances are selected
without replacement. As a result, there are no duplicates in the training and
test sets unless the method involves stratification by oversampling. The boot-
strap approach is an exception because it allows for sampling with replacement.
Given a data set D containing N instances, a bootstrap sample is obtained by
randomly selecting N instances (with replacement) from D. Sampling with
replacement means the same instance can be re-drawn from the training set,
thus allowing it to be used more than once. It can be shown theoretically that
on average, a bootstrap sample contains only about 63.2% of the total training
instances. This is because the probability that an instance is not chosen by
a bootstrap sample is (1 − 1/N)N ' e−1 = 0.368 while the probability that
it is chosen is 1 − 0.368 = 0.632. This percentage is much smaller than that
of a 10-fold cross validation, which contains 90% of the training data. Any
instances that are not included in the boostrap sample become the test set for
the current bootstrap iteration. The bootstrap sampling is repeated b times
to generate b bootstrap samples.

There are many variations to the bootstrap sampling procedure in terms of
how the accuracy or misclassification error is computed. One of the more

3.10.3 Methods for Performance Comparison 143

popular bootstrap approach is called .632 bootstrap, which determines the
overall accuracy by taking a weighted average of the accuracies estimated
from the test set of each bootstrap sample (ε0,i) and the accuracies estimated
for the training set (accs):

Accuracy, accboot =
1

b

b∑

i=1

(0.632× ε0,i + 0.368× accs) (3.83)

Not the training accuracy of each bootstrap sample, while others use the
training accuracy of a model built from the full data set.

Kohavi [103] has performed an extensive study comparing the average accuracies
obtained for six different data sets using the various resampling techniques described
above. Their results indicate that the best method for model selection is the ten-fold
stratified cross validation.

3.10.3 Methods for Performance Comparison

In this section, we examine the different methods available for comparing the perfor-
mance of different classification models. We first illustrate a method called the ROC
curve, which originates from the field of signal detection theory. We then discuss
the issue of evaluating the statistical significance of performance measures.

ROC curve

An ROC curve is a useful graphical tool to display the trade-off between the true
positive rate (TPR) and false positive rate (FPR) of a classifier. In an ROC curve,
the true positive rate is plotted on the y-axis and the false positive rate is shown
on the x-axis. This type of analysis can be performed on models that produce
continuous output values (e.g., estimates of the posterior probabilities) such as Naive
Bayes classifiers. For example, Figure 3.44 illustrates an example of an ROC curve
for a data set consisting of two univariate normal distributions.
Each point along the ROC curve corresponds to a particular implementation of

the classifier, i.e., a specific model that was generated by the classifier. There are
several critical points along the ROC-curve that have well-known interpretation:

(TPR=0, FPR=0): Model predicts every instance to be a negative class.
(TPR=1, FPR=1): Model predicts every instance to be a positive class.
(TPR=1, FPR=0): The ideal model.

A good model should have large true positive rate and small false positive rate.
In other words, the point should be located as close as possible to the point (TPR =
1, FPR = 0). If a classifier makes only random guesses, then it would reside along
the diagonal line that connects the points (TPR = 0, FPR = 0) and (TPR =

3.10.3 Methods for Performance Comparison 144

−20 −15 −10 −5 0 5 10 15 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Negative
Class

Positive
Class

t

(a) Data set for two normal distributions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

(b) ROC curve

Figure 3.44. ROC curve for two 1-dimensional normal distributions.

3.10.3 Methods for Performance Comparison 145

1, FPR = 1). Another important property of the ROC curve is that it is non-
decreasing.
An ROC curve is useful for comparing the relative performance of different classi-

fiers. For example, Figure 3.45 illustrates the ROC curve for two different classifiers,
M1 and M2. In this example, M1 is better than M2 when FPR is less than 0.36.
On the other hand, M2 is a better classifier when the FPR is greater than 0.36.
Thus, there is no classifier that clearly dominates the other.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

M
1

M
2

Figure 3.45. ROC curves for two different classifiers.

Nevertheless, if we are interested to know, on average, which model is better,
then the area under the ROC curve would serve as a good metric. If the model
is perfect, then its area under the ROC curve would equal to 1. If the model
corresponds to random guessing, then its area under ROC curve would be equal to
0.5. Anything less than 0.5 would be worse than random guessing. A classifier that
often outperforms another would have a larger area.
Suppose we have a classifier that generates the posterior probabilities P (y|x) for

each test instance. The following steps can be used to construct the ROC curve of
the classifier:

1. Sort the instances according to P (y|x) in decreasing order.

2. Set the cutoff threshold to be equal to the largest value of P (y|x). That
way, none of the instances will be classified as a positive class, and thus,
TPR = FPR = 0.

3. Set the cutoff threshold to be the next largest value of P (y|x). As a result,
instances with posterior probabilities higher than the threshold (let’s called
them Ip) will be classified as a positive class. For each instance in Ip, if the class
label associated with the instance is positive, increment TP and decrement

3.10.3 Methods for Performance Comparison 146

FN . Otherwise, increment FP and decrement TN . Compute TPR and FPR
for the particular threshold.

4. Repeat step 2 and 3 until you reach the end of the list.

5. Plot TPR against FPR to obtain the ROC curve.

An example of how to compute the ROC curve is shown in Figure 3.46. Assume
that the test set contains ten instances and two classes, positive and negative. The
class labels of the instances are shown on the first row of the table. The second row
corresponds to the sorted list of posterior probabilities for the instances. The next six
rows contain entries for TP , FP , TN , FN , TPR, and FPR. The table can be filled
from left to right, or right to left. If we start from right to left, initially, all instances
are predicted to be the negative class. Thus, TP = FP = TPR = FPR = 0.
When we move to the next cell to its left, we add at most one positive example,
which increments the count for either TP or FP while reducing the count for either
FN or TN . We keep repeating this until we reach the other end of the list, where
TPR = 1 and FPR = 1. The ROC curve is plotted using information from the last
two rows and is shown in Figure 3.46. Unlike the previous ROC curves, this curve
increases monotonically in a step-wise fashion.

Class + - + - - - + - + +
P 0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 0.95 1.00

TP 5 4 4 3 3 3 3 2 2 1 0

FP 5 5 4 4 3 2 1 1 0 0 0

TN 0 0 1 1 2 3 4 4 5 5 5

FN 0 1 1 2 2 2 2 3 3 4 5

TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0

FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0

Figure 3.46. Constructing an ROC curve.

How do we compute the ROC curve for a model evaluated using the k-fold
cross-validation? Provost et al. suggested that one approach would be to take the
ROC curve for each fold, fit a linear function between each pair of points, and then
averaged the fitted functions to obtain an aggregated ROC curve.

Test of significance

Testing the statistical significance of a performance measure is an important aspect
of model evaluation. The smaller the number of instances in the test set, the more
crucial it is for us to determine how reliable is the estimated measure. For example,
suppose you have a model MA that attains 85% accuracy on a test set containing
30 instances and another model MB, whose accuracy on the test set is merely 75%
but has been tested on 5000 instances. Given this information, would you prefer
model MA over model MB?

3.10.3 Methods for Performance Comparison 147

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.47. ROC curve for the data shown in Figure 3.46.

The above example raises two key issues regarding the statistical significance of
the performance measures:

1. Although model MA has an accuracy of 85%, it has only been tested on 30
test instances. How much confidence can we place on this estimated value?

2. Could the observed disparity in the performance measures be explained as a
result of random fluctuations in the test sets?

These issues can be addressed by using well-known statistical methods described in
this section. First, we will present a statistical method for computing the confidence
interval of the accuracy measure.
Each prediction made by a classification model can be regarded as a Bernoulli

experiment, as there are only two possible outcomes of the prediction: correct or
wrong. (An example of a Bernoulli experiment is tossing a coin and predicting
whether a head or tail turns up.) Let p be the probability that a test instance
is predicted correctly. In other words, p corresponds to the true accuracy of the
model. Suppose X is the number of test instances predicted correctly by the model,
then X can be characterized by a binomial distribution with mean Np and variance
Np(1− p), where N is the size of the test set. For example, if N = 30 and p = 0.8,
we would expect the model to predict 24 out of the 30 test instances correctly.
In reality, we do not know the precise value for the true model accuracy, p. Given

the values of N and X, our task is to provide a good estimate of p. Since every
value of p has some probability of generating the outcome X, the best we can do
is to use the estimated model accuracy, acc = X/N , which provides an unbiased
estimate for p. Furthermore, if N is sufficiently large, acc has a normal distribution
with mean p and variance p(1− p)/N . We can standardize the estimated accuracy

3.10.3 Methods for Performance Comparison 148

acc so that its mean is 0 and its variance is 1. After standardization, we may write:

P (−Zα/2 ≤
acc− p√
p(1− p)/N

≤ Z1−α/2) = 1− α (3.84)

where (1 − α) is the confidence level associated with the standardized accuracy
measure. Zα/2 and Z1−α/2) are the corresponding upper and lower bounds of the
standardized accuracy. Since the standardized normal distribution is symmetric at
Z = 0, it follows that Zα/2 = Z1−α/2. Re-arranging the above inequality gives the
following confidence interval for p,

2×N × acc+ Z2α/2 ± Zα/2
√
Z2α/2 + 4Nacc− 4Nacc2

2(N + Z2α/2)
(3.85)

The table below illustrates the different values of Zα/2 at various confidence levels
(1− α).

1− α 0.99 0.98 0.95 0.9 0.8 0.7 0.5

Zα/2 2.58 2.33 1.96 1.65 1.28 1.04 0.67

Example 17 Consider a model that produces an accuracy of 80% when evaluated
on 100 test instances. What is the confidence interval for its true model accuracy
at 95% confidence level?
Since the confidence level is 95%, this would correspond to Zα/2 = 1.96 according

to the table given above. Replacing this term into Equation (3.85) would yield a
confidence interval for p between 71.1% and 86.6%. If we had used a larger number
of instances, say N = 1000, then a tighter confidence interval is produced, between
77.4% and 82.3%.

Now that we know how to estimate the confidence interval for the true accuracy
measure, can we do the same when comparing the accuracies (or misclassification
errors) between competing models and learning algorithms?

Comparing the performance of two models: Suppose we are given two mod-
els, M1 and M2 evaluated on two independent test sets, D1 and D2. Let n1
denotes the size of the test set D1 and n2 denotes the size of the test set D2.
After applying the models, the error rate forM1 on D1 is e1 and the error rate
for M2 on D2 is e2. Our goal is to test whether the difference between e1 and
e2 are statistically significant.

If n1 and n2 are sufficiently large, then the error rates e1 and e2 can be
approximated by using two independent normal distributions. If we represent
the difference in error rate as d = e1 − e2, then d is also normally distributed.

3.10.3 Methods for Performance Comparison 149

(This comes from a well-known in fact in statistics that the sum or difference
of two normal distributions is also normal.) The mean for d is given by dt,
which is the true difference between the error rates, while its variance, σ2d, is
the sum of variances for e1 and e2.

σ2d ' σ̂2d =
e1(1− e1)

n1
+
e2(1− e2)

n2
(3.86)

where we have approximated the variance for e1 and e2 with e1(1−e1)/n1 and
e2(1− e2)/n2. At the (1-α)% confidence level, the confidence interval for the
true difference is

dt = d± zα/2σ̂d (3.87)

Example 18 Consider the problem described at the beginning of this section.
The first modelMA has an error rate of e1 = 0.15 given N1 = 30 test instances.
The second model MB has an error rate of e2 = 0.25 given N2 = 5000 test
instances. The difference between their error rates is d = |MA−MB| = |0.15−
0.25| = 0.1. (Here, we are considering only a 2-sided test, whether dt = 0 or
dt 6= 0.) Assuming that the test sets are statistically independent, then the
observed difference d is normally distributed with mean dt and variance σ

2
d,

which can be estimated using Equation (3.86).

σ̂2d =
0.15(1− 0.15)

30
+
0.25(1− 0.25)

5000
= 0.0043

or σ̂d = 0.0655. The confidence interval for dt at 95% confidence level is
0.1 ± 1.96 × 0.0655 = 0.1 ± 0.128. As the confidence interval spans the value
zero, the observed difference is not statistically significant at 95% confidence
level.

At what confidence level can we reject the hypothesis that dt = 0? To do this,
we need to find the value of Zα/2 for which d > Zα/2σ̂d. Thus, Zα/2 < d/σ̂d =
1.527. This value occurs when (1 − α) . 0.936 (for a 2-sided test). Even
though there is insufficient evidence to reject the null hypothesis dt = 0 at
95% confidence level, the hypothesis can be rejected at 90% confidence level.

Although Equations (3.86) and (3.87) assume independence between the test
sets, Mitchell noted that they are also applicable when both models are eval-
uated on the same test test.

Comparing the performance of two algorithms (Paired t-test): When com-
paring the performance of two learning algorithms, it is not sufficient to gen-
erate only one model for each algorithm. Instead, one should test the perfor-
mance of the algorithms by generating multiple models from the data and use
the models as the basis for making the comparison.

Suppose we want to compare the performance of two learning algorithms using
the k-fold cross-validation method. First, we would divide the data set D into

3.10.3 Methods for Performance Comparison 150

k equal-sized partitions. Each learning algorithm is then applied to build a
model from k − 1 of the partitions and test it on the remaining partition.
This step is repeated k times, so that each disjoint partition is chosen once
as the test set. The cross-validated models for algorithm L1 are denoted as
M11,M12, · · · ,M1k and the corresponding models for algorithm L2 are denoted
asM21,M22, · · · ,M2k. Note that bothM1i andM2i are obtained while testing
on the same partition i of the data set. Let us denote the error rate for model
Mij as eij .

At each fold j of the cross-validation, we compute the difference in error rate
dj = e1j − e2j . If k is sufficiently large, then dj is normally distributed with
mean dcvt , which is the true error difference, and variance σ

cv. Unlike the
previous approach, the variance is not known and must be estimated using
the standard error:

σ̂2dcv =

∑k
j=1(dj − d)2
k(k − 1) (3.88)

As a result, we need to use the t-distribution instead of the standardized
normal distribution to compute the confidence interval for dcvt :

dcvt = d± t(1−α),k−1σ̂dcv

The coefficient t(1−α),k−1 can be obtained from a probability table with two
input parameters, its confidence level (1−α) and its degree of freedom, k− 1.
The probability table for t(1−α),k−1 is shown below.

(1− α)
k − 1 0.99 0.98 0.95 0.9 0.8

1 3.08 6.31 12.7 31.8 63.7
2 1.89 2.92 4.30 6.96 9.92
4 1.53 2.13 2.78 3.75 4.60
9 1.38 1.83 2.26 2.82 3.25
14 1.34 1.76 2.14 2.62 2.98
19 1.33 1.73 2.09 2.54 2.86
24 1.32 1.71 2.06 2.49 2.80
29 1.31 1.70 2.04 2.46 2.76

Example 19 Suppose the estimated difference in accuracy of models generated by
two learning algorithms have a mean equals to 0.05 and standard deviation equals
to 0.002. If the accuracy is estimated using the 30-fold cross-validation approach,
then at 95% confidence level, the true accuracy difference is

dcvt = 0.05± 2.04× 0.002 = 0.0041 (3.89)

Thus, the observed accuracy difference is statistically significant.

3.11 Bibliographic Notes 151

3.11 Bibliographic Notes

An excellent treatment of the various classification techniques from a machine learn-
ing perspective is given by Mitchell in [129]. Readers can also find an extensive lit-
erature on classification from other statistical pattern recognition and data mining
books such as [49,78,32,74,77].
An extensive overview of decision tree learning can be found in the survey articles

by Murthy [134], Safavian et al. [153], Buntine [26] and Moret [131]. An in-depth
discussion of the C4.5 decision tree algorithm is given by Quinlan [149]. The book
not only provides a detailed explanation of decision tree growing, pruning, and
rule generation, but also the source code of his software. The CART algorithm
developed by Breiman et al. [21] uses the gini index as its splitting function. For
decision tree pruning, a good survey paper on this topic is available in [22] and [53].
However, these techniques require that the entire training data set can fit into the
main memory. Recently, there has been considerable interest to develop parallel and
more scalable version decision tree algorithms. These techniques include SLIQ [123],
SPRINT [161], CMP [192], CLOUDS [11], RainForest [66], and ScalParC [98].
Direct methods for rule-based classification algorithms often employ the sequen-

tial covering method to induce the classification rules. Some of the well-known rule-
based classification algorithms include RIPPER [37], CN2 [35,34], 1R [87], AQ [125],
RISE [45], and ITRULE [168]. Indirect methods for rule induction using decision
trees is described by Quinlan in [149]. Another indirect approach for rule induction
is by using neural networks [13]. For rule-based classifiers, the rule antecedent can be
generalized to include any propositional or first order logical expression (e.g., Horn
clauses). Readers who are interested in first-order logic rule-based classifiers may
refer to references such as [129] or the vast literature on inductive logic programming
(ILP).
Cover and Hart presented an overview of the nearest neighbor pattern classifica-

tion method from a Bayesian perspective in [41]. PEBLS [40] is a nearest-neighbor
classification algorithm for instances having discrete features. More information
about instance-based classifiers is available in [9].
A discussion of the naive Bayes classification algorithm is available in [112,110,

151,154]. The naive Bayes approach assumes that the conditional probabilities of the
attributes are independent of each other given the class. Even though this assump-
tion is rather unrealistic in many practical applications, the method has worked sur-
prisingly well for applications such as text classification. Another technique known
as Bayesian belief network provides a more general approach by allowing attributes
to be inter-dependent on each other. The dependencies are often represented in a
network structure with conditional probabilities specified between the attributes. A
good tutorial on Bayesian belief networks is given in [80].

[190], and [191] are two authoritative books on SVM. Other excellent introduc-
tory materials to SVM include the articles by Burges [27], Bennet et al. [17], and
Hearst [79]. A survey of recent developments in SVM for data mining is given by
Mangasarian in [121].

3.12 Exercises 152

Overfitting and missing values are two practical issues one should address when
applying classification techniques to real data. In general, overfitting is related to
the size of the hypothesis space explored by the learning algorithm. The larger the
hypothesis space, the more likely it is for us to find a model that fits the data purely
by chance [95,46].

3.12 Exercises

1. Give decision trees to represent the following boolean functions:

(a) A and (not B)

(b) A or (B and C)

(c) A xor B

(d) (A and B) or (C and D)

(e) A and B and (not C)

(f) ((not A) and B) or (C and D)

(g) (A or B) xor (B and C)

2. Consider the following set of training examples:

Instance a1 a2 a3 classification

1 T T 1.0 +
2 T T 6.0 +
3 T F 5.0 -
4 F F 4.0 +
5 F T 7.0 -
6 F T 3.0 -
7 F F 8.0 -
8 T F 7.0 +
9 F T 5.0 -

(a) What is the entropy of this collection of training examples with respect
to the target function classification?

(b) What are the information gains of a1 and a2 relative to these training
examples?

(c) For a3, which is a continuous attribute, compute the information gains
of every possible split.

(d) What is the best split (among a1, a2, and a3) according to the information
gain?

(e) What is the best split (among a1 and a2) according to classification error
rate?

3.12 Exercises 153

(f) What is the best split (among a1 and a2) according to the gini index?

3. Solve the following questions for the training data tabulated below. (Note:
There are total 200 training examples.)

X Y Z No. of Class C1 Examples No. of Class C2 Examples

0 0 0 5 40

0 0 1 0 15

0 1 0 10 5

0 1 1 45 0

1 0 0 10 5

1 0 1 25 0

1 1 0 5 20

1 1 1 0 15

(a) Compute a two-level decision tree using the greedy approach taken by
C4.5 algorithm. You can use the classification error rate as the criterion
used for splitting. Compute the overall error rate of the tree on training
data.

(b) Use variable X as the first splitting attribute, then choose the best avail-
able splitting attribute at each of the two successor nodes. Compute the
overall error rate of the resultant tree on training data.

(c) Discuss the results obtained in parts (a) and (b) above. Comment on the
suitability of the greedy heuristic used for splitting attribute selection.

4. Consider the decision tree shown in the diagram below.

A

B C

+ - - +

0 1

0 1 0 1

Instance A B C Class
1 0 0 0 +
2 0 0 1 +
3 0 1 0 +
4 0 1 1 -
5 1 0 0 +
6 1 0 0 +
7 1 1 0 -
8 1 0 1 +
9 1 1 0 -

10 1 1 0 -

Instance A B C Class
11 0 0 0 +
12 0 1 1 +
13 1 1 0 +
14 1 0 1 -
15 1 0 0 +

Training:

Validation:

(a) Compute the generalization error rate of the tree using the optimistic
approach.

3.12 Exercises 154

(b) Compute the generalization error rate of the tree using the pessimistic
approach given in the lecture notes.

(c) Compute the generalization error rate of the tree using the reduced error
pruning method (with the validation set shown above).

5. Consider the two decision trees shown in the diagram below.

C2 C2 C3

C2

C2 C3

(a) Decision tree with 7 errors (b) Decision tree with 4 errors

C1 C2

The trees are induced from the training set given in Table 1. Each record
in the data set contains 16 binary attributes and can be classified into four
different classes, c1, c2, c3, c4.

Instance A1 A2 A3 · · · A12 A13 A14 A15 A16 Class

1 1 0 1 · · · 1 0 0 0 0 c1

2 1 1 0 · · · 1 1 1 1 0 c2

3 0 1 1 · · · 0 0 0 0 1 c3

4 0 0 0 · · · 1 1 0 1 0 c1

· ·

· ·

32 1 0 1 · · · 1 1 0 1 1 c4

Compute the total description length of each decision tree according to the
minimum description length principle.

• The total description length of a tree is given by:

Cost(tree, data) = Cost(tree) + Cost(data|tree)

• Each internal node of the tree is encoded by the id of the splitting at-
tribute. If there are m attributes, the cost of encoding each attribute is
log2m bits.

• Each leaf is encoded using the id of the class it is associated with. If
there are k classes, the cost of encoding a class is is log2 k bits.

3.12 Exercises 155

• Cost(tree) is the cost of encoding all the nodes in the tree. To simplify the
computation, you can assume that the total cost of the tree is obtained
by adding up the cost of encoding each internal node and each leaf node.

• Cost(data|tree) is encoded using the classification errors the tree commits
on training set. Each error is encoded by log2 n bits, where n is the total
number of training instances.

Which decision tree is better according to the MDL principle?

6. RIPPER is an extension of an earlier algorithm called IREP by Furnkranz and
Widmer (1994). They both use the incremental reduced error pruning scheme
to prune the rules generated by the Learn-One-Rule function. Consider the
following pair of rules:

R1: (Refund = No) ∧ (Age ≥ 35) −→ (Evade = no)
R2: (Refund = No) ∧ (Marital Status = married) −→ (Evade = yes)

To determine whether a rule should be pruned, IREP computes the following
measure:

vIREP =
p+ (N − n)
P +N

where P is the total number of positive examples in the validation set, N is
the total number of negative examples in the validation set, p is the number
of positive examples in the validation set covered by the rule, and n is the
number of negative examples in the validation set covered by the rule.

which is similar to the classification accuracy over the validation data. IREP
prefers rules that have higher vIREP .

RIPPER computes the following measure for pruning:

vRIPPER =
p− n
p+ n

RIPPER favors rules that have higher vRIPPER.

(a) Consider a validation set that contains 500 positive examples and 500
negative examples. For R1, suppose the number of positive examples
covered by the rule is 200, and the number of negative examples covered
is 50. For R2, suppose the number of positive examples covered by the
rule is 100 and the number of negative examples is 5. Compute vIREP
for both rules. Which rule does IREP prefer?

(b) Compute vRIPPER for the previous problem. Which rule does RIPPER
prefer?

(c) In your opinion, which is the better measure? Explain.

3.12 Exercises 156

7. C4.5rules is an implementation of an indirect method for generating rules
from a decision tree. RIPPER is an implementation of a direct method for
generating rules directly from data.

(a) Discuss the strengths and weaknesses of both methods.

(b) Consider a data set that has a large difference in the class size (i.e.,
some classes are much bigger than others). We would like to find good
rules (high accuracy rules) for the small classes. Which method (between
C4.5rules and RIPPER) would be better? Please provide supporting
arguments.

8. (a) Suppose the proportion of undergraduate students who smoke is 15%
and the proportion of graduate students who smoke is 23%. If one-fifth
of the college students are graduate students, and the rest of them are
undergraduates, what is the probability that a college student who smoke
is a graduate student?

(b) Given the information in the previous section, if you had randomly se-
lected one of the college students, is he/she most likely a graduate or
undergraduate student?

(c) Suppose you noticed that the student is a smoker, would you change your
answer to the previous question?

(d) Suppose 30% of the graduate students live in the dorm but only 10%
of the undergraduate students live in the dorm. If you noticed that
the student is a smoker and lives in the dorm, is he/she most likely
a graduate or undergraduate student? You can assume independence
between students who live in the dorm and those who smoke. (Hint: Use
the naive Bayes approach to compute the conditional probability.)

9. Consider a table containing the following instances:

Instance A B C Class

1 0 0 0 +

2 0 0 1 −
3 0 1 1 −
4 0 1 1 −
5 0 0 1 +

6 1 0 0 +

7 1 0 1 −
8 1 0 1 −
9 1 1 0 +

10 1 0 1 +

3.12 Exercises 157

(a) Estimate the conditional probabilities (P (+|A), P (+|B), P (+|C), P (−|A),
P (−|B), and P (−|C)) by using simple fraction for all binary values of A,
B, and C.

(b) Use the estimate of conditional probabilities given in the previous ques-
tion to predict the class label for the test sample (A = 0, B = 1, C = 0)
using the naive Bayes approach.

(c) Find estimates for conditional probabilities using the m-estimate proba-
bility approach. Use p=1/4 and m=4.

(d) Repeat problem (b) above using the estimates of conditional probabilities
given in problem (c).

(e) Compare the two methods for computing estimates for conditional prob-
abilities in the above question. Which method is better and why?

10. Consider the decision tree shown in the diagram below.

A

B C

+ - - +

0 1

0 1 0 1

Instance A B C Class
1 0 0 0 +
2 0 0 1 +
3 0 1 0 +
4 0 1 1 -
5 1 0 0 +
6 1 0 0 +
7 1 1 0 -
8 1 0 1 +
9 1 1 0 -

10 1 1 0 -

Instance A B C Class
11 0 0 0 +
12 0 1 1 +
13 1 1 0 +
14 1 0 1 -
15 1 0 0 +

Training:

Validation:

(a) Compute the generalization error rate of the tree using the optimistic
approach.

(b) Compute the generalization error rate of the tree using the pessimistic
approach given in the lecture notes.

(c) Compute the generalization error rate of the tree using the reduced error
pruning method (with the validation set shown above).

11. Consider the two decision trees shown in the diagram below.

The trees are induced from the training set given in Table 3.8. Each record
in the data set contains 16 binary attributes and can be classified into four
different classes, c1, c2, c3, c4.

Compute the total description length of each decision tree according to the
minimum description length principle.

3.12 Exercises 158

C2 C2 C3

C2

C2 C3

(a) Decision tree with 7 errors (b) Decision tree with 4 errors

C1 C2

Table 3.8. Data set for Problem 2.

Instance A1 A2 A3 · · · A12 A13 A14 A15 A16 Class

1 1 0 1 · · · 1 0 0 0 0 c1

2 1 1 0 · · · 1 1 1 1 0 c2

3 0 1 1 · · · 0 0 0 0 1 c3

4 0 0 0 · · · 1 1 0 1 0 c1

· ·

· ·

32 1 0 1 · · · 1 1 0 1 1 c4

• The total description length of a tree is given by:

Cost(tree, data) = Cost(tree) + Cost(data|tree)

• Each internal node of the tree is encoded by the id of the splitting at-
tribute. If there are m attributes, the cost of encoding each attribute is
log2m bits.

• Each leaf is encoded using the id of the class it is associated with. If
there are k classes, the cost of encoding a class is is log2 k bits.

• Cost(tree) is the cost of encoding all the nodes in the tree. To simplify the
computation, you can assume that the total cost of the tree is obtained
by adding up the cost of encoding each internal node and each leaf node.

• Cost(data|tree) is encoded using the classification errors the tree commits
on training set. Each error is encoded by log2 n bits, where n is the total
number of training instances.

Which decision tree is better according to the MDL principle?

12. RIPPER is an extension of an earlier algorithm called IREP by Furnkranz and
Widmer (1994). They both use the incremental reduced error pruning scheme

3.12 Exercises 159

to prune the rules generated by the Learn-One-Rule function. Consider the
following pair of rules:

R1: (Refund = No) ∧ (Age ≥ 35) −→ (Evade = no)
R2: (Refund = No) ∧ (Marital Status = married) −→ (Evade = yes)

To determine whether a rule should be pruned, IREP computes the following
measure:

vIREP =
p+ (N − n)
P +N

where P is the total number of positive examples in the validation set, N is
the total number of negative examples in the validation set, p is the number
of positive examples in the validation set covered by the rule, and n is the
number of negative examples in the validation set covered by the rule. This
measure is similar to classification accuracy over the validation data. IREP
prefers rules that have higher vIREP .

RIPPER computes the following measure for pruning:

vRIPPER =
p− n
p+ n

RIPPER favors rules that have higher vRIPPER.

(a) Consider a validation set that contains 500 positive examples and 500
negative examples. For R1, suppose the number of positive examples
covered by the rule is 200, and the number of negative examples covered
is 50. For R2, suppose the number of positive examples covered by the
rule is 100 and the number of negative examples is 5. Compute vIREP
for both rules. Which rule does IREP prefer?

(b) Compute vRIPPER for the previous problem. Which rule does RIPPER
prefer?

(c) In your opinion, which is the better measure? Explain.

13. C4.5rules is an implementation of an indirect method for generating rules
from a decision tree. RIPPER is an implementation of a direct method for
generating rules directly from data.

(a) Discuss the strengths and weaknesses of both methods.

(b) Consider a data set that has a large difference in the class size (i.e.,
some classes are much bigger than others). We would like to find good
rules (high accuracy rules) for the small classes. Which method (between
C4.5rules and RIPPER) would be better? Please provide supporting
arguments.

3.12 Exercises 160

14. (a) Suppose the proportion of undergraduate students who smoke is 15%
and the proportion of graduate students who smoke is 23%. If one-fifth
of the college students are graduate students, and the rest of them are
undergraduates, what is the probability that a college student who smoke
is a graduate student?

(b) Given the information in the previous section, if you had randomly se-
lected one of the college students, is he/she most likely a graduate or
undergraduate student?

(c) Suppose you noticed that the student is a smoker, would you change your
answer to the previous question?

(d) Suppose 30% of the graduate students live in the dorm but only 10%
of the undergraduate students live in the dorm. If you noticed that
the student is a smoker and lives in the dorm, is he/she most likely
a graduate or undergraduate student? You can assume independence
between students who live in the dorm and those who smoke. (Hint: Use
the naive Bayes approach to compute the conditional probability.)

15. Consider a table containing the following instances:

Instance A B C Class

1 0 0 0 +

2 0 0 1 −
3 0 1 1 −
4 0 1 1 −
5 0 0 1 +

6 1 0 0 +

7 1 0 1 −
8 1 0 1 −
9 1 1 0 +

10 1 0 1 +

(a) Estimate the conditional probabilities (P (A|+), P (B|+), P (C|+), P (A|−),
P (B|−), and P (C|−)) by using simple fraction for all binary values of A,
B, and C.

(b) Use the estimate of conditional probabilities given in the previous ques-
tion to predict the class label for the test sample (A = 0, B = 1, C = 0)
using the naive Bayes approach.

(c) Find estimates for conditional probabilities using the m-estimate (i.e.,
Laplace correction) probability approach. Use p=1/4 and m=4.

(d) Repeat problem (b) above using the estimates of conditional probabilities
given in problem (c).

3.12 Exercises 161

(e) Compare the two methods for computing estimates for conditional prob-
abilities in the above question. Which method is better and why?

16. Consider the data set shown in Table 3.9:

Table 3.9. Data set for Problem 7.

Instance A B C Class

1 0 0 1 −
2 1 0 1 +

3 0 1 0 −
4 1 0 0 −
5 1 0 1 +

6 0 0 1 +

7 1 1 0 −
8 0 0 0 −
9 0 1 0 +

10 1 1 1 +

(a) Estimate the conditional probabilities for (P (A = 1|+), P (B = 1|+),
P (C = 1|+), P (A = 1|−), P (B = 1|−), and P (C = 1|−) using the same
approach as the previous problem.

(b) Use the estimate of conditional probabilities given in the previous ques-
tion to predict the class label for the test sample (A = 1, B = 1, C = 1)
using the naive Bayes approach.

(c) Compare P (A = 1), P (B = 1) and P (A = 1, B = 1). Are there any
obvious relationships between these probabilities?

(d) Repeat your analysis for part (c) using P (A = 1), P (B = 0), and P (A =
1, B = 0). If you observe an obvious relationship in part (c), does it still
hold?

(e) Compare P (A = 1, B = 1|Class = +) against P (A = 1|Class = +) and
P (B = 1|Class = +). Are the two variables conditionally independent
of each other? Compare the relationship between A and B in part (c)
against the relationship you observe after conditioning on Class = +.

17. You are asked to evaluate the performance of two classification models, M1

and M2. The test set you have chosen contains 26 binary attributes, labeled
as A through Z. The first model, M1, was obtained using the naive Bayes
approach while the second model, M2, was generated from RIPPER.

After applying the models to the test instances, you obtained the above poste-
rior probability estimates for each instance. (We only show the posterior prob-
abilities for the positive class. As this is a two-class problem, P (−) = 1−P (+)

3.12 Exercises 162

Instance A B · · · Z Class

1 0 0 · · · 1 +

2 1 0 · · · 1 +

3 0 1 · · · 0 −
4 1 0 · · · 0 −
5 1 0 · · · 1 +

6 0 0 · · · 1 +

7 1 1 · · · 0 −
8 0 0 · · · 0 −
9 1 · · · 1 +

10 1 1 · · · 1 −

and P (−|A, · · · , Z) = 1 − P (+|A, · · · , Z).) Note that the class label we are
interested in is the positive class.

Instance True Class P (+|A, · · · , Z,M1) P (+|A, · · · , Z,M2)

1 + 0.73 0.61

2 + 0.69 0.03

3 − 0.44 0.68

4 − 0.55 0.31

5 + 0.67 0.45

6 + 0.47 0.09

7 − 0.08 0.38

8 − 0.15 0.05

9 + 0.45 0.01

10 − 0.35 0.04

(a) Explain how the posterior probability estimates can be obtained using
RIPPER.

(b) Plot the ROC curve for both M1 and M2. (You should plot them on the
same graph.) Which model do you think is better? Explain your reasons.

(c) For model M1 (naive Bayes), suppose you choose the cutoff threshold to
be t = 0.5. In other words, any test instances whose posterior probability
is greater than t will be classified as a positive example. Compute the
precision, recall, and F-measure for the model at this threshold value.

(d) Repeat the analysis for part (c) using the same cutoff threshold on model
M2. Compare the F -measure results for both models. Which model is
better? Are the results consistent with what you expect from the ROC
curve?

(e) Repeat part (c) for modelM1 using the threshold t = 0.1. Which thresh-
old do you prefer, t = 0.5 or t = 0.1? Are the results consistent with

3.12 Exercises 163

what you expect from the ROC curve. State your reasons clearly.

18. You have been chosen as one of the final judges of a data mining competition.
After careful deliberations, three finalists were selected and you are asked to
give your opinion on which of the three finalists should be declared as the
overall winner.

In the competition, the participants were asked to build a classification model
for three different data sets, D1, D2, and D3. The properties of each data set
are summarized in the table below:

Data set Number of Number of Number of % support for the

records attributes Classes majority class

D1 50 5 2 90%

D2 200 20 2 75%

D3 50000 100 2 50%

The finalists were asked to submit the results of their model accuracies for
each data set and describe the method they had used to evaluate their model.
(Assume that all three finalists are honest about the methods they had used.)
The first finalist (M1) uses a rule-based system with stratified 10-fold cross
validation strategy. The second finalist (M2) uses a decision tree model, also
with stratified 10-fold cross validation strategy. The third finalist (M3) uses
the 1-nearest neighbor approach with the holdout model evaluation method
(with two-third of the data for training, and the remaining one-third for test-
ing). The accuracies of their models are summarized in the table below:

Data set M1 M2 M3

Accuracy on D1 55.4% 59.1% 89.5%

Accuracy on D2 57.3% 57.4% 57.7%

Accuracy on D3 57.5% 54.5% 50.2%

(a) Which model do you think is better,M1 orM2? Please state your reasons
clearly.

(b) Which model do you think is better,M1 orM3? Please state your reasons
clearly.

(c) Which model do you think is better,M2 orM3? Please state your reasons
clearly.

(d) Based on your reasons above, which method do you think deserve to win
the competition?

3.12 Exercises 164

19. Given data sets shown in Figures 3.48, explain how different classification
algorithms (decision trees, Naive Bayesian, and k-nearest neighbor) perform
on these data sets.

20. Naive Bayes classifier does not work well in data sets having multiple modality.

(a) Explain how Naive Bayesian would perform on the data set shown in
Figure 3.49.

(b) If each class is further divided such that there are four classes (A1, A2,
B1, and B2), will Naive Bayes perform better? Please explain.

(c) How will decision tree perform on this data set (for the two-class prob-
lem)? What if there are four classes?

3.12 Exercises 165

Discriminating
Attributes Noise Attributes

Class A

Class B

Records

Attributes

(a) Synthetic data set 1.

Distinguishing Attributes Noise Attributes

Class A

Class B

Records

Attributes

(b) Synthetic data set 2.

Distinguishing
Attribute set 1 Noise Attributes

Class A

Class B

Records

Attributes

Distinguishing
Attribute set 2

60% filled
with 1

40% filled
with 1

60% filled
with 1

40% filled
with 1

(c) Synthetic data set 3.

Class A Class B Class A Class B Class A

Class A Class B Class A Class BClass B

Class A Class B Class A Class B Class A

Class A Class B Class A Class BClass B

Attribute X

A
ttr

ib
ut

e
Y

(d) Synthetic data set 4

Attribute X

At
tri

bu
te

 Y

Class A

Class B

(e) Synthetic data set 5.

Attribute X

At
tri

bu
te

 Y

Class A

Class B

Class B

(f) Synthetic data set 6.

Figure 3.48. Data set for Question 19.

3.12 Exercises 166

Distinguishing Attributes Noise Attributes

Class A

Class B

Records

Attributes

A1

A2

B1

B2

Figure 3.49. Data set for Question 20.

Chapter 4 167

Chapter 4

Association Analysis

A key objective of data mining is to discover relationships that are hidden in large
data repositories. For example, grocery store retailers are interested to know which
items are frequently sold together to their customers. Knowing such relationships
can help retailers to promote these items together in order to improve the overall
sales. Table 4.1 illustrates an example of the grocery store data, also known as
market-basket transactions. Each row in this table corresponds to a transaction,
which is uniquely identified by its transaction identifier, Tid, and contains the set
of items bought by a particular customer. The data in this table suggests a strong
relationship exists between the sale of bread and milk since most of the customers
who buy bread also end up buying milk as well.

Table 4.1. An example of market-basket transactions.

Tid Items

1 {Bread, Milk}
2 {Bread, Diaper, Beer, Eggs}
3 {Milk, Diaper, Beer, Coke}
4 {Bread, Milk, Diaper, Beer}
5 {Bread, Milk, Diaper, Coke}

One way to find such relationships is to apply standard statistical techniques such
as correlation analysis to determine the extent to which one item is associated with
another. However, these techniques have several known limitations when applied to
high-dimensional data sets, as will be explained in Section ???. In this chapter, we
introduce a data mining technique called association analysis for identifying hidden
relationships automatically from large transaction databases. These relationships
are represented in the form of association rules, which are implication rules used to

4.1 Problem Definition 168

predict the presence of certain items in a transaction based on the presence of other
items. For example, the rule

{Diaper} −→ {Beer}

suggests that most of the customers who buy diaper at a grocery store also tend
to buy beer. If indeed such unexpected relationships are found, then they can be
used to identify new cross-selling opportunities or to design an effective layout for
the grocery store.
Typically, there are exponentially many rules that can be extracted from a mar-

ket basket data. Some of these rules might be spurious because they can happen
purely by chance while other rules, such as the milk and bread example, are simply
not interesting because they are well-known to the domain experts. As a result,
the key challenges of mining association rules are two-fold: (1) to design an efficient
algorithm for mining association rules in large data sets, and (2) to develop an ef-
fective approach for distinguishing interesting rules from spurious ones. Both issues
are examined in detail in this chapter.
Association analysis is also applicable to numerous other application domains

such as Web traffic analysis, document analysis, bioinformatics, computational chem-
istry, and fault diagnosis in telecommunication networks. The nature of the data
in some of these domains is quite different than that of traditional market basket
data. For example, Web traffic data tends to have a temporal nature, bioinformatics
data tends to have a sequential nature, while computational chemistry data often
contains graph structures. Handling such diverse data sets may require the devel-
opment of new techniques for extending the capabilities of association analysis. We
describe some of these extensions later in this chapter.

4.1 Problem Definition

We begin this section with a few basic definitions, followed by a description of the
association rule mining problem. Let I = {i1, i2, · · · , id} be the set of all items and
T = {t1, t2, · · · , tN} be the set of all market-basket transactions.

Binary Representation The market-basket data is assumed to be represented in a
binary format as shown in Table 4.2, where each row corresponds to a transaction
and each column corresponds to an item. An item can be viewed as a binary
variable — if it belongs to a particular transaction, then its corresponding column
entry is denoted as 1; otherwise, it is denoted as 0. The presence of an item in a
transaction is also considered to be more important than its absence, henceforth, it
is an asymmetric binary variable. The width of a transaction is given by the number
of non-vanishing entries in the corresponding row. This representation is perhaps a
very simplistic view of real market-basket data because it ignores certain important
aspects of the data such as the quantity of items sold or the sale price of each item.
We will describe ways for handling such non-binary data in Section 4.4.

4.1 Problem Definition 169

Table 4.2. A binary 0/1 representation of market-basket data.

TID Bread Milk Diaper Beer Eggs Coke

1 1 1 0 0 0 0

2 1 0 1 1 1 0

3 0 1 1 1 0 1

4 1 1 1 1 0 0

5 1 1 1 0 0 1

Itemset and Support Count The fundamental unit of association rule is an itemset,
which is a set consisting of one or more items. If an itemset contains k items,
it is called a k-itemset. For example, {Milk,Diaper,Beer} is a 3-itemset. An
important property of an itemset is how frequently it appears in the data set —
the more frequent it is, the more significant is the relationship. We define the
frequency or support count of an itemset C as the number of transactions containing
C. Mathematically speaking, the support count is given by the following expression:

σ(C) = |{ti|ti ∈ T,C ⊆ ti}|,

where |{·}| denotes the number of elements that belong to a given set. As an ex-
ample, the support count for the itemset {Diaper, Beer} is equals to three because
there are three transactions in Table 4.2 that contain both diaper and beer.

Association Rule An association rule is an implication expression of the form
X −→ Y , where X and Y are disjoint itemsets, i.e., X ∩ Y = ∅. The strength
of an association rule is determined by the support and confidence metrics. Support
measures the fraction of transactions that contain all items belonging to the set
X ∪ Y . Confidence measures the fraction of times Y is present in transactions that
contain X. Formally, these metrics are defined as follows:

support, s(X −→ Y) =
σ(X ∪ Y)

N
and

confidence, c(X −→ Y) =
σ(X ∪ Y)
σ(X)

, (4.1)

where N is the total number of transactions.

Example 20 Consider the rule “customers who buy milk and diaper also tend to
buy beer”. This rule can be expressed as {Milk, Diaper} −→ {Beer}. Since the sup-
port count for the itemset {Milk,Diaper,Beer} is equal to 2 and the total number
of transactions is 10, the support for this rule is 2/10 = 0.2. The confidence for this
rule is obtained by dividing the support count for the itemset {Milk,Diaper,Beer},
which is equal to 2, to the support count for the itemset {Milk,Diaper}, which is
equal to 3. Therefore, the confidence of this rule is 2/3 = 0.67.

4.1 Problem Definition 170

Why Use Support and Confidence? Support is an important measure because it
reflects the significance of a rule. Rules that have very low support are rarely
observed and thus, are more likely to be the result of chance occurrence. This has
led to the development of many association rule mining algorithms that rely on the
support measure to eliminate spurious rules. (We will describe the advantage of
using the support measure from a computational perspective in Section ??.)
Confidence is another useful measure because it reflects the reliability of the

prediction made by the rule. Given an association rule X −→ Y , the higher is the
confidence, the more likely it is for Y to be present in transactions that contain
X. From a statistical perspective, confidence can be regarded as an estimate of the
conditional probability for Y given X.

Formulation of Association Rule Mining Problem The association rule mining prob-
lem can be stated formally as follows:

Given a set of transactions T , find all rules having support ≥ minsup and
confidence ≥ minconf , where minsup and minconf are the minimum
support and minimum confidence thresholds, respectively.

A naive approach for generating association rules is to enumerate all possible rule
combinations and then compute their respective support and confidence values. For
a data set containing d items, the total number of possible association rules is

R = 3d − 2d+1 + 1 (4.2)

The proof of this is left as an exercise. From this equation, note that even if the data
set contains only six items, the naive approach must enumerate all 36−27+1 = 602
possible rules. Furthermore, for the data set shown in Table 4.1, if minsup =
20% and minconf = 50%, there are only 102 association rules that satisfy both
minimum support and minimum confidence requirements. In other words, nearly
83% of the association rules generated using the naive approach are eliminated once
their support and confidence values are known. Therefore, a key computational
challenge for mining association rules is to discover rules that satisfy both support
and confidence thresholds without having to list all their possible combinations.
We can optimize the amount of computation needed for association rule mining

by decoupling the support and confidence requirements. Notice that the support
of an association rule X −→ Y depends only on the support of its corresponding
itemset, X ∪ Y (see equation 4.1). For example, the support for the rules

{Beer,Diaper} −→ {Milk},

{Beer} −→ {Diaper,Milk},
{Milk} −→ {Beer,Diaper}

are identical because they correspond to three different ways of partitioning the same
itemset, {Beer,Diaper,Milk}. If the support of an itemset is less than minsup,

4.2 Frequent Itemset Generation 171

then we do not have to enumerate its corresponding rules since they are guaran-
teed to be infrequent. This strategy of finding itemsets that have high support first
before generating association rules has been adopted by many association rule gener-
ation algorithms. Such algorithms would decompose the association rule generation
problem into two major subtasks:

Frequent Itemset Generation Find all itemsets that satisfy the minsup thresh-
old. These itemsets are called frequent itemsets.

Rule Generation Extract all high confidence association rules from the frequent
itemsets found in the previous step. These rules are called strong rules.

Among these two steps, frequent itemset generation tends to be much more
compute-intensive. We will describe techniques for generating frequent itemsets ef-
ficiently in the next section. Once the frequent itemsets have been found, techniques
for extracting association rules will be described in Section 4.3.

4.2 Frequent Itemset Generation

A lattice structure can be used to enumerate the list of all possible itemsets. For ex-
ample, Figure 4.1 illustrates itemsets that are derivable from the set {A,B,C,D,E}.
Some of the itemsets can be frequent, depending on the choice of minimum support
threshold. In general, a data set that contains d items may generate up to 2d − 1
frequent itemsets, excluding the null set. Because d can be very large in many com-
mercial databases, frequent itemset generation is a computationally expensive task.

A naive approach is to consider each itemset in the lattice as a candidate frequent
itemset. Next, the support count for each candidate is obtained by matching the
candidate against every transaction, an operation that is shown in Figure 4.2. If the
candidate is contained within a transaction, its support count will be incremented.
Such a counting method is extremely expensive because it requiresO(NM) matching
operations, where N is the number of transactions andM is the number of candidate
itemsets. In turn, each matching operation can take up toO(w) computations, where
w is the maximum width of a transaction.
There are several alternative ways to reduce the computational complexity of

frequent itemset generation.

1. Eliminate some of the candidate itemsets (M). The Apriori principle, to be
described in the next section, is an intelligent way to eliminate some of these
candidate itemsets before counting their actual support values.

2. Reduce the number of transactions (N). As the size of the candidate itemsets
increases, fewer transactions will be supported by the itemsets. For instance,
since the width of the first transaction in Table 4.1 is 2, it would be advanta-
geous to remove this transaction before searching for frequent itemsets of size
3 and larger.

4.2 Frequent Itemset Generation 172

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Figure 4.1. The Itemset Lattice.

TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke

N

Transactions

Candidates

M

Figure 4.2. Counting the support of candidate itemsets.

4.2.1 Apriori Principle 173

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Frequent
Itemset

Figure 4.3. An illustration of the Apriori principle. If {A,B,C} is frequent, then all subsets of this itemset are

frequent.

3. Reduce the number of candidate matching operations. Instead of matching each
candidate itemset against every transaction, various strategies can be used to
reduce the number of comparisons. This strategy is often implemented by
using a variety of advanced data structures to store the candidate itemsets
or the transaction database. We will discuss two such approaches in Sections
4.2.4 and 4.2.6.

4.2.1 Apriori Principle

Many frequent itemset generation algorithms adopt the following principle to reduce
the number of candidate itemsets.

Theorem 1 [Apriori Principle]: If an itemset is frequent, then all of its subsets
must also be frequent.

As an illustration of this principle, consider the lattice shown in Figure 4.3.
If an itemset such as {A,B,C} is found to be frequent, then the Apriori principle
suggests that all subsets of this itemset (the shaded itemsets in this figure) must also
be frequent. Intuitively, any transaction that contains {A,B,C} must also contain
{A,B}, {A,C}, {B,C}, {A}, {B}, and {C}, i.e., all the non-empty subsets of the
3-itemset. As a result, if the support for {A,B,C} is greater than the minimum
support threshold, so must its subsets be.

4.2.1 Apriori Principle 174

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned
supersets

Infrequent
Itemset

Figure 4.4. An illustration of support-based pruning. If {A,B} is infrequent, then all supersets of {A,B}
are eliminated.

Conversely, if the support of an itemset such as {A,B} is infrequent, then all
supersets of this itemset must also be infrequent, as illustrated in Figure 4.4. Con-
sequently, the entire subgraph containing supersets of {A,B} can be pruned im-
mediately once we know that {A,B} is known to be infrequent. This strategy of
trimming the search space based on the support measure can be used to reduce the
number of candidate itemsets substantially and is known as support-based pruning.
The above discussion illustrates a key property of the support measure, namely,

that the support for an itemset cannot exceed the support for any one of its subsets.
This property is also known as the anti-monotone property of the support measure.
In general, the monotonicity property of a measure f can be formally defined as
follows:

Monotonicity Property: Let I be the set of items, and J = 2I be the power set
of I. A measure f is monotone (or upward closed) if:

∀X,Y ∈ J : (X ⊆ Y) =⇒ f(X) ≤ f(Y)

which means that ifX is a subset of Y , then f(X) must not exceed f(Y). Conversely,
the measure f is anti-monotone (or downward closed) if:

∀X,Y ∈ J : (X ⊆ Y) =⇒ f(Y) ≤ f(X)

which means that if X is a subset of Y , then f(Y) must not exceed f(X).

The anti-monotone property of a measure is useful because it can be incorporated
directly into the mining algorithm for pruning candidate patterns, as will be shown

4.2.2 Apriori Algorithm 175

Item Count
Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count
{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count
{Bread,Milk,Diaper} 3

Size-1 Itemsets

Size-2 Itemsets

Size-3 Itemsets

Itemsets removed
due to low support

Minimum support count = 3

Figure 4.5. Illustration of Apriori algorithm

in the next section.

4.2.2 Apriori Algorithm

The Apriori algorithm is the first algorithm that pioneered the use of support-
based pruning to systematically control the exponential growth in the number of
candidate itemsets during frequent itemset generation. Figure 4.5 gives a high level
illustration of the Apriori algorithm for the market-basket transactions shown in
Table 4.1. The algorithm starts by finding all frequent 1-itemsets, i.e., individual
items having support ≥ minsup. Assuming that minsup is 60%, the 1-itemsets
{Coke} and {Eggs} are removed because they do not have sufficient support. The
remaining frequent 1-itemsets are then used to generate candidate itemsets of size
2. In this example, there are 4C2 = 6 candidate 2-itemsets generated from the 4
frequent 1-itemsets. When the support for these candidate itemsets are counted,
the itemsets {Bread, Beer} and {Milk, Beer} are found to be infrequent. The
four remaining frequent 2-itemsets will be used to generate candidate itemsets of
size 3 in the next iteration. A candidate itemset is kept only if all of its proper
subsets are frequent. For example, {Bread,Milk,Diaper} is kept as a candidate
3-itemset because all of its subsets are frequent. In contrast, a 3-itemset such as
{Milk,Diaper,Beer} is pruned because one of its proper subsets, {Milk,Beer}, is
infrequent.
A glimpse of how effective is the Apriori pruning strategy can be seen by looking

at the number of candidates that need to be generated if every subset up to size-3 is
to be considered for counting. The naive strategy of generating all itemsets would
create 6C1 +

6 C2 +
6 C3 = 41 candidates. As shown in the figure, the use of the

Apriori principle reduces this number down to 6C1 +
4 C2 + 1 = 13.

4.2.3 Candidate Itemset Generation 176

Table 4.3. The Apriori algorithm.

1. F1 = { frequent 1-itemsets} ;
2. for (k = 2; Fk−1 6= ∅; k = k + 1) {
3. Ck = apriori gen(Fk−1)

4. for all transactions t ∈ T {
5. Ct = subset(Ck, t)

6. for all candidates c ∈ Ct

7. c.count++

8. }
9. Fk = {c ∈ Ck | c.count/N ≥ minsup}
10. }
11. Answer =

⋃
Fk

The pseudo code for the Apriori algorithm is shown in Table 4.2.2. Let Ck and
Fk denote the set of candidate itemsets and frequent itemsets of size k, respectively.
A high-level description of the algorithm is presented below.

• Initially, the database is scanned once to obtain F1, the set of all frequent
1-itemsets.

• The algorithm would iteratively look for larger-sized frequent itemsets by using
a level-wise procedure that (a) generates candidate itemsets using the frequent
itemsets found in the previous pass (step 3), (b) counts the support for each
candidate by scanning the database (steps 4-8), and (c) identifies the frequent
itemsets by comparing the support count of each candidate against theminsup
threshold (step 9).

• The algorithm terminates when no new frequent itemset is found in the pre-
vious pass, i.e., Fk−1 = ∅.

The candidate generation and support counting steps are described in further details
in the next sections.

4.2.3 Candidate Itemset Generation

There are two major steps involved in candidate generation:

Join Step: During the join step, frequent itemsets found in the (k − 1)th itera-
tion are used to generate candidate itemsets of size k. For example, a pair
of frequent itemsets, {Bread,Milk} and {Bread,Diaper}, can be merged
together to obtain a candidate 3-itemset {Bread, Milk,Diaper}. A brute-
force approach for doing this is to join every pair of frequent (k-1)-itemsets

4.2.4 Support Counting 177

but this would require O(|Fk−1| × |Fk−1|) join operations. This approach
also has several other limitations. First, some of the candidates generated
may have a size larger than k. For example, merging the frequent 2-itemsets
{Bread,Milk} with {Diaper,Beer} will produce a candidate itemset of size-
4, {Bread,Milk,Diaper,Beer}, which will have to be eliminated since we
are only interested in candidate itemsets of size 3. To overcome this prob-
lem, we may restrict the join operation only to pairs of frequent k − 1-
itemsets having k − 2 items in common. Second, we might end up generating
the same candidates more than once. For example, the candidate 3-itemset
{Bread, Milk,Diaper} can be produced by combining the frequent 2-itemsets
{Bread,Milk} with {Bread,Diaper} or {Bread,Milk} with {Diaper,Milk}.
To avoid generating duplicate candidates, we can order the items within an
itemset lexicographically, and then join the frequent (k − 1)-itemsets only if
their first k − 2 items are identical. Going back to the previous example,
the frequent itemsets {Bread,Milk} and {Bread,Diaper} can be merged to-
gether because they share a common prefix item, which is Bread. On the other
hand, the frequent itemsets {Bread,Milk} and {Diaper,Milk} should not be
merged because their prefix items are different, i.e., Bread versus Diaper. This
strategy ensures that the same candidate will not be reproduced when merging
pairs of frequent itemsets.

Prune step: After the candidate itemsets are created through the join step de-
scribed previously, a pruning step is applied to remove any candidate whose
subsets are infrequent.

Example 21 Let F3 = {{A,B,C}, {A,B,D}, {A,B,E}, {A,C,E}, {A,D,E},
{B,D,E}} be the set of frequent 3-itemsets. The join step will produce the fol-
lowing candidate 4-itemsets, C4 = {{A,B,C,D}, {A,B,C,E}, {A,B,D,E}}.
However, after applying the pruning step, only {A,B,D,E} survives as a can-
didate itemset in C4. The candidate {A,B,C,D} is pruned because some of
its subsets, such as {A,C,D} and {B,C,D}, do not belong to F3. Similarly,
the itemset {A,B,C,E} is pruned because one of its subsets, {B,C,E}, is
infrequent.

Only candidate itemsets that survive the pruning step will be counted for their
support. We will discuss the support counting step in the next section.

4.2.4 Support Counting

As previously noted, a naive way for doing support counting is to simply match
each transaction against every candidate itemset; a task that can be extremely time-
consuming especially when both N and M are large (Figure 4.2). A more efficient
approach is to use a data structure for indexing and storing the candidate itemsets.
In the Apriori algorithm, the candidates are partitioned into different buckets and
kept in a hash tree structure. During support counting, each transaction is also

4.2.4 Support Counting 178

TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke

N

Transactions
Hash

Structure

k

Buckets

Figure 4.6. Counting the support of itemsets using hash structure.

hashed into its appropriate buckets. That way, instead of matching each transaction
to every candidate itemset, one would match the transaction only to candidates that
belong to the same bucket, as shown in Figure 4.6.

Hash Tree Structure

Figure 4.7 illustrates an example of a hash tree that stores candidate itemsets of size
3. The internal nodes of this tree contain hash tables while the leaf nodes contain
all candidate 3-itemsets. Each leaf node corresponds to one of the buckets depicted
in Figure 4.6. The root node is defined to be at depth 1, its children is defined to be
at depth 2, and so on. The remainder of this section describes how a hash tree can
be constructed and eventually used to count the support of candidate itemsets. The
latter step, which explains the subset function (step 5) of Table 4.2.2, is discussed
first.

Support Counting Using Hash Tree

The subset function is used to find all candidates that are contained in a given
transaction. To do this, one must traverse the hash tree and find all leaf nodes
(buckets) that contain such candidates. More specifically, the hash tree is traversed
from the root down to the leaf nodes by hashing on items that belong to the trans-
action. At the root node, a hash function is applied to every item that is present in
the transaction. The value of the hash function will determine which branch of the
current node should be followed next. If an internal node is reached after hashing
on the ith item of a transaction t, we will apply the hash function on every item
that appears after i in t and repeat the procedure recursively on the corresponding
child nodes until we reach the leaf nodes. The list of items that appear after i in t is
denoted as suffix(t, i). Once a leaf node is reached, all candidate itemsets stored at
the leaf are compared against the transaction. If a candidate itemset is contained
in the transaction, its support count is incremented.
Figure 4.7 shows an example of a hash tree that contains 15 candidate itemsets,

stored in 9 leaf nodes. Also shown in this figure is the hash function used by the
internal nodes of the tree: items 1, 4 and 7 are always hashed to left child of the
current node; items 2, 5, 8 to the middle child; and items 3, 6, 9 to the right

4.2.4 Support Counting 179

2,5,8

1,4,7 3,6,9

Hash Function

1 2 3 5 6

3 4 5 3 5 6

2 3 5 6

3 5 6

5 6

1 +

2 +

3 +

2 3 4

Transaction

Candidate Hash Tree

3 6 71 3 61 4 5

1 2 4 1 2 5 1 5 9

6 8 9

3 5 7

4 5 7 4 5 8

3 6 8

5 6 7

Figure 4.7. Subset operation on the root of a candidate hash tree.

child. Suppose we want to find candidates that are contained in the transaction
t = {12356}. The iterative steps of the subset function are given below:

1. At the root node, the hash function is initially applied to the first item in t,
which is equal to 1. Item 1 is then hashed to the left child node of the root
and its suffix list of items is given as suffix(t, 1) = {2 3 5 6}.

2. At the left child of the root node, the hash function is applied to the first item
in suffix(t, 1), which is equal to 2. Item 2 is then hashed to the middle child
node at depth 3 with its corresponding suffix list given as suffix(t, 2) = {356},
as shown in Figure 4.8.

3. At the child node of depth 3, the hash function is applied to the first item in
suffix(t, 2), which is equal to 3. Item 3 is then hashed to the right child at
depth 4. The right child is a leaf node containing the candidate {159}. As t
does not contain this candidate, its support count remains unchanged and the
leaf node is marked to indicate that it has been visited. The subset function
will then backtrack to its parent node at depth 3.

4. Next, the hash function is applied to the second item in suffix(t, 2), which is
equal to 5. Item 5 is hashed to the middle leaf node containing the candidates
{125} and {458}. The support for {125} is updated because it is the only
candidate contained in t. The leaf node is marked and the subset function
backtracks once again to its parent node.

4.2.4 Support Counting 180

1 2 3 5 6

3 4 5 3 5 6

3 5 61 2 +

1 3 + 5 6

1 5 + 6

2 3 5 6

3 5 6

5 6

1 +

2 +

3 +

2 3 4

Transaction

3 6 71 3 61 4 5

1 2 4 1 2 5 1 5 9

6 8 9

3 5 7

4 5 7 4 5 8

3 6 8

5 6 7

Candidate Hash Tree

Figure 4.8. Subset operation on the left most subtree of the root of a candidate hash tree.

5. The hash function is then applied to the last item in suffix (t, 2), which is
equal to 6. Item 6 is hashed to the right child at depth 4. However, since the
right child has already been visited, no further traversal will be necessary and
the function backtracks to its parent node at depth 3.

6. At the parent node, since all items that belong to suffix(t, 2) have been hashed,
the internal node is marked and the function backtracks to its parent node at
depth 2.

7. At the parent node of depth 2, the hash function is applied to the second
item in suffix(t, 1), which is equal to 3. Item 3 is hashed to the leaf node that
contains the candidate {136}. Since the candidate is contained in t, its support
count is incremented and the node is marked. The function then backtracks
to its parent node at depth 2.

8. Next, the hash function is applied to the third item in suffix(t, 1), which is
equal to 5. Since item 5 is hashed to a marked internal node, the function
backtracks again to its parent node at depth 2.

9. The hash function is applied to the fourth item in suffix(t, 1), which is equal
to 6. Again, since it is hashed to a marked leaf node, the function simply
backtracks to its parent node at depth 2.

10. Because all items in suffix(t, 1) have been hashed, the node is marked and the
function backtracks to the root node. At the root node, the hash function is
applied to the second item in t, which is equal to 2 (Figure 4.7). Item 2 is
then hashed to the middle leaf node that contains two candidates, {234} and

4.2.4 Support Counting 181

{567}. Since both candidates are not subsets of t, their support counts remain
unchanged. The leaf node is marked and the function backtracks to the root
node once again.

11. The hash function is then applied to the third item in t, which is equal to 3.
Item 3 is hashed to the right child of the root node with a suffix list given as
suffix(t, 3) = {56}.

12. At the right child, the hash function is applied to the first item of suffix(t, 3),
which is equal to 5. Item 5 is hashed to the middle leaf node that contains
three candidates, {356}, {357}, and {689}. The support count for candidate
{356} is incremented because it is the only candidate that is a subset of t. The
leaf node is marked and the function backtracks to its parent node at depth
2.

13. The hash function is applied to the last item in suffix(t, 3), which is equal to
6. Item 6 is hashed to the right child, which is a leaf node containing two
candidates. Since neither of the candidates are subsets of t, their support
counts remain the same. The leaf node is marked and the function backtracks
to its parent node.

14. Since all items in suffix(t, 3) have been hashed, the internal node is marked
and the subset function backtracks to the root node.

15. At the root node, hashing on items 5 and 6 will only bring it to marked internal
nodes. As a result, no further traversal is necessary and the subset function
terminates.

In the above example, 6 out of the 9 leaf nodes (buckets) are visited and 11 out
of the 15 itemsets are matched against the transaction.

Hash Tree Construction

So far, we have described how a hash tree can be used to update the support counts
of candidate itemsets. We now turn to the problem of constructing a hash tree to
store the candidate k-itemsets. Initially, the hash tree contains only the root node.
A new candidate itemset is inserted into the hash tree by hashing each successive
item at the internal nodes and then following the appropriate branches according
to the value of the hash function. Once a leaf node is encountered, the candidate
itemset is inserted into the node as long as the number of candidates currently stored
in the node does not exceed the maximum allowable size of a leaf node. Otherwise,
the leaf node is converted into an internal node and new leaf nodes are created as
children of the internal node. The candidate itemsets are then distributed to the
children according to their hash values. For example, suppose we want to insert the
candidate {3 5 9} into the hash tree shown in Figure 4.7. At the root node, the
hash function is applied to the first item of the candidate itemset, which is equal to
3. Item 3 is then hashed to the right child of the root node. Next, item 5, which

4.2.5 Alternative Frequent Pattern Mining Algorithms 182

1 5 91 5 9

1 4 51 4 5 1 3 61 3 6
3 4 53 4 5 3 6 7

3 6 8
3 6 73 6 7
3 6 83 6 8

3 5 63 5 63 5 73 5 7
6 8 96 8 9

2 3 4
5 6 7
2 3 42 3 4
5 6 75 6 7

1 2 4
4 5 7
1 2 41 2 4
4 5 74 5 7

1 2 5
4 5 8
1 2 51 2 5
4 5 84 5 8

3 5 93 5 9

Figure 4.9. Hash tree configuration after adding the candidate itemset {3 5 9}.

is the second item of the candidate itemset, is hashed to to the middle child node
at depth 2. The child node is a leaf node that already contains 3 candidates, {3
5 6}, {3 5 7}, and {6 8 9}. If the maximum allowable number of candidates is
equal to 3, then we cannot insert {3 5 9} into the leaf node. Instead, the leaf node
must be converted into an internal node and new child nodes are created to store
the 4 candidates based on their hash values. The final hash tree after inserting the
candidate {3 5 9} is shown in Figure 4.9.

4.2.5 Alternative Frequent Pattern Mining Algorithms

Apriori is one of the earliest algorithms to have successfully addressed the combi-
natorial explosion of frequent itemset generation. It achieves this by applying the
Apriori principle to prune the exponential search space. Despite gaining significant
performance improvements, this algorithm works well only for sparse transaction
data sets, for which the longest frequent itemset found does not contain too many
items. The performance of Apriori would degrade considerably if the data set is
dense because a large number of candidate itemsets will be generated and a huge
amount of database scans is needed to determine the support counts of each can-
didate. Many alternative algorithms have been proposed to further improve the
efficiency of frequent itemset generation. In order to put these algorithms in per-
spective, we present a high-level description of the various strategies employed by
these algorithms:

Traversal of Itemset Lattice: The search for frequent itemsets can be conceptu-
ally represented as a traversal on the itemset lattice shown in Figure 4.1. The
objective of frequent itemset generation algorithms is to discover all frequent
itemsets in the least amount of time. While the Apriori principle does allow
us to quickly determine which part of the lattice should be pruned, it does not
specify the optimal way for traversing the lattice structure. Below, we present
several methods for traversing the itemset lattice:

4.2.5 Alternative Frequent Pattern Mining Algorithms 183

• Breadth-first versus Depth-first: The Apriori algorithm traverses
the lattice is a level-wise (breadth-first) manner. It first discovers all the
size-1 frequent itemsets at level 1, followed by all the size-2 frequent item-
sets at level 2, and so on, until no frequent itemsets are generated at a
particular level. Alternatively, we can traverse the lattice ina depth-first
manner. An example would be to start at, say itemset {A}, count its sup-
port, and then determine whether it is frequent. If it is frequent, we can
keep going down the branch to {AB}, {ABC}, and so on, until we find an
infrequent itemset, say {ABCD}. We then backtrack to another branch,
and continue our search from there. This approach is typically used by
algorithms that are designed to discover maximal frequent itemsets, i.e.,
frequent itemsets whose immediate supersets are infrequent. Figure 4.26
provides an example of a lattice containing three maximal frequent item-
sets, {A,D}, {A,C,E}, and {B,C,D,E}. The border that separates
frequent itemsets from infrequent itemsets are shown by the dashed line.
Every itemset above this line is frequent, and every itemset below the
line is infrequent. In addition, all frequent itemsets in the lattice must
be a subset of at least one maximal frequent itemset. Thus, knowing the
set of maximal frequent itemsets would allow us to enumerate the entire
set of frequent itemsets.

• General-to-Specific versus Specific-to-General: The Apriori algo-
rithm uses a general-to-specific search strategy, where pairs of frequent
itemsets of size k are merged together to obtain the more specific frequent
itemsets of size k + 1. To make the search more effective, the Apriori
principle is applied to prune the supersets of infrequent itemsets. Alter-
natively, a specific-to-general search strategy can be applied to find more
specific frequent itemsets first before looking for more general itemsets.
This strategy is useful to discover maximal frequent itemsets in a dense
transaction data set. In this case, the Apriori principle is applied to prune
the subsets of maximal frequent itemsets. Yet another search method is to
combine both general-to-specific and specific-to-general strategies. This
bidirectional approach is employed by algorithms such as Pincer-Search.

• Equivalent classes: The set of all itemsets can be partitioned into
disjoint groups (or equivalent classes). A frequent itemset generation
algorithm may search for frequent itemsets within a particular equivalent
class first before continuing its search to another equivalent class. As
an example, the level-wise strategy used in Apriori can be considered as
partitioning the itemsets on the basis of their sizes, i.e., the algorithm
would find all frequent 1-itemsets first before proceeding to larger-sized
itemsets. Alternatively, an equivalent class can be defined according to
the prefix or suffix labels of an itemset. In this case, two itemsets belong
to the same equivalence class if they share a common prefix or suffix of
length k. For example, an algorithm could search for all itemsets starting
with the prefix A before looking for itemsets starting with the prefix B.

4.2.6 FP-growth Algorithm 184

null

AB AC AD BC BD CD

A B C D

ABC ABD ACD BCD

ABCD

null

AB AC ADBC BD CD

A B C D

ABC ABD ACD BCD

ABCD

(a) Prefix tree (b) Suffix tree

Figure 4.10. Equivalent classes based on the prefix and suffix labels of itemsets.

Each prefix or suffix equivalence relation can be represented using a set
enumeration tree, as shown in Figure 4.10.

Representation of Transaction Database: There are many ways to represent
a transaction database. The representation may affect the I/O costs incurred
when computing the support of candidate itemsets. Figure 4.11 shows two
different ways of representing market-basket transactions. The representation
on the left is called a horizontal data layout, which is adopted by many associ-
ation rule mining algorithms including Apriori. Another possibility is to store
the list of transaction identifiers (tid-list) for each item. Such representation is
known as the vertical data layout. The support of each candidate itemset can
be counted by intersecting the tid-lists of their subsets. The length of the tid-
lists would shrink as we progress to larger sized itemsets. One problem with
this approach is that the initial size of the tid-lists could be too large to fit
into main memory, thus requiring rather sophisticated data compression tech-
niques. Another promising approach that has become increasingly popular is
to compress the entire database so that it can fit into the main memory using
an efficient data structure. This approach is desirable because it reduces the
amount of database scans needed to determine the support counts of itemsets.
We will discuss an example of using such a compact database representation
in the next section.

4.2.6 FP-growth Algorithm

Recently, an interesting algorithm called FP-growth was proposed that takes a rad-
ically different approach to discover frequent itemsets. The algorithm does not
subscribe to the generate-and-count paradigm of Apriori. It encodes the database
using a compact data structure called an FP-tree and infers frequent itemsets di-
rectly from this structure.

4.2.6 FP-growth Algorithm 185

TID Items
1 A,B,E
2 B,C,D
3 C,E
4 A,C,D
5 A,B,C,D
6 A,E
7 A,B
8 A,B,C
9 A,C,D

10 B

Horizontal
Data Layout

A B C D E
1 1 2 2 1
4 2 3 4 3
5 5 4 5 6
6 7 8 9
7 8 9
8 10
9

Vertical Data Layout

Figure 4.11. Horizontal and vertical data format.

FP-tree Construction

First, the algorithm would scan the database once to find the frequent singleton
items. An order is then imposed on the items based on decreasing support counts.
Figure 4.12 illustrates an example of how to construct an FP-tree from a transaction
database that contains five items, A, B, C, D, and E. Initially, the FP-tree contains
only the root node, which is represented by a null symbol. Next, each transaction
is used to create a path from the root node to some node in the FP-tree.
After reading the first transaction, {A,B}, a path is formed from the root node

to its child node, labeled as A, and subsequently, to another node labeled as B. Each
node in the tree contains the symbol of the item along with a count of transactions
that reach the particular node. In this case, both nodes A and B would have a count
equals to one. After reading the second transaction {B,C,D} a new path extending
from null → B → C → D is created. Again, the nodes along this path have support
counts equal to one. When the third transaction is read, the algorithm will discover
that this transaction shares a common prefix A with the first transaction. As a
result, the path null → A → C → D is merged to the existing path null → A → B.
The support count for node A is incremented to two, while the newly-created nodes,
C and D, each have a support count equals to one. This process is repeated until
all the transactions have been mapped into one of the paths in the FP-tree. For
example, the state of the FP-tree after reading the first ten transactions is shown
at the bottom of Figure 4.12.
By looking at the way the tree is constructed, it is easy to see why an FP-

tree provides a compact representation of the database. If the database contains
many transactions that share common items, then the size of an FP-tree would be
considerably smaller than the size of the database. The best-case scenario would be
that the database contains the same set of items for all transactions. The resulting
FP-tree would contain only a single branch of nodes. The worse-case scenario would
be that each transaction contains a unique set of items. In this case, there is no
sharing of transactions among the nodes and the size of the FP-tree is the same as
the size of the database.

4.2.6 FP-growth Algorithm 186

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}
… …

Transaction
Database

After reading TID=1

null

A:1

B:1

After reading TID=2

null

A:1

B:1

B:1

C:1

D:1

After reading TID=3

null

A:2

B:1

B:1

C:1

D:1

C:1

D:1

After reading TID=10:

E:1

null

A:7 B:3

C:3

D:1

C:1

D:1

E:1

B:5

C:3

D:1
D:1

D:1

E:1
E:1

Figure 4.12. Construction of an FP-tree.

During tree construction, the FP-tree structure also stores an access mechanism
for reaching every individual occurrence of each frequent item used to construct the
tree. In the above example, there are five such linked lists, one for each A, B, C, D,
and E.

Generating Frequent Itemsets from an FP-tree

The algorithm used for generating frequent itemsets from an FP-tree is known as
FP-growth. Given the FP-tree shown in Figure 4.12, the algorithm divides the
problem into several subproblems, where each subproblem involves finding frequent
itemsets having a particular suffix. In this example, the algorithm will initially look
for frequent itemsets that end in E by following the linked list connecting the nodes
for E. After all frequent itemsets ending in E are found, the algorithm would look for
frequent itemsets that end in D by following the linked list for D, and so on. Thus,
the FP-growth algorithm can be considered as an implementation of the suffix tree
traversal strategy described in Section 4.2.5.
How does FP-growth discover all frequent itemsets ending in E? Recall that an

FP-tree stores the support counts of every item along each path, which reflect the
number of transactions that are collapsed onto the particular path. In our example,
there are only three occurrences of the node E. By collecting the prefix paths of E,
we can solve the subproblem of finding frequent itemsets ending in E (see Figure
4.13). The prefix paths of E consist of all paths starting from the root node up to
the parent nodes of E. These prefix paths can form a new FP-tree for which the

4.2.6 FP-growth Algorithm 187

Paths containing node E

null

A:7 B:3

C:3

E:1D:1

E:1

`

C:1

D:1

E:1

`

Generating Itemsets ending with E:

null

A:2 B:1

C:1

D:1

C:1

D:1
`

FP-tree of prefix paths for node E
after updating the support counts

Recursively apply FP-growth on
node D, followed by C, B and A

Figure 4.13. An illustrative example of the FP-growth algorithm for finding itemsets ending in E.

FP-growth algorithm can be recursively applied.
Before creating a new FP-tree from the prefix paths, the support counts of items

along each prefix path must be updated. This is because the initial prefix path may
include several transactions that do not contain the item E. For this reason, the
support count of each item along the prefix path must be adjusted to have the same
count as node E for that particular path, as illustrated in Figure 4.13. For example,
the prefix path null −→ B:3 −→ C:3 will be updated to null −→ B:1 −→ C:1

since the support count for node E is 1.
After updating the counts along the prefix paths of E, some items may no longer

be frequent and thus must be removed from further consideration (as far as our new
subproblem is concerned). An FP-tree of the prefix paths is then constructed by
removing the infrequent items. This recursive process of breaking up the problem
into smaller subproblems will continue until the subproblem involves only a single
item. If the support count of this item is greater than the minimum support thresh-
old, then the label of this item will be returned by the FP-growth algorithm. The
returned label is appended as a prefix to the frequent itemset ending in E.
The FP-growth algorithm is an interesting approach because it illustrates how

a compact representation of the transaction database can be used to efficiently
generate frequent itemsets. In addition, it has been shown that FP-growth can be
several orders of magnitude faster than the standard Apriori algorithm for many
transaction data sets. The performance of the FP-growth algorithm depends on the
compaction factor of the database. If the resulting FP-tree is very bushy (in the
worst case, a full prefix tree) in most of its subproblems, then the performance of
this algorithm will degrade considerably because it has to generate a large number
of subproblems in its recursive formulation.

4.3 Rule Generation 188

4.3 Rule Generation

This section describes how to extract association rules efficiently from frequent item-
sets. Given a frequent itemset L, an association rule is extracted by partitioning
the itemset into two halves, l and L − l, such that l =⇒ L − l satisfies the mini-
mum confidence requirement. This binary partitioning approach ensures that every
extracted rule has exactly the same support as its corresponding frequent itemset.
In addition, a size-k frequent itemset can produce up to 2k − 2 association rules,
ignoring rules that have empty antecedent or consequent (∅ −→ L or L −→ ∅).

Example 22 Suppose L = {1, 2, 3} is a frequent itemset. There are six possible
rules that can be generated from this frequent itemset: {1, 2} =⇒ {3}, {1, 3} =⇒ {2},
{2, 3} =⇒ {1}, {1} =⇒ {2, 3}, {2} =⇒ {1, 3} and {3} =⇒ {1, 2}. As the support for
the rules are identical to the support for the itemset {1, 2, 3}, all the rules must satisfy
the minimum support condition. The only remaining step during rule generation is
to compute the confidence value for each rule.

Computing the confidence of an association rule does not require additional
scans over the transaction database. For example, consider the rule {1, 2} =⇒ {3},
which is generated from the frequent itemset L = {1, 2, 3}. The confidence for
this rule is σ({1, 2, 3})/σ({1, 2}). Because {1, 2, 3} is frequent, the anti-monotone
property of support ensures that {1, 2} must be frequent too. Since the support for
both itemsets were already found during frequent itemset generation, no additional
database scans is needed to determine the confidence for this rule.

Anti-Monotone Property Unlike the support measure, confidence does not possess
any monotonicity property. For example, the confidence for the rule X −→ Y can
be larger or smaller than the confidence for another rule X̃ −→ Ỹ , where X̃ is a
subset of X and Ỹ is a subset of Y . Nevertheless, if we compare rules generated
from the same frequent itemset L, the following theorem holds for the confidence
measure.

Theorem 2 If a rule l =⇒ L−l does not satisfy the minimum confidence threshold,
then any rule l′ =⇒ L− l′, where l′ is a subset of l, must not satisfy the confidence
threshold as well.

To prove this theorem, consider the following two rules: a =⇒ L − a and l =⇒
L − l, where a ⊂ l. The confidence for both rules are σ(L)/σ(a) and σ(L)/σ(l),
respectively. Since a is a subset of l, σ(a) ≥ σ(l), which is why the confidence of the
former rule may never exceed the confidence of the latter rule.

Confidence Pruning The Apriori algorithm uses a level-by-level approach for gen-
erating association rules, where each level corresponds to the number of items that
belong to the rule consequent. Initially, all high-confidence rules that have only a
single item in the rule consequent are extracted. At the next level, the algorithm uses

4.4 Handling Continuous and Categorical Attributes 189

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

A low
confidence

rule

Pruned rules

Figure 4.14. Pruning of association rules using confidence measure.

rules extracted from the previous level to generate new candidate rules. For exam-
ple, if both ACD −→ B and ABD −→ C satisfy the minimum confidence threshold,
then a candidate rule AD −→ BC is generated by merging their rule consequents.
Apriori also uses Theorem 2 to substantially reduce the number of candidate rules.
Figure 4.14 shows an example of the lattice structure for association rules that can
be generated from the 4-itemset {A,B,C,D}. If any node in the lattice has low
confidence, then according to Theorem 2, the entire subgraph spanned by the node
can be immediately pruned. For example, if the rule BCD −→ A does not satisfy
the minimum confidence threshold, we can prune away all rules containing item A in
its consequent, such as CD −→ AB, BD −→ AC, BC −→ AD, D −→ ABC, etc.
Finally, the confidence for all remaining candidate rules are computed. If the confi-
dence of a rule is below the minimum confidence threshold, the rule is immediately
pruned. A pseudocode for the rule generation step is given in Table 4.4.

4.4 Handling Continuous and Categorical Attributes

So far, we have described the problem of mining association rules in the context
of asymmetric binary variables. What if the data contains both continuous and
categorical attributes? Are the current techniques still applicable?
To illustrate this situation, consider the example Web data shown in Table 4.5.

The data contains various information about the demographic and browsing activ-
ities of Web users such as their country of origin, the length of a Web session, the
number of Web pages viewed, etc. Analysis of the Web data may reveal interesting
patterns that describe the typical characteristics of Web users who made (or did not
make) a purchase at their Web site. Examples of such patterns include:

(Country = USA) ∧ (Session Length > 1000) −→ (Buy = Yes), or

4.4 Handling Continuous and Categorical Attributes 190

Table 4.4. Algorithm for generating rules from frequent itemsets.

1. forall large k-itemsets lk, k ≥ 2 do

2. H1 = { consequents of rules derived from Ik with one item in the consequent };
3. call ap-genrules(Ik, H1);

procedure ap-genrules(lk: large k-itemset, Hm: set of m-item consequents)

1. if (k > m+ 1) then {
2. Hm+1 = apriori gen(Hm);

3. forall hm+1 ∈ Hm+1 {
4. conf = σ(lk)/σ(lk − hm+1);

5. if (conf ≥ minconf) then

6. output the rule (lk − hm+1) =⇒ hm+1;

7. else

8. delete hm+1 from Hm+1;

9. }
10. call ap-genrules(lk, Hm+1);

11. }

4.4.1 Categorical Attributes 191

Table 4.5. Example of Web data for mining association rules.

Session Country Session Number of Gender Browser Type Buy

Id of Origin Length (sec) pages viewed

1 USA 982 8 Male Internet Explorer No

2 China 811 10 Female Netscape No

3 USA 2125 45 Female Mozilla Yes

4 Germany 596 4 Male Internet Explorer Yes

5 Australia 123 9 Male Mozilla No

· ·

(Number of Pages ∈ [5, 10)) ∧ (Browser = Mozilla) −→ (Buy = No).
Unlike previously seen association rules, the rules shown above involve a mixed

combination of continuous and categorical attributes. In the remainder of this sec-
tion, we describe how to modify the existing association rule formulation to extract
such rules.

4.4.1 Categorical Attributes

A typical approach for handling categorical attributes is to transform them into
asymmetric binary variables so that existing association rule mining algorithms can
be applied to the data set. Categorical attributes are transformed into asymmet-
ric binary variables by introducing as many new “items” as the number of distinct
attribute-value pairs. For example, the categorical attribute Browser Type can
be replaced by asymmetric binary variables such as Browser=Internet Explorer,
Browser=Netscape, and Browser=Mozilla, while the attribute Country of Origin

can be replaced by the names of all countries present in the data set. Even a sym-
metric binary attribute such as Gender can be handled in this way by replacing it
with the asymmetric binary variables Male and Female. Table 4.6 shows the results
of binarizing the categorical and symmetric binary attributes of the Web data. De-
spite the addition of new items, the width of each transaction remains unchanged
as each Web user has only one country of origin, browser type, and gender.
However, one problem with this approach is that some categorical attributes

such as Country of Origin can have a large number of distinct values. Creating a
new item for each country name may increase the dimensionality of the Web data
tremendously because there are more than 190 independent countries around the
world. If the support threshold is low enough such that most of the newly created
items are frequent, the problem becomes compute intensive since a large number of
candidate itemsets must be generated from these frequent items. (Nevertheless, the
maximum size of frequent itemsets found does not change even with the addition of
new asymmetric binary variables because it depends only on the maximum width
of the transactions.)
One way to address this problem is by reducing the number of newly created

4.4.2 Continuous Attributes 192

Table 4.6. Example of Web data after binarizing the categorical attributes.

Session USA China · · · Male Female Internet Netscape · · · Buy

Id Explorer

1 1 0 · · · 1 0 1 0 · · · No

2 0 1 · · · 0 1 0 1 · · · No

3 1 0 · · · 0 1 0 0 · · · Yes

4 0 0 · · · 1 0 1 0 · · · Yes

5 0 0 · · · 1 0 0 0 · · · No

· ·

items using a concept hierarchy. Attribute-value pairs that are related according
to the concept hierarchy can be merged together into more meaningful concepts.
For example, neighboring countries can be grouped together according to their geo-
graphic locations — Middle East, Scandinavia, North Africa, South-East Asia, etc.
The effect of using concept hierarchy for association rule mining will be described
in further details in Section 4.5.
Another way to improve the performance of existing algorithms is by eliminating

candidate itemsets involving items of the same type. For example, all candidate
itemsets of the form {Browser=XXX, Browser=YYY, · · · } are discarded because their
support counts are guaranteed to be zero. Eliminating such candidates early will
help to reduce the amount of time needed for support counting.

4.4.2 Continuous Attributes

Various methods have been developed for handling data with continuous attributes.
We will discuss three such methods in this section: (1) discretization-based methods,
(2) statistics-based methods, and (3) non-discretization methods. The nature of the
rules discovered by these methods are quite different, as will be shown in the next
few sections.

Discretization-based Methods

Discretization is perhaps the most common strategy for dealing with continuous
attributes. Each continuous attribute is discretized by partitioning its range of at-
tributes values into several disjoint intervals. For example, the attribute Session
Length can be partitioned into discrete intervals such as Session Length < 100,
Session Length ∈ [100, 200), etc., where [a, b) indicates that the interval includes
the value a but excludes the value b. Each discrete interval is subsequently mapped
into an asymmetric binary variable, thus allowing existing association rule mining
algorithms to be applied to the data set. Table 4.7 illustrates the results of dis-
cretizing the Web data shown in Table 4.5.
There are many ways to discretize the continuous attributes. In the simplest case,

one may apply the equal interval width or equal frequency approaches described in

4.4.2 Continuous Attributes 193

Table 4.7. Example of Web data after discretizing continuous attributes.

Session Session Length Session Length · · · Number of Number of · · · Buy

Id < 100 ∈ [100, 200) pages < 5 pages ∈ [5, 10)
1 0 0 · · · 0 1 · · · No

2 0 0 · · · 0 0 · · · No

3 0 0 · · · 0 0 · · · Yes

4 0 0 · · · 1 0 · · · Yes

5 0 1 · · · 0 1 · · · No

· ·

Chapter 2. The drawback of these approaches is that they are somewhat blind to
the end goal of association analysis, which is to produce high support and high
confidence rules. In other cases, supervised discretization approaches have been
known to produce better intervals that are tailored towards the objective function of
certain analysis, e.g., minimizing the entropy of a target attribute. Unfortunately,
unlike classification problems where the target attribute is fixed, it is difficult to
apply supervised discretization approaches to association rule mining since the rule
consequent may involve any one items present in the data set.
Discretization can also affect association rule mining in many ways. First, the

support count of a discretized variable depends on its interval width. The wider is
the interval, the higher its support count will be. As a result, if the discrete interval
is too narrow, then its support may not be high enough to be picked up by existing
association rule mining algorithms. Second, the interval width can also affect the
confidence of an association rule. If the interval is too wide, rules involving such an
interval may fail the minimum confidence threshold — a phenomenon that is known
as the information loss problem. For example, suppose the confidence for the rule
(Number of pages ∈ [5, 10)) −→ (Buy = No) is 95%. Using a much wider interval
for Number of pages may decrease the confidence of this rule significantly.
To overcome the low support problem, adjacent intervals can be merged to-

gether into wider intervals. For example, the adjacent intervals, Session Length

∈ [100, 200), Session Length ∈ [200, 300), and Session Length ∈ [300, 400), can
be merged into a wider interval, Session Length ∈ [100, 400). Although this ap-
proach can increase the support of the interval, it may still suffer from the informa-
tion loss problem.
To avoid the low support and information loss problems, it is advantageous to

augment the data set with both coarser- and finer-grained intervals, even though
this may lead to two additional problems:

1. The computation becomes extremely expensive. For example, suppose the vari-
able Number of pages ∈ [0, 10) is a frequent item. If we retain all possible
mergings of this variable, e.g., Number of pages ∈ [0, 10), Number of pages

∈ [0, 20), · · · , Number of pages ∈ [0, 100), then a large number of frequent
itemsets is generated based on different combinations of these intervals alone.

4.4.2 Continuous Attributes 194

This problem can be addressed by modifying the frequent itemset generation
algorithm to remove any candidate itemset containing more than one discrete
interval of the same type. In other words, a candidate itemset that contains
more than one item for Number of pages must be pruned prior to support
counting.

2. Some of the discovered rules are redundant. For example, suppose the rules

R1 : Number of pages ∈ [40, 50), Browser=Mozilla −→ Buy = Yes and

R2 : Number of pages ∈ [30, 50), Browser=Mozilla −→ Buy = Yes

both have very similar support and confidence. By definition, a rule r′ is an
ancestor rule for r (and r is the descendent rule for r′) if the intervals for all
of its continuous attributes are at least as wide as the intervals for r. In the
example shown above, R2 is an ancestor rule of R1 since it has a wider interval
for Number of pages. Furthermore, because R1 is the more specific rule and
has the same support and confidence as its ancestor rule, it should be pruned in
favor of R2. We can generalize this approach for pruning rules whose support
and confidence are not exactly identical to their ancestor rules. Given a pair
of rules r : AB −→ C and r′ : A′B′ −→ C ′, where r′ is the closest ancestor
rule to r, we can prune r if its support (or confidence) is within ρ times its
expected support (or confidence) computed from its ancestor rule r′, where ρ
is a user-specified parameter and the expected support can be computed in
the following way.

E(s(r)) = s(r′)× s(A)

s(A′)
× s(B)

s(B′)
× s(C)

s(C ′)

E(c(r)) = c(r′)× s(C)

s(C ′)
. (4.3)

In this case, r is eliminated if s(r)/E(s(r)) < ρ or c(r)/E(c(r)) < ρ.

Statistics-based Methods

A continuous attribute can also be used to understand the statistical properties of
a population. For the Web data shown in Table 4.5, if the date of birth for each
Web user is known, analysts may be interested in knowing the average age of certain
groups of Web users. For example, the rule

Browser=Mozilla ∧ Buy = Yes −→ Age:µ = 23

suggests that the average age of Web users who buy a product at their Web site and
use Mozilla as their browser is 23 years old. Such rules assume that a continuous
target variable, e.g., age, has been chosen to characterize interesting segments of the
population that was identified by the rule antecedent.
To discover this type of rules, one must first withhold the continuous target

variable from the rest of the data. Continuous attributes that are not part of the

4.4.2 Continuous Attributes 195

target variable are discretized using the strategies described in the previous section.
Existing frequent itemset generation algorithms can be applied once the data has
been transformed into an asymmetric binary form. Each discovered frequent itemset
identifies a certain segment of the population. The target variable is then used
to characterize each discovered segment by computing descriptive statistics such
as mean, median, or variance of the continuous variable. The example rule shown
above is obtained by computing the average age of Web users covered by the frequent
itemset {Browser=Mozilla, Buy = Yes.
Since descriptive statistics can be computed for each frequent itemset, the num-

ber of rules extracted can be as many as the number of frequent itemsets. This
could be an issue because not all frequent itemsets are interesting. One cannot
evaluate how interesting is an itemset by simply looking at the average value of its
population segment. Instead, one should evaluate an itemset based on how different
it is from the average value computed for the population segment not covered by the
itemset. For example, the rule shown above is interesting only if the average age of
Web users who are not covered by the rule antecedent, is significantly different than
23 years old. Below, we formalize a statistical test for evaluating the significance of
the difference in mean values of two populations.
Consider a pair of association rules, A −→ B : µ and A −→ B : µ′, where A

is the complement of the condition A. Each rule is assumed to characterize the
properties of two different segments of the population, whose population means for
the target attribute B are M and M ′, respectively. We also assume that the rules
have sufficiently large support counts (> 30) and the transactions covered by the
rules can be regarded as independent samples randomly drawn from each population.
Based on these assumptions, the expected values for the population means can be
computed in terms of their sample means, i.e., E(M) = µ and E(M ′) = mu′. We
consider the rule A −→ B : µ to be interesting if the difference between µ and µ′ is
greater than some user-specified threshold, ∆.
We can apply a statistical test to determine whether the observe difference in the

sample means of both populations is statistically significant at a given confidence
level. (A general overview of hypothesis testing is given in the Appendix.)
Assuming that µ < µ′, then the null hypothesis to be tested is H0 : µ

′ = µ+∆
versus the alternative hypothesis H1 : µ

′ > µ + ∆. We can define a Z-statistic for
this test as

Z =
µ′ − µ−∆√

s21
n1
+

s22
n2

. (4.4)

which has a standard normal distribution with mean 0 and variance 1 under the
null hypothesis.

Example 23 Suppose the rule r : Browser=Mozilla ∧ Buy = Yes −→ Age:µ = 23
has a standard error of 3.5 while its complement has a mean of µ′ = 30 and standard
error of 6.5. r is an interesting rule if the difference between µ′ and µ is greater
than 5 years. The support counts for the rule and its complement are 50 and 250,
respectively.

4.4.2 Continuous Attributes 196

Thus, using equation 4.4 we obtain

Z =
30− 23− 5√
3.52

50 +
6.52

250

= 3.11. (4.5)

For a 1-sided test at 95% confidence level, the critical Z value for rejecting the null
hypothesis is 1.64. Since Z > 1.64, we may conclude that the the difference in
the average age of the population segments is greater than 5 years. Thus, r is an
interesting rule.

Non-discretization Methods

There are certain applications in which analysts are more interested in finding asso-
ciations among the continuous attributes, rather than associations among discrete
intervals of the continuous attributes. For example, consider the problem of finding

Table 4.8. Example of mining association rules in text data.

Document word1 word2 word3 word4 word5 word6

d1 3 6 0 0 0 2

d2 1 2 0 0 0 2

d3 4 2 7 0 0 2

d4 2 0 3 0 0 1

d5 0 0 0 4 1 3

word associations in text documents, as shown in Table 4.8. In this document-term
matrix, each column contains the frequency counts of a word appearing in the cor-
responding documents. Often times, analysts are interested in finding associations
between words in the vocabulary (e.g., data and mining) instead of associations
between ranges of word frequencies (e.g., data ∈ [1, 4] and mining ∈ [2, 3]).
A naive way for finding word associations is to transform the data into a 0/1

matrix, where the column entry is 1 if the word frequency is greater than 0, and 0
otherwise. This allows us to apply existing frequent itemset generation algorithms
to the binarized data set. However, the drawback of this approach is that it does
not take into account the significance of each word in a document. For example, a
word that appears five times in a document could be more significant than a word
that appears only once in the document. Therefore, techniques that can handle
word frequencies without discretizing them are needed.
An immediate challenge is to determine the support for each word. Summing up

the frequencies in each column is not a viable solution because the word frequency
can be greater than the total number of documents. As a result, the support of
a word can be greater than 100%. An alternative approach is to normalize the
frequency of each word in a document so that its overall support is always less
than or equal to 1. There are several ways to perform the normalization. First, we

4.4.2 Continuous Attributes 197

0 0.5 1 1.5 2 2.5 3

x 104

0

500

1000

1500

2000

2500

3000

3500

Rank order of a word

W
or

d
Fr

eq
ue

nc
y

Figure 4.15. Frequency of words that appear in a collection of Los Angeles Times news snippets.

Table 4.9. Normalized document-term matrix.

Document word1 word2 word3 word4 word5 word6

d1 0.3 0.6 0 0 0 0.2

d2 0.1 0.2 0 0 0 0.2

d3 0.4 0.2 0.7 0 0 0.2

d4 0.2 0 0.3 0 0 0.1

d5 0 0 0 1.0 1.0 0.3

can look for the word having the highest frequency and then divide the frequencies
of each column by this maximum frequency. This will ensure that only the most
frequent word has a support equals to 100%, while the rest of the words have support
less than 100%. For example, in Table 4.8, since the maximum word frequency is 10,
the normalized word frequency is obtained by dividing each frequency by a factor
of 10. Although this seems to be a natural approach, it is biased towards words
that appear most frequently in the data set (e.g., stopwords like the, of, to, etc.)
For example, Figure 4.15 shows the distribution of word frequencies in a text corpus
consisting of news snippets collected from the Los Angeles Times. Despite having
close to 30,000 words, only 11 of those words have frequencies higher than 1000,
while close to 24,000 of the remaining words have frequencies less than 10. If the
data set is normalized by the maximum word frequency, there is a huge discrepancy
between the support of stopwords and the support of rarely used words. As a result,
most of the frequent itemsets found are dominated by the presence of stopwords.
Another approach would be to normalize each column vector to have unit length,

as shown in Table 4.9. In this approach, each word is weighted by its relative
frequency across all documents. For example, although word5 appears only once
in document d5 while word6 appears three times, the relative weight for word5 is
higher than word6 (word6 might be an example of a stopword.)
Another challenge is to determine the support of an “itemset.” For the first

document, the normalized frequency of word1 is 0.3 and the normalized frequency

4.5 Handling Concept Hierarchy 198

of word2 is 0.6. What should be the support for {word1, word2}? One way to do
this is by summing up their average normalized frequencies across all documents:

s(word1, word2) =
0.3 + 0.6

2
+
0.1 + 0.2

2
+
0.4 + 0.2

2
+
0.2 + 0

2
= 1.

Unfortunately, this approach makes the support for all itemsets to be equal to 1 (the
proof of this is left as an exercise.) Another approach is to sum up the minimum
values of the normalized frequencies:

s(word1, word2) = min(0.3, 0.6) + min(0.1, 0.2) + min(0.4, 0.2) + min(0.2, 0) = 0.6.

This approach ensures that the support for all itemsets will vary between 0 and 1.
Furthermore, this new definition of the support measure is anti-monotone, much like
the traditional support definition. To illustrate the anti-monotone property, consider
the pair of itemsets {A,B} and {A,B,C}. Note that s({A,B}) ≥ s({A,B,C}) since
min({A,B}) ≥ min({A,B,C}) — adding C can only decrease the minimum value
of (A,B). An algorithm known as Min-apriori, which is a modified version of the
Apriori algorithm, was developed to explicitly use this minimum support measure
to generate frequent itemsets from text documents such as the one shown in Table
4.8

4.5 Handling Concept Hierarchy

A concept hierarchy is a multi-level organization of the various entities or concepts
defined in a particular domain. For example, in market-basket analysis, a concept
hierarchy has the form of an item taxonomy describing the “is-a” relationships that
exist among items sold at a grocery store — e.g., milk is a type of food (Figure 4.16).
Concept hierarchies are often defined according to domain knowledge or based on a
standard classification scheme defined by certain organizations (e.g., the Library of
Congress classification scheme is used to organize library materials based on their
subject categories.)
There are several reasons why it is useful to incorporate concept hierarchy into

the association rule mining task:

1. Rules at lower levels of the hierarchy may not have enough support to appear
in any frequent itemsets. For example, the sale of laptop AC adaptors and
docking stations may be low but the collective sale of laptop accessories

may be high. If the concept hierarchy is not used, then we may miss interesting
patterns involving the laptop accessories.

2. There could be too many rules at lower levels of the hierarchy that are overly
specific and not as interesting as rules at higher levels. For example, staple
items such as bread and milk tend to produce many low-level rules such as
skim milk −→ Wonder white bread, Foremost 2% milk −→ Pepperidge

Farm white bread, and Kemps 2% milk−→ wheat bread. Using the concept

4.5 Handling Concept Hierarchy 199

Food

Bread

Milk

Skim 2%

Electronics

Computers Home

Desktop LaptopWheat

ForemostKemps

DVDTV

AC
adaptor

Docking
station

Laptop
Accessories

White

WonderPepperidge
Farm

Figure 4.16. Example of an item taxonomy.

hierarchy, we can potentially summarize this set of related rules into a single
rule, milk −→ bread.

A concept hierarchy is often represented using a directed acyclic graph repre-
sentation, as shown in Figure 4.16. If there is an edge in the graph from a node p
to another node c, we call p as the parent of c and c as the child of p. For example,
milk is the parent of skim milk because there is a directed edge from the node
milk to skim milk. Furthermore, we say X̂ is an ancestor of X if there is a path
from the node X̂ to node X in the directed acyclic graph (e.g., food is an ancestor
of skim milk.)
Note that one cannot directly infer rules involving items at higher levels of the

taxonomy based on the rules discovered for lower level items. Let us examine how
the support and confidence of an itemset varies as we traverse the item taxonomy:

• If X̂ is the parent for both X1 and X2, then σ(X) ≤ σ(X1) + σ(X2). This
is because some transactions may contain both X1 and X2. For example, the
support for food can be less than the sum of the supports for bread and milk
because there are some transactions that contain both bread and milk.

• If σ(X ∪ Y) ≥ s, then σ(X̂ ∪ Y) ≥ s, σ(X ∪ Ŷ) ≥ s, and σ(X̂ ∪ Ŷ) ≥ s.
In other words, support always increases as you go up the item taxonomy.
For example, the support for AC adaptor −→ DVD cannot be greater than the
support for computers −→ home electronics.

• If conf(X =⇒ Y) > α, then only conf(X =⇒ Ŷ) is guaranteed to be
larger than α. For example, if the confidence for the rule AC Adaptor −→
DVD is above the minconf threshold, then the rules AC adaptor −→ home

electronics and AC adaptor −→ electronics are guaranteed to be higher
than minconf too. However, the same cannot be said about the confidence of

4.5 Handling Concept Hierarchy 200

the rules laptop accessories −→ DVD, computers −→ home electronics,
or laptop accessories −→ home electronics.

One way to extend the current association rule formulation to handle concept
hierarchies is as follows. Initially, each transaction t is replaced by an extended trans-
action t′, which contains all the items in the original transaction t as well as their
corresponding ancestors. For example, the transaction t = {DVD, wheat bread}
can be extended to t′ = {DVD, wheat bread, home electronics, electronics,
bread, food} where home electronics and electronics are the ancestors of DVD
while bread and food are the ancestors of wheat bread. With this approach, we
can apply existing algorithms such as Apriori to the extended database and obtain
rules that can span different levels of the concept hierarchy. Nevertheless, such an
approach may encounter several technical difficulties.

1. Items that reside at higher levels of the concept hierarchy tend to have higher
support counts compared to those that reside at the lower levels of the hierarchy.
Thus, if the minimum support threshold is set too high, only patterns from
higher levels of the hierarchy are extracted. If the threshold is set too low, the
algorithm becomes computationally inefficient. This observation suggests that
it may no longer be sufficient to apply the same support threshold in dealing
with items from different levels of the hierarchy.

2. By introducing a concept hierarchy, the dimensionality of the problem will
increase due to the increase in the number of items as well as the width of
transactions. The computational complexity will also increase since the num-
ber of candidate and frequent patterns generated by existing algorithms may
grow exponentially as the width of transactions increases. In addition, many
of the discovered rules are redundant because they describe the relationship
between an item with its ancestor items. For example, the rule skim milk

−→ food is redundant even though its support and confidence can be very
high because food is an ancestor of skim milk.

One way to improve the performance of existing algorithms is by pruning the
redundant itemsets, i.e., any itemset that contains the itemX along with its ancestor
items, X̂. It is safe to eliminate such candidate patterns because support remains
unchanged even if we remove all the ancestor items of X from the pattern. If a
pattern Z that contains both X and X̂ is frequent, then the corresponding pattern
Z − X̂, that contains X but not X̂, must be frequent too.
In some cases, one may be willing to ignore patterns involving items from differ-

ent levels of the hierarchy — e.g., a cross-level pattern such as 2% Foremost milk

−→ bread can be ignored once a high-level pattern such as milk −→ bread were
already discovered. This allows us to implement a more efficient pattern generation
algorithm that employs a level-wise pattern enumeration strategy. The strategy
works because the support for lower-level items is always smaller than the support
for their ancestors. Thus, if an itemset at the higher level of the concept hierarchy is

4.6 Effect of Support Distribution 201

infrequent, its corresponding itemset at the lower level of the hierarchy must be in-
frequent too (assuming that the same minimum support threshold is applied.) This
top-down, level-wise algorithm can be described as follows. Initially, all frequent
itemsets of size-1 at the top level of the concept hierarchy are generated. These
itemsets will be denoted as L(1, 1). For example, if both food and electronics are
frequent, then L(1, 1) = {food, electronics}. Next, using L(1, 1), the algorithm
proceeds to generate all frequent itemsets of size 2, L(1, 2). This procedure is re-
peated until all frequent itemsets involving items from the top level of the hierarchy,
L(1, k) (k > 1), are extracted. The algorithm can then proceed to the next level
of the taxonomy, L(2, 1). In this case, only the descendents of frequent itemsets in
L(1, 1) are considered to be candidates for L(2, 1). For example, since both food

and electronics belong to L(1, 1), then the candidate itemsets for L(2, 1) include
bread, milk, computers, and home electronics. The algorithm then proceeds to
generate L(2, 2), L(2, 3), · · · sequentially until all level-2 frequent itemsets are ex-
tracted. This procedure will move on to the next level and so on, until it terminates
at the deepest level requested by the user.
There are two major limitations to this approach. First, the I/O requirements

would increase dramatically due to the increasing number of database scans needed.
Second, the approach is no longer complete, i.e., it ignores itemsets from different
levels of the hierarchy. In addition, if a different minimum support threshold is ap-
plied at each level (higher thresholds at the upper levels of the hierarchy, and lower
thresholds at the lower levels of the hierarchy), one could potentially miss many fre-
quent itemsets using the top-down, level-wise approach because the anti-monotone
property is violated. We will discuss this problem of using multiple minimum sup-
port in Section 4.6.1.

4.6 Effect of Support Distribution

When applying association analysis to real data sets, a natural question to ask is how
to choose the right minimum support threshold? To answer this question, let us first
examine the effect of support distribution on the choice of minimum support thresh-
old. Figure 4.17 shows the support distribution of a data set created using the syn-
thetic data generator available from IBMAlmaden (http://www.almaden.ibm.com/
software/quest/Resources/index.shtml). The synthetic data set contains 10,000
items and 100,000 transactions. In this figure, the items are sorted in increasing or-
der of their support levels. Some of the items have support less than 0.01%, while
others have support more than 1%. Given the wide range of support values, we
can partition the items into three groups, G1, G2, and G3. G1 contains items with
support less than 0.05%, G2 contains items with support between 0.05% and 1%
transactions, and G3 contains items with support greater than 1%.
Choosing the appropriate minimum support threshold for this data set can be

quite tricky due to its wide range of support distribution. If the threshold is set
too high, we may miss interesting patterns involving items from low support lev-
els. Conversely, if the minimum support threshold is set too low, the problem be-

4.6.1 Multiple Minimum Support 202

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
100

101

102

103

104

Sorted Items

S
up

po
rt

C
ou

nt

G3

G2

G1

Figure 4.17. Support distribution of items for a synthetic data set created using the IBM Almaden synthetic

data generator.

comes computationally intractable and can produce a huge number of uninteresting
patterns. Figure 4.18 illustrates the effect of applying different minimum support
thresholds on the number of extracted frequent itemsets. When the minimum sup-
port threshold is set to 0.01%, the number of frequent itemsets is extremely large
and the patterns are also longer compared to those extracted at higher support
thresholds.
Some of the patterns generated at low minimum support thresholds are not

interesting because they contain items with significantly different support levels. As
an example, many analysts may not consider the association between the sale of
milk (a very frequent item) and caviar (a rare item) to be interesting even though
the confidence for the rule caviar −→ milk is high. The confidence of this rule is
high simply because many of the transactions involve the purchase of milk. As a
result, it is not surprising to find milk in transactions that contain caviar.
A standard algorithm such as Apriori can produce a large number of frequent

itemsets when applied to the data set shown in Figure 4.17. For example, if the
minimum support threshold is set to 0.01%, more than 11 million frequent itemsets
up to size-10 are extracted. Out of this, there are 640,916 mixed frequent itemsets
involving items from both G1 and G3. Such itemsets are often uninteresting because
they contain items from significantly different support levels, i.e., the aforementioned
caviar and milk problem.

4.6.1 Multiple Minimum Support

The discussion presented in the previous section suggests that choosing the ap-
propriate minimum support threshold is a challenging task especially for data sets
having a skewed support distribution. One must ensure that the support thresh-
old is low enough to capture interesting patterns involving the low-support items

4.6.1 Multiple Minimum Support 203

1 2 3 4 5 6 7 8 9 10
100

101

102

103

104

105

106

107

Size of Itemset

N
um

be
r o

f I
te

m
se

ts

minsup = 0.3%

minsup = 0.2%

minsup = 0.1%

minsup = 0.01%

Figure 4.18. Effect of applying different minimum support threshold on number of frequent itemsets.

but high enough to be computationally tractable. Some may argue that using a
single minimum support threshold alone is not sufficient because it will make the
problem becomes computationally expensive. Instead, they propose to extend the
association rule formulation to incorporate the use of multiple minimum support
thresholds. The idea is to assign each item i a different threshold µi, depending on
how frequent it is expected to appear in the data set. The higher is the expected
frequency, the higher is the support threshold. For example, items that belong to
G3 will be assigned a higher minimum support threshold compared to items that
belong to G1.
There are several issues one has to consider when using multiple minimum sup-

port thresholds:

1. How to determine the minimum support threshold for an itemset given the
minimum support thresholds of the individual items? A straightforward ap-
proach is to assign it to the lowest minsup threshold. For example, consider
the situation shown in Figure 4.19. Suppose each item is assigned the fol-
lowing thresholds: µ(Milk)= 5%, µ(Coke) = 3%, µ(Broccoli)= 0.1%, and
µ(Salmon)= 0.5%. The minimum support for any itemsetX = {x1, x2, · · · , xk}
is given by min[µ(x1), µ(x2), · · · , µ(xk)]. As an example, µ(Milk,Broccoli)
= min[µ(Milk), µ(Broccoli)] = 0.1%.

2. Support is no longer an anti-monotone measure. For example, suppose the sup-
port for {Milk, Coke} = 1.5% while the support for {Milk, Coke, broccoli} =
0.15%. In this case, the itemset {Milk, Coke} is infrequent whereas its su-
perset {Milk, Coke, Broccoli} is frequent, thus violating the anti-monotone
property of the support measure.

One way to address the lack of anti-monotone property is by ordering the items,
in ascending order, according to their minimum support thresholds. With the

4.6.1 Multiple Minimum Support 204

B

S

C

M

BS

BC

BM

SC

SM

CM

BSC

BSM

BCM

SCM

Item
Minimum
Support

Support

Broccoli
(B)

0.10% 0.20%

Salmon
(S)

0.50% 0.05%

Coke
(C)

3.00% 2.50%

Milk
(M)

5% 10.00%

Figure 4.19. Frequent itemset generation with multiple minimum supports.

thresholds shown in Figure 4.19, the items can be ordered in the following way
: Broccoli, Salmon, Coke, Milk. Based on their actual supports, only broccoli and
milk will satisfy their respective minimum support thresholds. These frequent items
can be used to generate larger sized frequent itemsets.
On the other hand, salmon and Coke are infrequent items. In the standard asso-

ciation rule mining approach, both items will be immediately pruned prior to looking
for larger-size itemsets. However, when multiple minimum support thresholds are
used, these two items need to be treated differently.
For salmon, since its support (0.05%) is lower than the minimum support thresh-

olds for all items (including broccoli), it will never produce any frequent combina-
tions with other items. Therefore, all candidate itemsets involving salmon can be
immediately pruned. In the lattice structure shown in Figure 4.19, the candidate
itemsets involving salmon include {Broccoli, Salmon} and {Salmon, Milk}.
For Coke, one cannot immediately eliminate this item because it can still be part

of a larger frequent itemset. For example, the candidate 2-itemset {Broccoli, Coke}
can still be frequent as long as its support is higher than 0.1%. However, one can still
prune all candidate itemsets that begin with Coke. This is because such itemsets
can only be extended with items that have higher minimum support thresholds.
Therefore, a candidate such {Coke, Milk} can be pruned because it is guaranteed
to produce only infrequent itemsets.
The Apriori algorithm must be modified to incorporate items that have multiple

minimum support thresholds. In the standard Apriori algorithm, a candidate (k+1)-
itemset is generated by merging two frequent itemsets of size k. The candidate is
then pruned if any one of its subsets is found to be infrequent. To handle multiple
minimum support thresholds, the pruning step of Apriori algorithm must be mod-
ified. Specifically, a candidate itemset is pruned only if at least one of its subsets
that contain the first item (i.e., item with lowest minimum support) is infrequent.
For example, {Broccoli, Coke, Milk} can be obtained by merging the frequent 2-

4.7 Evaluation of Association Patterns 205

itemsets {Broccoli, Coke} and {Broccoli,Milk}. Even though {Coke, Milk} can
be infrequent, its superset, {Broccoli, Coke, Milk}, can be potentially frequent.
Finally, it is also possible to assign multiple minimum support thresholds based

on the size of the itemset. This approach makes sense because the support of an
itemset naturally decreases as the itemset becomes longer. Again, the problem lies
in deciding the right threshold to use for a given itemset size. In this case the
anti-monotone property of the support measure will also be violated.
Although the technique of using multiple minimum support thresholds can re-

duce the complexity of generating frequent itemsets, it cannot prevent the inter-
mixing of items with significantly different support levels. Therefore, more research
is needed in this area.

4.7 Evaluation of Association Patterns

Standard association analysis algorithms can potentially generate a large number of
patterns. Just to give an example, the initial database shown in Table 4.1 contains
only six items, but it can produce as many as 102 association rules at reasonable
support and confidence thresholds. As the size and dimensionality of commercial
databases can be very large, one might end up finding thousands or even millions
of patterns, not all of which are interesting to the analysts. Thus, a key step in
association analysis is to sift through the large number of extracted patterns and
identifies the most interesting ones. This is not a trivial task because “one man’s
trash is another man’s treasure.” It is important to establish a set of well-acceptable
criteria for evaluating the interestingness of association patterns.
The first set of criteria can be derived from statistical arguments. It is intuitively

clear that any pattern involving a set of independent items or covering too few
transactions is statistically insignificant and thus, should be rejected. This set of
criteria can be realized through the use of an objective interestingness measure,
which evaluates a pattern based on statistics derived from the observed data. This
include measures such as support, confidence, correlation, etc.
A second set of criteria can be derived from subjective arguments. Any pattern

that reveals unexpected information about the data or provides actionable knowl-
edge that can lead to more profitable uses should be considered as interesting. Such
criteria are less well-defined because it is harder to measure how “surprising” or
“actionable” is a pattern. Nevertheless, there has been some attempts to define
such criteria through the use of subjective interestingness measures.
We will describe both the objective and subjective interestingness measures in

the next two sections.

4.7.1 Objective Measures of Interestingness

An objective measure is a data-driven approach for evaluating the interestingness
of a discovered pattern. It is domain-independent and requires minimal input from

4.7.1 Objective Measures of Interestingness 206

users, except for specifying a cutoff value to eliminate uninteresting patterns. Sup-
port and confidence are examples of two objective measures originally proposed to
analyze the quality of association patterns. Yet these two measures alone may not
be sufficient to eliminate uninteresting patterns, as illustrated by the next example.

Example 24 In a population of 1000 students, suppose there are 600 students who
know how to swim and 700 students who know how to bike. There are only 420
students who know how to do both swimming and biking. In this example, the rule
Swim −→ Bike has a 42% support and 70% confidence. A well-known fact from
statistics states that a pair of variables, A and B, are statistically independent if the
following condition holds.

P (A,B) = P (A)× P (B). (4.6)

Since

P (swim)× P (bike) = 0.6× 0.7 = 0.42 and
P (swim, bike) = 0.42,

we may conclude that students who know how to swim are independent of those who
know how to bike. Thus, the rule Swim −→ Bike is spurious even though it has
moderately high support and confidence values.

The above example illustrates the limitation of using only the support and con-
fidence measures for evaluating association patterns. These measures may fail to
detect patterns involving items that are statistically independent of each other. Keep
in mind that there are other objective measures designed for eliminating statistically
spurious patterns. This include the φ-coefficient, interest factor (I), odds ratio, and
Piatetsky-Shapiro’s PS measure, all of which can be employed to detect and filter
out statistically independent items. We will provide a formal way to define these
objective measures next.

Contingency Tables. Many objective measures can be defined in terms of the
frequency counts tabulated in a contingency table, such as the one shown in Table
4.10. Each entry in this 2 × 2 table denotes the frequency count for one of the
four possible combinations of items A and B. For example, f11 denotes the number
of times A and B appear together in the same transaction while f01 denotes the
number of transactions that contain B but not A. The row sum f1+ represents the
support count for A while the column sum f+1 represents the support count for B.
Likewise, f0+ and f+0 denote the number of transactions that do not contain A and
B, respectively.
Given a 2× 2 contingency table, we can define the φ-coefficient as follows,

φ =
f11f00 − f01f10√
f1+f+1f0+f+0

. (4.7)

4.7.1 Objective Measures of Interestingness 207

Table 4.10. A 2-way contingency table for variables A and B.
B B

A f11 f10 f1+

A f01 f00 f0+

f+1 f+0 N

The φ-coefficient is an important measure because it is analogous to Pearson’s cor-
relation coefficient, a widely-used measure for computing the correlation between
pairs of continuous variables. Other well-known interestingness measures include
interest factor (I), odds ratio (α) and Piatetsky-Shapiro’s PS measure.

I =
P (A,B)

P (A)P (B)
=

Nf11
f1+f+1

(4.8)

α =
P (A,B)P (A,B)

P (A,B)P (A,B)
=
f11f00
f01f10

(4.9)

PS = P (A,B)− P (A)P (B) = f11
N
− f1+

N

f+1
N

(4.10)

Statistical Independence. All four measures defined above can be used to identify
relationships between a pair of statistically independent items. To illustrate this,
we can rewrite the independence condition given in Equation 4.6 in terms of the
frequency counts of a 2× 2 contingency table. After some manipulation, we arrive
at the following condition for statistical independence.

Nf11 = f1+f+1 or equivalently, f11f00 = f10f01.

Replacing these conditions into Equations 4.7-4.10 would show that the φ-coefficient
and PS measure are equal to zero, while the odds ratio and interest factor are equal
to one, when applied to a pair of statistically independent items.

Symmetric versus Asymmetric Measures. Some objective measures are developed
for analyzing rules instead itemsets. For example, given a rule A −→ B, the confi-
dence (c) and conviction (V) values for this rule are given below.

Confidence,c =
f11
f1+

Conviction,V =
f1+f+0
Nf10

Measures developed for rules often have an asymmetric form. For example, confi-
dence is an asymmetric measure since c(A −→ B) 6= c(B −→ A). Other asymmetric
measures include conviction, mutual information, J-measure, Gini index, Laplace,
certainty factor, added value, and Klosgen factor. Each asymmetric measure can
be transformed into a symmetric form by taking the maximum value between the
rules A −→ B and B −→ A. Symmetrizing these measures would allow us to apply
both symmetric and asymmetric measures directly to contingency tables without
concerning ourselves with the direction of the rule implication.

4.7.1 Objective Measures of Interestingness 208

Range of an Objective Measure. Table 4.11 provides the definition for various
objective measures along with their respective range of values. In most cases, the
range is reported as two values, corresponding to the minimum and maximum values
of the measure. For example, the range for support and confidence measures go
from 0 to 1. In other cases, the range is reported as three values, a · · · s · · · b, where
a corresponds to its minimum value, b corresponds to its maximum value, and s
corresponds to the value at statistical independence. For example, the range for φ-
coefficient goes from −1 (for perfect negative correlation) to +1 (for perfect positive
correlation). Statistical independence is represented by the value φ = 0. Note that
if the range is reported as two values, either the minimum value corresponds to
statistical independence (e.g., for mutual information) or the value for statistical
independence can be arbitrary (e.g., for support). For other measures such as odds
ratio and interest factor, their range of values can go from 0 to infinity, while the
value at statistical independence is equal to 1. Such measures can be normalized to
have a range between -1 and +1 by applying appropriate transformation functions
such as

f(M) =
M − 1
M + 1

, or f(M) =
tan−1 log(M)

π/2
.

For example, Yule’s Y and Q coefficients are normalized measures of odds ratio.

Measures for k-itemsets. Many of the measures defined in Table 4.11 can be gener-
alized to evaluate patterns involving more than two items. For example, the interest
factor for a k-itemset, {x1, x2, · · · , xk} is given by

Nk−1f11···1
f1+···+f+1+···+ · · · f++···1

,

where fi1i2···ik corresponds to the frequency count in a k-way contingency table.
More sophisticated techniques are available for analyzing k-way contingency tables,
e.g., loglinear models, but such techniques are beyond the scope of this book. The
rest of the discussion in the remainder of this section will focus primarily on 2 × 2
contingency tables.

Consistency among Objective Measures

Given the wide variety of available measures, it is only natural to wonder whether
these measures are consistent with each other. By consistency we mean that patterns
ranked highly according to one measure are also ranked highly by another measure,
while those ranked lowly by the first measure will also be ranked lowly by the other.
For example, Table 4.12 shows an example of ten contingency tables, E1 - E10,

defined in terms of their frequency counts fij . We can apply the various measures
given in Table 4.11 to rank order these patterns, the results of which are shown in
Table 4.13. The φ-coefficient considers E1 to be the most interesting pattern and
E10 to be least interesting pattern. For these ten tables, the rankings produced by φ
are consistent with the rankings produced by other measures such as Cohen’s κ and

4.7.1 Objective Measures of Interestingness 209

Table 4.11. Definitions of objective interestingness measures.
Measure Range Formula M(A,B)

1 φ-coefficient −1 · · · 0 · · · 1 N×f11−f1+f+1√
f1+f+1f0+f+0

2 Goodman-Kruskal’s (λ) 0 · · · 1
[∑

j maxk fjk+
∑

k maxj fjk−maxj fj+−maxkf+k

2N−maxj fj+−maxk f+k

]

3 Odds ratio (α) 0 · · · 1 · · ·∞ f11f00
f10f01

4 Yule’s Q −1 · · · 0 · · · 1
[
f11f00−f10f01
f11f00+f10f01

]
= α−1

α+1

5 Yule’s Y −1 · · · 0 · · · 1
[
√
f11f00−

√
f10f01√

f11f00+
√
f10f01

]
=

√
α−1√
α+1

6 Kappa (κ) −1 · · · 0 · · · 1
[
Nf11+Nf00−f1+f+1−f0+f+0

N2−f1+f+1−f0+f+0

]

7 Mutual Information (M) 0 · · · 1 max

[∑
i

∑
j

fij
N

log
Nfij

fi+f+j

−
∑

i

fi+
N

log
fi+
N

,

∑
i

∑
j

fij
N

log
Nfij

fi+f+j

−
∑

j

f+j
N

log
f+j
N

]

8 J-Measure (J) 0 · · · 1 f11
N
log Nf11

f1+f+1

+max

[
f10
N
log Nf10

f1+f+0
, f01
N
log Nf01

f0+f+1

]

9 Gini index (G) 0 · · · 1 max

[
f1+
N
× [(Nf11

f1+f+1
)2 + (Nf10

f1+f+0
)2]

+
f0+
N
× [(Nf01

f0+f+1
)2 + (Nf00

f0+f+0
)2]

−(f+1

N
)2 − (f+0

N
)2,

f+1

N
× [(Nf11

f1+f+1
)2 + (Nf01

f0+f+1
)2]

+
f+0

N
× [(Nf10

f1+f+0
)2 + (Nf00

f0+f+0
)2]

−(f1+
N
)2 − (f0+

N
)2
]

10 Support (s) 0 · · · 1 f11
N

11 Confidence (c) 0 · · · 1 max

[
f11
f1+

, f11
f+1

]

12 Laplace (L) 0 · · · 1 max

[
f11+1
f1++2

, f11+1
f+1+2

]

13 Conviction (V) 0.5 · · · 1 · · ·∞ max

[
f1+f+0

Nf10
,
f0+f+1

Nf01

]

14 Interest (I) 0 · · · 1 · · ·∞ Nf11
f1+f+1

15 Cosine (IS) 0 · · ·
√
P (A,B) · · · 1 f11√

f1+f+1

16 Piatetsky-Shapiro’s (PS) −0.25 · · · 0 · · · 0.25 f11
N
− f1+f+1

N2

17 Certainty factor (F) −1 · · · 0 · · · 1 max

[Nf11
f1+f+1

−
f+1

N

1−
f+1

N

,

Nf11
f1+f+1

−
f1+

N

1−
f1+

N

]

18 Added Value (AV) −0.5 · · · 0 · · · 1 max

[
Nf11
f1+f+1

− f+1

N
, Nf11
f1+f+1

− f1+
N

]

19 Collective strength (S) 0 · · · 1 · · ·∞
[

f11+f00
f1+f+1+f0+f+0

× N−f1+f+1−f0+f+0

N−f11−f00

]

20 Jaccard (ζ) 0 · · · 1 f11
f1++f+1−f11

21 Klosgen (K)
√

2√
3
− 1)[2−

√
3

√
f11
N
max

[
Nf11
f1+f+1

− f+1

N
, Nf11
f1+f+1

− f1+
N

]

− 1√
3
] · · · 0 · · · 2

3
√

3

4.7.1 Objective Measures of Interestingness 210

Table 4.12. Example of contingency tables.
Example f11 f10 f01 f00

E1 8123 83 424 1370

E2 8330 2 622 1046

E3 9481 94 127 298

E4 3954 3080 5 2961

E5 2886 1363 1320 4431

E6 1500 2000 500 6000

E7 4000 2000 1000 3000

E8 4000 2000 2000 2000

E9 1720 7121 5 1154

E10 61 2483 4 7452

Table 4.13. Rankings of contingency tables using objective interestingness measures.
φ λ α Q Y κ M J G s c L V I IS PS F AV S ζ K

E1 1 1 3 3 3 1 2 2 1 3 5 5 4 6 2 2 4 6 1 2 5

E2 2 2 1 1 1 2 1 3 2 2 1 1 1 8 3 5 1 8 2 3 6

E3 3 3 4 4 4 3 3 8 7 1 4 4 6 10 1 8 6 10 3 1 10

E4 4 7 2 2 2 5 4 1 3 6 2 2 2 4 4 1 2 3 4 5 1

E5 5 4 8 8 8 4 7 5 4 7 9 9 9 3 6 3 9 4 5 6 3

E6 6 6 7 7 7 7 6 4 6 9 8 8 7 2 8 6 7 2 7 8 2

E7 7 5 9 9 9 6 8 6 5 4 7 7 8 5 5 4 8 5 6 4 4

E8 8 9 10 10 10 8 10 10 8 4 10 10 10 9 7 7 10 9 8 7 9

E9 9 9 5 5 5 9 9 7 9 8 3 3 3 7 9 9 3 7 9 9 8

E10 10 8 6 6 6 10 5 9 10 10 6 6 5 1 10 10 5 1 10 10 7

the collective strength S. On the other hand, these rankings are quite inconsistent
with the rankings produced by other measures such as interest factor (I) and added
value (AV). For example, I considers E10 to be the most interesting pattern and
E3 to be the least interesting pattern, which is quite contradictory to the evaluation
made by the φ-coefficient. Looking at the rankings produced in Table 4.13, we can
identify several groups of consistent measures such as (1) the group of φ-coefficient,
κ, and collective strength (S) measures; (2) the group of odds ratio (α), Yule’s Q
and Y coefficients; (3) the group of confidence (c), Laplace (L), and conviction (V)
measures; and (4) the group of cosine (IS) and Jaccard (ξ) measures.
The issue of consistency has a direct impact on the choice of measure used for

association analysis. If all measures are consistent with each other, then any one
of the measure is equally good (or bad) at evaluating the discovered patterns. On
the other hand, if the measures are inconsistent, then it is important to know which
measure has the desirable properties for ranking a set of association patterns.

Properties of Objective Measures

The discussion presented in the previous section suggests that a significant number
of existing measures provide conflicting information about the interestingness of a
pattern. It would be useful to know the inherent properties of these measures that
make them prefer certain patterns to others. We review some of these properties in
this section.

4.7.1 Objective Measures of Interestingness 211

Effect of Increasing Support of a Pattern. One useful property to consider is the
effect of increasing support on the magnitude of a measure. This property can be
stated more formally as follows.

Property P1:
An objective measure M should increase monotonically with increasing
value of f11 when both f1+ and f+1 remain the same.

We illustrate the intuition behind this property with the following example.
Consider the two contingency tables shown in Table 4.14. Both tables have identical
row and column sums, which mean that the support for A and B remain unchanged.
However, the table on the right has a higher frequency count for {A,B}. Since the
support for each item is fixed, the frequency counts for f10 and f01 must decrease
to compensate for the higher value of f11. In turn, the decreasing values of f01 and
f10 result in a higher frequency count for f00. Observe that the frequency counts for
the table on the right are concentrated mostly along the (f11, f00) diagonal, which
suggests that A and B are more likely to co-occur together or to be absent altogether
in the same transaction (rather than to have one item without the other). Thus,
the relationship between A and B can only grow stronger with increasing support
of {A,B}.

B B B B

A 60 80 140 A 100 40 140

A 120 160 280 A 80 200 280

180 240 420 180 240 420

Table 4.14. Example of a contingency table.

Effect of Increasing Item Support. Another useful property of a measure is to exam-
ine its behavior when the support of its constituent items increases without changing
the support of the pattern.

Property P2:
An objective measure M should monotonically decrease with increasing
value of f1+ (or f+1) when all other parameters remain the same.

Consider the diagram shown in Figure 4.20. Let W be the set of transactions
that contain A1 but not B and Y be the set of transactions that contain A2 but
not B. Also, suppose X corresponds to the set of transactions that contain A1 and
B while Z corresponds to the set of transactions that contain A2 and B. Both X
and Z are assumed to have equal number of transactions. However, the support for
A1 is assumed to be much higher than the support for A2. One would expect the
association between A1 and B to be much stronger than the association between
A2 and B since most of the transactions involving item A1 also contain item B,

4.7.1 Objective Measures of Interestingness 212

X
A1 B

Z
A2 B

W

Y

(a) (b)

T T

Figure 4.20. An example illustrating the effect of increasing item support.

whereas most of the transactions involving A2 do not contain B. This observation
eventually leads to the property P2 stated above.
Table 4.15 illustrates the extent to which some of the existing measures satisfy

the two properties described above.

Effect of Inversion. The association analysis presented in this chapter assumes that
the input data can be transformed into an asymmetric binary form before applying
algorithms such as Apriori or FP-tree. However, because of the asymmetric binary
nature of the data, it would seem most logical to evaluate the association between
a pair of items on the basis of how frequent they are present together, rather than
how frequent they are both missing from the same transaction. For example, it
makes sense to regard the association between bread and milk as strong because
they are bought together in many transactions. It does not make sense to regard
the association between caviar and gold earring as strong just because they are both
missing from most of the transactions.
To illustrate this, consider the example shown in Figure 4.21. Each column

vector corresponds to an item, with a 0/1 bit indicating whether a transaction
contains the particular item. For example, the column vector for A indicates that
item A belongs to the first and last transaction. The first pair of vectors, A and
B, correspond to items that are rarely present in any transactions, such as caviar
and gold earring. The second pair of vectors, C and D, correspond to items that
are frequently bought together, such as milk and bread. For asymmetric binary
data such as market-basket transactions, the association between C and D should
be considered as stronger than the association between A and B.
A closer examination of the vectors would reveal that C is actually related to vec-

tor A— its bit has been inverted from 0’s (absence) to 1’s (presence), and vice-versa.
This process of flipping the bit vector is known as the inversion operation. Given
an asymmetric binary data, it is important to consider how an objective measure
behaves under the inversion operation. If the measure is invariant under this oper-
ation, it is called a symmetric binary measure; otherwise, it is called an asymmetric
binary measure. Examples of symmetric binary measures include φ, odds ratio, κ

4.7.1 Objective Measures of Interestingness 213

Table 4.15. Properties of objective interestingness measures.
Symbol Measure P1 P2 P3 P4 P5

φ φ-coefficient Yes Yes Yes No No

λ Goodman-Kruskal’s No No Yes No No

α odds ratio Yes Yes Yes No Yes

Q Yule’s Q Yes Yes Yes No Yes

Y Yule’s Y Yes Yes Yes No Yes

κ Cohen’s Yes Yes Yes No No

M Mutual Information Yes Yes Yes No No

J J-Measure No No No No No

G Gini index No No Yes No No

s Support Yes No No No No

c Confidence Yes No No Yes No

L Laplace Yes No No No No

V Conviction Yes No Yes No No

I Interest Yes Yes No No No

IS Cosine Yes Yes No Yes No

PS Piatetsky-Shapiro’s Yes Yes Yes No No

F Certainty factor Yes Yes Yes No No

AV Added value Yes Yes No No No

S Collective strength Yes Yes Yes No No

ζ Jaccard Yes Yes No Yes No

K Klosgen’s Yes Yes No No No

and collective strength, while the examples for asymmetric binary measures include
I, IS, PS and Jaccard measure. Asymmetric binary measures are more suitable
for handling asymmetric binary data compared to symmetric binary measures. For
example, the φ-coefficient, which is a symmetric binary measure, considers A and B
to have the same degree of association as C and D. In fact, the φ-coefficient for C
and D is much weaker than the φ-coefficient for E and F , which is rather counter-
intuitive from a market-basket analysis perspective! (Nevertheless, the φ-coefficient
may still be useful to eliminate patterns due to statistically independent items, as
described in the previous section.)

Property P3:
An objective measure M is symmetric binary if it is invariant when
exchanging f11 with f00 and f10 with f01.

Effect of Null Addition. Suppose we are interested in analyzing the relationship be-
tween a pair of words, say, data and mining, using a data set consisting of Computer
Science journal articles. If we add a collection of Sports news articles to the data
set, should the association between data and mining be affected?
The above example is an illustration of the null addition operation. If we repre-

sent each item as a column vector, then the null addition operation is equivalent to
padding the pair of column vectors with more 0 bits.

Property P4:
An objective measure M is null-invariant if it is not affected by increasing
f00, while all other parameters are the same.

4.7.1 Objective Measures of Interestingness 214

1
0
0
0
0
0
0
0
0
1

0
0
0
0
1
0
0
0
0
0

0
1
1
1
1
1
1
1
1
0

1
1
1
1
0
1
1
1
1
1

A B C D

(a) (b)

0
1
1
1
1
1
1
1
1
0

0
0
0
0
1
0
0
0
0
0

(c)

E F

Figure 4.21. Effect of the inversion operation. The vectors C and E are inversions of vector A, while the

vector D is an inversion of vectors B and F .

For applications such as document analysis or market-basket analysis, we would
expect the chosen measure to remain invariant under such operation. Otherwise,
the relationship between the words data and mining could become independent by
simply adding enough documents that do not contain both words! However, the
only null invariant measures listed in Table 4.11 are confidence, cosine (IS) and
Jaccard (ξ) measures. In general, the property P4 is useful for sparse transaction
data sets, where there are considerably more 0’s than 1’s in the data set. As a
result, co-presence of items together in the same transaction is more interesting
than co-absence.

Effect of Row and Column Scaling. We now examine another property of an ob-
jective measure that is more suitable for symmetric binary data sets. Suppose we
are interested in analyzing the performance of students on the basis of their gen-
der. Table 4.16 illustrates the relationship between gender and grade of students
for a particular Computer Science course in the years 1993 and 2003. In this toy
example, notice that the data for 2003 is obtained by doubling the number of male
students for 1993 and increasing the number of female students by a factor of 3.
The male students in 2003 are not performing any better than those in 1993 since
the proportion of male students who achieve a high grade to low grade is still the
same, i.e., 3:4. Similarly, the female students in 2003 are performing no better than
those in 1993. Thus, we expect the relationship between grade and gender to remain
the same for both years given the frequency distribution shown in both tables. Any
intuitive objective measure should consider the association in both tables as being
equal, even though the sample sizes are different.
This property can be summarized by examining the behavior of an objective

measure after re-scaling the rows or columns of a contingency table.

4.7.1 Objective Measures of Interestingness 215

Table 4.16. The Grade-Gender example.
Male Female Male Female

High 30 20 50 High 60 60 120

Low 40 10 50 Low 80 30 110

70 30 100 140 90 230

(a) Sample data from 1993. (b) Sample data from 2003.

Property P5:
An objective measure M is invariant under the row/column scaling operation
if M(T) =M(T ′), where T is a contingency table with frequency counts [f11;
f10; f01; f00], T

′ is a contingency table with scaled frequency counts [k1k3f11;
k2k3f10; k1k4f01; k2k4f00], and k1, k2, k3, k4 are positive constants.

From Table 4.15, only odds ratio (α) as well as Yule’s Q and Y coefficients are
invariant under the row and column scaling operations. All other symmetric binary
measures such as the φ-coefficient, κ, Gini index (G), mutual information (M) and
collective strength (S) would change when the rows or columns of the contingency
table are re-scaled by constant factors.

Summary

From the five properties listed in Table 4.15, we can identify several groups of
measures that have identical properties, as shown in Figure 4.22. Some of these
groupings are quite natural (e.g., odds ratio with Yule’s measures or Jaccard with
cosine measure), while others are quite unexpected, e.g., the group of support and
Laplace measure. In the latter case, the measures are grouped together because the
properties shown in Table 4.15 are not comprehensive enough to distinguish these
measures. There may be some additional properties we can add to this list (e.g.,
monotonicity, statistical independence, etc.) to discriminate some of these measures.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

PS

Col Strength

Correlation

CF

Mutual Info

Kappa

Gini

Lambda

Odds ratio

Yule Y

Yule Q

J−measure

Laplace

Support

Confidence

Conviction

Interest

Klosgen

Reliability

Jaccard

IS

Figure 4.22. Similarity between measures in terms of the five properties listed in Table 4.15.

4.7.1 Objective Measures of Interestingness 216

For association rules, we expect the objective measure to be asymmetric binary
(i.e., violates property P3), satisfies the properties for P1, P2, and P4, has a fixed
(perhaps, minimum) value for statistical independence, as well as the ability to
capture the notion of predictive accuracy. Even though the cosine and Jaccard
measures possess most of these desirable properties, they do not capture the notions
of statistical independence and predictive accuracy well. We do not expect any
measure to capture all this criteria because some of the properties may be conflicting.
For example, it is difficult to reconcile the requirements of having a fixed value for
statistical independence while being an asymmetric binary measure. Instead, one
may apply multiple measures to ensure that most of the requirements are satisfied.
In practice, support and confidence are still reasonable measures as long as they
are complemented by other measures such as the φ-coefficient, interest factor (I),
collective strength, conviction, or odds ratio to eliminate statistically independent
patterns.

Effect of Support-based Pruning

Support-based pruning is often used as a pre-filter prior to the application of other
objective measures such as confidence, φ-coefficient, interest factor, etc. Because of
its anti-monotone property, support allows us to effectively prune the exponential
number of candidate patterns. Beyond this, little else is known about the advantages
of applying this strategy. The purpose of this section is to discuss two additional
effects it has on the rest of the objective measures.

Elimination of Poorly-Correlated Patterns First, we will analyze the quality of pat-
terns eliminated by support-based pruning. Ideally, we prefer to eliminate only
patterns that are poorly correlated. Otherwise, we may end up missing too many
interesting patterns.
To study this effect, we have created a synthetic data set that contains 100,000

2 × 2 contingency tables. Each table contains randomly populated fij values sub-
jected to the constraint

∑
i,j fij = 1. The support and φ-coefficient for each table

can be computed using the formula shown in Table 4.11. By examining the distribu-
tion of φ-coefficient values, we can determine whether there are any highly correlated
patterns inadvertently removed as a result of support-based pruning. The result of
this experiment is shown in Figure 4.23.
For the entire data set of 100,000 tables, the φ-coefficients are normally dis-

tributed around φ = 0, as depicted in the upper left-hand corner of both graphs.
The remaining figures show the results of applying three different minimum sup-
port thresholds (1%, 3%, and 5%) to eliminate low-support tables. Observe that
by applying a minimum support threshold, we will eliminate mostly contingency
tables that are either uncorrelated (φ = 0) or negatively correlated (φ < 0). This
observation is quite intuitive because, for a contingency table with low support, at
least one of the values for f10, f01 or f00 must be relatively high to compensate for
the low frequency count in f11. Such tables tend to be uncorrelated or negatively
correlated unless their f00 values are extremely high.

4.7.1 Objective Measures of Interestingness 217

−1 −0.5 0 0.5 1
0

2000

4000

6000

8000

10000
All contingency tables

C
ou

nt

φ
−1 −0.5 0 0.5 1

0

500

1000

1500

2000
Tables with support < 0.01

C
ou

nt

φ

−1 −0.5 0 0.5 1
0

500

1000

1500

2000
Tables with support < 0.03

C
ou

nt

φ
−1 −0.5 0 0.5 1

0

500

1000

1500

2000
Tables with support < 0.05

C
ou

nt

φ

Figure 4.23. Effect of Support Pruning on Contingency tables.

Support-based pruning is a viable technique as long as only positively correlated
tables are of interest to the data mining application. One such situation arises in
market basket analysis where such a pruning strategy is used extensively.

Consistency of Measures under Different Support Constraints Support-based prun-
ing also affects the issue of consistency among objective measures. To illustrate this,
consider the diagram shown in Figure 4.24. This figure is obtained by generating a
synthetic data set similar to the previous section except that the contingency tables
are non-negatively correlated. Convex measures such as mutual information, Gini
index, J-measure, and λ assign positive values to their negatively-correlated tables.
Thus, they tend to prefer negatively correlated tables over uncorrelated ones, unlike
measures such as φ-coefficient, Yule’s Q and Y , PS, etc. To avoid such complica-
tion, our synthetic data set for this experiment is restricted only to uncorrelated
and positively correlated tables.
We can determine the consistency between every pair of measures by computing

the correlation between their ranking vectors. Figure 4.24 depicts the pair-wise
correlation when various support bounds are imposed. The darker cells indicate
that the correlation between the pair of measures is approximately greater than 0.8.
For this analysis, we apply two kinds of support-based pruning strategies. The

first strategy is to impose a minimum support threshold on the value of f11. This
approach is identical to the support-based pruning strategy employed by most of
the association analysis algorithms. The second strategy is to impose a maximum
support threshold on both f1+ and f+1. This strategy is equivalent to removing the

4.7.1 Objective Measures of Interestingness 218

All Pairs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

CF
Conviction

Yule Y
Odds ratio
Yule Q

Mutual Info
Correlation
Kappa

Col Strength
Gini

J−measure
PS

Klosgen
Interest

Added Value
Confidence

Laplace
Jaccard

IS
Lambda
Support 0

0.2

0.4

0.6

0.8

1
0.000 <= support <= 0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

CF
Conviction

Yule Y
Odds ratio
Yule Q

Mutual Info
Correlation
Kappa

Col Strength
Gini

J−measure
PS

Klosgen
Interest

Added Value
Confidence

Laplace
Jaccard

IS
Lambda
Support 0

0.2

0.4

0.6

0.8

1

0.050 <= support <= 1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

CF
Conviction

Yule Y
Odds ratio
Yule Q

Mutual Info
Correlation
Kappa

Col Strength
Gini

J−measure
PS

Klosgen
Interest

Added Value
Confidence

Laplace
Jaccard

IS
Lambda
Support 0

0.2

0.4

0.6

0.8

1
0.050 <= support <= 0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

CF
Conviction

Yule Y
Odds ratio
Yule Q

Mutual Info
Correlation
Kappa

Col Strength
Gini

J−measure
PS

Klosgen
Interest

Added Value
Confidence

Laplace
Jaccard

IS
Lambda
Support 0

0.2

0.4

0.6

0.8

1

Figure 4.24. Similarity between measures at various ranges of support values. Note that the column labels

are the same as the row labels.

4.7.2 Subjective Measures of Interestingness 219

most frequent items from a data set (e.g., staple products such as sugar, bread, and
milk).
Initially, without support pruning (the upper left diagram), notice that most of

the highly correlated measures agree with the groupings identified in Figure 4.22.
If we start applying a maximum support threshold to the contingency tables, as
shown by the upper right-hand diagram, the region of dark cells begins to grow,
indicating that more measures are becoming highly correlated with each other. In
the case of no support pruning, nearly 40% of the pairs have correlation above
0.85. With maximum support pruning, this percentage increases to more than
68%. For example, interest factor, which is quite inconsistent with almost all other
measures except for added value, have become more consistent when high-support
items are removed. This observation can be explained as an artifact of interest factor.
Consider the contingency tables shown in Table 4.17, where A and B correspond to a
pair of uncorrelated items, while C andD correspond to a pair of perfectly correlated
items. However, because the support for item C is very high, I(C,D) = 1.0112,
which is close to the value for statistical independence. By eliminating the high
support items, we may resolve this type of inconsistency between interest factor and
other objective measures.

Table 4.17. Effect of high-support items on interest factor.
B B D D

A 100 200 300 C 890 0 890

A 200 400 600 C 0 10 10

300 600 900 890 10 900

(a) I(A,B) = 1, (b) I(C,D) = 1.012,

φ(A,B) = 0. φ(C,D) = 1.

The bottom left diagram seems to suggest that there is very little improvement
in the consistency among measures when the minimum support threshold is applied.
Nevertheless, when used along with a maximum support threshold, the correlations
among measures do show some slight improvements compared to applying the maxi-
mum support threshold alone — in fact, more than 71% of the pairs have correlation
above 0.85. This analysis suggests that imposing a tighter bound on the support of
association patterns may force many measures become highly correlated with each
other.

4.7.2 Subjective Measures of Interestingness

Proponents of subjective measures have argued that objective measures alone may
not be sufficient to capture all the intricacies of the knowledge discovery process. For
example, a rule that agrees with the prior knowledge or expectation of the domain
analysts is often considered to be uninteresting. A case in point is the association
rule bread −→ milk, which may have high support and high confidence, yet it is

4.7.2 Subjective Measures of Interestingness 220

+Pattern expected to be frequent

- Pattern expected to be infrequent

Pattern found to be frequent

Pattern found to be infrequent

+
-

Expected Patterns-
+ Unexpected Patterns

Figure 4.25. Unexpected subjective measure

quite obvious and not too useful for analysts.
In general, a pattern is considered to be subjectively interesting if it contradicts

with the expectation of the analyst or is potentially actionable. Subjectively in-
teresting patterns can appear in three different forms, (1) patterns that are both
unexpected and actionable, (2) patterns that are unexpected but not actionable, and
(3) patterns that are expected but actionable. Many data analysts are interested in
finding rules which they can act on for their own benefits. Even though actionability
is a key measure, in practice, it is often difficult to capture this concept formally.
Nevertheless, in most cases, the unexpectedness of a pattern may provide a good
indication of actionability because most of the unexpected patterns are actionable.
The unexpectedness of a rule can be modeled by defining the belief set of the

problem domain. A belief set can be classified into two categories :

1. Hard beliefs, which are beliefs that can never be changed despite contradic-
tory evidence.

2. Soft beliefs, which are beliefs that a user is willing to compromise if com-
pelling new evidence are found.

Interesting rules for hard beliefs are defined to be rules that contradict the hard
beliefs. For soft beliefs, one can define the interestingness measure in terms of
how much the existing belief changed as a result of the observed pattern. There
are several ways to model the soft beliefs using techniques from Bayesian statis-
tics, Dempster-Shafer theory, frequentist approach, Cyc’s approach and hypothesis
testing methods. However, this approach assumes that the initial belief set of the
domain expert encompasses the entire universe of discourse. This assumption can
be relaxed to include rules that are previously unknown to the users. These are also
known as unexpected condition rules.
The unexpected aspect of a subjective measure is illustrated by the Venn diagram

in Figure 4.25. Each element in the Venn diagram represents a logical proposition.

4.8 Generalization of Association Analysis 221

H is the set of initial beliefs about the domain while E is the set of evidence obtained
from the discovered patterns. Each proposition can have a truth value of TRUE
(represented in the diagram by a positive or rectangle symbol) or FALSE (repre-
sented by a negative or circle symbol). The notion of unexpectedness can be defined
in terms of patterns that contradict prior beliefs or patterns that are previously
unknown to the users. The contradictory and novel patterns are illustrated by the
shaded region in Figure 4.25.

4.8 Generalization of Association Analysis

In this section, we describe several extensions to the original association rule mining
formulation. While some of these extensions are motivated by the need to reduce
the number of extracted patterns, others are motivated by the need to describe
new types of relationships, such as negative associations, sequential associations, as
well as the more complex relationships in graph structures. We will describe these
extensions in the remainder of this section.

4.8.1 Maximal and Closed Frequent Itemsets

Frequent itemset generation algorithms such as Apriori and FP-tree tend to produce
a large number of patterns. Some of these patterns are simply subsets of larger
frequent itemsets, while others can be redundant because they have identical support
as their supersets. It would be advantageous to eliminate some of these subset
patterns, especially those that are redundant, before performing further analysis.
Maximal and closed frequent itemsets are some of the concepts introduced to

identify a minimal representative set of patterns from which all other frequent item-
sets can be derived. To motivate the idea behind these concepts, consider the
database shown in Table 4.18, which contains 10 transactions and 30 items. The
items can be divided into three groups, (1) Group A, which contains the ten items
A1 through A10, (2) Group B, which contains the ten items B1 through B10, and
(3) Group C, which contains the ten items C1 through C10. The data is also con-
structed in such a way that items within each group are perfectly associated with
each other, but they do not appear with items from another group.
By applying a minimum support threshold of less than 30%, all subsets of items

within each group will become frequent. Since the longest frequent itemset one can
construct from each group is of size 10, there are altogether 3 ×∑10

k=1

(
10
k

)
= 3069

frequent itemsets. In addition, given the the way the data is constructed, all frequent
itemsets from the same group have identical support counts. For example, the
support for the frequent itemsets {A1, A2}, {A2, A3}, and {A4, A5,A8, A9, A10} are
identical to the support for their longest superset, {A1, A2, · · · , A10}. The support
for all frequent itemsets from group B are also identical to each other, and likewise
for itemsets from group C.
In this example, the three longest frequent itemset, {A1, A2, · · · , A10}, {B1, B2, · · · , B10},

and {C1, C2, · · · , C10}, may serve as the representative set of patterns from which

4.8.1 Maximal and Closed Frequent Itemsets 222

Table 4.18. A transaction database for mining closed itemsets.

TID A1 A2 · · · A10 B1 B2 · · · B10 C1 C2 · · · C10

1 1 1 · · · 1 0 0 · · · 0 0 0 · · · 0

2 1 1 · · · 1 0 0 · · · 0 0 0 · · · 0

3 1 1 · · · 1 0 0 · · · 0 0 0 · · · 0

4 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0

5 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0

6 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0

7 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1

8 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1

9 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1

10 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1

all other frequent itemsets can be inferred. It may be sufficient to retain only these
three patterns, rather than the entire 3069 frequent itemsets, when presenting them
to the analysts.

Maximal Frequent Itemsets

Definition 5 A maximal frequent itemset is defined as a frequent itemset for which
none of its immediate supersets are frequent.

To illustrate this concept, consider the itemset lattice shown in Figure 4.26. The
itemsets can be separated into two groups, those that are frequent against those that
are infrequent. Every node located above the frequent itemset border, illustrated
by the dash line, represents a frequent itemset while nodes located below the border
(the shaded nodes) represents an infrequent itemset. Among the frequent itemsets
located near the border, only {A,D}, {A,C,E}, and {B,C,D,E} are considered as
maximal frequent itemsets because all of their immediate supersets are infrequent,
i.e., they reside on the other side of the border. In contrast, a node such as {A,C},
which also resides along the frequent itemset border, is non-maximal because one of
its immediate supersets, {A,C,E}, is frequent.
Maximal frequent itemsets can be used to enumerate all frequent itemsets in

the data. The reason being that each non-maximal frequent itemset is a subset
of at least one maximal frequent itemset. Another advantage of maximal frequent
itemsets is that they can be discovered much more rapidly compared to traditional
frequent itemsets. For example, one may apply an algorithm that traverses the
itemset lattice in a depth-first manner until a maximal frequent itemset is found.
Instead of backtracking to the root, the algorithm can then jump to the next branch
of the lattice that has not been explored before, and perform a depth-first search to
identify the next maximal frequent itemset.

Closed Frequent Itemsets

Although maximal frequent itemsets provide a minimal representation for all fre-
quent itemsets, they do not contain the support information for their subsets. For

4.8.1 Maximal and Closed Frequent Itemsets 223

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Frequent
Itemset
Border

Frequent

Infrequent

Maximal Frequent Itemset

Figure 4.26. Maximal frequent itemset.

example, suppose {A,C,E} is found to be a maximal frequent itemset. With this
information, we can only deduce that {A,E} is also a frequent itemset based on the
anti-monotone property of the support measure. There is no way for us to know the
exact support count for {A,E} unless we scan the transaction database. Thus, al-
though the maximal frequent itemsets allow us to identify the entire set of frequent
itemsets, an additional database scan is needed to determine the actual support
counts of the non-maximal frequent itemsets.
The notion of closed itemsets can be used to alleviate this problem. A formal

definition of closed itemset is presented below.

Definition 6 An itemset X is a closed itemset if there exists no itemset X ′ such
that (1) X ′ is a superset of X, and (2) all the transactions that contain X also
contain X ′.

In other words, a closed itemset is an itemset for which all of its supersets must have
smaller support counts than itself. Furthermore, a closed itemset that has support
greater than or equal to minsup is known as a frequent closed itemset.
A detailed example of closed itemsets is presented in Figure 4.27. Given the

transactions shown in this figure, we can associate each node (itemset) in the lattice
with a list of transaction ids. For example, the node {B,C} is associated with
transaction ids 1, 2, and 3. To determine whether {B,C} is a closed itemset, we
need to examine the support of its immediate supersets, {A,B,C}, }B,C,D}, and
{B,C,E}. Since none of these itemsets have the same support count as {B,C}, it is a
closed itemset. Assuming that the minimum support threshold is 40%, {B,C} is also
considered to be a frequent closed itemset because it has a 60% support. Conversely,

4.8.1 Maximal and Closed Frequent Itemsets 224

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

1,2,4 1,2,3 1,2,3,4 2,4,5 3,4,5

1,2 1,2,4 2,4 4 1,2,3 2 3 2,4 3,4 4,5

1,2 2 2,4 4 4 2 3 4

2 4

TID Items

1 ABC

2 ABCD

3 BCE

4 ACDE

5 DE

Closed Frequent Itemset

minsup = 40%

Figure 4.27. An illustrative example of frequent closed itemsets (with minimum support count equals to 2).

{A,B} is not closed because it has the same support as one of its superset, {A,B,C}.
All frequent closed itemsets in this diagram are represented by shaded nodes.
Finally, it is important to note that all maximal frequent itemsets are subsets

of frequent closed itemsets. The relationships between frequent, maximal frequent,
and closed frequent itemsets are shown in Figure 4.28.

Frequent
Itemsets

Closed
Frequent
Itemsets

Maximal
Frequent
Itemsets

Figure 4.28. Relationships among frequent itemsets, maximal frequent itemsets, and closed frequent item-

sets.

**** Not sure where to put this ****

Note that the notion of redundant patterns presented in this section is slightly
different than the notion of redundant patterns described in Sections 4.4 and 4.5.

4.8.2 Infrequent Patterns 225

For those sections, a long pattern is considered to be redundant if there exists a
shorter pattern that has similar support and confidence. For maximal and closed
frequent itemsets, specific patterns are preferred over more general patterns because
they can be used to derive all other subset patterns.

4.8.2 Infrequent Patterns

The entire premise of association analysis is based on the assumption that presence
of items together in the same transaction is more interesting than their absence. As a
result, patterns involving items that are rarely present together are often considered
to be uninteresting and can be eliminated using the support measure. For example,
{caviar, DVD} is an itemset involving a pair of unrelated items that are rarely
purchased together in the same transaction. Such patterns are known as infrequent
patterns.

Definition 7 An infrequent pattern is an itemset or rule whose support is less than
minsup.

There are situations in which some of the infrequent patterns may be interesting.
From a statistical perspective, infrequent patterns may be indicative of negative
correlations, which are interesting relationships in their own right. For example, the
lack of support for the sale of DVD and VCR together is primarily because these two
items are negatively correlated with each other, i.e., any transaction that contains
DVD will most likely not contain VCR, and vice-versa. Finding such patterns may
allow us to discover competitive items, i.e., items that can be substituted for one
another, such as DVD versus VCR, desktop versus laptop computers, and tea versus
coffee.
From a subjective perspective, some infrequent patterns may signify the presence

of interesting rare events or exceptions from the normal behavior of the population.
For example, although the rule Fire=Yes −→ Alarm=Off may be infrequent, it is
an interesting pattern because it may suggest a faulty alarm system. The trouble is,
most transaction databases can produce an enormous number of infrequent patterns,
many of which are not interesting. We shall describe the different ideas proposed
for identifying interesting infrequent patterns in the remainder of this section.

Negative Patterns

Let I = {i1, i2, · · · , id} be a set of items. For each item ik, we can define a nega-
tive item, ik, to denote the absence of ik from a given transaction. For example,
coffee is a negative item whose value is 1 for each transaction that does not contain
coffee. Based on this, we can define the concept of negative itemsets and negative
association rules in the following way.

Definition 8 A negative itemset X is defined as an itemset that satisfies the fol-
lowing properties: (1) X = A ∪ B, where A is a set of positive items, B is a set of
negative items, |B| ≥ 1, and (2) s(X) ≥ minsup.

4.8.2 Infrequent Patterns 226

Definition 9 A negative association rule is an association rule extracted from the
itemset A ∪ B and satisfies the following properties: (1) the support of the rule is
greater than or equal to minsup and (2) the confidence of the rule is greater than
or equal to minconf .

We will refer to the negative itemsets and negative association rules as negative
patterns in the remainder of this section. An example of a negative association rule
is tea −→ coffee, which suggests that people who drink tea tend to not drink
coffee.

Negatively-Correlated Patterns

The definition of a negative pattern presented so far in this section does not guar-
antee that the relationship found is negatively correlated.

Definition 10 An itemset X = {x1, x2, · · ·xk} is a negatively-correlated pattern if
the following condition holds: P ({x1, x2, · · · , xk}) <

∏k
j=1 P (xj), where P (·) is the

probability that a transaction contains the given set of items.

Recall that the right hand side expression corresponds to the probability that a group
of items being statistically independent of each other. In practice, these probabilities
can be estimated by the support of the corresponding items or itemsets:

P (X) ≈ s(X), and P (xi) ≈ s({xi})

Thus, the condition for a negative-correlated pattern can be interpreted in the
following way. If the support of an itemset is less than the support predicted ac-
cording to the statistical independence assumption, then the itemset is negatively
correlated. For example, given a pair of items, x and y, the condition for negative
correlation is

σ(x, y)

N
<
σ(x)

N
× σ(y)

N
,

where N is the total number of transactions. We can also express this condition in
terms of the support counts for positive and negative items of A and B.

σ(A,B)× σ(A,B) < σ(A,B)× σ(A,B).

The proof for this is left as an exercise.

Relationship between Infrequent Patterns, Negative Patterns and Negatively-
Correlated Patterns.

So far, we have defined three closely related concepts, namely, infrequent patterns,
negative patterns, and negatively-correlated patterns. The relationships among
these concepts are illustrated in Figure 4.29.
First, note that most of the infrequent patterns are negative patterns. This is

because if s(A,B) is low, then one of s(A,B), s(A,B), or s(A,B) must be high,

4.8.2 Infrequent Patterns 227

Infrequent Patterns

Frequent Patterns

Negatively
Correlated
Patterns

Negative
Patterns

Figure 4.29. Relationships among infrequent patterns, negative patterns, and negatively correlated patterns.

indicating the presence of a negative pattern. Nevertheless, not all negative patterns
are infrequent patterns, and vice-versa. This is because even if the support of a
negative pattern such as {A,B} is higher than minsup, there is no guarantee that
the support of the positive itemset {A,B} will be less than minsup. Similarly, if
minsup is set too high, it is possible that none of {A,B}, {A,B}, {A,B}, and
{A,B} will be able to pass the minimum support threshold. In general, negative
patterns whose positive counterparts are frequent tend to be uninteresting because
the minsup could have been chosen to be too small such that any combination of
positive and negative items would have easily pass the minsup threshold. Thus,
most analysts are interested in a negative pattern X = A ∪ B with the following
additional restriction, s(A ∪B) < minsup.
Second, note that most of the negatively-correlated patterns are also negative

patterns. This is because a negatively-correlated pattern tends to have larger prod-
uct of σ(A,B)× σ(A) compared to σ(A,B)× σ(A,B). This type of situation may
arise when (1) {A,B} or {A,B} is relatively large, (2) {A,B} or {A,B} is mod-
erately large but {A,B} is very small, or (3) {A,B} or {A,B} is moderately large
but {A,B} is very small. The first two cases suggest that a corresponding negative
pattern should exist for the negatively-correlated pattern. The third case refers to
the situation when both A and B appear very frequently in the data set, but their
joint support is much lower than their expected support, a situation that is less
likely to happen compared to the first two cases.
In general, infrequent patterns that are most interesting correspond to negative

patterns that are negatively correlated and whose positive counterparts are frequent.
We will use the term negative association pattern when referring to such patterns.

Definition 11 A negative association pattern corresponds to an itemset or rule
involving a set of positive and negative items, X = A∪B, such that: (1) s(A,B) ≤
minsup but s(A,B) ≥ minsup, and (3) A and B are negatively correlated.

Negative association patterns are depicted by the region with crossed lines in Figure
4.29.

4.8.2 Infrequent Patterns 228

.

{B,D}5

{B,C}4

{C}3

{A,B,C}2

{A,B}1

ItemsTID

{B,D}5

{B,C}4

{C}3

{A,B,C}2

{A,B}1

ItemsTID

Original Transactions Transactions with Negative Items

1

1

0

1

1

0

0

1

0

0

0110105

1001104

1001103

1001012

1010011

TID

1

1

0

1

1

0

0

1

0

0

0110105

1001104

1001103

1001012

1010011

TID AA B C DB C D

Figure 4.30. Augmenting data set with negative items.

Techniques for Mining Negative Patterns

For negative patterns, since both positive and negative items are equally impor-
tant, each item should be treated as a symmetric, rather than asymmetric, binary
variable. Using the approach described earlier in Section 4.4, we can augment the
original transactions with new variables that denote the negative items. Figure 4.30
illustrates an example of transforming an original set of transactions into trans-
actions having negative items. By performing such transformation, we can apply
existing algorithms such as Apriori to the new data set.
Such an approach would work well if the data set contains only a few symmetric

binary variables. However, if all the items must be treated as symmetric binary, the
problem becomes computationally intractable due to the following reasons.

1. The number of items would doubled when negative items are augmented to
the data set. Instead of exploring an itemset lattice of size 2d, where d is
the number of items in the original data set, the lattice has grown to 22d. In
addition, if most of the positive items have support less than 50%, then most of
the negative items would have support higher than their positive counterparts.
This will increase the number of negative patterns substantially.

2. The width of each transaction increases to the total number of (positive) items
in the data set. Suppose there are d items available in the original data set.
For sparse data sets such as market-basket transactions, the width of each
transaction tends to be much smaller than d. As a result, the maximum size
of a frequent itemset, which is bounded by the maximum transaction width,
wmax, tends to be relatively small. When negative items are included, the
width of the transactions increases to d because an item is either present in the
transaction or absent from the transaction, but not both. Since the maximum
transaction width has grown from wmax to d, this will increase the number of
frequent itemsets exponentially. As a result, many existing algorithms tend to
break down when applied to the extended data set.

4.8.2 Infrequent Patterns 229

The previous approach is computationally expensive because we need to deter-
mine the support of a large number of positive and negative patterns. An alternative
approach is to compute only the support of the positive items. From these support
counts, we can determine the support of any mixed combinations of positive and
negative items. For example, the support for {x, y, z} can be computed as follows.

s({x, y, z}) = s({x})− s({x, y})− s({x, z}) + s({x, y, z})

The general formula for computing the support of any mixed itemset A∪B is given
by:

s(A ∪B) = s(A) +
n∑

i=1

∑

C⊂B,|C|=i

{
(−1)i × s(A ∪ C)

}
(4.11)

In order to use Equation 4.11, we need to know the support for A together with
all the subsets of B. Thus, the minimum support threshold must be low enough to
allow the support for A ∪ B to be computed. Since A and B may involve any sets
of items, one could end up enumerating the support of the entire positive itemset
lattice, which itself is an exponentially expensive task. Another way would be to
simply ignore the support of B and subsets of B if they fall below the minsup
threshold when using Equation 4.11.
There are several alternative suggestions to improve the performance of algo-

rithms for mining negative patterns. The first approach is to restrict the number of
negative items considered as interesting. For example, a negative item x is consid-
ered to be uninteresting unless x itself is a frequent item. This strategy reduces the
number of negative items to be augmented into the data set. A second approach is
to restrict the type of negative patterns extracted. For example, all negative pat-
terns that contain no positive items can be eliminated because they are not that
interesting. However, one may not be able to prune them right away during pattern
generation because one may lose the anti-monotone property of support. A third
approach is to incorporate correlation-like measures such as χ2, interest factor (I)
or the φ-coefficient directly into the mining process, but unfortunately, almost all
such measures do not possess an anti-monotone property like support.

**** may not be needed *****

For example, although the χ2 measure has been shown to be monotone (or
upward closed), it is not useful for pruning purposes in a bottom-up level-wise
algorithm. In addition, the statistical χ2 test itself is non-monotone, i.e., if an
itemset {A,B} passes the statistical χ2 test, there is no guarantee that its superset
will pass the same test, even though the χ2({A,B,C}) ≥ χ2({A,B}). This is
because the χ2 test depends on the χ2 value as well as the total number of degrees
of freedom. For an itemset of size k, the number of degrees of freedom is 2k− k− 1.
A larger itemset will have a higher degrees of freedom, which in turn, increases the
threshold needed for passing the χ2 test. Thus, although the χ2 value for {A,B,C}
is larger, this does not mean that it will pass the χ2 test.

4.8.2 Infrequent Patterns 230

In short, mining negative patterns is a challenging problem especially for sparse
transaction data. The existing techniques for mining negative patterns are either too
expensive, produce too many uninteresting patterns, or uses approximate techniques
to reduce its computational complexity.

Application of Concept Hierarchy

Using objective measures alone to eliminate uninteresting infrequent patterns may
not be sufficient. For example, suppose bread and laptop computer are frequent
items. Although {bread, laptop computer} is infrequent and perhaps negatively
correlated, they are not interesting because their negative association is not surpris-
ing at all. This example suggests that a subjective way for identifying interesting
negative patterns is needed.
In the previous example, bread and laptop computer belongs to two totally

different product groups, which is why it is not surprising to find their support
to be low. It would be advantageous to use such domain information to further
eliminate uninteresting infrequent patterns. For market-basket data, the domain
knowledge can be inferred from an item taxonomy, such as the one shown in Figure
11. The basic assumption is that items from the same product family are expected
to have similar types of interaction with other items. For example, since Coke and
Pepsi belong to the same product category, we expect the association between Coke
and chips to be somewhat similar to the association between Pepsi and chips. If
the actual support for any one of this two pairs is less than their expected support,
then the infrequent pattern is interesting.
To illustrate how to compute the expected support, consider the diagram shown

in Figure 4.31. Suppose the itemset {C,G} is frequent. We can compute the ex-
pected support for any children or siblings of C and G using the formula shown
below.

E(s(E, J)) = s(C,G)× s(E)

s(C)
× s(J)

s(G)
(4.12)

E(s(C, J)) = s(C,G)× s(J)

s(G)
(4.13)

E(s(C,H)) = s(C,G)× s(H)

s(G)
(4.14)

For example, if soft drink and chips are frequent, then we can compute the
expected support between Pepsi and Ruffles using equation 4.12 since they are
children of soft drink and chips. If the actual support for Pepsi and Ruffles

is considerably less than their expected value, then Pepsi and Ruffles form an
interesting negative pattern.

Indirect Associations

*** This section is being modified ****

4.8.2 Infrequent Patterns 231

A

B
C

D E

F

G H

J K

Figure 4.31. Mining interesting negative patterns using a concept hierarchy.

a b

y1

y2
.
.
.

yk

Y

Figure 4.32. Indirect association between a pair of items.

Association rule mining would discover rules involving items that occur fre-
quently together in the transaction database. Any itemsets that fail the support
threshold criteria will be automatically removed. This action is justifiable since we
are only interested in finding items that are directly associated with each other.
However, under certain situations, it is possible that some of the lowly-supported
itemsets can be interesting due to the presence of higher-order dependencies1 among
the items. Consider a pair of items, (a, b), having a low joint support value (Fig-
ure 4.32). Let Y be a set that contains items that are highly dependent on both a
and b. This figure illustrates an indirect association between a and b via a mediator
set, Y . Unlike direct association, an indirect relationship is characterized not only
by the two participants, a and b, but also by the items mediating this interaction.
One can think of many potential applications for indirect association. In the

market basket scenario, a and b may represent competing products. Analysts may

1direct association between items are considered to be first-order dependencies.

4.8.2 Infrequent Patterns 232

be interested in finding what are the common products (Y) bought together by
customers who purchased the two competing products. With this information, they
can then performed an in-depth analysis on why customers prefer one brand over
the other based on the strength of dependencies between Y with a and b. Another
potential application for indirect association is in textual data mining. For text
documents, indirectly associated words may represent synonyms and antonyms or
terms that appear in different contexts of another word. For example, in a collection
of news articles, the words growth and decline may be indirectly associated via the
word economy. Another example is the pair soviet and worker may refer to the
different contexts in which the word union is being used. For stock market data, a
and b may refer to disjoint events that will partition event Y . For example, the event
Y =Microsoft−Up can be partitioned into a = Redhat−Down and b = Intel−Up
where a denotes the event where the competitor’s stock value is down whereas b may
represent the event in which most of the technology stocks for large corporations
are up.

[180] proposed a general framework for defining indirect association in various
application domains. Their formal definition of indirect association is :

Definition 12 The pair a, b is indirectly associated via a mediator Y if the following
conditions hold :

1. σ(a, b) < ts (Itempair Support condition).

2. ∃Y 6= ∅ such that ∀yi ∈ Y :

(a) sup(a, yi) ≥ tf , sup(b, yi) ≥ tf (Mediator Support condition).

(b) d(a, yi) ≥ td, d(b, yi) ≥ td where d(p, q) is a measure of the dependence
between p and q (Dependence condition).

In order to discover indirectly associated items, one must address the following
questions :

1. What is a good measure of dependence between items?

2. What constitutes the elements of the mediator?

3. How to define the overall indirect association measure between a and b?

The first question is related to the issue of finding good interestingness measures
for itemsets (or association rules) which was described in Section 4.7. The second
question deals with the problem of defining mediating elements either as single
items, single itemsets or multiple itemsets. The last question allows one to rank the
discovered itempairs according to the strength of their indirect association. [180]
described several ways to tackle these issues and presented a simple algorithm for
mining indirect itempairs.

4.8.3 Frequent Subgraphs 233

4.8.3 Frequent Subgraphs

(This section is being modified)

As the field of association rule mining continues to mature, there is an increasing
need to apply similar techniques to other disciplines, such as Web Mining, bioinfor-
matics, and computational chemistry. The data for these domains is often available
in a graph-based format, as described in Chapter 2. For example, in the Web Mining
domain, the vertices would correspond to Web pages and the the edges would cor-
respond to hyperlinks traversed by the Web users. In the computational chemistry
domain, the vertices would correspond to the atoms or ions while the edges would
correspond to their chemical bonds. Mining associations from these kinds of data is
more challenging due to the following reasons:

1. Support and confidence thresholds are not the only requirements the patterns
must satisfy. The structure of the data may restrict the type of patterns that
can be generated by the mining algorithm. Specifically, additional constraints
can be imposed regarding the connectivity of the subgraph, i.e., the frequent
subgraphs must be connected graphs.

2. In the standard market-basket analysis, each entity (item or discretized at-
tribute) is treated as a binary variable. (Although the quantity of an item
bought in a transaction can be larger than one, it is often recorded as 1 in
the record-based format.) For graph-based data, an entity (vertex, event, or
item) can appear more than once within the same data object. These entities
cannot be combined into a single entity without losing the structure infor-
mation. The multiplicity of these entities poses additional challenges to the
mining problem.

As a result, the standard Apriori or FP-tree algorithms must be modified in
order to mine frequent substructures efficiently from a collection of tree or graph
objects. In this section, we would briefly describe what are the modifications needed
and how they can be implemented effectively.

Problem Formulation

Let V = {v1, v2, · · · , vk} be the set of vertices and E = {eij = (vi, vj)|∀vi, vj ∈ V } be
the set of edges connecting pairs of vertices. Each vertex v is associated with a vertex
label denoted as l(v). We will use the notation L(V) = {l(v)|∀v ∈ V } to represent
the set of all vertex labels in the data set. Similarly, each edge e is associated with
an edge label denoted as l(e). We will use the notation L(E) = {l(e)|∀e ∈ E} to
represent the set of all edge labels in the data set.
A labeled graph G is defined as a collection of vertices and edges with labels at-

tached to each of them, i.e., G = (V,E,L(V), L(E)). A graphG′ = (V ′, E′, L(V ′), L(E′))

4.8.3 Frequent Subgraphs 234

is a subgraph of G if its vertices V ′ and edges E′ are subsets of V and E, respec-
tively. G′ is called an induced subgraph of G if it satisfies the subgraph requirements
along with the additional condition that all the edges connecting the vertices V ′ in
G are also present in E ′. Figure 4.33(a) illustrates an example of a labeled graph
G that contains 6 vertices and 11 edges, with vertex labels obtained from the set
L(V) = {a, b, c} and edge labels obtained from the set L(E) = {p, q, r, s, t}. A sub-
graph of G that contains only 4 vertices and 4 edges is shown in Figure 4.33(b). It
is not an induced subgraph because it does not include all the edges in G involving
the subgraph vertices. Instead, the proper induced subgraph of G for these vertices
is shown in Figure 4.33(c).

a

b a

c c

b

a

a

c

b

a

a

c

b

(a) Labeled Graph (b) Subgraph (c) Induced Subgraph

pq

p

p

r
s

t
r

t

q

p p

r
s

t
r

s

t

p p p

Figure 4.33. Graph, subgraph, and induced subgraph definitions.

There are many data sets that can be modelled by using the graph representa-
tion. For instance, a market-basket transaction can be represented as a graph, with
vertices that correspond to each item and edges that correspond to the relationships
between items. Furthermore, each transaction is essentially a clique because every
item is associated with every other item in the same transaction. The problem of
mining frequent itemsets is equivalent to finding frequent subgraphs among the col-
lection of cliques. Although the graph representation is more expressive, it is much
easier to work with the standard market-basket representation because we do not
have to worry about the structural constraints.
If the graphs are not cliques, we can still map the problem of finding frequent

subgraphs into the standard market-basket representation as long as all the edge and
vertex labels within a graph are unique. In this case, each graph can be regarded
as a transaction and each triplet of vertex and edge labels t = (l(vi), l(vj), l(eij))
corresponds to an item, as illustrated in Figure 4.34. Unfortunately, most of the real
applications do not contain graphs with unique labels, thus requiring more advanced
methods to obtain the frequent subgraphs.
Given a set of graphs G, the support of a subgraph g is defined as:

s(g) =
|{Gi|g ⊆s Gi ∧Gi ∈ G}|

|G| (4.15)

4.8.3 Frequent Subgraphs 235

a

b

e

c

d

p

q

r

r
p

a

b
d

p q

r

cb

e

a

d
p q

rr

G1 G2 G3

(a,b,p) (a,b,q) (a,b,r) (b,c,p) (b,c,q) (b,c,r) … (d,e,r)
G1 1 0 0 0 0 1 … 0
G2 1 0 0 0 0 0 … 0
G3 0 0 1 1 0 0 … 0
… … … … … … … … …

Figure 4.34. Mapping a collection of graph structures into market-basket transactions.

where ⊆s denotes the subgraph relation. This definition of the support measure also
satisfies the anti-monotonocity property. The goal of frequent subgraph mining is to
find all subgraphs whose support is greater than some minimum support threshold,
minsup. In some cases, we could also be interested in finding association rules for
the frequent subgraphs. The confidence of a graph association rule g1 −→ g2 can be
defined as:

c(g1 −→ g2) =
|{G|g1 ∪ g2 ⊆s G ∧G ∈ G}
|{G′|g1 ⊆s G′ ∧G′ ∈ G}|

(4.16)

where g1 ∪ g2 denotes any graph containing both g1 and g2 as its subgraphs.

Mining Frequent Subgraphs

The idea of using frequent pattern discovery algorithms such as Apriori for mining
frequent subgraphs was initially proposed by Inokuchi et al. in [92]. There are
several issues one has to consider when mining frequent subgraphs:

Subgraph growing: Most of the standard frequent itemset generation algorithms
work in a bottom-up fashion, where the frequent itemsets of size k are used to
enumerate the frequent itemsets of size k+1. During frequent itemset genera-
tion step, the itemset lattice (search space) can be traversed in a breadth-first
or depth-first manner. The same approach can also be applied to the frequent
subgraph generation problem. However, unlike frequent itemset mining, k
may refer to the number of vertices or edges in the subgraphs. If the algo-
rithm enumerates frequent subgraphs one-vertex-at-a-time, the approach is
called vertex growing. On the other hand, if the algorithm enumerates the
frequent subgraphs one-edge-at-a-time, the approach is called edge growing :

1. Vertex growing has a meaningful interpretation because each iteration is
equivalent to increasing the dimension of its corresponding k × k adja-
cency matrix by a factor of one, as illustrated in Figure 4.35. G1 and

4.8.3 Frequent Subgraphs 236

G2 are two graphs whose adjacency matrices are given by M(G1) and
M(G2), respectively. This approach was used by the AGM algorithm

a

a

e

a

p

q

r

p

a

a

a

p

r
r

d

G1 G2

p

a

a

a

p

q

r

e
p

G3 = join(G1,G2)

dr

?

+

Figure 4.35. Vertex growing approach.

proposed by Inokuchi et al. in [92]. As the subgraphs are grown one
vertex at a time, the algorithm would find only the frequent induced sub-
graphs. The drawback of this approach is that it can be computationally
expensive due to the large number of candidate subgraphs enumerated
by the algorithm. For example, in Figure 4.35, when the graphs G1 and
G2 are joined together, the the resulting graph G3 will have a new edge
connecting between the vertices d and e. However, the label of the new
edge can be arbitrary, which increases the number of candidate subgraphs
dramatically.

2. Edge growing was initially proposed by Kuramochi et al [109] to en-
able a more efficient candidate generation strategy. At each iteration,
a new edge is added to the subgraph, which may or may not increase
the number of vertices in the initial subgraph, as illustrated in Figure
4.36. However, the number of candidate subgraphs generated using this
approach is much smaller than the number of candidate subgraphs gen-
erated using the vertex-growing approach. Kuramochi et al. [109] have
also used the more efficient sparse graph representation instead of the ad-
jacency matrix representation. In addition, edge-growing approach tend
to produce more general patterns because it can discover both frequent
subgraphs and frequent induced subgraphs.

Graph isomorphism: A key task in frequent itemset discovery is to determine
whether an itemset is a subset of a transaction. Likewise, in frequent subgraph
mining, an important task is to determine whether a graph is a subgraph of
another graph. This requires a graph matching routine that can determine

4.8.3 Frequent Subgraphs 237

a

a

e

a

p

q

r

p

a

a

a

p

r
r

e

G1 G2

p

a

a

a

p

q

r

e
p

G3 = join(G1,G2)

er

+
a

a

a

p

q

r

e
p

G4 = join(G1,G2)

r

Figure 4.36. Edge growing approach.

whether a subgraph is topologically identical (isomorphic) to another graph.
For example, Figure 4.37 illustrates two graphs that are isomorphic to each
other because there is a one-to-one mapping between each vertex in the first
graph to another vertex in the second graph that preserves the connections
between the vertices.

Graph isomorphism is a complicated problem especially when many of the
candidate subgraphs are topologically equivalent. If two graphs are isomor-
phic to each other, their adjacency matrices are simply row and/or column
permutations of the other. If the labels on the vertices are unique, the graph
isomorphism problem can be solved in a polynomial time. However, if the
labels of the edges and vertices are not unique, the complexity of the graph
isomorphism problem is yet to be determined (i.e., it is still an open problem
whether the graph isomorphism problem is NP-hard). In Apriori-like algo-
rithms such as AGM [92] and FSM [109], graph isomorphism presents the
biggest challenge to frequent subgraph discovery because it is needed for both
candidate generation and candidate counting steps:

1. It is needed during the join operation to check whether a candidate sub-
graph has already been generated.

2. It is needed during candidate pruning to check whether its k−1 subgraph
matches one of the previously discovered frequent subgraph.

3. It is needed during candidate counting to check whether a candidate
subgraph is contained within another graph.

Most of the frequent subgraph discovery algorithms would handle the graph
isomorphism problem by using a technique known as canonical labeling, where
each graph or subgraph is mapped into an ordered string representation (oth-
erwise known as its code), in such a way that two isomorphic graphs would

4.8.3 Frequent Subgraphs 238

A

A

A A

B A

B

A

B

B

A

A

B B

B

B

Figure 4.37. Graph Isomorphism

be mapped into the same canonical encoding. If a graph can have more than
one representation, its canonical encoding is usually chosen to be the lowest
precedence code. For example, Figure 4.38 illustrates two different ways to
represent the same graph. (The graph has more than one representation be-
cause the vertices are not unique.) The code for each graph is obtained by
doing a column-wise concatenation of the elements in the upper triangular
portion of the adjacency matrix. The canonical labeling of the graph is ob-
tained by selecting the code that has the lowest precedence, e.g., the code at
the bottom of Figure 4.38 has a lower precedence than the code at the top of
the figure.

Multiplicity of Candidate Joining: In Apriori-like algorithms, candidate pat-
terns are generated by joining together frequent patterns found in the earlier
passes of the algorithms. For example, in frequent itemset discovery, a candi-
date k-itemset is generated by joining two frequent itemsets of size k− 1 that
contains k − 2 items in common. Similarly, in frequent subgraph mining, a
candidate k-subgraph is generated by joining together two frequent subgraphs
of size k−1 (where k may correspond to the number of vertices or edges of the
graph). New candidates are created as long as both k− 1 subgraphs contain a
common k − 2 subgraph, known as its core. However, unlike frequent itemset
discovery, each join operation in frequent subgraph mining may produce more
than one candidate subgraph, as illustrated in Figures 4.35 and 4.36. For
the edge-growing approach, Kuramochi et al [109] three different scenarios in
which multiple candidates can be generated:

1. When joining two subgraphs with identical vertex labels, as illustrated
in Figure 4.39(a). Multiple candidates are generated because there are
more than one way to arrange the edges and vertices of the combined
subgraph.

4.8.4 Constraint Association Rule Mining 239

A(1) A(2)

B (6)

A(4)

B (5)

A(3)

B (7) B (8)

A(2) A(1)

B (6)

A(4)

B (7)

A(3)

B (5) B (8)

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 0 1 1 0 1 0 0 0
A(2) 1 0 0 1 0 1 0 0
A(3) 1 0 0 1 0 0 1 0
A(4) 0 1 1 0 0 0 0 1
B(5) 1 0 0 0 0 1 1 0
B(6) 0 1 0 0 1 0 0 1
B(7) 0 0 1 0 1 0 0 1
B(8) 0 0 0 1 0 1 1 0

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 0 1 0 1 0 1 0 0
A(2) 1 0 1 0 0 0 1 0
A(3) 0 1 0 1 1 0 0 0
A(4) 1 0 1 0 0 0 0 1
B(5) 0 0 1 0 0 0 1 1
B(6) 1 0 0 0 0 0 1 1
B(7) 0 1 0 0 1 1 0 0
B(8) 0 0 0 1 1 1 0 0

Code = 1100111000010010010100001011

Code = 1011010010100000100110001110

Figure 4.38. Adjacency matrix and string encoding of a graph.

2. When joining two subgraphs whose core contains identical vertex labels,
as illustrated in Figure 4.39(b). In this example, the core contains vertices
whose labels are equal to “a”.

3. When the joined subgraphs contain more than one core, as illustrated in
Figure 4.39(c). The shaded vertices in this figure correspond to vertices
that form the core of the join operation.

As a result, the number of candidate subgraphs generated can be prohibitively
large. Numerous algorithms have been proposed to reduce the number of
candidate subgraphs generated by the frequent subgraph mining algorithms.
For example, the FSG algorithm [109] uses various vertex invariants, which
are structural constraints imposed on the candidate subgraphs, to restrict the
number of admissible candidates. A more recent algorithm, called g-span [199],
was proposed by Yan et al to generate frequent subgraphs without enumerat-
ing any infrequent candidates. The algorithm uses a canonical labeling scheme
called minimum DFS code to represent the subgraphs. By encoding the graphs
according to their minimum DFS codes, the authors showed that the frequent
subgraph mining problem can be turned into a sequential pattern mining prob-
lem, for which an efficient algorithm can be developed that does not require
candidate generation [145].

4.8.4 Constraint Association Rule Mining

(This section is being modified)

4.8.4 Constraint Association Rule Mining 240

a

b
e

c

a

b
e

c

+

a

b
e

c

ea

b
e

c

(a)

a

a
a

a

+
b a

a
a

a

c

a

a
a

a

c
b

a

a
a

a

c

a

a
a

a

c

b

b

(b)

a

ab

+

a

a

a ab

a ab

a

a

ab

a a

ab

ab

a ab

a a

(c)

Figure 4.39. Multiplicity of Candidate Joining.

4.8.5 Sequential Patterns 241

Srikant et al. [174] has considered the problem of discovering association rules
in the presence of constraints, represented as boolean expressions. An example of a
boolean constraint is (Cookies ∧Milk) ∨ (descendents(Cookies) ∧ ¬ancestors(Wheat
Bread)), which looks for rules that contain both cookies and milk, or rules contain-
ing the descendent items of cookies but not ancestor items of wheat bread. The
Apriori pruning strategy is no longer applicable because some frequent itemsets are
not generated since they violate the item constraints. Constraints on the support of
itemsets have been studied in [193]. The idea of support constraints is to specify the
minimum support for different itemsets, so that only the necessary itemsets are gen-
erated. This is different from the approach taken in [116], which assigns a minimum
support to each item, rather than to each itemset. A more recent work by Seno et
al. [160] have attempted to specify the minimum support of an itemset dynamically,
based on the length of the itemset. An algorithm for mining constrained associa-
tion rules for text documents has also been proposed in [167]. Here, the constraints
are specified by the concepts or structured values provided by the user. A similar
approach was taken by Ng et al. in [137] in which the user is allowed to input the
constraints via constrained association queries.

4.8.5 Sequential Patterns

(This section will be added)

4.8.6 Spatial Associations

(This section will be added)

4.9 Bibliographic Notes

The concept of association rule mining was first introduced by Agrawal et al. in [7,6]
to discover interesting relationships among items in a transaction database. Since
its inception, there has been extensive research: (1) to improve the theoretical
understanding of the association rule mining task, (2) to handle other data types,
(3) to capture new types of patterns, (4) to address the algorithmic, database and
other implementation issues, and (5) to extend the analysis beyond market basket
data to other application domains. A summary of these research activities is shown
in Figure 4.40.

Conceptual issues. Following the pioneering work by Agrawal et al., there has
been a vast amount of research on formulating a theoretical understanding
of the association analysis problem. In [68], Gunopoulos et al. relates the

4.9 Bibliographic Notes 242

- negative
- dependence
- causal
- weighted
- spatial and co-
location patterns
- temporal (cyclic,
sequential)
- fuzzy
- exception rules

Rules

Research Issues in Mining
Association Patterns

Conceptual
Issues

Implementation
Issues

Application
Issues

Theoretical
Formulation

- lattice theory
- bounds on
 itemset
 enumeration

Data Type

- binary
- numeric
- categorical
- mixed

Itemsets

- frequent
itemsets
- emerging
patterns

Type of
Patterns

Pattern
Discovery

Post-
processing Domains

- Web
- text
- bioinformatics
- Earth Science

Other learning
tasks

- classification
- clustering
- recommender
systems

Computational
model

- serial or parallel
- online or batch

Algorithm and
Data Structure

- Apriori
- DIC
- tree-projection
- FP-tree
- H-mine
- Partition
- Sampling-based
- CHARM

Visualization Interestingness

Measure

- objective
- subjective

Method

- ranking
- filtering
- summarizing

Constraints

- item taxonomy
- template
- multiple
support

Database
issues

- optimization
- SQL support
- OLAP
- multi-database

Other
Structures

- subtrees
- subgraphs

Figure 4.40. A summary of the research issues in mining association patterns.

problem of finding frequent itemsets to the hypergraph transversal problem.
Zaki et al. [204,202] and Pasquier et al. [143] have studied the frequent itemset
generation problem using formal concept analysis, work which has led them
to introduce the concept of closed itemsets [204], which is related to bipartite
cliques in graph theory. Friedman et al. [61] have formulated association anal-
ysis from the perspective of a statistical learning problem called bump hunting.
In this formulation, frequent itemset generation is analogous to finding regions
in the multi-dimensional space for which the probability density of the region
is significantly higher than the expected probability. There has also been sub-
stantial research to extend the classical formulation to non-binary data types
such as categorical [172], numeric [172,63,69,207,194], and interval [127] vari-
ables. New patterns such as profile association rules [3], cyclic association
rules [140], fuzzy association rules [108], exception rules [178], negative asso-
ciations [159, 24], weighted association rules [150, 29], dependence rules [166],
sequential associations [8, 173], peculiar rules [208], inter-transaction associa-
tion rules [189, 57], predictive association rules [122], spatial co-location pat-
terns [163], partial classification rules [132, 10], and emerging patterns [47]
have also been developed.

The concept of closed itemsets was proposed independently by Zaki et al. [204]
and Pasquier et al [143].

Implementation issues. Much of the research activities in this area revolve around
(1) developing efficient, serial and parallel mining algorithms, (2) integrat-

4.9 Bibliographic Notes 243

ing the mining process into existing database technology, (3) handling user-
specified or domain-specific constraints, and (4) post-processing the discovered
patterns.

Over the years, many algorithms have been proposed to efficiently mine as-
sociation patterns from large databases. Park et al. [142] proposed the DHP
(dynamic hashing and pruning) technique that will reduce the size of the
database after each pass of the itemset generation algorithm. The Partition
algorithm [158] requires at most two database scans in order to generate fre-
quent itemsets. A sampling-based approach for frequent itemset generation
was proposed by Toivonen [184]. This approach requires only a single pass,
but it tends to produce more candidate itemsets than necessary. The Dy-
namic Itemset Counting (DIC) algorithm [25] requires only 1.5 passes over
the data, and generates less candidate itemsets than the sampling-based al-
gorithm. Other notable frequent itemset generation algorithms include the
tree-projection algorithm [2], FP-tree [76], CHARM [203], and H-Mine [144].
Some of the more recent surveys on frequent itemset generation algorithms
are given by [4, 84].

All the algorithms described so far in this chapter are batch, serial algorithms.
Parallel formulation of association rule mining has been investigated by many
authors [1, 70, 133, 164, 205]. A survey of these algorithms is given by Zaki in
[201]. Online and incremental versions of the association rule mining algorithm
have been developed by Hidber [81] and Cheung et al. [33].

There are several advantages of integrating the association analysis task into
existing database technologies. First, one can make use of the indexing and
query processing capabilities of the database. Second, one can also exploit the
DBMS support for scalability, check-pointing and parallelization [156]. The
SETM algorithm developed by Houtsma et al. [88] was one of the earliest al-
gorithm to support association rule discovery via standard SQL queries. Since
then, various ideas have been proposed to extend the capability of standard
SQL to support association rule mining. For example, query languages such as
DMQL [73] and M-SQL [90] extend the basic SQL with new operators for min-
ing association rules. The Mine Rule operator suggested by Meo et al. in [124]
is an expressive SQL operator that can handle both clustered attributes and
item hierarchies. A generate-and-test approach called query flocks has also
been proposed in [186] while Chen et al. [31] have developed a distributed
OLAP-based infrastructure for generating multi-level association rules.

Srikant et al. [174] has considered the problem of discovering association rules
in the presence of constraints, represented as boolean expressions. An exam-
ple of a boolean constraint is (Cookies ∧ Milk) ∨ (descendents(Cookies) ∧
¬ancestors(Wheat Bread)), which looks for rules that contain both cookies
and milk, or rules containing the descendent items of cookies but not ancestor
items of wheat bread. Constraints on the support of itemsets have been stud-
ied by Wang et al. in [193]. The idea of support constraints is to specify the

4.9 Bibliographic Notes 244

minimum support threshold for different itemsets, so that only the necessary
frequent itemsets are generated. This is different from the approach taken by
Liu et al. in [116] that assigns a minimum support threshold to each item. A
more recent work by Seno et al. [160] have attempted to specify the minimum
support threshold based on the length of the itemset. An algorithm for min-
ing constrained association rules for text documents has also been proposed
by Singh et al. in [167]. Here, the constraints are specified by the concepts
or structured values provided by the user. A similar approach was taken by
Ng et al. in [137] in which the user is allowed to input the constraints via
constrained association queries.

One major problem with association rule generation is the large number of
rules that are being generated. This problem can be handled by pruning or
aggregating the related rules. Toivonen et al. [185] proposed the idea using
structural rule covers to remove redundant rules and clustering the remaining
rules to group together related rule covers. Liu et al. [117] used the standard
χ2 test for pruning insignificant rules and introduced the concept of direction
setting rules to summarize the remaining patterns. Other researchers such as
Srikant et al. [174] and Ng et al. [137] rely on the constraints provided by a
user to limit the number of generated rules. Visualization also helps the user
to quickly grasp the underlying structure of the discovered patterns. Many
commercial data mining tools would display the complete set of rules (that
satisfy both support and confidence threshold criteria) as a 2-dimensional plot,
with each axis corresponds to the antecedent or consequent itemsets of the rule.
Hofmann et al. [85] proposed using Mosaic plots and Double Decker plots for
visualizing association rules. This approach can visualize not only a particular
rule but the overall contingency table between itemsets in the antecedent and
consequent parts of the rule. However, this technique assumes that the rule
consequent consists of only of a single attribute.

The notion of subjective interestingness measures have been investigated by
many authors. Silberschatz and Tuzhilin [165] presented two principles in
which a rule can be considered as interesting from a subjective point of view.
The concept of unexpected condition rules was introduced by Liu et al. in
[115]. Cooley et al. [38] analyzed the idea of combining soft belief sets using the
Dempster-Shafer theory and applied this approach to identify contradictory
and novel association patterns in Web data.

Application issues. Association rule mining has been applied to a variety of ap-
plication domains such as Web mining [179, 146], text document analysis
[86], telecommunication alarm diagnosis [102], network intrusion detection
[111,16,44], and genomics [157]. In some of these applications, domain-specific
knowledge can be used to improve upon the existing preprocessing, mining and
post-processing tasks. Association patterns have also been applied to other
learning problems such as classification [19, 113] and clustering [200, 71]. A
comparison between classification and association rule mining was made by

4.10 Exercises 245

Freitas in his position paper [60]. The use of association patterns for cluster-
ing has been studied by many authors including Han et al. [71], Kosters et
al. [105] and Yang et al. [200].

4.10 Exercises

1. Support and Confidence.

For each of the questions listed below, provide an example of an association
rule from the market basket domain that satisfies the given conditions. Also,
describe whether such rules are interesting. State your reasons clearly.

(a) A rule that has high support and high confidence.

(b) A rule that has reasonably high support but low confidence.

(c) A rule that has low support and low confidence.

(d) A rule that has low support and high confidence.

2. Market Basket Definition.

Consider the data set shown in Table 4.19 below.

Table 4.19. Example of market-basket transactions.
Customer ID Transaction ID Items Bought

1 0001 {A,D,E}
1 0024 {A,B,C,E}
2 0012 {A,B,D,E}
2 0031 {A,C,D,E}
3 0015 {B,C,E}
3 0022 {B,D,E}
4 0029 {C,D}
4 0040 {A,B,C}
5 0033 {A,D,E}
5 0038 {A,B,E}

(a) Compute the support for itemsets {E}, {B,D}, and {B,D,E} by treat-
ing each transaction ID as a market basket.

(b) Use the results in part (a) to compute the confidence for the association
rules BD −→ E and E −→ BD. Is confidence a symmetric measure?

(c) Repeat part (a) by treating each customer ID as a market basket. Each
item should be treated as a binary variable (1 if an item appears in at
least one transaction bought by the customer, and 0 otherwise.)

(d) Use the results in part (c) to compute the confidence for the association
rules BD −→ E and E −→ BD.

4.10 Exercises 246

(e) Suppose s1 and c1 are the support and confidence values of an associa-
tion rule r when treating each transaction ID as a market basket. Also,
let s2 and c2 be the support and confidence values of r when treating
each customer ID as a market basket. Discuss whether there are any
relationships between s1 and s2 or c1 and c2. (Hint: compare the rules
BD −→ E and A −→ E in both cases.)

3. Properties of Confidence.

(a) Let c1, c2, and c3 be the confidence values of the rules A −→ B, A −→
BC, and AC −→ B, respectively. If we assume that c1, c2, and c3 have
different values, what are the possible relationships that may exist among
c1, c2, and c3? Which rule has the lowest confidence?

(b) Repeat the previous analysis assuming that all three rules given in the
previous question have identical support? Which rule has the highest
confidence?

(c) Transitivity: Suppose the confidence of the rules A −→ B and B −→ C
are larger than some threshold, minconf . Is it possible that A −→ C
has a confidence less than minconf? Justify your answer.

4. Monotonicity Property

For each question listed below, determine whether it is monotone, anti-monotone,
or non-monotone (i.e., neither monotone nor anti-monotone).

Example: Support, s = σ(X)
|T | is anti-monotone because s(X) ≥

s(Y) whenever X ⊂ Y .

(a) A characteristic rule is a rule of the form A −→ B1B2 · · ·Bn, where the
antecedent of the rule consists of a single item. An itemset of size k can
produce up to k characteristic rules. Let ζ be the minimum confidence
of all characteristic rules generated from an itemset X:

ζ({A1, A2, · · · , Ak}) = min(c(A1 −→ A2, A3, · · · , Ak), · · ·
c(Ak −→ A1, A3 · · · , Ak−1))

Is ζ monotone, anti-monotone or non-monotone? (Hint: compare the
minimum confidence value of all characteristic rules generated from the
itemset {A,B} against the minimum confidence value of all characteristic
rules generated from the itemset {A,B,C}.)

(b) A discriminant rule is a rule of the form B1B2 · · ·Bn −→ A, where the
consequent of the rule consists of a single item. An itemset of size k can
produce up to k discriminant rules. Let η be the minimum confidence of
all discriminant rules generated from an itemset X:

4.10 Exercises 247

η({A1, A2, · · · , Ak}) = min(c(A2, A3, · · · , Ak −→ A1), · · ·
c(A1, A2, · · ·Ak−1 −→ Ak))

Is η monotone, anti-monotone or non-monotone? (Hint: compare the
minimum confidence value of all discriminant rules generated from the
itemset {A,B} against the minimum confidence value of all discriminant
rules generated from the itemset {A,B,C}.)

(c) Repeat the analysis in parts (a) and (b) by replacing the min function
with a max function.

5. Complexity of Association Rule Generation Proof Equation ??. (Hint:
First, count the number of ways to create an itemset that forms the left hand
side of the rule. Next, for each size k itemset selected for the left-hand side,
count the number of ways to choose the remaining d − k items to form the
right-hand side of the rule.)

6. Apriori Algorithm

Consider the market basket transactions shown in Table 4.20. Use this data
set to answer the questions listed below.

Table 4.20. Market basket transactions.
Transaction ID Items Bought

1 {Milk,Beer,Diaper}
2 {Bread,Butter,Milk}
3 {Milk,Diaper, Cookies}
4 {Bread,Butter, Cookies}
5 {Beer, Cookies,Diaper}
6 {Milk,Diaper,Bread,Butter}
7 {Bread,Butter,Diaper}
8 {Beer,Diaper}
9 {Milk,Diaper,Bread,Butter}
10 {Beer, Cookies}

(a) How many possible association rules can be extracted from this data
(including rules that have zero support)?

(b) Given the transactions shown above, what is the largest size of an itemset
we can extract?

(c) Write an expression for the maximum number of size-3 itemsets that can
be derived from this data set?

(d) Which itemset (of size 2 or larger) has the largest support?

4.10 Exercises 248

(e) From this data set, find a pair of association rules, A −→ B and B −→ A,
that have the same confidence.

7. Apriori Algorithm

Consider the data set shown in Table 4.20.

(a) Derive all frequent itemsets having support ≥ 30%
(b) From the frequent itemsets discovered in the previous question, derive all

association rules having confidence ≥ 80%.

8. Itemset Lattice

The Apriori algorithm uses the generate-and-count strategy for generating
frequent itemsets. Candidate itemsets of size k + 1 are created by joining a
pair of frequent itemsets of size k. For example, the candidate {P,Q,R} is
generated by merging the frequent itemsets {P,Q} and {P,R}. A candidate
is pruned if any one of its subsets is found to be infrequent. For example, the
candidate {P,Q,R} is pruned if {Q,R} is infrequent.
Suppose you apply the Apriori algorithm to the data set given in Table 4.21.
Let the minimum support threshold be equal to 30%, i.e., any itemset occur-
ring less than 3 times is infrequent.

Table 4.21. Example of market-basket transactions.
Transaction ID Items Bought

1 {A,B,D,E}
2 {B,C,D}
3 {A,B,D,E}
4 {A,C,D,E}
5 {B,C,D,E}
6 {B,D,E}
7 {C,D}
8 {A,B,C}
9 {A,D,E}
10 {B,D}

(a) Draw a lattice structure representing all possible itemsets that can be
generated from the data set given in Table 4.21. In your diagram, label
each node as either:

P : itemsets that are pruned because one of their subsets are infrequent,

F : candidate itemsets found to be frequent,

I: candidate itemsets found to be infrequent,

N : itemsets not generated as candidates by Apriori.

4.10 Exercises 249

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

(b) What is the percentage of itemsets not generated by Apriori?

(c) What is the percentage of itemsets that are pruned because one of their
subsets are infrequent?

(d) What is the pruning ratio of the Apriori algorithm on this data set?
(Pruning ratio is the percentage of itemsets that are either (1) not gener-
ated as candidates or (2) pruned before their support is actually counted.)

(e) What is the percentage of itemsets that are frequent?

(f) What is the percentage of itemsets that are infrequent?

9. Hash Structure

The Apriori algorithm uses a hash-tree data structure to efficiently count the
support of candidate itemsets. Consider the hash-tree for candidate 3-itemset
shown in Figure 9.

{145}
{178}

{127}
{457}

{125}
{158}
{458}

{459}
{456}
{789}

{168} {246}
{278}

{258}
{289}

{568} {346}
{379}
{678}

{356}
{689}

{367}

1,4,7
2,5,8

3,6,9

1,4,7

1,4,7

1,4,7
1,4,7 2,5,8

2,5,8

2,5,8
2,5,8 3,6,9

3,6,9

3,6,9
3,6,9

L1

L2 L3 L4

L5 L6 L7 L8 L9 L11 L12

(a) Suppose a new candidate itemset {5, 6, 7} is added to the hash tree during

4.10 Exercises 250

the hash tree construction. Which of the leaf node above (labeled as L1
through L12) will contain the new candidate?

(b) Given a transaction that contains items {1, 3, 4, 5, 8}, which of the hash
tree leaf nodes will be visited when finding the candidates of the trans-
action?

(c) Use the visited leaf nodes in part (b) to determine the candidate itemsets
that are contained in the transaction {1, 3, 4, 5, 8}.

10. Hash Structure

Consider the following set of candidate 3-itemsets:

{1, 2, 3}, {1, 2, 6}, {1, 3, 4}, {2, 3, 4}, {2, 4, 5}, {3, 4, 6}, {4, 5, 6}

(a) Construct a hash tree for the above candidate 3-itemsets. Assume the
tree uses a hash function where all odd-numbered items are hashed to the
left child of a node, while even-numbered items are hashed to the right
child.

(b) How many leaf nodes are there in the candidate hash tree? How many
internal nodes are there?

(c) Suppose there is a transaction that contains the following items: {1, 2, 3, 5, 6}
and you would like to find all the candidate itemsets of size 3 contained in
this transaction. Using the hash tree constructed in part (a), which leaf
nodes will be checked against the transaction? What are the candidate
itemsets of this transaction?

11. Item Taxonomy

Consider the transactions shown in Table 4.22. Suppose the items can be
grouped together according to the item taxonomy shown in Figure 11.

Food

Snack Food Meat
Soft
drinks

Chips Cookies Pork Chicken

Coke Pepsi

PringlesRuffles Oreo Chips
Ahoy

Ham Bacon Boneless Whole

4.10 Exercises 251

Table 4.22. Example of market-basket transactions.
Transaction ID Items Bought

1 Pringles, Oreo, Coke, Ham

2 Ruffles, Pringles, Ham, Boneless Chicken, Pepsi

3 Ham, Bacon, Whole Chicken, Coke, Pepsi

4 Ruffles, Chips Ahoy, Ham, Boneless Chicken, Pepsi

5 Chips Ahoy, Bacon, Boneless Chicken

6 Ruffles, Ham, Bacon, Whole Chicken, Coke

7 Ruffles, Oreo, Boneless Chicken, Pepsi

(a) Describe what are the main challenges of mining association rules with
item taxonomy.

(b) Consider the approach taken by Srikant and Agrawal [170], where each
transaction t is replaced by an extended transaction t′ that contains all
the items in t as well as their respective ancestors. For example, the
transaction t = {Pringles,Oreo} will be replaced by t′ = {Pringles,
Oreo, Chips, Cookies, Snack Food, Food}. Use this approach to derive
all frequent itemsets (up to size 4) with support ≥ 50%.

(c) Repeat the analysis in part (b) using the approach taken by Han and
Fu [72], where frequent itemsets at higher levels are used to find frequent
itemsets at lower levels of the hierarchy.

12. Numeric Association Rules

(a) Numeric attributes are often handled by discretizing the range of at-
tribute values into disjoint intervals. Describe, in your own words, what
are the main challenges of mining numeric association rules.

(b) Explain what modifications would be needed in the candidate generation
step of the Apriori algorithm in order to handle numeric attributes.

(c) Consider the data set shown in Table 4.23. Suppose we apply the follow-
ing discretization strategies to the numeric attributes:

D1: Partition the range of each numeric attribute into 3 equal-sized bins.
D2: Partition the range of each numeric attribute into 3 bins;

where each bin contains equal number of data points
For each strategy, answer the following questions:

i. Construct the transaction matrix having the new discretized at-
tributes.

ii. Derive all the frequent itemsets having support ≥ 30
(d) The numeric attribute can also be discretized using a clustering approach.

i. Draw a graph of Temperature versus Pressure for the data points
given in Table 4.23.

4.10 Exercises 252

Table 4.23. Example of numeric data set.
TID Temperature Pressure Alarm 1 Alarm 2 Alarm 3

1 95 1105 0 0 1

2 85 1040 1 1 0

3 103 1090 1 1 1

4 97 1084 1 0 0

5 80 1038 0 1 1

6 100 1080 1 1 0

7 83 1025 1 0 1

8 86 1030 1 0 0

9 101 1100 1 1 1

ii. From the graph, what do you think is a reasonable number of clusters
for the data points? Label the clusters in the graph as C1, C2, C3,
etc.

iii. Which clustering technique is suitable to find the above clusters?

iv. Replace the temperature and pressure columns in Table 4.23 with
attributes C1, C2, etc. Construct a transaction matrix using the new
attributes (along with attributes Alarm1, Alarm2 and Alarm3).

v. Derive all the frequent itemsets having support ≥ 30%.

13. Interestingness Measures

In the original association rule formulation, support and confidence are the
measures used to eliminate uninteresting rules. The purpose of the following
exercise is to illustrate the applicability of other rule interest measures in
assessing the quality of a rule. For each of the measure given below, compute
and rank the following rules in decreasing order according to their respective
measures. Use the transactions given in Table 4.21.

Rules: B −→ C, A −→ D, B −→ D, E −→ C, C −→ A.

(a) Support.

(b) Confidence.

(c) Interest(X −→ Y) = P (X,Y)
P (X) P (Y).

(d) IS(X −→ Y) = P (X,Y)√
P (X)P (Y)

.

(e) Klosgen(X −→ Y) =
√
P (X,Y) × (P (Y |X) − P (Y)), where P (Y |X) =

P (X,Y)
P (X) .

(f) Odds ratio(X −→ Y) = P (X,Y)P (X,Y)

P (X,Y)P (X,Y)
.

4.10 Exercises 253

14. Consistency between Measures

Given the rankings you had obtained in question 1, compute the correlation be-
tween the rankings of confidence and the other five measures. Which measure
is most highly correlated with confidence? Which measure is least correlated
with confidence?

15. Negative Associations

3. The original association rule mining framework defined by Agrawal et
al. considers only itemsets that occur frequently together in the transaction
database. There are situations in which itemsets that are infrequent can be
potentially interesting. For instance, the itemset TV, DVD, ¬ VCR refers to
customers who buy TV and DVD but not VCR. In this problem, you are asked
to extend the association rule framework to negative itemsets (i.e. itemsets
that contain presence as well as absence of items). We will use the negation
symbol (¬) to refer to absence of items.

(a) A nave way to derive negative itemsets is to extend each transaction to
include absence of items as shown in the table below.

Table 4.24. Example of numeric data set.
TID TV ¬TV DVD ¬DVD VCR ¬VCR · · ·
1 1 0 0 1 0 1 · · ·
2 1 0 0 1 0 1 · · ·

i. Suppose the transaction database contains 1000 distinct items. What
is the total number of positive itemsets that can be generated from
these items? (Note: A positive itemset do not contain any negated
items).

ii. What is total number itemsets (that may contain both positive or
negative items) that can be generated from these items?

iii. Explain why such a nave method of extending each transaction with
negative items would not be practical for deriving negative itemsets.

(b) Consider the transaction table in Problem 10. What are the support and
confidence for the negative association rule ¬Pepsi −→ Coke?

(c) Another method (suggested by Savasere et al [159] is to compute the
expected support of an itemset. If the expected support of an itemset,
say Coke, Pepsi, is significantly smaller than its actual support, then the
itemset can be potentially used for generating negative association rules.
There are various methods to determine the expected support of a set
of items. Suggest a method to determine the expected support of the
itemset Coke, Pepsi.

16. Maximal and Closed Itemsets

4.11 Grab bag 254

Given the lattice structure shown in Figure 8a and the transactions given
in Table 4.21, label each node (itemset) as M if the itemset is a maximal
frequent itemset, C if it is a closed frequent itemset, N if it is frequent but
neither maximal nor closed, and I if it is infrequent. (Use minimum support
equals to 30%.)

17. Frequent Subgraph Mining

Draw all candidate subgraphs obtained from joining the pair of graphs shown
in the diagrams (a) and (b) below.

a a

aa

b

a a

aa

b

+

a a

aa

b

+
b

a a

aa

b

c

(a)

(b)

18. Interestingness Measures

(a) Prove that the φ coefficient is equals to 1 if and only if f11 = f1+ = f+1.

(b) Show that if A and B are independent, then P (A,B) × P (A,B) =
P (A,B)× P (A,B).

(c) Show that if P (B|A)−P (B)1−P (B) < −1, then 0 ≤ P (A|B)−P (A)
1−P (A) ≤ −1.

(d) Show that Yule’s Y and Q coefficients are standardized versions of the
odds ratio.

(e) Write a simplified expression for the value of each measure shown in Table
4.11 when the variables are statistically independent.

4.11 Grab bag

4.11.1 Dependence Rules

Association rules, as we learnt so far, use support and confidence measures to quan-
tify and filter the relationships. A rule of the form X =⇒ y is interesting if it

4.11.1 Dependence Rules 255

provides us two pieces of information: a) X and y occur together in sufficiently large
number of transactions (support), so that their co-occurrence can be considered sta-
tistically significant, and b) whenever X is present in a transaction, y is also present
in it with high probability (confidence). Confidence of this rule can be simply looked
at as a conditional probability of presence of y given presence of X. Now, consider
an example to critically evaluate the quality of this information.
In a computer store transaction data, out of 200 buyers of operating systems,

160 bought Windows operating system and 100 customers bought Linux operating
system. Of the Linux buyers, 60 also bought the Windows operating system. Now a
rule Linux −→ Windows has sufficiently large support (30%) and also sufficiently
high confidence (60%). So, looking at this rule, one might conclude that whenever
Linux is sold, Windows is also sold with 60% chance. Now, look at it from a different
angle. If we didn’t know anything about a customer, we know that she will buy
Windows with 80% probability. However, the moment we know that a customer
has bought Linux, her probability of purchasing Windows has gone down from 80%
to 60%. This implies that although the rule Linux −→ Windows has sufficient
confidence, it is misleading. Here is the reason. Let us assume that the store-owner
decides to the push the Windows sales up by 200 by sending ads to customers. If
he were to follow just the prior probability of Windows, then he would need to
mail ads to 200/0.8 = 250 customers. Whereas, if he were to base his decision on
the Linux −→ Windows rule, then he would need to increase the Linux sale by
200/0.6 = 333, by identifying and attracting 333 more Linux customers. Moreover,
following the first decision option, the store-owner needs to identify profile of his
store’s generic customer, whereas for second option, he has to identify profiles of
Linux customers, which may be more difficult. On the other hand, if the confidence
of the rule Linux −→ Windows was more than the prior probability of Windows,
then following this rule would have made more sense, rather than merely relying on
the prior probability.
This example stresses the need to get more information than mere conditional

probability (confidence) of a rule. The impact of conditioning a presence of some
item on presence of others can be judged by looking at whether the conditional
probability is higher than or lower than or same as the prior probability of that
item. This notion is precisely captured by statistical dependence. In statistics, a set
of events {x,y} is said to be independent, if their joint probability is the product of
their individual probabilities; i.e., P (x, y) = P (x)P (y). In the example above, the
events were Product Sold = Linux or Product sold = Windows. If the events are not
independent, we can look at the ratio P (x, y)/P (x)P (y) If the ratio is more than
1, then events are said to have positive dependence, which means that conditioning
the presence of any of the events (x or y), on the presence of other, causes increase
in the prior probability of occurrence of that event. This can be seen by rewriting
the equation P (x, y)/P (x)P (y) > 1 as P (x, y)/P (x) > P (y). The left hand side of
the last equation is the confidence (P (y‖x)) of the rule x→ y rule, which conditions
the presence of y on presence of x. The right hand side is the prior probabiity of
y. Similarly, negative dependence means that P (x, y)/P (x)P (y) < 1, and can be

4.11.2 Comparison between Classification and Association Rule Mining 256

interpreted as decrease in prior probability of either of the events after conditioning
its presence on the other’s presence.
Thus, statistical dependence yields a possibly more useful information between

two events, rather than merely looking at the confidence of a rule. Essentially,
statistical dependence combines the prior probabilities and conditional probabilities
into a single measure.

4.11.2 Comparison between Classification and Association Rule Min-
ing

Although an association rule looks quite similar to a classification rule, their syn-
tax are actually quite different. The antecedent of a classification rule may contain
any number of input variables, while the consequent must have only one variable
that represents the target class. For association rules, there is no distinction be-
tween input and target variables. As a result, the antecedent and consequent of an
association rule may involve any number of binary variables.
Classification and association rule mining also differ from an application per-

spective. Classification seeks to develop a global representation of the data and is
often used to predict the class label of unknown instances. Its objective function
is to maximize the accuracy or F-measure of the classification models. To ensure
that the models can produce accurate predictions, the data is partitioned into two
disjoint subsets, i.e., training and test sets. The training set is used to build the
model while the test set is used to evaluate the performance of the model. On the
other hand, association rule mining seeks to derive interesting local structures in
the data. Its objective is to find all rules having support and confidence above the
user-specified thresholds. The entire data set is used to extract association rules.
This will ensure that the support and confidence values computed from the data are
reliable probability estimates of the significance of the rules.
Techniques for building classification models, such as decision trees and rule-

based classifiers, often use a greedy heuristic to efficiently search the exponential
hypothesis space. Thus, the generated models may not be globally optimal. Asso-
ciation rule mining algorithms can perform a complete search over the entire space
to look for rules that satisfy the support and confidence constraints. A complete
search is possible because the algorithms employ an effective strategy for pruning
the exponential search space. Since association rule mining algorithms have more
effective search strategy, why should we use classification algorithms at all? The
answer is because the hypothesis space of association rules is less expressive and
is limited only to binary variables, whereas classification rules can be created for
variables of any data types. Thus, there is a trade-off between the expressiveness
of the hypothesis space and the completeness of the search algorithm. The more
expressive is the hypothesis space, the more difficult it is to effectively search the
entire space.
Despite their differences, association patterns can complement the task of build-

ing classification models in many ways. In this section, we describe two techniques

4.11.3 General Procedure for Building Classification Models 257

for utilizing association patterns to solve a classification problem:

1. Using association rules to build a rule-based classifier.

2. Using frequent itemsets to build a Bayesian classifier.

A detailed explanation of these methods is presented in the next sections.

4.11.3 General Procedure for Building Classification Models

Building classification models from association patterns involves the following steps:

Pattern Generation. The first step is to generate association patterns from the
input data. This may require a preprocessing phase to convert the raw data
into binary-valued format. Specifically, continuous-valued attributes must be
discretized prior to creating a new binary variable for each discrete interval.
For categorical attributes, a new binary variable is created for every attribute-
value pair. Existing association mining algorithms can be applied once the
attributes are transformed into binary variables. One important issue is how
to handle data sets containing rare classes. We might have to apply a very low
minimum support threshold to extract association patterns involving the rare
class. This approach may not work well because lowering the support threshold
tends to increase the number of patterns for the majority class, thereby leading
to a substantial increase in the computation time of the algorithms. Another
way to overcome this problem is to use different minimum support thresholds
for each class, a technique that was described in Section 4.6. For example, if
5% of the instances belong to the rare class and the remaining 95% belong to
the majority class, then instead of using a 1% minimum support threshold for
the entire data set, we may use 1% × 5% = 0.05% support threshold for the
rare class, and 1%× 95% = 0.95% support threshold for the majority class.

Model Construction. The association patterns discovered in the previous step
can be used to build a classification model. However, there are several issues
that need to be considered carefully. First, not all patterns are useful for
classification. Only patterns that contain the class variable are of interest
to the classification algorithm. Second, some of the redundant or overlapping
patterns should be eliminated as they do not convey any additional information
to the classification algorithm. Eliminating them early can help make the
computation more efficient. The question is, how to determine which patterns
should be eliminated? A rationale (pattern selection criteria) for choosing
some patterns over the others must be given.

One potential drawback of using association patterns for building classification
models is the information loss problem, which arises when the input data is dis-
cretized. Information is lost because the classifier has no knowledge of the different
continuous values that are mapped onto the same discrete interval. If the original
continuous data is not retained during model construction, then the errors incurred
by the models may increase as a result of approximation errors due to discretization.

4.11.4 Using association rules for rule-based classifiers 258

4.11.4 Using association rules for rule-based classifiers

Associative classification is a technique that uses association rules for creating the
rule-set of a rule-based classifier. The main advantage of this technique is that it
uses rules generated from a complete search rather than a greedy search.
In associative classification, the rules have the form of C −→ y, where C is an

itemset and y is a class label. These rules are also known as class association rules.
The itemset from which a class association rule is derived is called a rule-item, while
the set C appearing in the antecedent of the rule is called a conditional set. For
example, the class association rule {p, q} −→ y is derived from the rule-item {p, q, y}
and contains the conditional set {p, q}.
It is important to note that all rule-items must contain a class variable. The

size of a rule-item depends on the number of items that belong to its corresponding
conditional set. For example, {p, y} is a size-1 rule-item and {p, q, y} is a size-2
rule-item.
In this section, we present two variants of the associative classification algo-

rithms:

1. CBA (Classification Based on Associations), which creates an ordered rule-set
for a rule-based classifier.

2. CMAR (Classification based on Multiple Association Rules), which creates an
unordered rule-set for a rule-based classifier.

Pattern Generation

In CBA, the data set is initially partitioned into training and test sets. CBA then
applies a variant of the Apriori algorithm to generate rule-items from the training
set. Since it does not generate the conditional sets explicitly, each rule-item must
keep track of two counts (1) the support of the conditional set and (2) the support
of the rule-item. The rule-items are generated in a level-wise manner. The size-1
rule-items are created first, followed by the size-2 rule-items, and so on. The size-k
frequent rule-items are used to create the size-(k + 1) rule-items. Unlike Apriori,
CBA generates the size-k class association rules immediately after the size-k frequent
rule-items are found.

Example 25 Suppose the data set contains four items {a, b, c, d} and two classes,
{y1, y2}. Initially, the CBA algorithm will generate eight size-1 candidate rule-
items, {a, y1}, {a, y2}, {b, y1}, {b, y2}, · · · , {d, y2}. It then counts the conditional
set support and rule-item support of each rule-item. All rule-items whose rule-item
support is less than the minimum support threshold are then pruned away. Although
there might be more than one rule-item with the same conditional set, the algorithm
will generate only one class association rule for each conditional set. For example,
{a, y1} and {a, y2} are two rule-items that have the same conditional set. During
rule generation, CBA extracts only the class association rule that has the highest
confidence. The algorithm proceeds to use the size-1 frequent rule-items to generate
size-2 candidate rule-items.

4.11.4 Using association rules for rule-based classifiers 259

A B C Class
T1 a1 b1 c1 y1
T2 a2 b3 c2 y1
T3 a1 b2 c3 y2
T4 a3 b3 c2 y2
T5 a1 b2 c1 y2

c1
(y1: 1)

Minimum support = 2
(Frequent items are shaded)

a1

b2
(y2: 1)

c1
(y2: 1)

c2 (y1:1,
y2: 1)

b3

FP-tree

Figure 4.41. An illustrative example for the CMAR algorithm.

The original version of CBA uses a single minimum support threshold for all the
classes. A later version of the algorithm adds more flexibility by allowing the user
to choose different thresholds for each class. In order to ensure that the rules can
generalize well to unseen instances, CBA compares the pessimistic error rate of a
rule, r, against the pessimistic error rate of its parent rule r′ (where r′ is a subset
rule obtained by removing one of the items in r). If the pessimistic error rate for r
is higher than r′, then r will be pruned.
Unlike CBA, CMAR uses the FP-growth algorithm to generate the frequent

patterns in a more efficient manner. Initially, an FP-tree is constructed from the
training set. Each node of the tree contains an attribute value along with its distri-
bution of class labels, as illustrated in the example below.

Example 26 Consider the training set shown in Figure 4.41. If the minimum
support threshold is equal to 2, then only a1, b2, b3, c1, c2 are frequent. An FP-
tree can be constructed to represent the data set in a compact manner using only
the frequent items. For example, the first tuple (A = a1, B = b1, C = c1) contains
an infrequent item b1 that can be ignored. The remaining items in the tuple (A =
a1, C = c1) are inserted into the tree, thus forming a path from the root to the
c1 node, as shown in Figure 4.41. The class label y1 is then attached to the last
node, which keeps track of the count distribution for each class label. As another
example, the second and fourth tuple of the training set can be aggregated to obtain
the right-most branch of the tree.

The FP-tree structure is used to facilitate the automatic discovery of frequent rule-
items from data. Once the frequent rule-items are found, class association rules are
extracted and inserted into another tree structure called a CR-tree. The CR-tree
is needed for efficient retrieval of class association rules. A CR-tree differs from an
FP-tree in the following way:

4.11.4 Using association rules for rule-based classifiers 260

• A CR-tree contains only rule-items that satisfy the minimum support and min-
imum confidence requirements. In contrast, an FP-tree contains the frequent
items of each transaction in the data set.

• Unlike an FP-tree, each node in a CR-tree can have at most one class label,
which corresponds to the most dominant class for that node.

Classifier Construction

CBA uses the sequential covering method to select the class association rules for
constructing its classifier. First, the rules are sorted according to their confidence
and support values. Specifically, given a pair of class association rules, r1 and r2,
the rules are ordered based upon the following criteria:

1. if confidence of r1 is greater than or equal to r2, then r1 has higher precedence.

2. If their confidence are the same, then the rule having the higher support will
have a higher precedence.

3. If none of the conditions above are applicable, then the longest rule will have
the highest precedence.

The CBA algorithm constructs its rule-set in an iterative manner. Initially, the rule
set is empty. The algorithm then chooses a rule that covers the training instances,
with the highest precedent rule selected first. Each time a rule is selected, the
training instances covered by the rule will be removed and a default class (the
majority class) is assigned to cover the remaining instances. Thus, each time a
rule is added, a new classifier Ck is constructed. We can compute the number of
misclassification errors of the current classifier. The rule selection step is repeated
until no rule or training instances remain. Finally, CBA chooses the classifier that
produces the lowest errors.
One of the problems with this approach is that the support and confidence of the

rules are computed only once, prior to removing any training instances. As a result,
the accuracies of the ordered rules may change after adding the first rule to the rule
set. This problem is perhaps unavoidable because if the support and confidence val-
ues of the rules are to be re-computed, this will negate the advantages of generating
all the class association rules unless each rule keeps track of the transaction ids for
which the rule is applicable (this is known as the vertical mining approach.)
Another major problem with this approach is the use of confidence as the main

criteria for selecting the rules. Confidence tends to prefer rules that are generated
for the majority class. This problem is illustrated in the example below.

Example 27 Suppose the data set contains 10 instances of the rare class yr and
990 instances of the majority class ym. Assume that the condition C can be applied
8 times to the rare class and 20 times to the majority class. Thus, the confidence of
the rule C −→ yr is 8/(8 + 20) = 0.286 while the confidence for the rule C −→ ym

4.11.5 Using association patterns for Bayesian classifiers 261

is 20/(8 + 20) = 0.714. Thus, the second rule is ranked much higher than the first
rule even though the first rule seems to work very well for the rare class (it predicts
correctly eight out of ten times).

This problem can be addressed if we use other measures to order the rules.
For example, the ratio measure can be used to compare the fraction of instances
belonging to each class that are covered by the rule. The ratio measure is defined
as:

ratio =
c1
n1
c2
n2

,

where c1 and c2 are the fractions of instances covered by the two classes and the
size for each class is n1 and n2, respectively. The ratio measure remains invariant if
we stratify the data set so that n1 = n2, whereas confidence will change if the data
is stratified.

4.11.5 Using association patterns for Bayesian classifiers

In this approach, frequent itemsets are used to provide joint probability estimates
of the data. In Bayesian classifier, the task to estimate the posterior probability
of the class given the attributes. The posterior probability can be expressed as the
joint probabilities using the Bayes theorem.
There are many ways to estimate the posterior probability. For example, suppose

we are given the following attributes: (x1, x2, · · · , x6). How do we estimate the
posterior probability, P (y|x1, x2, · · · , x6)? First, we can use the Bayes theorem to
express the probability in terms of the joint probability, P (x1, x2, · · · , x6, y). Below,
we provide three different ways to compute the joint probability:

P (x1, x2, · · · , x6, y) = P (x1, x2, y)× P (x3, x4|x1, x2, y)× P (x5, x6|x1, x2, x3, x4, y)
P (x1, x2, · · · , x6, y) = P (x1, x2, x3, y)× P (x5|x1, y)× P (x4, x6|x2, x3, y)
P (x1, x2, · · · , x6, y) = P (x5, y)× P (x1, x3, x4|x5, y)× P (x2, x6|x1, x3, x5, y)

where each equation makes certain assumption regarding the independence of the
attributes. Each conditional probability on the right hand side of the above equa-
tions can be re-written as a joint probability that can be estimated using the support
of itemsets.

4.11.6 Support and Confidence

In the original association rule formulation, the support and confidence measures are
used to assess the importance of the discovered rules. However, data mining prac-
titioners often face with the dilemma of having to choose the appropriate minimum
support and minimum confidence thresholds for their particular data sets. This is
because choosing the appropriate minimum support threshold involves a trade-off
between missing interesting patterns and computational efficiency. A minimum sup-
port threshold chosen too high has the effect of discovering very few patterns and

4.11.6 Support and Confidence 262

can potentially lose many interesting patterns. On the other hand, if the minimum
support threshold is too low, then a large number of patterns can be generated,
which increases the computation time of the algorithm as support-based pruning
may no longer be effective.
The choice of minimum support threshold also depends on the nature of the

data. For example, if the data set is too dense, then many items will be associated
with many other items. In this case, it is computationally expensive to use a low
minimum support threshold for finding the frequent itemsets and association rules.
On the other hand, if the data set is sparse, one may apply a much lower support
threshold without degrading the performance of the algorithm considerably.
While there is no absolute procedure that dictates how to select the best thresh-

olds, there are several guidelines one may follow. A hint as to what support threshold
one should use is given by the average width of the transactions. Suppose the data
set contains d items and N transactions, with an average transaction width equals
to w. Assuming that each item is equally likely to appear in the data set, we would
expect each item to appear Nw/d times. This suggests that using a minimum sup-
port threshold of w/d, we can find items that appear more frequently than expected
according to the uniform distribution assumption. In addition, since w is related to
the density of the data, the above analysis suggests that it is safe to use a higher
support threshold for dense data sets.
Another approach is to start from a high minimum support threshold, and then

gradually lower the threshold until a manageable number of interesting patterns are
found. This approach is more time-consuming as it may require multiple runs of
the association rule mining algorithm.
Selection of the minimum confidence threshold is equally challenging. In most

situations, one would consider using a confidence threshold greater than 50% because
if any rule A −→ B has a confidence less than 50%, then the opposite rule A −→ ¬B
is more predictive (as its confidence is higher than 50%). Nevertheless, there are
data sets for which most of the rules have confidence less than 50%. For example,
if most of the itemsets of size 2 have support less than half of the support for its
corresponding items, i.e., σ(A,B) < 0.5min(σ(A), σ(B)), then it would be extremely
difficult to find high confidence rules unless the minimum support threshold is very
low.

Chapter 5 263

Chapter 5

Cluster Analysis

Cluster analysis divides data into meaningful or useful groups (clusters). If mean-
ingful clusters are the goal, then the resulting clusters should capture the ‘natural’
structure of the data. For example, cluster analysis has been used to group related
documents for browsing, to find genes and proteins that have similar functionality,
and to provide a grouping of spatial locations prone to earthquakes. However, in
other cases, cluster analysis is only a useful starting point for other purposes, e.g.,
data compression or efficiently finding the nearest neighbors of points. Whether for
understanding or utility, cluster analysis has long been used in a wide variety of
fields: psychology and other social sciences, biology, statistics, pattern recognition,
information retrieval, machine learning, and data mining.
This chapter provides an introduction to cluster analysis in the field of data

mining. We begin with a brief description of what cluster analysis is and is not,
followed by a discussion of different ways a set of objects can be divided into a
set of clusters and an explanation of the different types of clusters. As clustering
algorithms are based either on the notion of similarity (distance) or density, these
two concepts are then discussed in some detail. This is followed by an examination
of other important characteristics of clustering algorithms. Most of the rest of the
chapter is used to describe various types of clustering techniques and to illustrate
the central concepts embodied by those techniques. However, the final section of
this chapter is devoted to cluster validity, i.e., methods for evaluating the ‘goodness’
of the clusters produced by a clustering algorithm. While this chapter strives to
be relatively self-contained from a conceptual point of view, the breadth of cluster
analysis means that many details have necessarily been omitted, and, consequently,
many references to relevant books and papers are provided in the bibliographic
remarks.

5.1 Introduction 264

(a) Original points. (b) Two clusters.

(c) Four clusters. (d) Six clusters.

Figure 5.1. Different ways of clustering the same set of points.

5.1 Introduction

5.1.1 What is cluster analysis?

Cluster analysis groups data objects based on information found in the data that
describes the objects and their relationships. The goal is that the objects in a group
be similar (or related) to one another and different from (or unrelated to) the objects
in other groups. The greater the similarity (or homogeneity) within a group, and the
greater the difference between groups, the ‘better’ or more distinct the clustering.
In many applications, what constitutes a cluster is not well defined, and clusters

are often not well separated from one another. Nonetheless, most cluster analy-
sis seeks, as a result, a partition of the data into non-overlapping groups. Fuzzy
clustering, described later in Section 5.9.1, is one exception to this, and allows an
object to partially belong to several groups. In hierarchical clustering, the clusters
are nested, i.e., can have subclusters, but are otherwise non-overlapping.
To better understand the difficulty of deciding what constitutes a cluster, con-

sider Figure 5.1, which shows twenty points and three different ways that they can
be divided into clusters. If we allow clusters to be nested, then the most reasonable
interpretation of the structure of these points is that there are two clusters, each
of which has three subclusters. See figures 5.1b and 5.1d, respectively. However,
the apparent division of each of the two larger clusters into three subclusters may
simply be an artifact of the human visual system. Also, it may not be unreasonable
to say that the points form four clusters. See Figure 5.1c. Thus, we stress once
again that the definition of what constitutes a cluster is imprecise and that the best
definition depends on the type of data and the desired results.

5.1.2 What is not cluster analysis?

In this section, we briefly illustrate the difference between cluster analysis and other
techniques used to divide data objects into groups. For instance, cluster analysis

5.1.3 Different Types of Clusterings 265

is not classification in the sense of Chapter 3. Although cluster analysis can be
regarded as a form of classification in that it creates a labelling of objects with class
(cluster) labels, it derives these labels only from the data. In contrast, classification
in the sense of Chapter 3 is ‘supervised’ classification, i.e., new, unlabelled objects
are assigned a class label using a model developed from objects with known class
labels. For this reason, cluster analysis is sometimes referred to as ‘unsupervised’
classification. However, when the term ‘classification’ is used without any qualifica-
tion, it typically refers to supervised classification.
Also, while the terms ‘segmentation’ and ‘partitioning’ are often used as syn-

onyms for ‘clustering,’ frequently these terms are are used for approaches outside the
traditional bounds of cluster analysis. For instance, ‘segmentation’ is often used to
refer to a division of data into groups using simple techniques e.g., splitting people
into groups based on income or their last name. Nonetheless, some work in market
segmentation is cluster analysis, and there is also a mathematical framework for
data mining that regards many data mining activities as ‘segmentation problems.’
Likewise, while many techniques for partitioning a data set do not fall within the
area of cluster analysis, there is a strong connection between graph partitioning and
clustering. See Section 5.4.
As a final illustration of the distinction between clustering and other techniques

for dividing data objects into groups, we present one last example: a database or
search engine query. Although a query divides a set of records or web pages into
two groups—those retrieved by the query and those that are not—we do not regard
the resulting two sets of data objects as clusters. A query represents a selection of
objects while clustering strives to organize a data set by grouping similar objects.

5.1.3 Different Types of Clusterings

An entire collection of clusters is commonly referred to as a clustering, and in this
section, we describe various types of clusterings: hierarchical versus partitional, ex-
clusive versus non-exclusive, fuzzy versus non-fuzzy, partial versus complete, and
object clustering versus attribute clustering. The most commonly discussed differ-
ence between collections of clusters is whether the clusters are nested or unnested
or, in more traditional terminology, whether a set of clusters is hierarchical or par-
titional. A partitional or unnested set of clusters is simply a division of the set of
data objects into non-overlapping subsets (clusters) such that each data object is in
exactly one subset, i.e., a partition of the data objects. We previously saw examples
of partitional clustering in figures 5.1b-d. A hierarchical or nested clustering is a set
of nested clusters organized as a hierarchical tree, where the leaves of the tree are
singleton clusters of individual data objects, and where the cluster associated with
each interior node of the tree is the union of the clusters associated with its child
nodes. The tree that represents a hierarchical clustering is called a dendrogram, a
term that comes from biological taxonomy. Figure 5.2 shows an example of a nested
clustering and the corresponding dendrogram.
The distinction between a hierarchical and partitional clustering is not as great

as it might seem. Specifically, by looking at the clusters on a particular level of

5.1.3 Different Types of Clusterings 266

p4
p1

p3

p2

(a) Nested Clusters

p4p1 p2 p3

(b) Dendrogram

Figure 5.2. A hierarchical clustering of four points shown as nested clusters and as a dendrogram.

a hierarchical tree, a partitional clustering can be obtained. For example, in Fig-
ure 5.2, the partitional clusterings, from bottom to top, are {{1}, {2}, {3}, {4}},
{{1}, {2, 3}, {4}}, {{1}, {2, 3, 4}}, and {{1, 2, 3, 4}}. As another example, figures
5.1b and 5.1d can be regarded as two partitional clusterings from a hierarchical
clustering of the 20 points of Figure 5.1a. Thus, a hierarchical partitioning can be
viewed as a sequence of partitional clusterings, and a partitional clustering can be
viewed as a particular ‘slice’ of a hierarchical clustering.
In the hierarchical clustering of Figure 5.2, the set of clusters at a given level

and the set of clusters of the level immediately preceding it are the same except
that one of the clusters in the given level is the union of two of the clusters from the
immediately preceding level. While this approach is traditional and most common, it
is not essential, and a hierarchical clustering can merge more than two clusters from
one level to the next higher one. Figure 5.3 shows an example of a non-traditional
hierarchical clustering.
In a non-exclusive clustering, a point can belong to more than one cluster. In

the most general sense, a non-exclusive clustering is used to reflect the fact that
an object may belong to more than one group (class) at a time, e.g., a person at a
university may be both an enrolled student and an employee of the university. Note
that the exclusive versus non-exclusive distinction is independent of the partitional
(unnested) versus hierarchical (nested) distinction.
In a more limited sense, a non-exclusive clustering is sometimes used when an

object could reasonably be placed in any of several clusters. Rather than make a
somewhat arbitrary choice and place the object in a single cluster, such objects are
are placed in all of the “equally good” clusters. This type of non-exclusive clustering
does not attempt to deal with multi-class situations, but is more similar to the fuzzy
clustering approach that we describe next.
In a fuzzy clustering, every point belongs to every cluster, but with a weight

5.1.3 Different Types of Clusterings 267

p4
p1

p3

p2

(a) Non-traditional Nested Clusters

p4p1 p2 p3

(b) Non-traditional Den-

drogram

Figure 5.3. A non-traditional hierarchical clustering of four points shown as nested clusters and as a dendro-

gram.

that is between 0 (absolutely doesn’t belong) and 1 (absolutely belongs). In other
words, clusters are treated as fuzzy sets. (Mathematically, a fuzzy set is one where
an object belongs to any set with a weight that is between 0 and 1. For any object,
the sum of the weights must equal 1.) The motivation for this sort of clustering
is to avoid the arbitrariness of assigning an object to only one cluster. Since the
cluster membership weights for any object sum to 1, a fuzzy clustering does not
capture multi-class situations where an object belongs to multiple classes, e.g., when
a person is both a student and an employee. In a very similar way, some probabilistic
clustering techniques assign each point a probability of belonging to each cluster, and
these probabilities must also sum to one. Often a fuzzy or probabilistic clustering
is converted to a ‘crisp’ clustering by assigning each object to the cluster for which
its membership weight (probability) is highest.
A complete clustering assigns every object to a cluster, whereas a partial clus-

tering does not. The motivation for a partial clustering is that not all objects in a
data set may belong to well-defined groups. Indeed, many objects in the data set
may represent noise, outliers, or “uninteresting background.” For example, some
newspaper stories may share a common theme, e.g., global warming, while other
stories are more generic or one-of-a-kind. Hence, an application that was interested
in finding the important topics in the last month of stories might want to find only
clusters of documents that are tightly related by a common theme. Nonetheless,
in many cases, a full clustering of the objects is desired, e.g., an application may
want to use clustering to organize documents for browsing and may need to guaran-
tee that all documents can be browsed, i.e., that every document belongs to some
cluster.
While most clustering is object clustering, i.e., the clusters are groups of objects,

5.1.4 Different Types of Clusters 268

attribute clustering, i.e., the clusters are groups of attributes, can also be useful. For
instance, given a set of documents, we may wish to cluster the words (terms) of the
documents, as well as or instead of the documents themselves. Attribute clustering
is less common than object clustering, as are clustering techniques that attempt to
cluster the both objects and attributes simultaneously.

5.1.4 Different Types of Clusters

As mentioned above, the term, ‘cluster,’ does not have a precise definition. However,
several working definitions of a cluster are commonly used and are described in this
section. In these descriptions, we will use two dimensional points as our data objects
to illustrate the differences between the different types of clusters, but the cluster
types described are applicable to a wide variety of data sets.

Well-Separated A cluster is a set of points such that any point in a cluster is
closer (or more similar) to every other point in the cluster than to any point
not in the cluster. Sometimes a threshold is used to specify that all the points
in a cluster must be sufficiently close (or similar) to one another. Figure 5.4
shows two well separated clusters.

Center-based Cluster A cluster is a set of objects such that an object in a cluster
is closer (more similar) to the ‘center’ of a cluster, than to the center of any
other cluster. The center of a cluster is often a centroid, i.e., the average of
all the points in the cluster, or a medoid, the most ‘representative’ point of a
cluster. Figure 5.5 shows four center-based clusters.

Contiguous Cluster (Nearest neighbor or Transitive Clustering) A cluster
is a set of points such that a point in a cluster is closer (or more similar) to
one or more other points in the cluster than to any point not in the cluster.
Figure 5.6 shows eight contiguous clusters.

Density-based A cluster is a dense region of points, which is separated by low-
density regions, from other regions of high density. This definition is more
often used when the clusters are irregular or intertwined, and when noise and
outliers are present. Note that the contiguous definition would find only one
cluster in Figure 6. Also note that the three curves don’t form clusters since
they fade into the noise, as does the bridge between the two small circular
clusters. Figure 5.7 shows six density-based clusters.

Shared Property (Conceptual Clusters) More generally, we can define a clus-
ter as a set of points that share some property. This definition encompasses
all the previous definitions of a cluster, e.g., points in a center based cluster
share the property that they are all closest to the same centroid. However, the
shared property approach also includes new types of clusters. To illustrate,
consider Figure 5.8a which shows a rectangular area (cluster) that is adja-
cent to a rectangular one and Figure 5.8b which shows two intertwined circles

5.1.4 Different Types of Clusters 269

Figure 5.4. Two well-separated clusters of 2 dimensional points.

Figure 5.5. Four center-based clusters of 2 dimensional points.

(clusters). In both cases, a cluster finding algorithm would need to have a
very specific ‘concept’ of a cluster in mind to successfully find these clusters.
Finding such clusters is sometimes called ‘conceptual clustering.’ However,
too sophisticated a notion of a cluster would bring us into the area of pattern
recognition, and thus, we will only consider the simpler types of clusters in
this chapter.

Clusters Defined Via Objective Functions Another general approach to defin-
ing a set of clusters by using an objective function that, given a set of clusters,
returns a positive real number that measures how well this set of clusters ful-
fills the clustering objective. (Without loss of generality, for the remainder
of this discussion assume that we want to minimize the objective function
instead of maximizing it.) The idea is that we define our clustering as the
set of clusters that minimizes the objective function. To illustrate, for two
dimensional points, a common objective function is squared error, which is is
computed by calculating the sum of the squared distance of each point to the
center of its cluster. For a specified number of clusters, K we could then de-
fine our clusters to be the partitioning of points into K groups that minimizes
this objective. The K-means algorithm—see Section 5.6.1—is based on this
objective function. The use of objective functions for clustering is discussed

Figure 5.6. Eight contiguous clusters of 2 dimensional points.

5.2 Similarity and Distance 270

Figure 5.7. Six dense clusters of 2 dimensional points.

(a) A triangular and rectangular cluster. (b) Two intertwined, circular clusters.

Figure 5.8. Examples of shared property or ‘conceptual’ clusters.

further in Section 5.4.

5.2 Similarity and Distance

If the goal of clustering is to put similar objects in the same cluster, then the
measure of similarity is crucial. Informally, the similarity between two objects is
a numerical measure of the degree to which the two objects are alike. The only
absolute requirement on similarities is that they are higher when pairs of objects
are more alike. However, similarities are usually non-negative and are often between
0 (no similarity) and 1 (complete similarity). Likewise, the dissimilarity between
two objects is a numerical measure of the degree to which the two objects are
different. Dissimilarities are lower for more similar pairs of objects. Frequently
the term, distance, is used as a synonym for dissimilarity, although, as we shall see
below, distance is more properly used to refer to a special class of dissimilarities.
For convenience, the term, proximity, is used to refer to either a similarity or a
dissimilarity.
Since the proximity between two objects is, in general, a function of the proxim-

ity between the corresponding attributes of the the two objects, we begin this section
with a description of similarity and dissimilarity between objects having only one
simple attribute. With this background, we then describe some important distance
and similarity measures for objects with multiple attributes. This includes measures
such as correlation and Euclidean distance (and its generalizations), which are use-
ful for ‘dense’ data such as time series or two-dimensional points, e.g., as well as

5.2.1 Similarity and Dissimilarity Between Simple Attributes 271

measures such as the Jaccard and cosine measures which are useful for sparse data
such as documents. Next, several important issues concerning proximity measures
are considered, and the section concludes with a brief discussion on selecting the
‘right’ proximity measure.

5.2.1 Similarity and Dissimilarity Between Simple Attributes

We begin with some simple examples, i.e., with objects that consist only of a single
attribute. Consider first, objects described by one nominal attribute. What would
it mean for two such objects to be similar? Since nominal attributes only convey
information about the distinctness of objects, all we can say is that two objects have
the same nominal value or they do not. Hence, in this case the similarity between
two objects is traditionally defined as 1, if attribute values match, and 0, if they
do not. A dissimilarity would be defined in the opposite way: 0, if the objects’
attribute values match, and 1, if they do not.
For objects that consist of a single ordinal attribute, the situation is more com-

plicated since we also have information about order that should be taken into
account. Thus, if the attribute measures the quality of a product on the scale
{poor, fair,OK, good, wonderful}, then it seems reasonable that a product, P1,
which is rated wonderful, would be closer to a product P2, which is rated good,
than to a product P3, which is rated OK. To make this observation quantitative,
the values of the ordinal attribute are often mapped to successive integers, begin-
ning at 0 or 1, e.g., {poor = 0, fair = 1, OK = 2, good = 3, wonderful = 4}. Then,
dissimilarity(P1, P2) = 3 − 2 = 1 or, if we want the dissimilarity to fall between
0 and 1, dissimilarity(P1, P2) = 3−2

4 = 0.25. A similarity for nominal attributes
can be defined, as similarity often is, as 1− dissimilarity.
This definition of similarity (dissimilarity) for an ordinal attribute should make

the reader a bit uneasy since we are assuming equal intervals and this is not true.
(Otherwise we would have an interval or ratio attribute.) Is the similarity between
two objects that have the values, fair and good, really the same as that between
two objects with values, OK and wonderful? Probably not, but, in practice, our
options are limited, and in the absence of more information, this is the standard
technique for ordinal attributes.
If objects have a single interval or ratio attribute, then the natural measure

of dissimilarity between two objects is the absolute difference of their values. For
example, we might compare our current weight and our weight a year ago by saying
“I am ten pounds heavier.” Notice that in cases such as these, the dissimilarities
typically range from 0 to ∞, rather than from 0 to 1.
The proximity of interval and ratio scale attributes is often defined in terms of

dissimilarity (differences) since it seems so natural, but it is possible to use similarity
as well. The easiest approach is to define similarity as the negative of the dissimi-
larity. However, if we want a similarity with a range between 0 and 1, then we can
set similarity = 1

1+distance . This distorts the scale, i.e., there is less discrimination
between highly dissimilar objects, which will all have similarities close to 0, but

5.2.2 Distances Between Data Objects 272

Attribute

Type

Dissimilarity Similarity

Nominal d =

{
0 if p = q

1 if p 6= q
s =

{
1 if p = q

0 if p 6= q

Ordinal

d = |p−q|
n−1

(values mapped to integers 0 to

n − 1, where n is the number of
values)

s = 1− |p−q|
n−1

Interval or Ra-

tio

d = |p− q| s = −d, s = 1
1+d or

s = 1− d−min d
max d−min d

Table 5.1. Similarity and dissimilarity for simple attributes

often this is what is wanted. If the range of the interval or ratio attribute is limited,
then another option is to set similarity = distance−minimum distance

maximum distance−minimum distance .
Table 5.1 summarizes the previous discussion. In this figure, p and q are two

objects that have one attribute of the indicated type. Also, d and s are, respectively,
the dissimilarity and similarity between p and q. Other approaches are possible;
these are just the most common.

5.2.2 Distances Between Data Objects

The distance between two points (data objects), p and q, in two, three, or higher
dimensional space is given by the following familiar formula for Euclidean distance:

distance(p, q) =

√√√√
n∑

k=1

(pk − qk)2, (5.1)

where n is the number of dimensions and pk and qk are, respectively, the k
th

attributes (components) of p and q. We illustrate this formula with the points in
Figure 5.9, Table 5.2, which gives the x and y coordinates of the points, and Table
5.3, which shows the distance matrix, i.e., the matrix that gives the pairwise distance
between points.
Distances, such as the Euclidean distance, have some well known properties,

which we now list. Let d(x, y) be the distance (dissimilarity) between points (data
objects), p and q.

• d(p, q) ≥ 0 for all p and q and d(p, q) = 0 only if p = q. (Positivity)

• d(p, q) = d(q, p) for all p and q. (Symmetry)

• d(p, r) ≤ d(p, q) + d(q, r) for all points p, q, and r. (Triangle Inequality)

5.2.2 Distances Between Data Objects 273

0

1

2

3

0 1 2 3 4 5 6

Figure 5.9. Four two-dimensional points.

point x coordinate y coordinate

p1 0 2

p2 2 0

p3 3 1

p4 5 1

Table 5.2. X-Y coordinates of four points.

p1 p2 p3 p4

p1 0.000 2.828 3.162 5.099

p2 2.828 0.000 1.414 3.162

p3 3.162 1.414 0.000 2.000

p4 5.099 3.162 2.000 0.000

Table 5.3. Euclidean distance matrix for Table 5.2.

L1 p1 p2 p3 p4

p1 0.000 4.000 4.000 6.000

p2 4.000 0.000 2.000 4.000

p3 4.000 2.000 0.000 2.000

p4 6.000 4.000 2.000 0.000

Table 5.4. L1 distance matrix for Table 5.2.

L∞ p1 p2 p3 p4

p1 0.000 2.000 3.000 5.000

p2 2.000 0.000 1.000 3.000

p3 3.000 1.000 0.000 2.000

p4 5.000 3.000 2.000 0.000

Table 5.5. L∞ distance matrix for Table 5.2.

5.2.3 Similarities Between Data Objects 274

We make several comments. First, some people use the term ‘distance’ only
for ‘dissimilarity’ measures that satisfy these properties, but that practice is often
violated. (Mathematicians would say that a distance function that satisfies these
properties is a ‘metric.’) Most often, a ‘non-distance’ (or non-metric) dissimilarity
measure lacks only property 3. Second, property 2 implies that the distance matrix
is symmetric. i.e., the ijth entry is the same as the jith entry. For example, in Table
5.3, the fourth row of the first column and the fourth column of the first row both
contain the entry, 5.099.
The Euclidean distance measure shown in 5.1 is generalized by the Minkowski

distance metric shown in equation 5.2.

distance(p, q) =

(
n∑

k=1

|pk − qk|r
)1/r

, (5.2)

where r is a parameter. The following are the three most common examples of
Minkowski distances.

• r = 1. City block (Manhattan, taxicab, L1 norm) distance. A common
example of this is the Hamming distance, which is the number of bits that are
different between two objects that have only binary attributes, i.e., between
two binary vectors.

• r = 2. Euclidean distance (L2 norm).

• r = ∞. ‘supremum’ (Lmax norm, L∞ norm) distance. This is the maxi-
mum difference between any attribute of the objects. More formally, the L∞
distances is defined by equation 5.3.

distance(p, q) = lim
r→∞

(
n∑

k=1

|pk − qk|r
)1/r

(5.3)

The r parameter should not be confused with the number of dimensions (attributes),
n. For example, Euclidean, Manhattan and supremum distances are defined for all
values of n: 1, 2, 3, . . ., and specify different ways of combining the differences in
each dimension (attribute) into an overall distance.
Tables 5.4 and 5.5, respectively, give the proximity matrices for the L1 and L∞

distances using data from Table 5.2.

5.2.3 Similarities Between Data Objects

For similarities, the triangle inequality (or the analogous property) typically does
not hold. Usually, however, symmetry and positivity do hold. To be explicit, if
s(p, q) is the similarity between points (data objects), p and q, then the typical
properties of similarities are the following.

• s(p, q) = 1 only if p = q. (0 ≤ s ≤ 1)

5.2.3 Similarities Between Data Objects 275

• s(p, q) = s(q, p) for all p and q. (Symmetry)

A similarity matrix is typically symmetric, although this is not always the case.
As example consider an experiment in which people are asked to classify a small
set of characters as they flash on a screen. Then the confusion matrix for this
experiment records how often each character is classified as itself, or as another
character. For instance, suppose that ‘0’ appeared 200 times and was classified as
a ‘0’ 160 times, but as a an ‘o’ 40 times. Likewise, suppose that ‘o’ appeared 200
times and was classified as an ‘o’ 170 times, but as ‘0’ only 30 times. If we take
these counts as a measure of the similarity between two characters, then we have
a similarity measure, but that is not symmetric. In such situations, the similarity
measure is often made symmetric by setting s′(p, q) = s′(q, p) = (s(p, q)+s(q, p))/2,
where s′ indicates the new similarity measure.

Similarity Between Objects with Binary Attributes

There are many measures of similarity between objects that contain only binary
attributes. These measures are referred to as similarity coefficients, and have values
between 0 and 1. A value of 1 indicates that the two objects are completely similar,
while a value of 0 indicates that the objects are not at all similar. There are many
rationales for why one coefficient is better than another in specific instances, but
we will consider only a few of these coefficients. Let p and q be two objects that
consist of n binary attributes. The comparison of two such objects, i.e., two binary
vectors, leads to the following four quantities:

M01 = the number of attributes where p was 0 and q was 1
M10 = the number of attributes where p was 1 and q was 0
M00 = the number of attributes where p was 0 and q was 0
M11 = the number of attributes where p was 1 and q was 1

One commonly used similarity coefficient is the simple matching coefficient, SMC,
which is given by the following equation:

SMC =
number of matching attribute values

number of attributes
=

M11 +M00

M01 +M10 +M11 +M00
(5.4)

This measure counts both presences and absences equally. For example, this
measure might be appropriate to find students that had answered the questions
similarly on a test that consisted only of true/false questions.
However, in some cases we might have asymmetric binary attributes. Suppose

that p and q are data objects that represent two rows (two transactions) of a transac-
tion matrix (see Chapter 2). Then, each binary attribute corresponds to a product:
a 1 indicates that a product was purchased, while a 0 indicates that the product
was not purchased. Since the number of products not purchased by any customer
far outnumbers the number of products that were purchased, a similarity measure

5.2.3 Similarities Between Data Objects 276

such as SMC would say that all transactions are very similar. Consequently, the
Jaccard coefficient is frequently used to handle objects consisting of asymmetric bi-
nary attributes. The Jaccard coefficient, often symbolized by J , is defined in the
following way.

J =
number of matching presences

number of attributes not involved in 00 matches
=

M11

M01 +M10 +M11
(5.5)

To illustrate the difference between these two similarity measures, we calculate
SMC and J for the following two binary vectors.

p = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
q = (0, 0, 0, 0, 0, 0, 1, 0, 0, 1)

M01 = 2 the number of attributes where p was 0 and q was 1
M10 = 1 the number of attributes where p was 1 and q was 0
M00 = 7 the number of attributes where p was 0 and q was 0
M11 = 0 the number of attributes where p was 1 and q was 1

SMC = M11+M00
M01+M10+M11+M00

= 0+7
2+1+0+7 = 0.7

J = M11
M01+M10+M11

= 0
2+1+0 = 0

Cosine Similarity

As mentioned in Chapter 2, documents are often represented as vectors, where each
attribute represents the frequency with which a particular term (word) occurs in
the document. It is more complicated than this, of course, since certain common
words are ignored and normalization is performed to account for different forms of
the same word, differing document lengths, etc. (Again, see Chapter 2).
But even though the documents have thousands or tens of thousands of attributes

(terms), each document is sparse, i.e., has relatively few non-zero attributes. (The
normalizations used for documents do not create a non-zero where there was a zero,
i.e., they preserve sparsity.) Thus, as with transaction data, similarity should not
depend on the number of shared 0 values since any two documents are likely to
“not contain” many of the same words, and therefore, if 00 matches are counted,
most documents will be highly similar to most other documents. Consequently,
we need a measure like the Jaccard measure, which ignores 00 matches, but which
can handle non-binary vectors. The cosine similarity, defined below, is the most
common measure of document similarity. If p and q are two document vectors, then

cosine(p, q) =
p • q
‖p‖ ‖q‖ , (5.6)

where • indicates vector dot product, i.e., p • q = ∑n
k=1 pkqk and ‖p‖ is the length

of vector p, i.e., ‖p‖ =
√∑n

k=1 p
2
k =
√
p • p.

5.2.3 Similarities Between Data Objects 277

p

q

Figure 5.10. Mathematical illustration of the cosine measure.

To illustrate, we show how to calculate the cosine similarity for the following
two data objects (binary vectors).

p = (3, 2, 0, 5, 0, 0, 0, 2, 0, 0)
q = (1, 0, 0, 0, 0, 0, 0, 1, 0, 2)

p • q = 3 ∗ 1 + 2 ∗ 0 + 0 ∗ 0 + 5 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 2 ∗ 1 + 0 ∗ 0 + 0 ∗ 2 = 5
‖d1‖ =

√
3 ∗ 3 + 2 ∗ 2 + 0 ∗ 0 + 5 ∗ 5 + 0 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 2 ∗ 2 + 0 ∗ 0 + 0 ∗ 0 =

6.480
‖d2‖ =

√
1 ∗ 1 + 0 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 1 ∗ 1 + 0 ∗ 0 + 2 ∗ 2 =

2.236

cos(d1, d2) = .31

The definition of the cosine measure given in equation 5.6 may seem a bit mys-
terious at first. However, notice that since we divide by the norms of the vectors, we
are normalizing both data objects (vectors) to have a length of 1. This means that
cosine similarity does not take into account the magnitude of the two data objects
when computing similarity. (If you want a proximity measure where magnitude is
important, then a measure such as the Euclidean distance might be better.)
As indicated by Figure 5.10, cosine similarity really is a measure of the (cosine

of the) angle between p and q. Thus if the cosine similarity is 1, the angle between
p and q is 0◦, and they are the same except for magnitude. If the cosine similarity is
0, then the angle between p and q is 90◦, and they do not share any terms (words).
If we ‘normalize’ p and q to have unit length, i.e., p′ = p/‖p‖ and q′ = q/‖q‖,

then cosine(p, q) = p′ • q′, i.e., the cosine measure can be calculated by taking a
simple dot product. Consequently, when many cosine similarities between objects
are being computed, normalizing the objects to have unit length can reduce the time
required.
Finally, note that for cosine similarity to make sense all the attributes must be

binary or continuous (interval or ratio) variables.

Tanimoto Coefficient (Extended Jaccard Coefficient)

We briefly mention that there is another similarity measure which can be used for
document data and which reduces to the Jaccard coefficient in the case of binary

5.2.3 Similarities Between Data Objects 278

attributes. The Tanimoto coefficient, which we shall represent as T , is defined by
the following equation.

T (p, q) =
p • q

‖p‖2 + ‖q‖2 − p • q , (5.7)

Correlation

The correlation between two data objects that have binary or continuous (interval
or ratio variables) variables is a measure of the linear relationship between the
attributes of the objects. More precisely, Pearson’s correlation coefficient between
two data objects, p and q is defined as

corr(p, q) =
covariance(p, q)

standard deviation(p) standard deviation(q)
(5.8)

where

covariance(p, q) =
1

n− 1

n∑

k=1

(pk −mp)(qk −mq)

standard deviation(p) =

√√√√ 1

n− 1

n∑

k=1

(pk −mp)2,

standard deviation(q) =

√√√√ 1

n− 1

n∑

k=1

(qk −mq)2,

mp =
1

n

n∑

k=1

pk is the mean of p

mq =
1

n

n∑

k=1

qk is the mean of q

Correlation is always in the range -1 to 1. A correlation of 1 (-1) means that
p and q have a perfect positive (negative) linear relationship, i.e., that p = aq + b,
where a and b are constants. To illustrate this, the following two sets of values for p
and q indicate cases where the correlation is, respectively, -1 and +1. In both cases
the mean of p and q was chosen to be 0, for simplicity.

p = (−3, 6, 0, 3, −6)
q = (1, −2, 0, −1, 2)

5.2.3 Similarities Between Data Objects 279

−1.00 −0.90 −0.80 −0.70 −0.60 −0.50 −0.40

−0.30 −0.20 −0.10 0.00 0.10 0.20 0.30

 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Figure 5.11. Scatter plots illustrating correlations from -1 to 1.

p = (3, 6, 0, 3, 6)
q = (1, 2, 0, 1, 2)

If the correlation is 0, then there is no linear relationship between the attributes
of the two data objects. However, non-linear relationships may still exist. In the
following example, q = p2, but their correlation is 0.

p = (−3, −2, −1, 0, 1, 2, 3)
q = (9, 4, 1, 0, 1, 4 9)

While the correlation coefficient is a standard part of most statistics or mathe-
matics packages, it is also easy to judge the correlation between two data objects p
and q by plotting their attribute values. Figure 5.11 show what these plots look like
in one specific case. p and q have 30 attributes and the values of these attributes
are randomly generated (normal distribution) with a correlation that ranges from
-1 to 1. Each circle in a plot represents one of the 30 attributes; its x-coordinate
is the value of the attribute for p, while it’s y-coordinate is the value of the same
attribute for q.
We remark that if we standardize, p and q, i.e.,

p′ = (p−mp)/standard deviation(p) and q
′ = (q −mq)/standard deviation(q),

then corr(p, q) = p′ • q′, i.e., the correlation coefficient can be calculated by taking
the dot product.

5.2.4 Issues in Proximity Calculation 280

5.2.4 Issues in Proximity Calculation

There are a number of issues that should be well-understood by users of proximity
measures. Here we briefly consider (1) how to handle the case where attributes have
different scales and/or are correlated, (2) how to calculate proximity between objects
that are composed of different sorts of attributes, e.g., numerical and qualitative,
(3) how to handle proximity calculation when attributes have different weights, i.e.,
when not all attributes should contribute equally to the proximity of objects, and
(4) the impact of high dimensionality on proximity measures.

Standardization and Correlation for Distance Measures

An important issue with distances is whether all the attributes have the same range
of values. (This situation is often described by saying that the variables have dif-
ferent ‘scales.’) For instance, in Chapter 2 we gave an example of trying to use
the Euclidean distance to measure the dissimilarity between people based on two
attributes: age and income. Without standardization, the distance between two
people will be dominated by income.
Another issue, although one that requires more knowledge of statistics (see Ap-

pendix A), is whether there is correlation between some of the attributes. If so,
then the straightforward application of distance formulas can also result in mislead-
ing distances. A generalization of Euclidean distance, the Mahalanobis distance, is
useful when this is the case and when it is thought that the data may have a Gaus-
sian (normal) distribution. The Mahalanobis distance between two objects (vectors)
p and q is defined as follows:

mahalanobis(p, q) = (p− q)Σ−1(p− q)T (5.9)

where Σ−1 is the inverse of the covariance matrix of the data.
In Figure 5.12, we see 1000 points, whose x and y attributes are highly correlated,

e.g., 0.6. The distance between the two large points at the opposite ends of the
long axis of the ellipse is 14.7 in terms of Euclidean distance, but only 6 with
respect to Mahalanobis distance. In practice, computing the Mahalanobis distance
is expensive, but can be worthwhile, if the data set is small, for data whose attributes
are correlated. If the attributes are relatively uncorrelated, but have different ranges,
then standardizing the variables is sufficient.

Combining Similarities For Heterogeneous Attributes

The previous definitions of similarity were based on approaches that assumed all the
attributes were of the same type. However, can anything be done if the attributes
are of a wide variety of different types? The answer is, ‘yes,’ and we now describe
one rather straightforward approach. The idea is to compute the similarity between
each attribute separately using Table 5.1. However, we must choose a method that
results in a similarity between 0 and 1, if we want all attributes to count equally,

5.2.4 Issues in Proximity Calculation 281

−8 −6 −4 −2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

y

Figure 5.12. Mahalanobis distance.

and for now, we will assume that this is the case. At this point we might think that
we could define the overall similarity as the average of all the similarities.
Unfortunately, while this is fine for most cases, this approach does not work well

if some of the attributes are asymmetric binary attributes. To see this, consider that
if all the attributes are asymmetric binary attributes, then this suggested similarity
measure reduces to the simple matching coefficient, and we know that this measure
is not appropriate for this situation. The easiest way to fix this problem is to omit
asymmetric binary variables from the similarity calculation when their values are
0 for both of the objects whose similarity is being computed. This approach also
works well for handling missing values.
In summary, a procedure for computing an overall similarity between two objects

with different types of attributes is the following. (This procedure can be easily
modified to work with dissimilarities.)

1. For the kth attribute, compute a similarity, sk, in the range [0, 1].

2. Define an indicator variable, δk, for the kth attribute as follows:

δk =

0 if the kth attribute is a binary asymmetric attribute and both objects
have a value of 0, or if one of the objects has a missing values for the
kth attribute

1 otherwise

3. Compute the overall similarity between the two objects using the following

5.2.5 Selecting the ‘right’ proximity measure. 282

formula:

similarity(p, q) =

∑n
k=1 δksk∑n
k=1 δk

(5.10)

Using Weights

In the previous discussion of proximity measures, we have attempted to treat all
attributes equally. However, sometimes, this is not desirable, e.g., the application
objective dictates that some attributes are more important to the definition of sim-
ilarity than others. In these situations, we can modify some of the formulas for
distance or similarity by weighting the contribution of each attribute
If the weights, wk sum to 1, then (5.10) becomes

similarity(p, q) =

∑n
k=1wkδksk∑n

k=1 δk
(5.11)

The definition of the Minkowski distance can also be modified.

distance(p, q) =

(
n∑

k=1

wk|pk − qk|r
)1/r

, (5.12)

Impact of High Dimensionality on Proximity Measures

Discussion of Curse of Dimensionality and its impact on proximity, Shared Nearest
Neighbor Distance

5.2.5 Selecting the ‘right’ proximity measure.

This section has described a number of of proximity measures and and has pro-
vided some information about the types of data sets for which they are appropriate.
Nonetheless, the reader might still find it difficult to answer to the question, “What
is the right proximity measure to use?”, for many of the data mining scenarios not
covered here. Sometimes, a particular type of proximity measure is well accepted
in a particular field, e.g., the cosine measure for computing the similarity of two
documents, and thus, other data miners will have answered this question. Other
times, the software package or clustering algorithm being used may drastically limit
the choices.
However, if common practice or practical restrictions do not dictate a choice,

then, in general, the proper choice of a proximity measure can be a time consuming
task that requires careful consideration of domain knowledge and the purpose to
which the measure is being put—often, but not always clustering. Frequently, a
number of different similarity measures may need to be evaluated to see which
ones produce results that make the most sense. For example, suppose that the
goal is to cluster documents, and class labels are available for the documents. Then,
similarity measures can be compared to see which one produces the ‘purest’ clusters.
(Details of what constitutes a ‘pure’ cluster will be explained when we discuss cluster
evaluation, later in this chapter—see Section 5.11.)
This discussion needs to be expanded.

5.3 Density 283

5.3 Density

Euclidean density, grid-based approach, points-within-given-radius approach, mul-
tivariate density estimation and kernel density function approach, problems with
density, especially in high dimensions, Shared Nearest Neighbor density

5.4 Characteristics of Clustering Algorithms

Clustering algorithms can be characterized in many ways. As preparation for the
discussion of specific clustering algorithms that is to follow, we list some of the more
important.

Type of clustering produced. The distinctions to be made here are the follow-
ing: Partitional versus hierarchical, overlapping versus non-overlapping, fuzzy
versus non-fuzzy, complete versus partial, and object versus attribute.

Type of clusters sought. For instance, are the clusters being sought well-separated,
center-based, density-based, contiguity-based, concept/shared property-based,
or defined via an objective function?

Handling of variations among clusters. A related issue is whether the clusters
are relatively similar to one another, or whether they are of differing sizes,
shapes and densities.

Handling of high dimensional data. An important characteristic of a cluster-
ing algorithm, is how well it handles high dimensional data. However, this
in turn, depends on whether the proximity or density used by the clustering
algorithm works well for high-dimensional data.

Dimensionality of the clusters found. Additionally, are the clusters found us-
ing the full set of attributes, or do they involve only subsets of the attributes,
i.e., we are looking for clusters in a subspace of the entire space? Subspace
clustering algorithms are discussed in Section 5.8.3.

Type of data the algorithm can handle. Some clustering algorithms make as-
sumptions about the type of data they use. For example, the K-means al-
gorithm (Section 5.6.1 algorithm) assumes that it is meaningful to take the
mean (average) of a set of data objects. This makes sense for data that has
continuous attributes and for document data, but not for record data that has
categorical attributes. On the other hand, some clustering algorithms start
from a proximity matrix and are less affected by the nature of the data.

How the Algorithm Handles Noise and Outliers regardless of whether a clus-
tering algorithm works with the data matrix or the proximity matrix, its ability
to handle noise and outliers often determines how useful the algorithm will be.

5.4 Characteristics of Clustering Algorithms 284

Type of similarity or density measure the algorithm uses. Since the prox-
imity or density measure plays a key role in defining clusters, the type of
proximity or density measure also needs careful consideration. For example, if
the data has many asymmetric binary variables, a similarity measure such as
the Jaccard coefficient or the cosine measure will often be used for clustering.
As another example, if the data set consists of two- or three-dimensional point
sets, then a grid-based approach can be used to define density.

Conceptual Approach of the Algorithm Many clustering algorithms have one
or more concepts on which the algorithm is based. We mention some of the
common concepts on which clustering algorithms are based.

Maximize an Objective Function In this case, the clustering problem then
becomes an optimization problem, which, in theory, can be solved by enu-
merating all possible ways of dividing the points into clusters and eval-
uating the ‘goodness’ of each potential set of clusters by using the given
objective function. Of course, this ‘exhaustive’ approach is computation-
ally infeasible (NP hard) and as a result, a number of more practical
techniques for optimizing a global objective function have been devel-
oped. One approach to optimizing a global objective function is to rely
on algorithms that find solutions that are often good, but not optimal.
An example of this approach is the K-means clustering (Section 5.6.1
algorithm), which tries to minimize the sum of the squared distances (er-
ror) between objects and their cluster centers. Still another approach is
to forget about global objective functions. In particular, many hierarchi-
cal clustering techniques (Section 5.7) proceed by making local decisions
at each step of the clustering process. These ‘local’ or ‘per-step’ decisions
are also based on an objective function, but the overall or global result
is not easily interpreted in terms of a global objective function.

Fit the Data to a Statistical Model Another approach is to fit the data
to a model. Such models are specified by parameters which are deter-
mined from the data. An example of such techniques is mixture models
(Section 5.9.2), which assume that the data is a ‘mixture’ of a num-
ber of statistical distributions. These clustering algorithms seek to find
a solution to a clustering problem by finding the maximum likelihood
estimates for the statistical parameters that describe the different distri-
butions (clusters).

Transform the Clustering Problem to Another Domain Some cluster-
ing algorithms operate by mapping the clustering problem to a different
domain, and solving a related problem in that domain. For instance,
a proximity matrix defines a weighted graph, where the nodes are the
points being clustered, and the weighted edges represent the proximities
between points, i.e., the entries of the proximity matrix. Thus, cluster-
ing is equivalent to breaking the graph into connected components, one

5.5 Roadmap for Discussing Specific Clustering Techniques 285

for each cluster. Also, some clustering approaches work directly on the
data matrix using linear algebra techniques such as Principal Components
Analysis or Singular Value Decomposition (SVD). These approaches can
identify the strongest Approaches based on neural nets map the cluster-
ing problem into a problem of finding a function or surface that best fits
the given data. Yet other examples of other approaches involve viewing
the data as a physical system, e.g., a collection of oscillators, or, in the
case of two dimensional data, treating the data as an image.

5.5 Roadmap for Discussing Specific Clustering Techniques

While some approaches have been proposed for organizing clustering algorithms
into groups, all of these approaches are somewhat arbitrary since, as the previous
discussion indicates, there are many different ways in which clustering algorithms can
be similar and different. However, in the upcoming discussion of specific clustering
algorithms, we shall use the following groupings and order.

1. Center-based Clustering.

2. Hierarchical Clustering

3. Density-Based Clustering (including Subspace Clustering)

4. Graph-based Clustering

5. Selected Clustering Techniques

In the section on Selected Clustering Techniques, we will cover a variety of clustering
techniques that were not covered in the preceding sections and which illustrate some
important issues, e.g., clustering based on mixture models, fuzzy clustering, and
scalable clustering approaches for handling large data sets.

5.6 Center-Based Clustering Techniques

As described earlier, partitional clustering techniques create a one-level partitioning
of the data objects. There are a number of such techniques, but we shall describe
only two center-based clustering approaches in this section: K-means and K-medoid.
Both of these techniques are based on the idea that a center point can represent a
cluster. (In the following discussion, we will use the terms ‘point’ or ‘data point’
to refer to a data object.) For K-means, we use the notion of a centroid, which is
the mean or median point of a group of points. For K-medoid we use the notion
of a medoid, which is the most representative (central) point of a group of points.
While a centroid almost never corresponds to an actual data point, a medoid, by its
definition, must be an actual data point.

5.6.1 K-means 286

5.6.1 K-means

Basic Algorithm

The K-means clustering technique is very simple and we immediately begin with a
description of the basic algorithm. Note that K is a user specified parameter, i.e.,
the number of clusters desired.

Algorithm 1 Basic K-means Algorithm.

1: Initialization: Select K points as the initial centroids.

2: repeat

3: Form K clusters by assigning all points to the closest centroid.

4: Recompute the centroid of each cluster.

5: until The centroids do not change

The initial centroids, or seeds, as they are often called, are typically chosen
randomly from the set of all data points. Because of this, the set of clusters produced
by the K-means algorithm can vary from one run to another. This raises the issue
of how to evaluate which clustering is best, a topic that will be discussed shortly.
The proximity measure used to evaluate closeness varies, depending on the type

of data. For instance, if we have points in two or three dimensional space, Euclidean
distance is appropriate, while for documents, the cosine measure is typically used.
While any proximity measure could potentially be employed, termination of the
algorithm may not be guaranteed, as it is with Euclidean distance and the cosine
measure.
The centroid associated with a cluster is typically the mean (average) of the

points in the cluster. (This is the reason the algorithm is called K-means.) In
particular, if Ci is the i

th cluster, |Ci| is the number of points in the ith cluster, x
is a point in Ci, and xj is the j

th attribute of that point, then mi, the mean of the
ith cluster, is defined by mi

j =
1
|Ci|

∑
x∈Ci

xj . In other words, the mean of a set of
points is obtained by taking the mean of each attribute for the points in the cluster.
In the absence of numerical problems, K-means always converges to a solution,

i.e., reaches a state where no points are shifting from one cluster to another, and
hence, the centroids don’t change. However, since most of the convergence occurs
in the early steps, the condition on line 5 is often replaced by a weaker condition,
e.g., repeat until only 1% of the points change clusters.

Time and Space Complexity

Since only the data points and centroids are stored, the space requirements are
basically O((m + K)n), where m is the number of points and n is the number of
attributes. The time requirements are O(I ∗K ∗m ∗ n), where I is the number of
iterations required for convergence. As mentioned, I is often small and can usually
be safely bounded, as most changes typically occur in the first few iterations. Thus,

5.6.1 K-means 287

K-means is linear in m, the number of points, and is efficient, as well as simple,
provided that K, the number of clusters, is significantly less than m.

Evaluating K-means Clusters

Since the clusters produced by K-means may vary from run to run, some method
is needed to select one set of clusters over another. If the centroid is taken to be
the mean, and our proximity measure is Euclidean distance, then the quality of a
clustering is measured by the total sum of the squared error (SSE).

SSE =
K∑

i=1

∑

x∈Ci

n∑

j=1

(mi
j − xj)2 (5.13)

In other words, for each data point, we calculate its error, i.e., its Euclidean
distance to the closest centroid, and then, as a measure of the overall goodness of
the clustering, we calculate the total sum of the squared errors (SSE). Given two
different sets of clusters, which are produced by two different runs of K-means, we
prefer the one with the smallest squared error.
While the total SSE provides an overall measure of the quality of the clustering,

the SSE contributed by each cluster is also of interest. (If there is any potential
confusion about which SSE we are talking about, total or cluster, we will use the
terminology, total SSE and cluster SSE, respectively.) For instance, if two clusters
have roughly the same number of points, but one has a larger SSE, then that cluster
is more diffuse, i.e., the points in the cluster are farther away from the cluster
centroid on average. K-means can be regarded as a method which attempts to
approximate or represent a set of points by a much smaller set of points, i.e., the
centroids, and the cluster SSE measures how good this approximation is, on average,
for the points in a cluster, while the total SSE measures the overall goodness of this
approximation.
In Section 5.6.1, we will see how the K-means algorithm can be derived from

the objective of minimizing SSE. Indeed, steps 3 and 4 of the K-means algorithm
directly attempt to minimize SSE. In step 3, we form clusters by assigning points
to the nearest centroid. Obviously, this results in the minimum SSE for a given set
of centroids. In step 4, we recompute the centroids, replacing each cluster centroid
with the centroid that is the mean of that cluster. As is shown in Section 5.6.1, this
approach minimizes the squared error, i.e., the mean of a set of points is the best
choice for a centroid to minimize a cluster’s SSE. However, although the K-means
algorithm is attempting to minimize squared error in steps 3 and 4, only a local
minimum is guaranteed.
We illustrate the fact that different runs of K-means produce different total

SSEs with the example data set presented in Figure 5.13. In particular, Figure
5.13a shows a set of two-dimensional points which has three ‘natural’ groupings of
points. Figure 5.13b shows a clustering solution that represents a global minimum
with respect to SSE for three clusters, while 5.13c shows a suboptimal clustering
which represents a local minimum.

5.6.1 K-means 288

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

(a) Original set of

points.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

(b) Optimal cluster-

ing.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

(c) Suboptimal clus-

tering.

Figure 5.13. Finding three clusters in a set of 2D points.

An obvious way to reduce SSE is to find more clusters, i.e., use a larger K.
While a ‘poor’ K-means clustering with more clusters can result in a higher SSE
than a ‘good’ K-means clustering with fewer clusters, the best possible SSE always
declines as K increases, provided K is less than the number of points.

Choosing initial centroids

Choosing the proper initial centroids is the key step of the basic K-means procedure.
It is easy and efficient to choose initial centroids randomly, but the results are often
poor. We illustrate this with a simple example that uses the points previously
shown in Figure 5.13. Figures 5.14 and 5.15 indicate the clusters that result for
two particular choices of initial points. In the first case, even though all the initial
centroids come from one ‘natural’ cluster, the minimum SSE clustering was still
found. In the second case, however, even though the initial centroids seem ‘better
distributed,’ a suboptimal clustering, i.e., higher squared error, results. For both
figures, the positions of the cluster centroids in the various iterations are indicated
by large crosses.
One technique that is commonly used to address the problem of choosing initial

centroids is to perform multiple runs, each with a different set of randomly chosen
initial centroids, and then select the set of clusters with the minimum SSE. However,

5.6.1 K-means 289

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

(a)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

(b)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

(c)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

(d)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

(e)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

(f)

Figure 5.14. Impact of Initial Centroids: Example 1.

5.6.1 K-means 290

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

(a)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

(b)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

(c)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

(d)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

(e)

Figure 5.15. Impact of Initial Centroids: Example 2.

5.6.1 K-means 291

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Figure 5.16. Five pairs of clusters.

this strategy may not work very well, depending on the data set and the number of
clusters sought. We constructed an example, shown in Figure 5.16, to show what
can go wrong. The data consists of 5 pairs of clusters, where the clusters in a
pair of clusters are closer to each other than to any other cluster. The probability
that an initial centroid will come from any given cluster is 0.10, but the probability
that each cluster will have exactly one initial centroid is much lower. (It should be
clear that having one initial centroid in each cluster is usually a very good starting
situation.) In general, if there are K clusters and each cluster has n points, then
the probability, P , of selecting one initial centroid from each cluster is given by the
following equation. (This assumes sampling with replacement.)

P =
number of ways to select one centroid from each cluster

number of ways to select K centroids
=

K!nK

(Kn)K
=

K!

KK

(5.14)
From this formula we can calculate that the chance of having one initial centroid

from each cluster is 10!/1010 = 0.00036.
Despite this, an optimal clustering will be obtained as long as two initial centroids

fall anywhere in a pair of clusters, since the centroids will redistribute themselves,
one to each cluster. Unfortunately, it is relatively likely that at least one pair of
clusters will have only one initial centroid. In this latter case, because the pairs
of clusters are far apart, the K-means algorithm will not redistribute the centroids
between pairs of clusters, and thus, only a local minimum will be achieved.
Figure 5.17 shows that if we start two initial centroids per pair of clusters,

then, even when the both initial centroids are in a single cluster, the centroids will
redistribute themselves so that the ‘true’ clusters are found. However, Figure 5.18
shows that if a pair of clusters has only one initial centroid, and another pair has
three, then two of the ‘true’ clusters will be combined and one cluster will be split.

5.6.1 K-means 292

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 1

(a)

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 2

(b)

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 3

(c)

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 4

(d)

Figure 5.17. Five Pairs of Clusters with a Pair of Initial Centroids Within Each Pair of Clusters.

5.6.1 K-means 293

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 1

(a)

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 2

(b)

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 3

(c)

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 4

(d)

Figure 5.18. Five Pairs of Clusters with More or Fewer than Two Initial Centroids Within a Pair of Clusters.

5.6.1 K-means 294

Because of the problems with using random seeds for initialization, problems
that even repeated runs may not overcome, other techniques are often used for
finding the initial centroids. One effective technique is to take a sample of points
and cluster it using a hierarchical clustering technique. K clusters are extracted
from the hierarchical clustering and the centroids of those clusters are used as the
initial centroids. This approach often works well, but is practical only if the sample
is relatively small, e.g., a few hundred to a few thousand (hierarchical clustering is
expensive), and if K is relatively small compared to the sample size.
Later on we will discuss two other approaches that are useful for producing better

quality (lower SSE) clusterings: using a variant of K-means that is less susceptible to
initialization problems, e.g., bisecting K-means, and using post-processing to ‘fix-up’
the set of clusters produced.

Handling Empty Clusters

One of the problems with the basic K-means algorithm given above is that empty
clusters can be obtained if no points are assigned to a cluster during the assignment
step. If so, then a strategy is needed to choose a replacement centroid. Otherwise,
the squared error will certainly be larger than necessary.
One approach is to choose the point that is farthest away from any current cen-

ter as the new centroid. If nothing else, this eliminates the point that currently
contributes the most to the squared error. Another approach is to choose a choose
the replacement centroid from the cluster that has the highest SSE. (This will typi-
cally split the cluster.) If there are several empty clusters, then this process can be
repeated several times. Like the previous approach, this approach is also motivated
by the goal of reducing the SSE.

Updating Centroids Incrementally

Instead of updating cluster centroids after all points have been assigned to a cluster,
the centroids can be updated incrementally, after each assignment of a point to a
cluster. Incremental update guarantees that empty clusters are not produced since
all clusters start with a single point, and if a cluster ever gets down to one point,
then that point will always be reassigned to the same cluster.
In addition, if incremental updating is used, the relative weight of the point being

added may be adjusted, i.e., the centroid becomes a weighted average of points, and
the current point may have a weight greater than or less than 1. While this can
result in better accuracy and faster convergence, it may be difficult to make a good
choice for the relative weight, especially in a wide variety of situations. These update
issues are similar to those involved in updating weights for artificial neural nets.
On the negative side, updating centroids incrementally introduces an order de-

pendency problem, although this can be addressed by randomizing the order in
which the points are processed. However, this randomization is not feasible unless
the points are in main memory. Note that the basic K-means approach of updat-
ing the centroids after all points are assigned to clusters does not create an order

5.6.1 K-means 295

dependency problem.
Another negative aspect of incremental updates is that they are more expensive.

However, K-means tends to converge rather quickly and so the number of points
switching clusters will tend to be small after a few passes over all the points.

Pre- and Post-Processing

Sometimes, the quality of the clusters that can be found is improved by pre-processing
the data. For example, when we use the squared error criteria, outliers can unduly
influence the clusters that are found. Thus, it is common to try to find these out-
liers and eliminate them with a preprocessing step. However, it is important to
realize that there are certain clustering applications where outliers should not be
eliminated. In data compression every point must be clustered, and in some cases,
e.g., financial analysis, apparent outliers can be the most interesting points, e.g.,
unusually profitable customers.
Another common approach uses post-processing to try to fix up the clusters

that have been found. For example, small clusters are often eliminated since they
frequently represent groups of outliers. Also, two small clusters that have relatively
low SSE and are close together can be merged, while a cluster with relatively high
SSE can be split into smaller clusters.
ISODATA is a version of K-means that uses the previously discussed postpro-

cessing techniques to produce high quality clusters. ISODATA first chooses initial
centroids in a manner that guarantees that they will be well separated. More specif-
ically, the first initial centroid is the mean of all data points, while each succeeding
centroid is selected by considering each point in turn and selecting any point that
is at least a distance, d (a user-specified parameter), from any initial centroid se-
lected so far. ISODATA then repeatedly a) finds a set of clusters using the basic
K-means algorithm and b) applies postprocessing techniques. Execution halts when
a stopping criterion is satisfied. Note that the K-means algorithm is run after post-
processing because the clusters that result from postprocessing do not represent a
local minimum with respect to SSE. The ISODATA algorithm is shown in more
detail below. The reader should note that ISODATA has a large number of param-
eters.
The splitting phase of ISODATA is an example of strategies that decrease the

total SSE by increasing the number of clusters. Two general strategies are given
below:

Split a cluster. Often the cluster with the largest SSE is chosen, but in the case
of ISODATA the cluster with the largest standard deviation for one particular
attribute is chosen.

Introduce a new cluster centroid. Often the point that is farthest from any
cluster center is chosen.

Likewise, the merging phase of ISODATA is just one example of strategies that

5.6.1 K-means 296

Algorithm 2 ISODATA.

1: Select K well-separated points as the initial centroids.

2: repeat

3: repeat

4: Form K clusters by assigning all points to the closest centroid.

5: Recompute the centroid of each cluster.

6: until The centroids don’t change

7: Discard clusters with ‘too few’ points.

8: if There are ‘too many’ clusters or it is a ‘splitting’ phase then

9: Split clusters that are ‘too loose’

10: end if

11: if There are ‘too few’ clusters or it is a ‘merging’ phase then

12: Merge pairs of clusters that are ‘close’

13: end if

14: if The current phase is a ‘merging’ phase then

15: Set the phase for the next iteration to be a ‘splitting’ phase

16: else

17: Set the phase for the next iteration to be a ‘merging’ phase

18: end if

19: until Results are ‘acceptable’ or a pre-determined number of iterations has been

exceeded

5.6.1 K-means 297

decrease the number of clusters. (This typically increases SSE.) Two general strate-
gies are given below:

Disperse a cluster. In other words, remove the centroid that corresponds to the
cluster and reassign the points to other clusters. Ideally the cluster which is
dispersed should be the one that increases the total SSE the least.

Merge two clusters In ISODATA, the clusters with the closest centroids are cho-
sen, although another, perhaps better, approach is to merge the two clusters
that result in the smallest increase in total SSE. These two merging strategies
are, respectively, the same strategies that are used in the hierarchical clus-
tering techniques known as the Centroid method and Ward’s method. Both
methods are discussed later in Section 5.7.

Finally, note that while pre- and post-processing techniques can be effective,
they are based on heuristics that may not always work. Furthermore, they often
require that the user choose values for a number of parameters.

Bisecting K-means

The bisecting K-means algorithm is a straightforward extension of the basic K-
means algorithm that is based on a simple idea: To obtain K clusters, split the set
of all points into two clusters, select one of these clusters, and split it, and so on,
until K clusters have been produced. In detail, bisecting K-means works as follows.

Algorithm 3 Bisecting K-means Algorithm.

1: Initialize the list of clusters to contain the cluster containing all points.

2: repeat

3: Select a cluster from the list of clusters

4: for i = 1 to number of iterations do

5: Bisect the selected cluster using basic K-means

6: end for

7: Add the two clusters from the bisection with the lowest SSE to the list of

clusters.

8: until Until the list of clusters contains K clusters

There are a number of different ways to choose which cluster is split. For ex-
ample, we can choose the largest cluster at each step, the one with the least overall
similarity, or use a criterion based on both size and overall similarity.
Bisecting K-means tends to be less susceptible to initialization problems. Partly

this is because bisecting K-means performs several trial bisections and takes the
best one in terms of SSE, and partly this is because there are only two centroids at
each step.

5.6.1 K-means 298

We often ‘refine’ the resulting clusters by using their centroids as the initial
centroids for the basic K-means algorithm. This is necessary, because while the K-
means algorithm is guaranteed to find a clustering that represents a local minimum
with respect to SSE, in bisecting K-means we are using the K-means algorithm
‘locally,’ i.e., to bisect individual clusters. Thus, the final set of clusters does not
represent a clustering that is a local minima with respect to SSE.
To illustrate both the operation of bisecting K-means and to illustrate how it

is less susceptible to initialization problems, we show, in Figure 5.19, how bisecting
K-means finds 10 clusters in the data set originally shown in Figure 5.16.
Finally, note that by recording the sequence of clusterings produced as K-means

bisects clusters, we can also use bisecting K-means to produce a hierarchical clus-
tering.

Limitations and problems

K-means attempts to minimize the squared error of points with respect to their
cluster centroids. While this is sometimes a reasonable criterion and leads to a
simple algorithm, K-means and its variations have a number of limitations. In
particular, K-means has difficulty detecting the ‘natural’ clusters, when clusters
have widely different sizes, densities, or non-spherical shapes. This is illustrated by
Figures 5.20, 5.21, and 5.22.
The difficulty in these three situations is that the K-means objective function is

a mismatch for the kind of clusters we are trying to find since the K-means objective
function is minimized by globular clusters of equal size and density or by clusters
that are well separated. However, these limitations can be overcome, at least in
some sense, if the user is willing to partition the data into a larger number of small
clusters. Figure 5.23 shows what happens for the three previous data sets if we find
10 clusters instead of two or three. Each smaller cluster is ‘pure’ in the sense that
it contains only points from one of the ‘natural’ clusters.
Another limitation of the K-means algorithm is that it is restricted to data for

which means (or medians) make sense. A related technique, K-medoid clustering,
does not have this restriction and is discussed in Section 5.6.2.
Finally, notice that bisecting K-means, while it typically works better than reg-

ular K-means, is no better at handling the previously illustrated problems with
clusters of different sizes, shapes and densities. Also, if bisecting K-means splits a
cluster during the clustering process, it may stay split, even after the final refinement
step.

K-means as an Optimization Problem

The K-means algorithm is derived by asking how we can partition a collection of
data points into K clusters such that the total SSE is minimized. In mathematical
terms we seek to minimize equation 5.13, which we repeat here.

5.6.1 K-means 299

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 1

(a)

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 2

(b)

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 3

(c)

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 4

(d)

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 5

(e)

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 6

(f)

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 7

(g)

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 8

(h)

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 9

(i)

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

8

x

y

Iteration 10

(j)

Figure 5.19. Bisecting K-means on the 10 Clusters Example.

5.6.1 K-means 300

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

x

y

(a) Original Points

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

x

y

(b) Three K-means Clusters

Figure 5.20. K-means with different size clusters.

5.6.1 K-means 301

−2 −1 0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3

x

y

(a) Original Points

−2 −1 0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3

x

y

(b) Three K-means Clusters

Figure 5.21. K-means with different density clusters.

5.6.1 K-means 302

−15 −10 −5 0 5 10 15

−5

0

5

10

15

x

y

(a) Original Points

−15 −10 −5 0 5 10 15

−5

0

5

10

15

x

y

(b) Two K-means Clusters

Figure 5.22. K-means with non-globular clusters.

5.6.1 K-means 303

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

x

y

(a) Unequal Sizes

−2 −1 0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3

x

y

(b) Unequal Densities

−15 −10 −5 0 5 10 15

−5

0

5

10

15

x

y

(c) Non-spherical Shapes

Figure 5.23. Using K-means to Find Many Clusters.

5.6.1 K-means 304

SSE =
K∑

i=1

∑

x∈Ci

n∑

j=1

(mi
j − xj)2 (5.15)

Where Ci is the i
th cluster, |Ci| is the number of points in the ith cluster, x is a

point in Ci, and xj is the j
th attribute of that point, and mi is the mean of the ith

cluster.
We can solve for the pth component, mp

k, 1 ≤ k ≤ n, of the pth centroid, mp, by
differentiating the SSE, setting it to 0, and solving, as indicated below.

∂

∂mp
k

SSE =
∂

∂mp
k

K∑

i=1

∑

x∈Ci

n∑

j=1

(mi
j − xj)2

=
K∑

i=1

∑

x∈Ci

n∑

j=1

∂

∂mp
k

(mi
j − xj)2

=
∑

x∈Cp

2 ∗ (mp
k − xk) = 0

∑

x∈Cp

2 ∗ (mp
k − xk) = 0⇒ |Cp|m

p
k =

∑

x∈Cp

xk ⇒ mp
j =

1

|Cp|
∑

x∈Cp

xk

Thus, we find that mp = 1
|Cp|

∑
x∈Cp

x, the mean of the points in the cluster.

This is pleasing since it agrees with our intuition of what the center of a cluster
should be.
However, we can instead ask how we can obtain a partition of the data into K

clusters such that the sum of the distances (not squared distance) of points from
the centroid of their clusters is minimized. In mathematical terms, we now seek to
minimize the sum of the absolute error, SAE, as shown in the following equation.

SAE =

K∑

i=1

∑

x∈Ci

√√√√
n∑

j=1

(mi
j − xj)2 (5.16)

This problem has been extensively studied in operations research under the name
of the multi-source Weber problem and has applications to the location of ware-
houses and other facilities that need to be centrally located. We leave it as an
exercise to the reader to verify that the centroid in this case is still the mean.
Finally, we can instead ask how to obtain a partition of the data into K clusters

such that the sum of the L1 distances of points from the ‘center’ of their clusters
is minimized. We are seeking to minimize the the sum of the L1 absolute errors,
SAE1, as given by the following equation.

SAE1 =
K∑

i=1

∑

x∈Ci

n∑

j=1

|mi
j − xj | (5.17)

5.6.2 K-medoid Clustering 305

We can solve for the pth component, mp
k, 1 ≤ k ≤ n, of the pth centroid, mp, by

differentiating the SAE1, setting it to 0, and solving, as indicated below.

∂

∂mp
k

SAE1 =
∂

∂mp
k

K∑

i=1

∑

x∈Ci

n∑

j=1

|mi
j − xj |

=
K∑

i=1

∑

x∈Ci

n∑

j=1

∂

∂mp
k

|mi
j − xj |

=
∑

x∈Cp

∂

∂mp
k

|mi
k − xk| = 0

∑

x∈Cp

∂

∂mp
k

|mi
k − xk| = 0⇒

∑

x∈Cp

sign(xk −mp
k) = 0

If we solve for mp, we find that mp = median{x ∈ Cp}, the point whose coordi-
nates are the median values of the corresponding coordinate values of the points in
the cluster. While the median of a group of points is straightforward to compute,
this computation is not as efficient as the calculation of a mean.
In the first case we say we are attempting to minimize the within cluster squared

error, while in the second case and third cases we just say that we are attempting
to minimize the absolute within cluster error, where the error is measured either by
the L1 or L2 distance.

5.6.2 K-medoid Clustering

As mentioned previously, K-means can only be used with data where means (or
medians) are meaningful. If we have data for which that is not the case, e.g.,
strings, then other techniques must be used. In particular, the K-medoid clustering
algorithm overcomes the limitations of K-means by trying to find a non-overlapping
set of clusters such that each cluster has a most representative point, or medoid, i.e.,
a point that is a data point and is the most centrally located such point with respect
to some proximity measure. In other words, if we compute the average similarity
(distance) of each point in a cluster to every other point in that cluster, then the
medoid is the point whose average similarity (average distance) is highest (lowest).
(Equivalently, we can use the sum of proximities, instead of the average.) For a
particular set of medoids, the overall ‘goodness’ of such a clustering is measured by
summing the proximity of each point to its closest medoid.
The K-medoid algorithm is detailed below. (We use similarities as our proximi-

ties.) For this algorithm, the goal is to find the set of K medoids that maximize the
sum of the similarities (SS) of each point to its closest medoid. As with K-means,
K is a user supplied parameter that specifies the number of clusters desired.

5.7 Hierarchical Clustering 306

Algorithm 4 Basic K-medoid Algorithm.

1: Initialization: Select K initial medoids.

2: Compute SS, the sum of the similarities of each point to its most similar medoid.

3: repeat

4: for each pair (p, q), where p is a medoid and q is a non-medoid do

5: Swap p and q, i.e., make q a medoid and p a non-medoid.

6: Calculate SSpq, the new sum of similarities associated with the swap of p

and q.

7: end for

8: if the highest SSpq is greater than the current SS then

9: Swap p and q using the p and q that make SSpq the highest.

10: end if

11: until No swaps occur or an iteration limit is exceeded

Initial medoids are chosen in a simple way. (Again we illustrate using similari-
ties.) The first initial medoid is chosen by finding the point that is has the highest
sum of similarities to all other points. Each of the remaining initial medoids is cho-
sen by selecting the the non-medoid point which has the highest sum of similarities
to all non-medoid points, excluding those points that are more similar to one of the
currently chosen initial medoids.
While the K-medoid algorithm is relatively simple, it is expensive compared

to K-means. More recent improvements of the K-medoids algorithm have better
efficiency than the basic algorithm, but are still relatively expensive and will not be
discussed here. Relevant references may be found in the bibliographic notes.

5.7 Hierarchical Clustering

A hierarchical clustering algorithm is any algorithm that produces a hierarchical
clustering as defined in Section 5.1.3. More specifically, the goal of such algorithms is
to produce a sequence of nested clusters, ranging from singleton clusters of individual
points to an all-inclusive cluster. As mentioned in Section 5.1.3, this hierarchy of
clusters is often graphically represented by a dendrogram as illustrated by figures
5.2 and 5.3. A dendrogram captures the process by which a hierarchical clustering
is generated by showing the order in which clusters are merged (bottom-up view)
or clusters are split (top-down view).
One of the attractions of hierarchical techniques is that they correspond to tax-

onomies that are very common in the biological sciences, e.g., kingdom, phylum,
genus, species, (Some cluster analysis work occurs under the name of ‘mathe-
matical taxonomy.’) Another attractive feature is that hierarchical techniques do not
assume any particular number of clusters. Instead, any desired number of clusters
can be obtained by ‘cutting’ the dendrogram at the proper level. Also, hierarchical

5.7.1 Agglomeration and Division 307

point x coordinate y coordinate

p1 0.4005 0.5306

p2 0.2148 0.3854

p3 0.3457 0.3156

p4 0.2652 0.1875

p5 0.0789 0.4139

p6 0.4548 0.3022

Table 5.6. X-Y coordinates of six points.

p1 p2 p3 p4 p5 p6

p1 0.0000 0.2357 0.2218 0.3688 0.3421 0.2347

p2 0.2357 0.0000 0.1483 0.2042 0.1388 0.2540

p3 0.2218 0.1483 0.0000 0.1513 0.2843 0.1100

p4 0.3688 0.2042 0.1513 0.0000 0.2932 0.2216

p5 0.3421 0.1388 0.2843 0.2932 0.0000 0.3921

p6 0.2347 0.2540 0.1100 0.2216 0.3921 0.0000

Table 5.7. Distance Matrix for Six Points

techniques are sometimes thought to produce better quality clusters.

5.7.1 Agglomeration and Division

There are two basic approaches to generating a hierarchical clustering:

Agglomerative Start with the points as individual clusters and, at each step,
merge the closest pair of clusters. This requires defining the notion of clus-
ter proximity. Agglomerative techniques are most popular, and most of this
section will be spent describing them.

Divisive Start with one, all-inclusive cluster and, at each step, split a cluster until
only singleton clusters of individual points remain. In this case, we need to
decide which cluster to split at each step and how to do the splitting.

Sample Data

In the examples that follow we shall use the following data, which consists of six, two-
dimensional points, to illustrate the behavior of the various hierarchical clustering
algorithms. The x and y coordinates of the points and the distances between them
are shown, respectively, in tables 5.6 and 5.7. The points themselves are shown in
Figure 5.24.

5.7.2 Divisive Algorithms 308

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

1

2

3

4

5

6

Figure 5.24. Set of Six Two-dimensional Points.

5.7.2 Divisive Algorithms

As mentioned, divisive techniques are less common. We have already seen an ex-
ample of this type of technique, bisecting K-means, which was described in Section
5.6.1. Another simple hierarchical divisive technique, which we shall refer to as
MST, starts with the minimum spanning of the proximity graph.
Conceptually, the minimum spanning tree of the proximity graph is built by

starting with a tree that consists of any point. In successive steps, we look for the
closest pair of points, p and q, such that one point, p, is in the current tree and one,
q, is not. We add q to the tree and put an edge between p and q. Figure 5.25 shows
the MST for the points in Figure 5.24.
The MST divisive hierarchical algorithm is shown below. This approach is the

divisive version of the ‘single link’ agglomerative technique that we will see shortly.
Indeed, the hierarchical clustering produced by MST is the same as that produced
by single link. See Figure 5.27.

Algorithm 5 MST Divisive Hierarchical Clustering Algorithm

1: Compute a minimum spanning tree for the proximity graph.

2: repeat

3: Create a new cluster by breaking the link corresponding to the largest distance

(smallest similarity).

4: until Only singleton clusters remain

5.7.3 Basic Agglomerative Hierarchical Clustering Algorithms

Many agglomerative hierarchical clustering techniques are variations on a single
approach: Starting with individual points as clusters, succesively merge two clus-

5.7.4 Defining Proximity Between Clusters 309

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

1

2

3

4

5

6

Figure 5.25. Minimum Spanning Tree for Set of Six Two-dimensional Points.

ters until only one cluster remains. This approach is expressed more formally in
Algorithm 6.

Algorithm 6 Basic Agglomerative Hierarchical Clustering Algorithm

1: Compute the proximity graph, if necessary.

2: repeat

3: Merge the closest two clusters.

4: Update the proximity matrix to reflect the proximity between the new cluster

and the original clusters.

5: until Only one cluster remains

5.7.4 Defining Proximity Between Clusters

The key step of the previous algorithm is the calculation of the proximity between
two clusters, and this is where the various agglomerative hierarchical techniques
differ. Cluster proximity is typically defined by a conceptual view of the clusters.
For example, if we view a cluster as being represented by all the points, then we
can take the proximity between the closest two points in different clusters as the
proximity between the two clusters. This defines the MIN technique. Alternatively,
we can take the proximity between the farthest two points in different clusters to be
our definition of cluster proximity. This defines the MAX technique. (Notice that
the names, ‘MIN’ and ‘MAX’ are only ‘appropriate’ if our proximities are distances,
and thus, many prefer the alternative names, which, respectively, are single link
and complete link. However, we shall prefer the terms ‘MIN’ and ‘MAX’ for their
brevity.) Also, we can average the pairwise proximities of all pairs of two points from
different clusters. This yields the group average technique. These three approaches

5.7.5 MIN or Single Link 310

(a) MIN (b) MAX

(c) Group Average

Figure 5.26. Definition of Cluster Proximity

are graphically illustrated by Figure 5.26.
If, instead, we represent each cluster by a centroid, then we find that different

definitions of cluster proximity are more natural. For the centroid approach, the
cluster proximity is defined as the proximity between cluster centroids. An alter-
native technique, Ward’s method, also assumes that a cluster is represented by its
centroid. However, it measures the proximity between two clusters in terms of the
increase in the SSE that results from merging two clusters into one. Like K-means,
Ward’s method attempts to minimizes the sum of the squared distance of points
from their cluster centroids.

Time and Space Complexity

Hierarchical clustering techniques typically use a proximity matrix. This requires the
computation and storage of m2 proximities, where m is the number of data points.
This a factor that limits the size of data sets that can be processed. It is possible to
compute the proximities on the fly and save space, but this increases computation
time. Overall, the time required for hierarchical clustering is O(m2 logm).

5.7.5 MIN or Single Link

For the single link or MIN version of hierarchical clustering, the proximity of two
clusters is defined to be the minimum of the distance (maximum of the similarity)
between any two points in the different clusters. (The technique is called ‘single
link’ because, if you start with all points as singleton clusters, and add links between
points, strongest links first, then these single links combine the points into clusters.)
Single link is good at handling non-elliptical shapes, but is sensitive to noise and
outliers. Figure 5.27 shows the result of applying MIN to our example data set of
six points.
Figure 5.27a shows the nested clusters as a sequence of nested ellipses, where

5.7.6 MAX or Complete Link or CLIQUE 311

the numbers associated with the ellipses indicate the order of the clustering. Fig-
ure 5.27b shows the same information, but as a dendrogram. The height at which
two clusters are merged in the dendrogram reflects the distance of the two clus-
ters. For instance, from Table 5.7, we see that the distance between points 3 and
6 is 0.11, and that is the height at which they are joined into one cluster in the
dendrogram. As another example, the distance between clusters {3, 6} and {2, 5}
is given by dist({3, 6}, {2, 5}) = min(dist(3, 2), dist(6, 2), dist(3, 5), dist(6, 5)) =
min(0.1483, 0.2540, 0.2843,
0.3921) = 0.1483.

5.7.6 MAX or Complete Link or CLIQUE

For the complete link or MAX version of hierarchical clustering, the proximity of two
clusters is defined to be the maximum of the distance (minimum of the similarity)
between any two points in the different clusters. (The technique is called “complete
link” because, if you start with all points as singleton clusters, and add links between
points, strongest links first, then a group of points is not a cluster until all the points
in it are completely linked, i.e., form a clique.) Complete link is less susceptible to
noise and outliers, but can break large clusters, and has favors globular shapes.
Figure 5.28 shows the results of applying MAX to the sample data set of six

points. Again, points 3 and 6 are merged first. However, {3, 6} is merged with {4},
instead of {2, 5}. This is because the dist({3, 6}, {4}) = max(dist(3, 4), dist(6, 4)) =
max(0.1513, 0.2216) = 0.2216, which is smaller than dist({3, 6}, {2, 5}) = max(dist(3, 2), dist(6, 2), dist(3, 5), dist(6, 5)) =
max(0.1483, 0.2540, 0.2843,
0.3921) = 0.3921 and dist({3, 6}, {1}) = max(dist(3, 1), dist(6, 1)) = max(0.2218, 0.2347) =
0.2347.

5.7.7 Group Average

For the group average version of hierarchical clustering, the proximity of two clusters
is defined to be the average of the pairwise proximities between all pairs of points
in the different clusters. Notice that this is an intermediate approach between MIN
and MAX. This is expressed by the following equation:

proximity(cluster1, cluster2) =
∑

p1∈cluster1
p2∈cluster2

proximity(p1, p2)

size(cluster1) ∗ size(cluster2)
(5.18)

Figure 5.29 shows the results of applying group average to the sample data set
of six points. To illustrate how group average works, we calculate the distance
between some clusters. dist({3, 6, 4}, {1}) = (0.2218 + 0.3688 + 0.2347)/(3 ∗ 1) =
0.2751. dist({2, 5}, {1}) = (0.2357+0.3421)/(2∗1) = 0.2889. dist({3, 6, 4}, {2, 5}) =
(0.1483 + 0.2843 + 0.2540 + 0.3921 + 0.2042 + 0.2932)/(6 ∗ 1) = 0.2637. Because
dist({3, 6, 4}, {2, 5}) is smaller than dist({3, 6, 4}, {1}) and dist({2, 5}, {1}), these
two clusters are merged at the fourth stage.

5.7.7 Group Average 312

1

2

3

4

5

6

1
2

3

5

4

(a) Single Link Clustering

3 6 2 5 4 1
0

0.05

0.1

0.15

0.2

(b) Single Link Dendrogram

Figure 5.27. Single Link Clustering of Six Points.

5.7.7 Group Average 313

1

2

3

4

5

6
1

2

3

5

4

(a) Complete Link Clustering

3 6 4 1 2 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) Complete Link Dendrogram

Figure 5.28. Complete Link Clustering of Six Points.

5.7.7 Group Average 314

1

2

3

4

5

6
1

2

3

5

4

(a) Group Average Clustering

3 6 4 2 5 1
0

0.05

0.1

0.15

0.2

0.25

(b) Group Average Dendrogram

Figure 5.29. Group Average Clustering of Six Points.

5.7.8 Ward’s Method and Centroid methods 315

5.7.8 Ward’s Method and Centroid methods

For Ward’s method the proximity between two clusters is defined as the increase in
the squared error that results when two clusters are merged. Thus, this method uses
the same objective function as is used by K-means clustering. While it may seem
that this makes this technique somewhat distinct from other hierarchical techniques,
some algebra will show that this technique is very similar to the group average
method when the proximity between two points is taken to be the square of the
distance between them. Figure 5.30 shows the results of applying Ward’s method
to the sample data set of six points. The resulting clustering is somewhat different
from those produced by MIN, MAX, and group average.
Centroid methods calculate the proximity between two clusters by calculating

the distance between the centroids of clusters. These techniques may seem similar
to K-means, but as we have remarked, Ward’s method is the correct hierarchical
analogue.
Centroid methods also have a characteristic—often considered bad—that other

hierarchical clustering techniques we have discussed don’t possess: the possibility
of inversions. To be specific, two clusters that are merged may be more similar
(less distant) than the pair of clusters that were merged in a previous step. For
other methods, the similarity of the clusters being merged monotonically decreases
(the distance between merged clusters monotonically increases) as we proceed from
singleton clusters to one all inclusive clusters.

5.7.9 Key Issues in Hierarchical Clustering

Lack of a Global Objective Function

Previously, we mentioned that hierarchical clustering cannot be viewed as globally
optimizing an objective function. Instead, hierarchical clustering techniques use
various criteria to decide ‘locally,’ at each step, which clusters should be joined (or
split for divisive approaches). This approach yields clustering algorithms that avoid
the difficulty of trying to solve a hard combinatorial optimization problem. (As
previously discussed, the general clustering problem for objective functions such as
“minimize SSE” is NP hard.) Furthermore, such approaches do not have problems
with local minima or difficulties in choosing initial points. Of course, the time
complexity of O(m2 logm) and the space complexity of O(m2) are prohibitive in
many cases.

The Impact of Cluster Size

Another aspect of agglomerative hierarchical clustering that should be considered
is how to treat the relative sizes of the pairs of clusters that may be merged. (Note
that this discussion only applies to cluster proximity schemes that involve sums,
i.e., centroid and group average.) There are basically two schemes: weighted and
unweighted. Weighted schemes treat all clusters equally, and thus, objects in smaller
clusters effectively have larger weight. Unweighted schemes treat all objects equally.

5.7.9 Key Issues in Hierarchical Clustering 316

1

2

3

4

5

6
1

2

3

5 4

(a) Ward’s Clustering

3 6 4 1 2 5
0

0.05

0.1

0.15

0.2

0.25

(b) Ward’s Dendrogram

Figure 5.30. Wards Clustering of Six Points.

5.7.10 The Lance-William Formula for Cluster Proximity 317

Unweighted schemes are more popular, and in our previous discussions about the
centroid and group average techniques, we discussed only the unweighted versions.

Merging Decisions are Final

Agglomerative hierarchical clustering algorithms tend to make good local decisions
about combining two clusters since they have access to the proximity matrix. How-
ever, once a decision is made to merge two clusters, this decision cannot be undone
at a later time. This prevents a local optimization criterion from becoming a global
optimization criterion.
For example, in Ward’s method, the ‘minimize squared error’ criteria from K-

means is used in deciding which clusters to merge. However, this does not result in a
clustering that could be used to solve the K-means problem. Even though the local,
per-step decisions try to minimize the squared error, the clusters produced on any
level, except perhaps the very lowest levels, do not represent an optimal clustering
from a ‘minimize global squared error’ point of view. Furthermore, the clusters are
not even ‘stable,’ in the sense that a point in a cluster may be closer to the centroid
of some other cluster than to the centroid of its current cluster.
However, Ward’s method can be used as a robust method of initializing a K-

means clustering. Thus, a local minimize squared error objective function seems to
have some connection with a global minimize squared error objective function.
Finally it is possible to attempt to fix up the hierarchical clustering produced

by hierarchical clustering techniques. One idea is to move branches of the tree
around so as to improve some global objective function. Another idea is to refine
the clusters produced by a hierarchical technique by using an approach similar to
that used for the multi-level refinement of graph partitions. Still another idea is
to use a partitional clustering technique, such as K-means to create many small
clusters, and then perform hierarchical clustering using these small clusters as the
starting point.

5.7.10 The Lance-William Formula for Cluster Proximity

Any of the cluster proximities that we discussed in this section can be viewed as
a choice of different parameters (in the Lance-Williams formula shown below in
equation 5.19) for the proximity between clusters Q and R, where R is formed by
merging clusters A and B. (Note that in this formula p(., .) is a proximity function.)
In words, this formula says that after you merge clusters A and B to form cluster
R, then the proximity of the new cluster, R, to an existing cluster, Q, is a linear
function of the proximities of Q from the original clusters A and B. Table 5.8 shows
the values of these coefficients for the techniques that we discussed. nA, nB, and
nQ are the number of points in clusters A, B, and Q, respectively.

p(R,Q) = αAp(A,Q) + αBp(B,Q) + βp(A,B) + γ|p(A,Q)− p(B,Q)| (5.19)

5.8 Density-Based Clustering 318

Table 5.8. Table of Lance-William Coefficients for Common Hierarchical Clustering Approaches
Clustering Method αA αB β γ

MIN 1/2 1/2 0 -1/2

MAX 1/2 1/2 0 1/2

Group Average nA
nA+nB

nB
nA+nB

0 0

Centroid nA
nA+nB

nB
nA+nB

−nAnB
(nA+nB)2

0

Ward’s
nA+nQ

nA+nB+nQ

nB+nQ
nA+nB+nQ

−nQ
nA+nB+nQ

0

Any hierarchical technique that can be phrased in this way does not need the
original points, only the proximity matrix, which is updated as clustering occurs.
However, while a general formula is nice, especially for implementation, it is often
easier to understand the different hierarchical methods by looking directly at the
definition of cluster proximity that each method uses, which was the approach taken
in our previous discussion.

5.8 Density-Based Clustering

In this section, we describe some clustering algorithms that use the density-based
definition of a cluster. Initially, we describe the algorithm, DBSCAN, which illus-
trates a number of important concepts in density-based clustering. We then examine
DENCLUE, a clustering algorithm that can be parameterized to include the func-
tionality of DBSCAN as a special case. To conclude the section, we discuss CLIQUE
and MAFIA, which are two density-based clustering algorithms that are specifically
designed for finding clusters in subspaces of high-dimensional data.

5.8.1 DBSCAN

DBSCAN is a density based clustering algorithm that works with a number of
different distance metrics. After DBSCAN has processed a set of data points, a
point will either be in a cluster or will be classified as a noise point. Furthermore,
DBSCAN also makes a distinction between the points in clusters, classifying some
as core points, i.e., points in the interior of a cluster, and some as border points,
i.e., points on the edge of a cluster. Informally, any two core points that are ‘close
enough’ are put in the same cluster. Likewise, any border point that is “close
enough” to a core point is put in the same cluster as the core point. Noise points
are discarded.

Classification of Points according to Density

Figure 5.31 graphically illustrates the concepts of core, border, and noise points
using a collection of two-dimensional points. The following text provides a more
precise description.

5.8.1 DBSCAN 319

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

Core Point

Noise Point

Border Point

Eps = 1

MinPts = 4

A
B

C

Figure 5.31. Core, Border and Noise Points for DBSCAN.

Core points. These are points that are at the interior of a cluster. A point is a
core point if there are enough points in its neighborhood, i.e., if the number
of points within a given neighborhood around the point, as determined by the
distance function and a supplied distance parameter, Eps, exceeds a certain
threshold, MinPts, which is also a supplied parameter. In Figure 5.31, point
A is a core point, and the parameters are Eps = 1 and MinPts = 5.

Border points. A border point is a point that is not a core point, i.e., there are
not enough points in its neighborhood for it to be a core point, but it falls
within the neighborhood of a core point. In Figure 5.31, point B is a border
point. A border point may fall within the neighborhoods of core points from
different clusters.

Noise points. A noise point is any point that is not a core point or a border point.
In Figure 5.31, point C is a core point.

DBSCAN Algorithm

For DBSCAN, a cluster is the set of all core points whose neighborhoods transitively
connect them together, along with some border points. An algorithm for the DB-
SCAN approach is shown below. In the original algorithm, the two loops: classify
points as core, border, or noise points (lines 2-12) and assign points to clusters (lines
13-25), were merged, but here we separate them to simplify the presentation.

Time and Space Complexity

The basic complexity of the DBSCAN algorithm is O(m∗ time to find points in
the Eps-neighborhood), where m is the number of points. In the worst case, high

5.8.1 DBSCAN 320

Algorithm 7 DBSCAN Algorithm.

1: Initialization: Label all points as noise points and as belonging to no cluster.

{First find core, border and noise points.}
2: for i = 1 to n (the number of points) do

3: Find all points within a distance EPS of the ith point

(These points, plus the ith point itself, are the Eps-neighborhood of the point.)

4: if the number of points in the Eps-neighborhood ≥ MinPts then

5: Label the ith point as a core point

6: for all points in the Eps-neighborhood, except ith the point itself do

7: if the point is still labelled as a noise point then

8: Label the point as a border point

9: end if

10: end for

11: end if

12: end for

{Then we find the clusters.}
13: Eliminate noise points

14: current cluster label← 1
15: for all core points do

16: if the core point has no cluster label then

17: current cluster label← current cluster label + 1

18: Label the current core point with cluster label current cluster label

19: end if

20: for all points in the Eps-neighborhood, except ith the point itself do

21: if the point does not have a cluster label then

22: Label the point with cluster label current cluster label

23: end if

24: end for

25: end for

5.8.1 DBSCAN 321

dimensional data, this complexity is O(m2). However, in low dimensional spaces,
there are data structures that allow the efficient retrieval of the points within a given
distance of a specified point, and the time complexity can be as low as O(m∗ logm).
The space requirement of DBSCAN, even for high dimensional data, is O(m) since
it is only necessary to keep a small amount of data for each point, e.g., the cluster
label and the type of point, and (at least in the original version) the points in the
Eps-neighborhood can be processed in a single pass.

Selection of DBSCAN parameters

There is, of course, the issue of how the parameters, Eps and MinPts are deter-
mined. The basic approach is to look at the behavior of the distance from a point
to its kth nearest neighbor (the k-dist. For points in a cluster there will be some
variation, depending on the density of the cluster and the random distribution of
points, but on average, the range of variation will not be huge if the cluster densities
are not radically different. However, for points not in a cluster, e.g., noise points,
the k-dist will be relatively large. Thus, by computing the k-dist for all the data
points for some k and plotting the distance, we can see which distances correspond
to clusters and which ones correspond to noise. We select this distance to be the Eps
parameter, and the value of k to be the MinPts parameter. Since this procedure
will depend on k it might seem as though there is still a problem. However, the
value of Eps determined in this way does not change dramatically as k varies, and
the creators of DBSCAN recommend k = 4 for two-dimensional data.
Since DBSCAN uses a density-based definition of a cluster, it is relatively resis-

tant to noise and can handle clusters of arbitrary shapes and sizes. Consequently
DBSCAN can handle many of the clusters that were difficult for K-means. However,
DBSCAN does have trouble with higher dimensional data since density becomes
more difficult to define in higher dimensions. Furthermore, DBSCAN may have
trouble with density in lower dimensions if the density of clusters varies widely. For
example, consider Figure 5.32. which shows four clusters embedded in noise. The
density of the clusters and noise regions is indicated by their darkness and we see
that the noise around the pair of denser clusters, A and B, has the same density as
the pair of less dense clusters, C and D. DBSCAN is incapable of finding the less
dense clusters.
However, to illustrate the strong points of DBSCAN, we show the clusters that

it finds on a more complicated two-dimensional data, which consists of 3000 two-
dimensional points as shown in Figure 5.33a. We find the Eps threshold for this
data by plotting the sorted distances of the 4th nearest neighbor of each point
(Figure 5.33b) and identifying the distance at which there is a sharp increase in
these distances indicating noise. We select Eps = 10, although we admit that this
is somewhat arbitrary. The clusters found by DBSCAN using these parameters,
MinPts = 4, Eps = 10, are shown in Figure 5.33c. For completeness, we show the
core points, border points, and noise points in Figure 5.33d.

5.8.2 DENCLUE 322

Cluster A Cluster B

Noise

Noise

Cluster C Cluster D

Figure 5.32. Four clusters embedded in noise.

5.8.2 DENCLUE

DENCLUE (DENsity CLUstEring) is a density clustering approach that models
the overall density of a set of points as the sum of ‘influence’ functions associated
with each point. The resulting overall density function will have local peaks, i.e.,
local density maxima, and these local peaks can be used to define clusters in a
straightforward way. Specifically, for each data point, a hill climbing procedure finds
the nearest peak associated with that point, and the set of all data points associated
with a particular peak (called a local density attractor) becomes a (center-defined)
cluster. However, if the density at a local peak is too low, then the points in the
associated cluster are classified as noise and discarded. Also, if a local peak can
be connected to a second local peak by a path of data points, and the density at
each point on the path is above a minimum density threshold, ξ, then the clusters
associated with these local peaks are merged. Thus, clusters of any shape can be
discovered.
DENCLUE is based on a well-developed area of statistics and pattern recognition

which is know as ‘kernel density estimation.’ The goal of kernel density estimation
(and many other statistical techniques as well) is to describe the distribution of the
data by a function. For kernel density estimation, the contribution of each point
to the overall density function is expressed by an ‘influence’ (kernel) function. The
overall density is then merely the sum of the influence functions associated with
each point.
Typically the influence or kernel function is symmetric (the same in all directions)

and its value (contribution) decreases as the distance from the point increases. For
example, for a particular point, x, the Gaussian function, K(x) = e−distance(x,y)

2/2σ2
,

is often used as a kernel function. (σ is a parameter (the standard deviation) which
governs how quickly the influence of point drops off.) Figure 5.34a shows what
a Gaussian function would look for a single point in two dimensions, while Figure
5.34b shows the overall density function produced by applying the Gaussian influence
function to the set of points shown in Figure 5.34b.

5.8.2 DENCLUE 323

(a) Original Data Set

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35

40

45

50

Points Sorted According to Distance of 4th Nearest Neighbor

4t
h

N
ea

re
st

 N
ei

gh
bo

r D
is

ta
nc

e

(b) Plot of Sorted 4th Nearest Neighbor

Distances

(c) Clusters Found By DBSCAN

(d) Core, Border, and Noise Points

Figure 5.33. DBSCAN Clustering of 3000 Two-Dimensional Points.

5.8.3 Subspace Clustering 324

(a) Gaussian Ker-

nel

(b) Set of Points (c) Overall density

function

Figure 5.34. Example of the Gaussian influence (kernel) function and an overall density function. (σ = 0.75)

The DENCLUE algorithm has two steps, a preprocessing step and a clustering
step. In the pre-clustering step, a grid for the data is created by dividing the minimal
bounding hyper-rectangle into d-dimensional hyper-rectangles with an edge length
of 2σ. The rectangles that contain points are then determined. (Actually, only
the occupied hyper-rectangles are constructed.) The hyper-rectangles are numbered
with respect to a particular origin (at one edge of the bounding hyper-rectangle
and these keys are stored in a search tree to provide efficient access during later
processing. For each stored cell, the number of points, the sum of the points in the
cell, and the connections to neighboring population cubes are also stored.
For the clustering step DENCLUE, considers only the highly populated cubes

and the cubes that are connected to them. Starting with each of these cubes as
a cluster, the algorithm proceeds as follows: For each point, x, the local density
function is calculated only by considering those points that are from clusters which
are a) in clusters that are connected to the one containing the point and b) have
cluster centroids within a distance of kσ of the point, where k = 4. As an efficiency
measure, each point, x′, on the path from x to its density attractor is assigned to
the same cluster as x if dist(x, x′) ≤ σ/2. As mentioned above, DENCLUE discards
clusters associated with a density attractor whose density is less than ξ. Finally,
DENCLUE merges density attractors that can be joined by a path of points, all of
which have a density greater than ξ.
DENCLUE can be parameterized so that it behaves much like DBSCAN, but is

more efficient that DBSCAN. DENCLUE can also be made to behave like K-means
by choosing σ appropriately and by omitting the step that merges center-defined
clusters into arbitrary shaped clusters. Finally, by doing repeated clusterings for
different values of σ, a hierarchical clustering can be obtained.

5.8.3 Subspace Clustering

Until now, we found clusters by considering all of the attributes. However, if we
consider only subsets of the features, i.e., subspaces of the data, then the clusters
that we find can be quite different from one subspace, i.e., one set of features, to

5.8.3 Subspace Clustering 325

another. Consider Figure 5.35. In Figure 5.35a we see the set of all points in three
dimensional space. Clearly there are four clusters of points. Figure 5.35b shows
the points plotted in the xy plane. (The z attribute is ignored.) Also, this figure
contains histograms along the x and y axes that, respectively, show the distribution
of the points with respect to their x and y coordinates. (A higher bar indicates that
the corresponding interval contains relatively more points, and vice-versa.) Thus,
there are four clusters when we consider only the x and y attributes, but only 3
clusters if we consider just the x or y attributes by themselves. From Figure 5.35c
we see that there are 2 clusters if we consider only the z attribute. Finally, in
Figure 5.35d, we see that there are three clusters when we consider just the x and
z coordinates.

Techniques for Finding Subspace Clusters: CLIQUE

The previous example illustrates that the clusters we find depend on the subset of
attributes that we consider. This raises a number of questions, but for now, we
will focus on how to methodically find the clusters that might exist in different
subspaces.
We start by describing the CLIQUE clustering algorithm. CLIQUE is a grid-

based clustering algorithm. In particular, CLIQUE splits each dimension (attribute)
into a fixed number (ξ) of equal length intervals. Conceptually, this partitions the
data space into rectangular units of equal volume. Because these units (grid cells)
have equal volume, we can measure the density of each unit by the fraction of points
it contains. A unit is considered the be dense if the fraction of the overall points
that it contains is above a user specified threshold, τ . A cluster is simply a group
of collections of contiguous (touching) dense units.
The same approach can also be used to define clusters in subspaces, i.e., for

subsets of the original attributes. Thus, for a single attribute (dimension) a cluster
is a set of intervals that touch, i.e., are sequential and which each contain more
than τ points. To illustrate this, Figure 5.36 shows a histogram of the data points
of Figure 5.35 for the x attribute. (There are ξ = 20 intervals, each of size 0.1.)
If our threshold for a dense unit was τ = 0.06, or 6% of the points, then three
“one-dimensional” clusters would be identified.
It is impractical to check each of the volume units to see if it is dense since the

number of such units is equal to ξn. However, CLIQUE uses the following following
monotonicity property of density-based clusters.

Property 1 (Monotonicity property of density-based clusters) If a set of
points forms a density based cluster in k dimensions (attributes), then the same
set of points is also part of a density based cluster in all possible subsets of those
dimensions.

Given a set of units in a k dimensions, i.e., involving k specific attributes, we
can find a corresponding set of units in k − 1 dimensions, i.e., by omitting one of
the k dimensions, i.e., one of the k attributes. The lower dimensional units are

5.8.3 Subspace Clustering 326

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

x

y

z

(a) Four clusters in three dimensions.

 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

 0.1

 0.3

 0.5

 0.7

 0.9

 1.1

 1.3

 1.5

 1.7

 1.9

x

y

(b) View in the XY plane.

 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

 0.1

 0.3

 0.5

 0.7

 0.9

 1.1

 1.3

 1.5

 1.7

 1.9

x

z

(c) View in the XZ plane.

 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

 0.1

 0.3

 0.5

 0.7

 0.9

 1.1

 1.3

 1.5

 1.7

 1.9

y

z

(d) View in the YZ plane.

Figure 5.35. View of four sets of points in different subspaces.

5.8.3 Subspace Clustering 327

 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

F
ra

c
ti
o
n
 o

f
P

o
in

ts

Figure 5.36. Histogram showing distribution of points for the X attribute.

all still touching, i.e., adjacent, and contain at least the same points (and perhaps
additional points as well). Thus, the points are part of a lower dimensional cluster,
i.e., the points form a cluster with the reduced set of attributes.
Thus, CLIQUE starts by finding all the dense areas in the one-dimensional spaces

corresponding to each attribute. CLIQUE then generates the set of two-dimensional
cells that might possibly be dense, by looking at pairs of dense one-dimensional cells,
as each two-dimensional cell must be associated with a pair of dense one-dimensional
cells. More generally, CLIQUE generates the possible set of k-dimensional cells that
might possibly be dense by looking at dense (k - 1) dimensional cells, since each
k-dimensional cell must be associated with a set of k dense (k - 1)-dimensional
cells. Conceptually, the CLIQUE algorithm is similar to the APRIORI algorithm
for finding frequent itemsets. (See Chapter 4).
Once CLIQUE finds the high-density units (cells) in all the subspaces, it then

finds clusters by taking the union of all adjacent, high-density cells. For simplicity
and ease of use, the list of cells that comprises a cluster is simplified into a smaller
set of inequalities.

MAFIA (Merging of Adaptive Finite Intervals (And more than a CLIQUE)

It is possible to enhance CLIQUE. MAFIA is a modification of CLIQUE that runs
faster (40+) and finds better quality clusters. There is also a parallel version of
MAFIA, pMAFIA.
The main modification is to use an adaptive grid. Initially, each dimension

(attribute) is partitioned into a large number of intervals, e.g., 1000. A histogram is
generated that shows the number of data points in each interval. Groups of adjacent
intervals, e.g., five, are grouped into windows, and the maximum number of points

5.8.3 Subspace Clustering 328

in the window’s intervals becomes the value associated with the window. Adjacent
windows are grouped together if the values of the two windows are close — say within
20%. As a special case, if all windows are combined into one window, the dimension
is partitioned into a fixed number of cells and the threshold for being considered
a dense unit is increased for this dimension. A relatively uniform distribution of
data in a particular dimension normally indicates that no clustering exists in this
dimension.

Limitations of MAFIA and CLIQUE

Note that MAFIA and CLIQUE have limitations. In particular, both algorithms
have a time complexity that is exponential in the number of dimensions. More gen-
erally,since both approaches are similar to the Apriori algorithm for finding frequent
item sets, they both will have difficulty if ‘too many’ dense units are generated at
lower stages. Also, these approaches may well fail if clusters are of widely differing
densities, since the threshold is fixed. And, as with other clustering algorithms,
determining the appropriate parameters, τ , and ξ, for a variety of data sets can be
challenging.
Indeed, we remark that the while CLIQUE and MAFIA can find clusters in many

subspaces, it is not typically possible to find all clusters using the same threshold.
The reason for this is that density drops as dimensionality increases, i.e., to find find
clusters in higher dimensions the threshold has to be set at a level that may well
result in the merging of low dimensional clusters. To illustrate, Figure 5.37 shows the
fraction of points in each of the two-dimensional units for the two dimensions x and y.
Not surprisingly, the density in two dimensions has dropped dramatically from that
of the x dimension shown in Figure 5.36; no two-dimensional unit (cell) has more
than 6% of the points. In three dimensions (not shown), the maximum density is
3% of the points. However, in general, the main interest is in the higher dimensional
clusters and, if so, this limitation may not be of great practical importance.

Additional Comments on Subspace Clustering

An obvious question is whether clusters that involve only some of the attributes are
interesting. In some cases, the answer is yes. For example, if we are discretizing
an attribute, then clustering with respect to a single attribute makes sense. Also,
when K-means is used to find document clusters, the resulting clusters can typically
be characterized by ten or so terms, i.e., the ‘true’ dimensionality of the document
cluster is very small compared to number of dimensions (terms) overall which is
usually in the thousands. However, if we have a categorical variable, which has
only a few categories, then it would be possible to form clusters based on these
categories. Although the clusters formed in this way are sometimes interesting and
useful, in most data mining problems this is not the case. Also, we would not be too
interested in a lower dimensional cluster if we knew that it was just a ‘projection’ of
a higher dimensional cluster. For these reason, and because there are likely to be a
lot of low dimensional clusters, i.e., higher dimensional clusters are rarer and hence,

5.9 Other Clustering Techniques 329

x

y

 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

 1.9

 1.7

 1.5

 1.3

 1.1

 0.9

 0.7

 0.5

 0.3

 0.1

Fraction of
 Points

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Figure 5.37. Distribution of points in the XY plane.

more interesting, the focus is on finding clusters that are of as high a dimension as
possible. (In some ways this is analogous to looking at maximal itemsets instead of
all frequent itemsets.)
Another important question, is why it is necessary to look for clusters in lower

dimensional subsets at all. The reasons are much the same as those for doing
dimensionality reduction for classification. If there are many attributes, many of the
features may contribute little to creating structure within the data. For example,
consider an attribute whose values are uniformly distributed. This type of feature
has little value either for classification or clustering. Also, some features may be
duplicates of other features. Finally, if no structure can be found with respect to all
the features, it seems only sensible to look for whatever structure can be found.

5.9 Other Clustering Techniques

5.9.1 Fuzzy Clustering

If data points are distributed in well-separated groups, then a crisp classification
of the points into disjoint clusters seems like an ideal approach. However, in most
cases, the points in a data set cannot be partitioned into well-separated clusters, and
therefore, there will be a certain arbitrariness in assigning a point to a particular
cluster, e.g., consider a point that lies near the boundary of two clusters, but is just
slightly closer to one of the two clusters. Thus, for each point, xi, and each cluster,
Cj , it would be beneficial to determine a weight, wij , that indicates the ‘degree’ to
which xi belongs to Cj .
For probabilistic approaches, e.g., mixture models, wij = pij , the probability

5.9.1 Fuzzy Clustering 330

that xi belongs to Cj . While this approach is useful in many situations, there
are significant limitations to probabilistic models, i.e., times when it is difficult to
determine an appropriate statistical model, and thus, it would be useful to have non-
probabilistic clustering techniques that provide the same ‘fuzzy’ capabilities. Fuzzy
clustering techniques are based on fuzzy set theory (see bibliographic notes) and
provide a natural technique for producing a clustering where membership weights
(the wij) have a natural (but not probabilistic) interpretation. In this section we
will briefly describe the general approach of fuzzy clustering and provide a specific
example in terms of fuzzy c-means (fuzzy K-means).
Lofti Zadeh introduced fuzzy set theory and fuzzy logic in 1965 as a way to

deal with imprecision and uncertainty. Briefly, fuzzy set theory allows an object
to partially belong to a set with a degree of membership between 0 and 1, while
fuzzy logic allows a statement to be true with a degree of certainty between 0 and 1.
(Traditional set theory and logic are special cases of their fuzzy counterparts which
restrict the degree of set membership or the degree of certainty to be either 0 or
1.) Fuzzy concepts have been applied to many different areas, including control,
pattern recognition, and data analysis (classification and clustering).
Consider the following example of fuzzy logic. The degree of truth of the state-

ment “It is cloudy” can be defined to be the percentage of cloud cover in the sky,
i.e., if the sky is 50% covered by clouds, then we would assign “It is cloudy” a degree
of truth of 0.5. If we have two sets, “cloudy days” and “non-cloudy days,” then we
can similarly assign each day a degree of membership in the two sets. Thus, if a day
were 25% cloudy, it would have a 25% degree of membership in “cloudy days” and
a 75% degree of membership in “non-cloudy days.”
We can now define fuzzy clusters. Consider a set of data points X = {x1, . . . , xm},

where each point, xi, is anm dimensional point, i.e., xi = (xi1, . . . , xim). We define a
collection of fuzzy clusters, C1, C2, . . ., Ck to be a subset of all possible fuzzy subsets
of X. (This simply means that the membership weights (degrees), wij , have been
assigned values between 0 and 1 for each point, xi, and each cluster, Cj .) However,
we also want to impose the following ‘reasonable’ conditions on the clusters in order
to ensure that the clusters form what is called a fuzzy psuedo-partition.

1. All the weights for a given point add up to 1.
k∑

j=1
wij = 1

2. Each cluster (fuzzy subset) ‘contains’ at least one point, but not all of the
points.

0 <
m∑
i=1

wij < m

While there are many types of fuzzy clustering – indeed, many data analysis
algorithms can be ‘fuzzified’ – we only consider the fuzzy version of K-means, which
is called fuzzy c-means. (In the clustering literature, the version of K-means which

5.9.1 Fuzzy Clustering 331

does not use incremental updates of cluster centroids is sometimes referred to as c-
means and this was the term adapted by the fuzzy community for the fuzzy version
of K-means.) We first discuss some preliminaries and then present the fuzzy c-means
algorithm.
First notice that we can also extend the definition of a centroid of a cluster to

fuzzy sets in a straightforward way. For a cluster, Cj , the corresponding centroid, cj ,

is defined by the following equation: cj =
m∑
i=1

wm
ij xi/

m∑
i=1

wm
ij , where m is a parameter,

1 < m <∞, that determines the influence of the weights (the membership degrees).
Thus, the fuzzy centroid definition is much like the traditional definition except that
all points are considered (any point can belong to any cluster, at least somewhat)
and the contribution of each point to the centroid is weighted by its membership
degree. In the case of traditional crisp sets, i.e., all wij are either 0 or 1, this
definition reduces to the traditional definition of a centroid.
Furthermore, we can also modify the definition of overall cluster error as follows:

Error(C1,C2, . . . , Ck) =

k∑

j=1

m∑

i=1

wm
ij ‖xi − cj‖ (5.20)

which is just the weighted version of the typical K-means error.
Lastly notice that during the c-means clustering process we will need to update

the weights wij associated with each point and cluster. This can be accomplished
by using the following equation.

w′ij =

k∑

p=1

(
‖xi − cj‖2

‖xi − cp‖2

) 1
m−1

−1

(5.21)

However, if ‖xi − cj‖2 = 0 for one or more values of j, 1 ≤ j ≤ k, then we
need to use a different method of updating the weights associated with xi. Since
this corresponds to a situation where a point is the same as one or more centroids
(hopefully centroids are unique, but they don’t have to be), we want to set w′ij =0
for any cluster j where xi 6= cj and split the weight of the point (which is 1) between
the w′ij where xi = cj . In the normal case, a vector will only be the same as one
centroid and thus, we can just set all weights to 0, except for the w′ijwhere xi = cj .
In that case, we set w′ij =1.
Given the previous discussion the description of the fuzzy c-means algorithm is

straightforward.
This algorithm is similar in structure to the K-means algorithm and also behaves

in a similarly. In particular, fuzzy c-means works best for globular clusters, which
are roughly the same size and density.
There are a few considerations when choosing the value of m. Choosing m =

2 simplifies the weight update formula. However, if m is chosen to be near 1, then
fuzzy c-means behaves like traditional K-means. Going in the other direction, as

5.9.2 Clustering via Mixture Models and the EM Algorithm 332

Algorithm 8 Basic Fuzzy c-means Algorithm.

1: Select an initial fuzzy fuzzy psuedo-partition, i.e., assign values to all the wij .

(As with K-means this can be done randomly or in a variety of ways.)

2: repeat

3: Recompute the centroid of each cluster.

4: Update the wij .

5: until The centroids don’t change

(Alternative stopping conditions are “if the change in the error is below a speci-

fied threshold” or “if the absolute change in any wij is below a given threshold.”)

m gets larger all the cluster centroids approach the centroid of the data. In other
words, the partition becomes fuzzier as m increases.
We mention a cautionary note. Fuzzy clustering, as presented here, deals well

with situations where points are on the boundary of one or more clusters. It does
not deal well with the situation where a point is an outlier, i.e., is not close to any
cluster. The reason for this is that we assumed that all points have a weight of 1,
a weight which is split between the different clusters. Thus, if we have an outlier,
the point can have a relatively high weight with respect to one or more clusters, but
not really be a ‘true’ member of any cluster. In this case the point should have low
membership weights for all clusters, but then the weights would not add up to 1.
However, with such an approach it would be possible to eliminate noise and outliers
effectively, i.e., just eliminate points that do not have high membership weights in
any cluster. Indeed, there is a variation of fuzzy c-means that takes this approach,
but it has other problems, e.g., a tendency for all the centroids to become very close
together.
To close this section, we illustrate, in Figure 5.38, the clusters found by fuzzy c-

means for a set of two dimensional set of points. (Each cluster consists of 100 points
that are generated from a two-dimensional Gaussian distribution. Since there are
only two clusters, the color of the points reflects the membership weight with which
points belongs to the lower cluster. Actual cluster membership is illustrated by the
shape of the markers. Notice that membership in a cluster is strongest toward the
center of the cluster and relatively week for those points that are on the border of
the two clusters.

5.9.2 Clustering via Mixture Models and the EM Algorithm

Statistical Models for Data

Often it is convenient and effective to assume that the data has been generated as a
result of a statistical process and to describe the data by finding the statistical model
that best fits the data. More specifically, given a set of data, we assume a particular
type of statistical distribution, e.g., Gaussian, and estimate the parameters of the
data, e.g, the mean and variance. The estimated parameters then provide a succinct

5.9.2 Clustering via Mixture Models and the EM Algorithm 333

−1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

(a) Original data. Marker type indicates

the distribution from which it was gener-

ated.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

(b) Clusters found by the fuzzy c-means

data.

Figure 5.38. Fuzzy c-means clustering of a two-dimensional point set.

5.9.2 Clustering via Mixture Models and the EM Algorithm 334

−6 −4 −2 0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

Figure 5.39. Histogram of 10,000 points from a normal distribution with a mean of 3 and a variance of 4.

description of each distribution (cluster).
To illustrate, consider Figure 5.39 which shows the histogram for a set of one-

dimensional data. Since the histogram has the shape of a ‘normal’ curve, we might
suspect that the data can be modelled as a normal distribution. From statistics,
we know that a normal distribution is described by it’s mean and variance and that
these can be estimated by calculating the mean and variance of the data. On doing
so, we find a mean of 3.0133 and a variance of 4.0293. In fact this data was generated
from a normal distribution and with mean 3 and a variance of 4.
More generally, a set of data might be viewed as a combination or mixture of

several statistical distributions. We can think of a mixture model as a combination
of a set of distributions, where each of the distributions is associated with a weight
between 0 and 1 that represents the probability that a point is generated from
that distribution. More formally, assume that we have k distribution, and that the
probability density function for the ith distribution is given by probi, i.e, probi(x) is
the probability density at point x with respect to the ith distribution. Furthermore,
let αi, 1 6 i 6 k be a set of weights such that

∑k
i=1 αi = 1. Then the probability

density at any point x is given by the following equation.

prob(x) =
k∑

i=1

αiprobi(x) (5.22)

As an example, consider the set of points that are shown in Figure 5.38a. As
previously mentioned, each cluster consists of 100 points that are generated from a
two-dimensional Gaussian distribution. Each distribution has a variance of 0.1 in
both the x and y attributes and no correlation between x and y. One cluster has a
mean (center) of (0,0), while the other has a mean of (0,1).

Estimating the Model Parameters using Maximum Likelihood

If we assume a statistical model for the data, then it is necessary to estimate the
parameters of that statistical model. A key approach for this parameter estimation

5.9.2 Clustering via Mixture Models and the EM Algorithm 335

0 0.1 0.3 0.5 0.7 0.9 1
0

0.5

1

1.5

2

2.5
x 10−3

p

pr
ob

ab
ili

ty

Figure 5.40. Plot of the likelihood function for 7 heads out of 10 coin tosses.

is that of maximum likelihood estimation, a concept which we now explain in greater
depth.
To begin, consider the common statistical experiment of flipping a two-sided

coin and recording the number of heads or tails that result on each toss. (Each toss
of the coin is a data object with a single attribute, the result of the toss - heads
or tails.) If the probability of a head is p for any particular toss, and the coin is
flipped n times and there are k heads, then the probability prob(k) of any particular
sequence of tosses is given by equation 5.23.

prob(k) = pk(1− p)n−k (5.23)

Suppose that we toss the coin ten times and have 7 heads, but don’t know what
p is. What might the best estimate of p be? To get an idea, we plot the probability
of 7 heads in ten tosses for different values of p between 0 and 1. This plot is shown
in Figure 5.40.
Given a set of data, the probability of the data as a function of the parameters

is called the likelihood function. We rewrite the previous equation (5.23 as equation
5.24 to emphasize that we view the statistical parameter p as our variable and that
k, the number of heads, is a constant in this equation. Given such a likelihood
function, a general principle for estimating the parameters of a statistical model is
the maximum likelihood principle, i.e., choose those parameters that maximize the
probability of the data. For the previous case, our estimate of p would be 0.7, which,
in this case, is quite intuitive.

likelihood(p) = pk(1− p)n−k (5.24)

The general form of the likelihood equation for a single distribution is given
by equation 5.25, where θ is a generic symbol for the parameters (θ may actually
be a set of paramters) on which the statistical distribution depends), prob(xi|θ) is
the probability of the ith data point given the parameters, and n is the number of
data points. Note that the likelihood is just the product of the probabilities of each

5.9.2 Clustering via Mixture Models and the EM Algorithm 336

individual data point, assuming that each data point was independently generated.

likelihood(θ) =
n∏

i=1

prob(xi|θ) (5.25)

In general, graphing the probability of the data for different values of the param-
eters won’t work, at least if there are more than two parameters or if the range of
data is large. Thus, in standard statistics books, the maximum likelihood estimates
of statistical parameters are derived by using calculus, i.e, by taking the derivative
of likelihood function, setting it equal to 0, and solving. It is left as an exercise for
the reader to verify that this procedure used on equation 5.24 will yield a maximum
likelihood estimate for p of k/n.

Estimating Mixture Model Parameters using Maximum Likelihood: Simple
Case

We can also use the maximum likelihood approach to estimate the model param-
eters for a mixture model. In the simplest case, we know how many distributions
we have, the type of the distributions, e.g., Gaussian or binomial, and which data
objects come from which distributions. In this situation, we can estimate the pa-
rameters of each distribution separately by simply using using the data generated
by the distribution and our knowledge of the distribution type to create a likelihood
function for the distribution. We can then choose our estimates for the parameters
of the distribution to be those parameter values for which the likelihood is maxi-
mized. For most common distributions, the maximum likelihood estimates of the
parameters are calculated from simple formulas involving the data, and thus, our
task is easy.
For instance, suppose that we have a series of coins tosses, but that the even and

odd tosses use two different coins. Furthermore, let the probability of a head on an
odd toss be po, while the probability of a coin toss on an even toss is pe. Then, if we
have a sequence of 10 tosses, which is as follows: HTHHTTHTTT, we can estimate
po = 3/5, while pe = 1/5.
More formally, the likelihood for this type of data is given by the equation 5.26,

where ko = number of odd tosses that are heads, no = number of odd tosses, and
ke and ne are defined analogously. A plot of this likelihood function for the string
of tosses we have just considered is shown in Figure 5.41. Notice that this function
is minimized when po = 3/5, while pe = 1/5.

likelihood(po, pe) = po
ko(1− po)no−kopeke(1− pe)ne−ke (5.26)

Estimating Mixture Model Parameters using Maximum Likelihood: More Re-
alistic Cases

We now consider more general (and more realistic) cases, where we know the number
and type of distributions, but do not know which points were generated by which

5.9.2 Clustering via Mixture Models and the EM Algorithm 337

p
o

p e
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
probability

0

0.5

1

1.5

2

2.5

x 10−3

Figure 5.41. Plot of the likelihood function for the toss of 10 coins where even and odd tosses have a different

probability of being heads.

distribution. In such cases it would seem that we are stuck, since to calculate the
likelihood as given in equation 5.26, we need to calculate the probability of each
data point, and to do that it would seem that we need to know which distribution
each data point came from.
However, after a bit of thought, we might remember Bayes rule (see Appendix

A) and decide to see if we can use this approach to compute the probability of a
data point. Let prob(xi) be the probability of the i

th data point, prob(xi|θj) be the
probability of the ith point if it comes from the jth distribution which has parameters
θj , Θ be the set of all parameters {θ1, . . . , θk}, and αj be the probability of the jth
distribution. Then by the application of Bayes rule we can rewrite equation 5.27 to
get the following equation for the likelihood.

likelihood(Θ) =
n∏

i=1

k∑

j=1

αj prob(xi|θj) (5.27)

However, this approach, which involves a product of sums does not work well in
practice. Even if we take the log of the likelihood and try to maximize this quantity–
a strategy typically followed because it converts a product into a sum, which is a
nicer quantity to maximize by differentiation–we still have difficulties since we have
the log of a sum, which is hard to work with. Thus, another approach is needed.
Nonetheless, this approach will still depend heavily on Bayes rule.
The key insight is to ‘pretend’ that we know what distribution each data point

came from by introducing a ‘distribution index variable,’ zi, that takes on a value
between 1 and k to indicate from which distribution an object was generated. Given
such a variable we can rewrite our likelihood equation 5.27 as shown below.

likelihood(Θ) =
n∏

i=1

αzi prob(xi|θzi) (5.28)

Of course, while the form of this expression is simple, we don’t know–actually

5.9.2 Clustering via Mixture Models and the EM Algorithm 338

have no way of knowing–what the values of the zi are. However, we can estimate
the probability with which zi takes certain values and thus, while we can’t calcu-
late likelihood(Θ), we can calculate the expected value, E(likelihood(Θ)), of the
likelihood function. By finding the parameters that maximize this expected likeli-
hood function (or more commonly the expected log likelihood function), we can find
estimates of the statistical parameters of the underlying distributions. (Expected
values may be reviewed in A.) Thus, the equation that we will be using is shown in
equation 5.29. Note that z = (z1, . . . , zn) represents a particular set of distribution
choices and prob(z) is the probability of that set of distribution choices.

E(likelihood(Θ)) =
∑

all possible z

(
n∏

i=1

αzi prob(xi|θzi)
)
prob(z) (5.29)

We explain this equation further. Suppose that there are k distributions. Then a
set of n data objects can be generated in kn different ways from the k distributions.
For instance, consider an example of 10 coin tosses with two coins, coin 1 and coin
2. We might generate the 10 tosses by using coin 1 for the even tosses and coin
2 for the odd tosses, as in our example above. Or, we might generate the first
five tosses using coin 1 and the last 5 using coin 2. Thus, we can represent each
choice of distributions for generating the data as a tuple (or vector) of 10 numbers,
where each component of the tuple is a number, 1 or 2, which indicates which coin
(distribution) is to be used. For example, (2, 2, 1, 2, 1, 1, 2, 1, 1, 1).
The importance of all of this is the following: If we can determine the prob(z)

for all z, then equation 5.29 will depend only on the data and the choices for our
parameters. Thus, we can use this equation to estimate the parameters by picking
those parameters that result in the maximum expected likelihood.
In general, prob(z) is given by equation 5.30, where prob(zi|xi) is given by equa-

tion 5.31. We can think of this probability as the probability that point xi was
generated by distribution zi. If the αj ’s are all equal, then they cancel out. For our
examples, we will make that assumption.

prob(z) =
n∏

i=1

prob(zi|xi) (5.30)

prob(zi|xi) =
αziprob(xi|zi)∑k
j=1 αj prob(xi|θj)

(5.31)

We illustrate how we can calculate the probability that a data point came from
a particular distribution with an example. Suppose that we toss a coin, and the
results is ‘heads.’ Additionally, assume that coin may actually be one of two coins,
coin 1 and coin 2, and that the probability of a heads with coin 1 is p1, while the
probability of a coin with coin 2 is p2. Then by Bayes theorem, the probability
that coin 1 was used for the toss given a that the coin is a heads, p(coin 1|H), is
given by equation 5.32. We simplify the initial equation by assuming prob(coin 1)
= prob(coin 2) = 1/2.

5.9.2 Clustering via Mixture Models and the EM Algorithm 339

prob(coin 1|H) =
prob(H|coin 1) prob(coin 1)

prob(H|coin 1) prob(coin 1) + prob(H|coin 2) prob(coin 2)

=
prob(H|coin 1)

prob(H|coin 1) + prob(H|coin 2)

To illustrate numerically, if prob(H|coin 1) = 0.9, prob(H|coin 2) = 0.3, then
prob(coin 1|H) = 0.9/(0.3+0.9) = 0.75. Likewise, we can determine that prob(coin 2|H) =
0.25, prob(coin 1|T) = 0.125, and prob(coin 2|T) = 0.875. Thus, if we have 5 tosses,
which yield the sequence HHTTH, with z = (1, 2, 2, 1, 2), then, assuming all tosses
are independent, we can compute prob(z) as follows:

prob(z) = prob(1|H) ∗ prob(2|H) ∗ prob(2|T) ∗ prob(1|T) ∗ prob(2|H)
= 0.75 ∗ 0.25 ∗ 0.875 ∗ 0.125 ∗ 0.25
= 0.0051

However, the reader might protest that we had to assume what the values of
the parameters were in order to calculate the probability of z, and thus, we are
once again stuck. Indeed, to find the expected likelihood, we need to know how
to estimate the probability that a point was generated by a distribution, but to do
this, we need to know what the distribution is. However, the solution is to make a
guess for the parameters so that we can estimate the expected likelihood, and then
to use the expected likelihood function to estimate a new guess for the parameters.
If this process gives us a better guess for the parameters after each iteration, i.e.,
if the expected likelihood keeps increasing, then we can hope that our estimated
parameters will eventually converge to a set of parameters which constitute ‘good’
estimates of the ‘true’ parameters. This is the EM algorithm that we will discuss
further in the next section.
To close this section, we show the result of using this approach to estimate the

probability of heads for two coins used to generate the sequence of tosses, HTH-
HTTHTTT. Let p1 = 0.5 and p2 = 0.5 be our initial guesses for our parameters.
Figure 5.43a shows the expected likelihood of the sequence of tosses under these
assumptions as a function of possible values for the new values of our parameters,
p′1 and p

′
2. Many values of p

′
1 and p

′
2 yield the same maximum value, so we choose

one, and perform the next iteration, which yields the graph of expected likelihood
shown in Figure 5.43b. In this figure, p′1 = 1 and p

′
2 = 0 yields the maximum. The

expected likelihood for this choice of parameters is chosen in Figure 5.43c. Since p′1
= 1 and p′2 = 0 again maximize the expected likelihood for this iteration, we have
reached a stable point. There are a number of interesting details about this solution
which are pursued in the exercises.

The EM Algorithm

In the previous section, we presented an informal description of the EM algorithm
in the context of a specific example: coin tosses. In this section we will be more

5.9.2 Clustering via Mixture Models and the EM Algorithm 340

p1’

p2
’

p1 = 0.50 p2 = 0.50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Expected
Likelihood

0

2

4

6

8

10

x 10−4

(a) First Iteration

p1’

p2
’

p1 = 0.75 p2 = 0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Expected
Likelihood

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(b) Second Iteration

p1’

p2
’

p1 = 1.00 p2 = 0.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Expected
Likelihood

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Last Iteration

Figure 5.42. Figures of the expected likelihood for different iterations of the EM algorithm.

5.9.2 Clustering via Mixture Models and the EM Algorithm 341

general, although we will still be somewhat informal in our approach.
We begin by noting that with some algebraic manipulation, which we do not

show, we can rewrite equation 5.29 as equation 5.32, where Θ′ is the set of new
parameters that we will choose so as to maximize the expected log likelihood, Θ is our
current guess for the parameters, and prob(j|xi,Θ) is the probability of distribution
j given that we observe data point xi and have parameters Θ. We have shifted to
using the log likelihood, which allows us to split the expected log likelihood into two
terms, each of which may be maximized separately.

E(log(likelihood(Θ′,Θ))) =
∑

all possible z

(
n∑

i=1

log(αzi prob(xi|θ′zi))
)
prob(z)(5.32)

=
k∑

j=1

n∑

i=1

log(α′j prob(xi|θ′j)) prob(j|xi,Θ) (5.33)

=
k∑

j=1

n∑

i=1

log(α′j) prob(j|xi,Θ) (5.34)

+
k∑

j=1

n∑

i=1

log(prob(xi|θ′j)) prob(j|xi,Θ) (5.35)

It is possible to find the new estimates of α′j without any further assumptions.
In particular, they are given by the equation 5.36. (Again, the details of the com-
putation are left as an exercise.) For each data point, we calculate the probability
of the jth distribution given the occurrence of the given data point (and the current
set of parameters) by using equation 5.31. We then take as our new estimate of the
‘mixing’ probability the average of these probabilities. Note that if we assume that
all the α’s are equal, then they are no longer parameters to be estimated and can
be ignored in all further equations.

α′j =
1

k

n∑

i=1

prob(j|xi,Θ) (5.36)

In some cases the parameter estimates that maximizes the expected likelihood
can also be expressed relatively simply in terms of the data and old parameters. For
instance, if we have Gaussian distributions, then the estimates for the means and
means and the covariance matrix are expressed by equations 5.37 and 5.38, respec-
tively. In the case of the normal distribution, the estimates are ‘weighted’ versions
estimates of the mean and covariance matrix for a single normal distribution, where
each weight of a point is the probabilities that the point belongs to that distribution.
It is interesting to compare these results to those of the fuzzy clustering of the last
section.

µ′j =

∑n
i=1 xip(j|xi,Θ)∑n
i=1 p(j|xi,Θ)

(5.37)

5.9.2 Clustering via Mixture Models and the EM Algorithm 342

Σ′j =

∑n
i=1(xi − µ′i)(xi − µ′i)T p(j|xi,Θ)∑n

i=1 p(j|xi,Θ)
(5.38)

If we cannot directly calculate the parameters that maximize the expected like-
lihood, then we must try to find some scheme to efficiently search the parameter
space. However, it is only necessary to search for a set of new parameters that yields
a higher expected likelihood than the that of the previous iteration.
The EM algorithm is formally given by algorithm 9.

Algorithm 9 EM Algorithm.

1: Select an initial set of model parameters.

(As with K-means this can be done randomly or in a variety of ways.)

2: repeat

3: Estimation Step: For each object, calculate the probability of that each

point belongs to each distribution, i.e, calculate prob(j|xi,Θ).
4: Maximization Step: Given the probabilities from the estimation step, find

the new estimates of the parameters the maximize the expected likelihood.

5: until The parameters do not change

(Alternative stopping conditions are if the change in the parameters is below a

specified threshold.)

To complete this section, we present an example based on the data set used
to illustrate the Fuzzy c-means algorithms - see Figure 5.38. For this data, we
assumed that the data could be modelled as being generated by a mixture of two two-
dimensional Gaussian distributions with different means and identical covariance
matrices. Using an implementation of the EM clustering, we then performed the
clustering and the results are shown in Figure 5.43. Since there are only two clusters,
the color of the points reflects the probability that the points belong to the lower
cluster. Actual cluster membership is illustrated by the shape of the markers. Notice
that membership in a cluster is relatively weak for those points that are on the
border of the two clusters, but strong elsewhere. It is interesting to compare the
membership weights and probabilities of figures 5.43 and 5.38.

Summary

The basic idea of mixture models is to view the data as a set of observations from a
mixture of different probability distributions. The probability distributions can be
anything, but are often taken to be multivariate normal, since this type of distribu-
tion is well-understood, relatively easy to work with, and has been shown to work
well in many instances. In this case, the types of distributions yield hyper-ellipsoidal
clusters.
There are a number of different assumptions that can be made when taking a

mixture model approach with normal distributions, i.e., whether all clusters have

5.9.2 Clustering via Mixture Models and the EM Algorithm 343

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

Figure 5.43. EM clustering of a two-dimensional point set generated from two multivariate normal distributions.

the same shape, volume, and orientation. These assumptions are reflected in the
number of statistical parameters (mean vectors and covariance matrices), that need
to be estimated. Of course, the more flexible the model, the more difficult and time
consuming it is to find a solution.
Some form of the EM (expectation maximization) algorithm is typically used to

perform the parameter estimation. This algorithm can be slow, is not practical for
models with large numbers of components, and does not work well when clusters
contain only a few data points or if the data points are nearly co-linear. There is
also a problem in estimating the number of clusters or, more generally, in choosing
the exact form of the model to use. This problem has typically been dealt with by
applying a Bayesian approach, which roughly speaking, gives the odds of one model
versus another, based on an estimate derived from the data. Mixture models may
also have difficulty with noise and outliers, although work has also been done to
deal with this problem.
In spite of all the apparent difficulties with mixture models, they do have the

advantage of having a sound mathematical foundation. Also, a model-based ap-
proach provides a disciplined way of eliminating some of the complexity associated
with data. (To see the patterns in data it often necessary to simplify the data,
and fitting the data to a model is a good way to do that, at least if the model is
a good match for the data.) Furthermore, it is easy to characterize the clusters
produced, since they can be described by a small number of parameters. Finally,
many sets of data are indeed the result of random processes and thus, should satisfy
the statistical assumptions of these models.

5.9.3 Self-Organizing Maps (SOM) 344

5.9.3 Self-Organizing Maps (SOM)

The Kohonen Self-Organizing Feature Map (SOFM or SOM) [Koh97] is a clustering
and data visualization technique based on neural networks. The ‘self-organizing’
part of the name derives from the ability of neural nets to learn their configuration
from training data. The ‘map’ part of the name comes from the way that SOM neural
nets work, i.e., when an input (a data point) is fed into a SOM neural network, the
output is the label of a particular neuron in the network, and thus, a SOM neural
network can be viewed as mapping a point to neuron. Finally, the ‘feature’ portion
of the name comes from the observation that, in a trained SOM network, a small
set of neurons are often associated with a particular data feature.
A detailed explanation of how SOM works is provided below, but conceptually,

SOM can be viewed as a vector quantization technique,, i.e., a compression technique
in which each data point is represented by its closest reference vector, in which
the reference vectors are learned by training a neural network. Thus, like vector
quantization, the goal of SOM is to find a set of reference vectors and to assign each
point in the data set to the reference vector which provides the best approximation
of that vector. With the SOM approach, each reference vector is associated with a
particular neuron, and the components of that reference vector become the ‘weights’
of that neuron. As with other neural network systems, a SOM neural net is trained
by considering the data points one at a time and adjusting the weights (reference
vectors) so as to best fit the data.
The final output of the SOM technique is a set of reference vectors which im-

plicitly defines clusters. (Each cluster consists of the points closest to a particular
reference vector.) However, while SOM might seem very similar to K-means or other
vector quantization approaches, there is a fundamental conceptual difference. Dur-
ing the training process, SOM uses each data point to update the closest reference
vector and the reference vectors of nearby neurons. In this way, SOM produces an
‘ordered’ set of reference vectors. In other words, the reference vectors of neurons
which are close to each other in the SOM neural net will be more closely related
to each other than to the reference vectors of neurons that are farther away in the
neural net. Because of this constraint, the reference vectors in SOM can be viewed
as lying on a smooth, elastic two-dimensional surface in m dimensional space, a
surface which tries to fit the mdimensional data as well as possible. (Regression is
a statistical techniques that tries to find the hyper-plane that best fits a set of data,
and thus, you can think of the SOM reference vectors as the result of a nonlinear
regression with respect to the data points.)

Details of a Two-dimensional SOM

There are many types of SOM neural networks, but we restrict our discussion to
a simple variant where the neurons are organized as a two-dimensional lattice as
shown in 5.44. Note that each neuron (node) is assigned a pair of coordinates (i, j).
Often such a network is drawn with links between adjacent neurons, but that is
misleading since the influence of one neuron on another is via a neighborhood which

5.9.3 Self-Organizing Maps (SOM) 345

(0,0)

(2,0)

(1,0)

(0,1)

(2,1)

(1,1)

(0,2)

(2,2)

(1,2)

Figure 5.44. Two-dimensional 3 by 3 rectangular SOM neural network.

is defined in terms of coordinates, not links. Each neuron is associated with an m
dimensional reference vector, where m is the dimensionality of the data points.
At a high level, clustering using the SOM techniques consists of the steps de-

scribed in Algorithm 10. Initialization (line 1) can be performed in a number of

Algorithm 10 Basic SOM Algorithm.

1: Initialize the reference vectors.

2: repeat

3: Select the next training sample (point).

4: Determine the neuron whose reference vector is closest to the current point.

5: Update this reference vector and the reference vectors of all neurons which

are close, i.e., in a specified neighborhood.

6: until The training is complete

7: When the training is complete, assign all points to the closest reference vectors

and return the reference vectors and clusters.

ways. One approach is to choose each component of a reference vector randomly
from the range of values observed in the data for that component. While this ap-
proach works, it is not necessarily the best approach, especially for producing rapid
convergence to an equilibrium state. Another approach is to randomly choose the
initial reference vectors from the available data points. (This is very much like one of
the techniques for initializing K-means centroids.) There are also more sophisticated
techniques - see the bibliographic notes.
The first step in the loop is the training or the convergence step (line 3). Selection

of the next training sample is fairly straightforward, although there are some issues.
Since training may require a 100,000 steps, each data point may be used multiple
times, especially if the number of points is small. However, if the number of points
is large, then not every point need be used. Also, it is possible to enhance the
influence of certain groups of points, e.g., a less frequent class of points, by increasing

5.9.3 Self-Organizing Maps (SOM) 346

their frequency in the training set. (However, this becomes more like supervised
classification situation.)
The determination of closest reference vector (line 4) is also straightforward, al-

though it does require the specification of a distance metric. The Euclidean distance
metric is often used, although a dot product metric is often used as well. When us-
ing the dot product distance, the data vectors are often normalized beforehand and
the reference vectors are normalized at each step. In such cases, the dot product
metric is equivalent to using the cosine measure.
The update step (line 5) is the most complicated. Let m1, . . . , mk be the

reference vectors associated with each neuron. (For a rectangular grid, note that k
= number of rows * number of columns.) For time step t, let p(t) be the current
training point and assume that the closest reference vector to p(t) ismj , the reference
vector associated with neuron j. Then, for time t + 1, the jth reference vector is
updated by using the following equation. (We will see shortly that the update is
really restricted to reference vectors whose neurons are in a small neighborhood of
neuron j.)

mj(t+ 1) = mj(t) + hj(t)(p(t)−mj(t)) (5.39)

Thus, at time t, a reference vector, mj(t), is updated by adding a term, hj(t)
(p(t) − mj(t)), which is proportional to the difference, p(t) − mj(t), between the
reference vector, mj(t), and the training point, p(t). hj(t) determines the effect
that the difference, p(t) − mj(t), will have and is chosen so that a) it diminishes
with time and b) it enforces a neighborhood effect, i.e., the effect of a point is
strongest on the neurons closest to the neuron j. Typically, hj(t) is chosen to be
one of the following two functions:

hj(t) = α(t)exp(−||rj − rk||2/(2σ2(t)) (Gaussian function) (5.40)

hj(t) = α(t) if ||rj − rk|| ≤ threshold, 0 otherwise (step function) (5.41)

These function require quite a bit of explanation. α(t) is a learning rate param-
eter, 0 < α(t) < 1, which decreases monotonically and which controls the rate of
convergence. rk = (xk, yk) is the two-dimensional point which gives the grid coor-
dinates of the kth neuron. ||rj- rk|| is the Euclidean distance of the two neurons,
i.e.,

√
(xj − xk)2 + (yj − yk)2. Thus, we see that for neurons that are ‘far’ from

neuron j, the influence of training point p(t) will be either greatly diminished or
non-existent. Finally, note that σ is the typical Gaussian ‘variance’ parameter and
controls the width of the neighborhood, i.e., a small σ will yield a small neighbor-
hood, while a large σ will yield a wide neighborhood. The threshold used for the
step function also controls the neighborhood size.
We emphasize that it is the neighborhood updating technique that enforces a

relationship (ordering) between reference vectors associated with neighboring neu-
rons.

5.9.3 Self-Organizing Maps (SOM) 347

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 5.45. Distribution of reference vectors for a two-dimensional point set.

Deciding when training is complete is an important issue. Ideally, the training
procedure should continue until convergence occurs, i.e., until the reference vectors
are not changing much. The rate of convergence will depend on a number of factors,
e.g., the data and α(t). We will not discuss these issues further except to mention
that the most important issue, as with neural network in general, is the fact that
convergence is often slow.
We provide only a simple illustration SOM, using the technique for two-dimensional

data. In particular, Figure 5.45 shows a set of points - circles - and the positions of
the 36 reference vectors - X’s after running SOM. The data points are arranged in
a checkerboard pattern, and a 6 by 6 two dimensional grid of reference vectors was
used with random initialization.) The reference vectors tend to distribute themselves
to the dense areas, even within the squares.

Applications

Once the SOM vectors are found, they can be used for many purposes besides
clustering. For example, with a two-dimensional SOM it is possible to associate
various quantities with the grid points associated with each neuron and to visualize
the results via various types of plots. For example, plotting the number of points
associated with each reference vector (neuron) yields a surface plot that reveals
the distribution of points among neurons (clusters). (A two-dimensional SOM is
a non-linear projection of the original probability distribution function into two
dimensions. This projection attempts to preserve topological features and thus,
SOM has been compared to the process of ‘pressing a flower.’)
Besides data exploration, SOM and its supervised learning variant, LVQ (Learn-

ing Vector Quantization), have been used for many useful tasks, e.g., image segmen-

5.10 Scalable Clustering Algorithms 348

tation, organization of document files, and speech processing. There are thousands
of papers that deal with SOM neural networks and the basic techniques have been
extended in many directions. References are provided in the bibliographic notes.

5.10 Scalable Clustering Algorithms

5.10.1 Birch

BIRCH (Balanced and Iterative Reducing and Clustering using Hierarchies) is a
highly efficient clustering technique for data in Euclidean vector spaces, i.e., data
for which averages make sense. BIRCH can efficiently cluster such data with a single
pass and can improve that clustering in additional passes. BIRCH also can also deal
effectively with outliers.
BIRCH is based on the notion of a clustering feature (CF) and a CF tree. The

idea is that a cluster of data points (vectors) can be represented by a triple of
numbers (N, LS, SS), where N is the number of points in the cluster, LS is the linear
sum of the points, and SS is the sum of squares of the points. These are common
statistical quantities and a number of different inter-cluster distance measures can
be derived from them.
A CF tree is a height-balanced tree. Each interior node has entries of the form

[CFi, childi], where childi is a pointer to the i
th child node. The space that each

entry takes and the page size, P, determine the number of entries, B, in an interior
node. The space of each entry is, in turn, determined by the size of the points, i.e.,
by the dimensionality of the points.
Leaf nodes consist of a sequence of clustering features, CFi, where each clustering

feature represents a number of points that have been previously scanned. Leaf nodes
are subject to the restriction that each leaf node must have a diameter that is less
than a parameterized threshold, T. The space that each entry takes and the page
size, P, determine the number of entries, L, of a leaf.
By adjusting a threshold parameter, T, the height of the tree can be controlled.

T controls the fineness of the clustering, i.e., the extent to which the data in the
original set of data is reduced. The goal is to keep the CF tree in main memory by
adjusting the T parameter as necessary.
A CF tree is built as the data is scanned. As each data point is encountered, the

CF tree is traversed, starting from the root and choosing the closest node at each
level. When the closest “leaf” cluster for the current data point is finally identified,
a test is performed to see if adding the data item to the candidate cluster will result
in a new cluster with a diameter greater than the given threshold, T. If not, then
the data point is ‘added’ to the candidate cluster by updating the CF information.
The cluster information for all nodes from the leaf to the root is also updated.
If the new cluster would have a diameter greater than T, then a new entry is

created if the leaf node is not full. Otherwise the leaf node must be split. The two
entries (clusters) that are farthest apart are selected as ‘seeds’ and the remaining
entries are distributed to one of the two new leaf nodes, based on which leaf node

5.10.2 CURE 349

contains the closest “seed” cluster. Once the leaf node has been split, the parent
node is updated, and split if necessary, i.e., if the parent node is full. This process
may continue all the way to the root node.
BIRCH follows each split with a merge step. At the interior node where the

split stops, the two closest entries are found. If these entries do not correspond to
the two entries that just resulted from the split, then an attempt is made to merge
these entries and their corresponding child nodes. This step is intended to increase
space utilization and avoid problems with skewed data input order.
BIRCH also has a procedure for removing outliers. When the tree needs to be

rebuilt, because it has run out of memory, then outliers can optionally be written
to disk. (An outlier is defined to be node that has “far fewer” data points than
average.) At certain points in the process, outliers are scanned to see if they can be
absorbed back into the tree without causing the tree to grow in size. If so, they are
re-absorbed. If not, they are deleted.
BIRCH consists of a number of phases beyond the initial creation of the CF tree.

All the phases of BIRCH are described briefly in Algorithm 11.

5.10.2 CURE

CURE (Clustering Using Representatives) is a clustering algorithm that uses a va-
riety of different techniques to create an approach which can handle large data sets,
outliers, and clusters with non-spherical shapes and non-uniform sizes.
CURE represents a cluster by using multiple ‘representative’ points from the

cluster. These points will, in theory, capture the geometry and shape of the cluster.
The first representative point is chosen to be the point furthest from the center of
the cluster, while the remaining points are chosen so that they are farthest from all
the previously chosen points. In this way, the representative points are naturally
relatively well distributed. The number of points chosen, is a parameter, c, but it
was found that a value of 10 or more worked well.
Once the representative points are chosen, they are shrunk toward the center

by a factor, α. This helps moderate the effect of outliers, which are usually farther
away from the center and thus, are ‘shrunk’ more. For example, a representative
point that was a distance of 10 units from the center would move by 3 units (for
α = 0.7), while a representative point at a distance of 1 unit would only move 0.3
units.
CURE uses an agglomerative hierarchical scheme to perform the actual cluster-

ing. The distance between two clusters is the minimum distance between any two
representative points (after they are shrunk toward their respective centers). While
this scheme is not exactly like any other hierarchical scheme that we have seen,
it is equivalent to centroid based hierarchical clustering if α = 0, and roughly the
same as single link hierarchical clustering if α = 1. Notice that while a hierarchical
clustering scheme is used, the goal of CURE is to find a given number of clusters as
specified by the user.
CURE takes advantage of certain characteristics of the hierarchical clustering

process to eliminate outliers at two different points in the clustering process. First,

5.10.2 CURE 350

Algorithm 11

1: Load the data into memory by creating a CF tree that ‘summarizes’

the data.

2: Build a smaller CF tree if it is necessary for phase 3. T is increased,

and then the leaf node entries (clusters) are reinserted. Since T has increased,

some clusters will be merged.

3: Determine the neuron whose reference vector is closest to the current

point.

4: Perform global clustering. Different forms of global clustering (clustering

which uses the pairwise distances between all the clusters) can be used. How-

ever, an agglomerative, hierarchical technique was selected. Because the clus-

tering features store summary information that is important to certain kinds

of clustering, the global clustering algorithm can be applied as if it were being

applied to all the points in cluster represented by the CF.

5: Redistribute the data points using the centroids of clusters discovered

in step 3 and thus, discover a new set of clusters. This overcomes

certain problems that can occur in the first phase of BIRCH. Because of page

size constraints and the T parameter, points that should be in one cluster are

sometimes split, and points that should be in different clusters are sometimes

combined. Also, if the data set contains duplicate points, these points can

sometimes be clustered differently, depending on the order in which they are

encountered. By repeating this phase, multiple times, the process converges to

a (possibly local) optimum solution.

5.11 Cluster Evaluation 351

if a cluster is growing slowly, then this may mean that it consists mostly of outliers,
since by definition outliers are far from others and will not be merged with other
points very often. In CURE this first phase of outlier elimination typically occurs
when the number of clusters is 1/3 the original number of points. The second phase
of outlier elimination occurs when the number of clusters is on the order of K, the
number of desired clusters. At this point small clusters are again eliminated.
Since the worst case complexity of CURE is O(m2log m), it cannot be applied

directly to large data sets. For this reason, CURE uses two techniques for speeding
up the clustering process. The first technique takes a random sample and performs
hierarchical clustering on the sampled data points. This is followed by a final pass
that assigns each remaining point in the data set to one of the clusters by choosing
the cluster with closest representative point.
In some cases, the sample required for clustering is still too large and a second

additional technique is required. In this situation, CURE partitions the sample data
into p partitions of sizem/p and then clusters the points in each partition until there
are m/pq clusters in each partition. This pre-clustering step is then followed by a
final clustering of them/q intermediate clusters. Both clustering passes uses CURE’s
hierarchical clustering algorithm and are followed by a final pass that assigns each
point in the data set to one of the clusters.
We summarize our description of CURE by explicitly listing the different steps

in Algorithm 12.

Algorithm 12 CURE.

1: Draw a random sample from the data set. The CURE paper is notable

for explicitly deriving a formula for what the size of this sample should be in

order to guarantee, with high probability, that all clusters are represented by a

minimum number of points.

2: Partition the sample into p equal sized partitions.

3: Cluster the points in each cluster using the hierarchical clustering

algorithm to obtain m/pq clusters in each partition and a total of

m/q clusters. Note that some outlier elimination occurs during this process.

4: Eliminate outliers. This is the second phase of outlier elimination.

5: Assign all data to the nearest cluster to obtain a complete clustering.

5.11 Cluster Evaluation

In supervised classification, the evaluation of the resulting classification model is
critically important and there are relatively well-accepted measures and procedures
that are a normal part of the process of developing a classification model, e.g.,
accuracy and cross-validation, respectively. However, despite the efforts of many
researchers, cluster evaluation is not a well-developed or commonly used part of

5.11.1 Overview 352

cluster analysis. Nonetheless, cluster evaluation, or cluster validation as it is more
traditionally called, is important and this section will review some of the most
common and easily applied approaches.
There might be some confusion as to why cluster evaluation is necessary. After

all, many times cluster analysis is conducted as a part of exploratory data analysis
and hence, evaluation seems like an unnecessarily complicated addition to what
is supposed to be an informal process. Furthermore, since there are a number of
different types of clusters—in some sense, each clustering algorithm defines its own
type of cluster—it may seem that each situation might require a different evaluation
measure. For instance, K-means clusters might be evaluated in terms of SSE, but
for density-based clusters, which need not be globular, SSE would not work well at
all.
Nonetheless, cluster evaluation should be a part of any cluster analysis. In

particular, a key motivation is that virtually any clustering algorithm will produce
clusters given a data set, even if that data set has no natural structure. For instance,
consider Figure 5.46, which shows the result of clustering 100 points that are ran-
domly (uniformly) distributed on the unit square. The original points are shown in
Figure 5.46a, while the clusters found by DBSCAN, K-means and complete link are
shown in figures 5.46b, 5.46c, and 5.46d, respectively. Since DBSCAN found three
clusters (after we set EPS by looking at the distances of the 4th nearest neighbor),
we set K-means and complete link to find three clusters as well. (In Figure 5.46b
the noise is shown by the small markers.) However, for none of the three methods
do the clusters look extremely compelling. Furthermore, in higher dimensions, such
problems cannot be so easily detected.

5.11.1 Overview

Being able to distinguish if there is any non-random structure in the data is just one
important aspect of cluster validation. The following is an enumeration of several
important aspects of cluster validation.

1. Determining the clustering tendency of a set of data, i.e., distinguishing whether
non-random structure actually exists in the data.

2. Comparing the results of a cluster analysis to externally known results, e.g.,
to externally given class labels. (We may wish to determine if a clustering
technique can automatically provide a classification for objects which can be
classified manually, but with much effort.)

3. Evaluating how well the results of a cluster analysis fit the data without ref-
erence to external information.

4. Comparing two different sets of clusters to determine which is better.

5. Determining the ‘correct’ number of clusters.

5.11.1 Overview 353

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(a) Original Data Set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(b) Three Clusters Found By DBSCAN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(c) Three Clusters Found by K-means

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(d) Three Clusters Found by Complete

Link

Figure 5.46. Clustering of 100 Randomly Distributed Points.

5.11.1 Overview 354

Notice that a further distinction can made with respect to points 2, 3 and 4: whether
we want to evaluate the entire clustering or just individual clusters.
While it is possible to develop various numerical measures to assess the different

aspects of cluster validity mentioned above, there are a number of problems. First, a
measure of cluster validity may be quite limited in the scope of its applicability. For
example, most work on measures of clustering tendency have been for two or three
dimensional spatial data. Secondly, we need a framework to interpret any measure.
For example, if our measure for evaluating how well cluster labels match externally
provided labels has the value, 10, does that represent a good, fair, or poor match?
The goodness of a match might be measured statistically, i.e., by how unlikely such
a value is to occur by chance. Finally, if the measure is too complicated to apply or
to understand, then people will be reluctant to use it.
The numerical measures, or indices, that are applied to judge various aspects of

cluster validity, are classified into the following three types.

External Index. Used to measure the extent to which the clustering structure
discovered by a clustering algorithm matches some external structure. For
example, as already mentioned, do cluster labels match externally supplied
class labels? Entropy is an example of an external index.

Internal Index Used to measure the goodness of a of clustering structure without
respect to external information. An example of this is SSE.

Relative Index Used to compare two different clusterings or clusters. Often an
external or internal index is used for this function. For instance, two K-means
clusterings can be compared by comparing their total SSE or entropy.

These measures are sometimes referred to as criteria instead of indices However,
at other times, the term, ‘criterion,’ is used for general strategies, while the term
‘index’ is used for the numerical measure that implements the criterion.
In the remainder of this section, we shall describe some of the most commonly

used techniques for evaluating cluster validity. In most cases these will be different
external or internal indices. (All the relative indices that we will discuss are just
external or internal indices used for comparing clustering results, and so, we do not
make this a separate topic.) However, in some cases, the techniques will be graphical
approaches that also can yield very useful information.
We must confess though, that we cover few of the cluster validity indices devel-

oped by earlier researchers. There are several reasons for this. For instance, many
of the approaches require more statistical background than we wish to require of the
reader. Furthermore, many of these approaches have appeared only in specialized
literature and have not seen widespread use. Finally, even many of the indices which
have been more frequently used were developed for smaller data sets and different
types of data than are currently encountered in many data mining situations.

5.11.2 Measuring Cluster Validity via Correlation 355

5.11.2 Measuring Cluster Validity via Correlation

If we are given the proximity matrix and the cluster labels for a data set, then
we can evaluate the ‘goodness’ of the the clustering by looking at the correlation
between the proximity matrix and an idealized version of the proxmity matrix, which
we call the incidence matrix. (For simplicity in what follows, we assume that our
proximity matrix is a similarity matrix.) More specifically, an ideal cluster is one
which has a similarity of 1 to all points in the cluster, and has a similarity of 0 for
all points in other clusters . Thus, a ‘perfect’ similarity matrix has a block diagonal
structure, i.e., the similarity is 0 outside the blocks of the similarity matrix whose
entries represent intra-cluster similarity. (Within those blocks, the similarity is 1,
but this is not required of the definition of a block diagonal matrix.) The incidence
matrix is easily constructed by creating a matrix that has one row and one column
for each data point—just like a similarity matrix—and assigning a 1 to an entry if
the associated pair of points belong to the same cluster. All other entries are 0.
High correlation between the incidence and similarity matrices indicates that

points that belong to the same cluster are close to each other, while low correlation
indicates the opposite. Thus, this is not a good measure for many density or con-
tiguity based clusters, since they are not globular and may be closely intertwined
with other clusters. Also, since the similarity and incidence matrices are symmetric,
only the correlation between n(n− 1)/2 entries needs to be calculated.
To illustrate this measure, we calculated the correlation between the similarity

matrix and incidence matrix for the K-means clusters shown in Figure 5.46c (random
data) and Figure 5.47a (data with three well-separated clusters). The correlations,
were respectively, 0.5810and 0.9235, which reflect that fact that the clusters found
by K-means in the random data are ‘worse’ than the clusters found by K-means in
data with well-separated clusters.

5.11.3 Judging a Clustering Via Its Similarity Matrix

The above approach suggest a more general, albeit less quantitative approach to
judging a set of clusters, i.e., order the proximity matrix with respect to cluster labels
and then plot it. In theory, if we have well-separated clusters, then the proximity
matrix should be roughly block-diagonal. If not, then the patterns displayed in the
similarity matrix can reveal the relationships between clusters.
This idea is best illustrated graphically. Consider the points in Figure 5.47a.

If we run K-means on these points, looking for three clusters, then we will have
no trouble finding these clusters since they are well-separated. This is illustrated
by the reordered similarity matrix that is shown in Figure 5.47b. (For uniformity,
we have transformed the distances into similarities using the formula, s = 1 −

d−min d
max d−min d .) The reordered similarity matrices for random data set of Figure 5.46
and the DBSCAN, K-means and complete link clustering approaches are shown in
Figure 5.48.
While this approach to evaluating the overall goodness of a clustering is qual-

itative, it is clear that well-separated clusters show a very strong, block-diagonal

5.11.4 An internal measure of cluster validity: SSE 356

pattern in the reordered proximity matrix. However, while the pattern for the clus-
ters in random data is much weaker, there is some pattern. We emphasize that
just as people can find patterns in clouds, data mining algorithms can find clusters
in random data. But while we find it entertaining to find patterns in clouds, it is
pointless and perhaps embarrassing to find clusters in noise.
This approach may seem hopelessly expensive for large data sets since the com-

putation of the proximity matrix takes O(n2) time. However, if the number of
clusters is not too large, then sampling may still allow this method to be used.
More specifically, the idea would be to take a sample of data points from each clus-
ter, compute the similarity between these points, and plot the result. It may be
necessary to oversample small clusters and undersample large ones to allow for an
adequate representation of all clusters.

5.11.4 An internal measure of cluster validity: SSE

An internal measure of cluster validity, e.g., SSE, can be used to evaluate a cluster-
ing either in absolute terms or with respect to another clustering. Furthermore, an
internal measure can often be used to evaluate either an entire clustering or an indi-
vidual cluster. This is because it often makes sense to express the overall goodness
of the clustering as a sum or weighted sum of the individual goodness (or validity)
of each cluster.
In this section, we shall use SSE as our example of an internal validity index.

However, we stress that SSE is only appropriate when we are looking for globular
clusters with a K-means type of algorithm, and for other types of clusters and
clustering algorithms, different sorts of cluster validity indices are more appropriate.
For comparing two clusterings, on the same data with the same number, it

is sufficient to compare the corresponding values of SSE. We take the clustering
with the lower SSE. (In practice, there may be other factors involved, and what
may happen is that a clustering with a low SSE is selected over the lowest SSE
clustering.) However, for two clusters, a straight comparison does not take into
account the different numbers of points in each cluster. Hence, the mean SSE of a
cluster is a more appropriate measure for comparison. Nonetheless, the comparison
of clusterings or clusters is straightforward.
We wrap up this section by showing that the proper number of clusters, at least

for K-means, can sometimes be determined approximately by looking at the SSE
curve. Figure 5.49 shows the plot of SSE for a (bisecting) K-means clustering of the
ten clusters shown in Figure 5.16. While the knee is particularly sharp for this data,
often this is not the case, i.e., the change in SSE can be much more gradual. This
is illustrated by Figure 5.50, which shows the SSE curve for the points in Figure
5.33a. However, in many cases this approach does provide a rough estimate of the
number of clusters.

5.11.4 An internal measure of cluster validity: SSE 357

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(a) Well-Separated Clusters

Points

P
o

in
ts

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
Similarity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Similarity Matrix Sorted by K-means

Cluster Labels

Figure 5.47. Similarity Matrix for Well-separated Clusters.

5.11.4 An internal measure of cluster validity: SSE 358

Points

P
oi

nt
s

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
Similarity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Similarity Matrix

Sorted by DBSCAN

Cluster Labels

Points

P
oi

nt
s

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
Similarity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Similarity Matrix

Sorted by K-means

Cluster Labels

Points

P
oi

nt
s

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
Similarity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Similarity Matrix

Sorted by Complete

Link Cluster Labels

Figure 5.48. Similarity Matrices for Clusters from Random Data.

2 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

K

S
S

E

Figure 5.49. Plot of SSE versus K for 10 Clusters.

5.11.5 A statistical framework for cluster validity 359

2 5 10 15 20 25 30
0

2000

4000

6000

8000

10000

12000

Figure 5.50. Plot of SSE versus K for a more complicated data set.

5.11.5 A statistical framework for cluster validity

However, suppose that we have clustered a set of data using K-means, perhaps with
multiple runs, bisecting K-means, and/or postprocessing, and we feel that we have
attained the lowest SSE clustering for K clusters that is possible given our tools
and computational resources. Is there any way that we can more objectively assess
how good the clusters are using SSE? The answer is ‘yes.’ In some cases, we can
obtain a statistical evaluation of how good our clusters are with respect to the same
number of clusters on random data.
We illustrate this with an example. Suppose that we wanted an objective mea-

sure of how good our clusters were with respect to random data for the well-separated
clusters of Figure 5.47. The idea is simple: we generate many random sets of 100
points having the same range as the points in the three clusters, find three clusters
in each data set using K-means and then accumulate the distribution of SSE for
these clusterings. We can then compare the SSE for our original three clusters and
see how ‘likely’ it is for a set of clusters with this SSE to occur. Figure 5.51 shows
the histogram of the SSE that results from 500 random runs. The lowest SSE shown
is 0.0173. For the three clusters of Figure 5.47, the SSE is 0.0050. Informally, we
could then conservatively say that there is a less than a 1% chance that a clustering
such as that of 5.47 could result by chance.

5.11.6 Internal measures of cluster validity: cohesion and separation

Internal measures of cluster validity can often be separated into two important
classes: measures of cluster cohesion (compactness, tightness, which measure how
closely related the objects in a cluster are, and measures of cluster separation (isola-
tion), which measure how distinct or well-separated a cluster is from other clusters.
Notice that these measures are often more appropriate for center based clusters,
since contiguous or density-based clusters can consist of points which are not all
that similar to one another and not all that isolated from other points in other

5.11.6 Internal measures of cluster validity: cohesion and separation 360

0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034
0

5

10

15

20

25

30

35

40

45

50

SSE

C
ou

nt

Figure 5.51. Histogram of SSE for 500 random data sets.

clusters.

SSE and SSB

The SSE measure that we have seen a number of times before provides a natural
measure of cluster cohesion. As mentioned, the proper measure is actually the
mean SSE of a cluster, i.e., the SSE of a cluster divided by the number of points in
the cluster. To measure cluster separation, we can rely on a similar measure, the
between cluster sum of squares, SSB, which is the sum of the squared distance of
of a cluster centroid, mi, to the overall mean, m, of the data points. By summing
the SSB over all clusters, we can obtain a total SSB, as given by equation 5.42. mi

j

is the jth component of the ith mean, while mj is the j
th component of the overall

mean.

SSB =
K∑

i=1

|Ci|
n∑

j=1

(mi
j −mj)

2 (5.42)

The higher the total SSB of a clustering, the more separated the clusters are from
one another. Once again, though, to evaluate the isolation of an individual cluster,
we only consider the portion of the SSB due to one cluster, and should also divide
this quantity by the number of points in the cluster to adjust for cluster size. In
statistics the SSE is often called the “within cluster sum of squares,” while the SSB
is referred to as the “between cluster sum of squares.” It is a straightforward exercise
to shown that the sum of the total SSE and the total SSB is a constant, i.e., it is
equal to the sum of squares of the distance of each point to the overall data mean
(centroid).

A graph based approach

Another way to define cluster cohesion and separation is via a graph based approach.
Note that this approach is more relevant for contiguity-based clusters. Specifically

5.11.6 Internal measures of cluster validity: cohesion and separation 361

cohesion separation

Figure 5.52. Illustration of proximity links involved in cohesion and separation measures.

the cohesion of a cluster can be defined as the sum of the weights of the links in the
proximity graph that connect points within the cluster. (Recall that the proximity
graph is the graph that has data objects as nodes, a link between each node, and
a weight assigned to each link that is the proximity between the two nodes (data
objects) involved in the link.) Likewise, the isolation can be measured by the sum
of the weights of the links that are from points in the cluster to points outside the
cluster. This is illustrated in Figure 5.52. To simplify this measure, often only the k
nearest neighbors of a point are considered, Furthermore, especially when only the
nearest neighbors are considered, each link is sometimes assigned a weight of 1.

Silhouette Coefficient

We briefly present the method of silhouette coefficients. This approach consists of
the following three steps. To be specific, we use distances, but a similar approach
can be used for similarities.

1. For the ith object, calculate its average distance to all other objects in its
cluster. Call this quantity ai.

2. For the ith object, calculate its average distance to each object of a given
cluster, and then find the minimum such value. Call this quantity bi.

3. For the ith object, compute the silhouette coefficient. si =

{
1− ai

bi
if ai ≤ bi

ai
bi
− 1 if ai > bi

We can then construct what it called a silhouette plot. To do this, we order the
data points in a plot in terms of deceasing silhouette coefficient. The points at the
top of the plot are the ones that are more in the center of the cluster, while those
at the bottom are more towards the edge.
Notice that we can also compute the average silhouette coefficient of a cluster,

which is measure of the goodness of a cluster, both in terms of its cohesion and
its separation. An overall measure of the goodness of a clustering can be obtained
by calculating the weighted average of the silhouette coefficients of all the clusters,
where the weight is based on cluster size.

5.11.7 Using External Measures of Cluster Validity 362

5.11.7 Using External Measures of Cluster Validity

Typically, when we have external information, it is externally derived class labels for
the data points, and in such cases, it is desired to measure the degree of fit between
the cluster labels and the class labels. The reader might wonder why this is of
interest. After all, if we have the class labels, then what is the point in performing a
cluster analysis. There are various reasons, e.g., comparison of clustering techniques
or parameterizations of a technique with the “ground truth,” and the evaluation of
the extent to which a manual classification process can be automatically derived by
cluster analysis.
There have been a large number of measures developed by members of the statis-

tics and classification communities for comparing two partitions of data. As far as
we can tell, very few of them are used in the data mining community. We consider
only two measures that are widely used:

entropy For each cluster, the class distribution of the data is calculated first, i.e.,
for cluster j we compute pij , the ‘probability’ that a member of cluster j
belongs to class i as follows: pij = mij/mj , where mj is the number of values
in cluster j and mij is the number of values of class i in cluster j. Then using
this class distribution, the entropy of each cluster j is calculated using the
standard formula, ej =

∑L
i=1 pij log2 pij , where the L is the number of classes.

The total entropy for a set of clusters is calculated as the sum of the entropies
of each cluster weighted by the size of each cluster, i.e., e =

∑K
i=1

mi

m ej , where
mj is the size of cluster j, K is the number of clusters, and m is the total
number of data points.

purity Using the terminology derived for entropy, the purity of cluster j, is given
by purityj = max

i
pij and the overall purity of a clustering by purity =

∑K
i=1

mi

m purityj .

To illustrate these two measures, we consider an example of using K-means to
cluster documents. For documents we use cosine similarity as the measure of doc-
ument similarity and transform the raw document-term matrix by first performing
the TFIDF normalization, and then normalizing all document vectors to have an L2
norm of 1. As our sample dataset, we chose a data set that contains 3204 documents
and 31,472 terms. The documents which are articles from the LA times and come
from 6 different classes: ‘Entertainment,’ ‘Financial,’ ‘Foreign,’ ‘Metro,’ ‘National,’
and ‘Sports.’
The following table indicates the results of a K-means run to find 6 clusters.

(The following analysis can also be performed when the number of clusters does
not match the number of classes.) The first column indicates the cluster, 1-6, while
the next six columns are the confusion matrix, e.g., column 3 records how many
documents of each cluster were from the Financial section of the newspaper. The
last two columns are, respectively, the entropy and purity of each cluster.

5.11.7 Using External Measures of Cluster Validity 363

Table 5.9. K-means Clustering Results for LA Document Data Set
Cluster Entertainment Financial Foreign Metro National Sports Entropy Purity

1 3 5 40 506 96 27 1.2270 0.7474

2 4 7 280 29 39 2 1.1472 0.7756

3 1 1 1 7 4 671 0.1813 0.9796

4 10 162 3 119 73 2 1.7487 0.4390

5 331 22 5 70 13 23 1.3976 0.7134

6 5 358 12 212 48 13 1.5523 0.5525

Total 354 555 341 943 273 738 1.1450 0.7203

Notice that one cluster is exceptionally pure, Cluster 3, which contains mostly
documents from the Sports section. The purity of the other clusters is not excep-
tional, but purity can typically be greatly improved by finding more clusters.

5.12 Bibliographic Notes 364

5.12 Bibliographic Notes

Quite a number of books and articles on clustering have been published - only a
few of which can be mentioned here. Three of the most well-known introductions
to clustering are [12], [93], and [101]. A more statistically oriented approach to
clustering is given in Chapter 10 of [49]. A relatively up-to-date, general survey of
clustering can be found in [94], while more data mining specific surveys of clustering
are contained in [75] and [18]. A good source of references to clustering outside of
the data mining field can be found in [15].
Center-based clustering approaches, such as K-means and K-medoids, are a core

set of clustering techniques. The The K-medoid approach is discussed in [101]
and [136], while K-means the algorithm is described in detail in [12] and [93]. The
bisecting K-means algorithm is described in [175] and an implementation of this
and other clustering approaches is freely available for academic use in the CLUTO
(CLustering TOolkit) package [67].
Thorough discussions of hierarchical clustering are found in [12], [93], and [101].

The main focus is traditional agglomerative hierarchical clustering approaches, but
divisive approaches are also described in [93], and [101]. More recent developments
of hierarchical clustering include the use of representative points (CURE [177]),
the importance of the proper similarity measure for transaction data (ROCK [65])
and the value of dynamically modelling the data (Chameleon [99]). There has also
been recent work ([58] and [100]) in trying to alleviate the brittleness of traditional
agglomerative hierarchical clustering.
Density-based clustering as embodied by DBSCAN is described in [54] and [155].

Extension of this work has led to OPTICS (Ordering Points To Identify the Clus-
tering Structure) [14], a new approach for visualizing cluster structure and to LOF
(Local Outlier Factor) [23], an approach for classifying the degree to which a point
is an outlier.
MAFIA and CLIQUE, which were discussed in sections 5.8.3 and 5.8.3 are ex-

amples of subspace clustering algorithms. The CLIQUE algorithm is described in
more detail in [5], while more information on MAFIA can be found in [135]. While
the presentation in sections 5.8.3 and 5.8.3 emphasized the density based nature
of CLIQUE and MAFIA, they are also examples of algorithms of grid-based clus-
tering algorithms. Other examples of clustering algorithms that are grid-based are
WaveCluster [162], DENCLUE [82], and OptiGrid [83].
AutoClass [CS96] is one of the most prominent of the mixture-model based

programs and has been used for data mining to some extent. A readable and current
technical report on clustering using mixture models is given by [FR98]. This source
also provides a pointer to state-of-the-art mixture modeling software. An approach
to using mixture models for co-occurrence data (frequent itemsets of size 2) is given
in [HP98].

[93] provides a thorough discussion of cluster validity, while [101] introduces the
notion of silhouette coefficients that we saw in Section 5.11.6.

5.13 Exercises 365

5.13 Exercises

1. Identify the clusters in the following diagram using the center-based, contigu-
ous and density definitions. Also indicate the number of clusters for each
case and give a brief indication of your reasoning. Note that darkness or the
number of dots indicates density. If it helps, assume center-based = K-means,
contiguous = MIN, and density = DBSCAN.

(a) (b)

(c) (d)

Figure 5.53. Figures for exercise 1.

2. Find all well separated clusters in the following set of points.

3. The following attributes are measured for members of a typical herd of Asian
Elephants: weight, height, tusk length, trunk length, and ear area. Based on
these measurements, What sort of similarity measure from Section 5.2 would
you use to compare or cluster these elephants? Justify your answer and explain
any special circumstances.

4. Similarity measures.

(a) For binary data, the L1 distance corresponds to the Hamming distance,

5.13 Exercises 366

i.e., the number of bits that are different between two binary vectors.
The Jaccard similarity is a measure of the similarity between two binary
vectors. Compute the Hamming distance and the Jaccard similarity be-
tween the following two binary vectors.

a = 0101010001
b = 0100011000

(b) Which approach, Jaccard or Hamming distance, is more similar to the
Simple Matching Coefficient and which approach is more similar to the
cosine measure? Explain. (Note: the Hamming measure is a distance,
while the other three measures are similarities, but don’t let this confuse
you)

(c) Suppose that you are comparing how similar two organisms of different
species are in terms of the number of genes that they share. Describe
which measure, Hamming or Jaccard, you think would be more appro-
priate for comparing the genetic makeup of two organisms. Explain.
(Assume that the each animal is represented as a binary vector, where
each attribute is 1 if a particular gene is present in the organism and 0
otherwise.)

(d) If you wanted to compare the genetic makeup of two organisms of the
same species, e.g., two human beings, would you use the Hamming dis-
tance, the Jaccard coefficient or a different measure of similarity or dis-
tance? Explain. (Note that two human beings share > 99.9% of the same
genes.)

5. Clusters of documents can be summarized by finding the top terms (words) for
the documents in the cluster, e.g., by taking the most frequent k terms, where
k is a constant, say 10, or by taking all terms that occur more frequently than
a specified threshold. Suppose that K-means is used to find both clusters of
documents and words for a document data set.

(a) How might a set of word clusters defined by the top terms in a document
cluster might differ from the word clusters found using K-means clustering
of terms?

(b) Under what ideal (and unrealistic) circumstances, would the set of word
clusters defined by the top terms in a document cluster and the set of
document clusters produced by K-means be identical?

(c) How could term clustering be used to define clusters of documents?

6. Use the following similarity matrix to perform MIN and MAX hierarchical
clustering. Show your results by drawing a dendrogram. The dendrogram
should clearly show the order in which the points are merged.

5.13 Exercises 367

p1 p2 p3 p4 p5

p1 1.00 0.10 0.41 0.55 0.35

p2 0.10 1.00 0.64 0.47 0.98

p3 0.41 0.64 1.00 0.44 0.85

p4 0.55 0.47 0.44 1.00 0.76

p5 0.35 0.98 0.85 0.76 1.00

7. Similarity Measures.

(a) For the following vectors, x and y, calculate the indicated similarity or
distance measures.

i. x = (1 1 1 1), y = (2 2 2 2) cosine, correlation, Euclidean

ii. x = (0 1 0 1), y = (1 0 1 0) cosine, correlation, Euclidean, Jaccard

iii. x = (0 -1 0 1), y = (1 0 -1 0) cosine, correlation, Euclidean

iv. x = (1 1 0 1 0 1), y = (1 1 1 0 0 1) cosine, correlation, Jaccard

v. x = (2 -1 0 2 0 -3), y = (-1 1 -1 0 0 -1) cosine, correlation

(b) What is the range of values that are possible for the cosine measure?

(c) True or false, if two objects have a cosine measure of 1, are they identical?
Explain.

(d) What is the relationship of the cosine measure to correlation, if any?
(Hint: Look at statistical measures such as mean and standard deviation
in cases where cosine and correlation are the same and different.)

(e) Figure 5.54a shows the relationship of the cosine measure to Euclidean
distance for 100,000 randomly generated points that have been normal-
ized to have an L2 length of 1. What general observation can you make
about the relationship between Euclidean distance and cosine similarity
when vectors have an L2 norm of 1?

(f) Figure 5.54b shows the relationship of correlation to Euclidean distance
for 100,000 randomly generated points that have been standardized to
have a mean of 0 and a standard deviation of 1. What general observation
can you make about the relationship between Euclidean distance and
correlation when the vectors have been standardized to have a mean of 0
and a standard deviation of 1?

8. Understanding the behavior of K-means and MIN

Hierarchical clustering is sometimes used to generate K clusters, K ¿ 1 by
taking the clusters at the Kth level of the dendogram. (Root is at level 1.) By
looking at the clusters produced in this way, we can evaluate the behavior of
hierarchical clustering on different types of data and clusters, and also compare
hierarchical approaches to K-means.

The following is a set of one-dimensional points: {6, 12, 18, 24, 30, 42, 48}.

5.13 Exercises 368

(a) Relationship

between Euclidean

distance and the

cosine measure

(b) Relationship

between Euclidean

distance and

correlation

Figure 5.54. Figures for exercise 6.

(a) For each of the following sets of initial centroids, create two clusters by
assigning each point to the nearest centroid, and then calculate the total
squared error for each set of two clusters. Show both the clusters and the
total squared error for each set of centroids.

i. {18, 45}
ii. {15, 40}

(b) Do both sets of centroids represent stable solutions, i.e., if the K-means
algorithm was run on this set of points using the given centroids as the
starting centroids, would there be any change in the clusters generated?

(c) What are the two clusters produced by MIN?

(d) Which technique, K-means or MIN, seems to produce the ”most natural”
clustering in this situation? (For K-means take the clustering with the
lowest squared error.)

(e) What definition(s) of clustering does this ”natural” clustering correspond
to? (Well separated, center-based, contiguous, or density)

(f) What well-known characteristic of the K-means algorithm explains the
previous behavior?

9. K-means and clusters of varying density Suppose that a data set has

• m points and K clusters and

• half the points and clusters are in “more dense” regions and
• half the points and clusters are in a “less dense” regions and
• the two regions are well separated from each other.

For the given data set, which of the following should occur in order to minimize
the squared error when finding K clusters:

(a) Centroids should be equally distributed between “more dense” and “less
dense” regions.

5.13 Exercises 369

(b) More centroids should be allocated to the “less dense” region.

(c) More centroids should be allocated to the “more dense” region.

Note: please don’t get distracted by special cases or bring in factors other
than density. However, if you feel the true answer is different from any given
above, please justify your response.

10. Sampling to improve cluster efficiency.

Hierarchical clustering algorithms require at least O(m2) time and thus, are
impractical to use directly on larger data sets. One possible technique for
reducing the time required is to sample the dataset. For example, if K clusters
are desired, then points are sampled from the m points, and a hierarchical
clustering algorithm will produce a hierarchical clustering in O(m) time. K
clusters can be extracted from this hierarchical clustering by looking at the
clusters on the Kth level of the dendrogram. The remaining points can then
be assigned in linear time, by using a variety of strategies. For example, the
centroids of the K clusters can be calculated and then each of the m points
can be assigned to the closest cluster.

For each of the following types of data or clusters, discuss briefly if a) sampling
will cause problems and b) what those problems are. Assume that the sampling
technique randomly chooses points from the total set of m points and that the
unmentioned characteristics of the data or clusters are as optimal as possible.
In other words, focus only on problems caused by the particular characteristic
mentioned. Finally, assume that K is very much less than m.

(a) Data with very different sized clusters.

(b) High dimensional data.

(c) Data with outliers, i.e., atypical points.

(d) Data with highly irregular regions.

(e) Data with globular clusters.

(f) Data with widely different densities.

(g) Data with a small percentage of noise points.

(h) Non-Euclidean data.

(i) Euclidean data.

(j) Data with many and mixed attribute types.

11. Understanding the behavior of K-means and MIN

Consider the following four “faces” shown in figure 5.55. Again, darkness or
number of dots represents density.

(a) Could you use MIN to find the patterns represented by the nose, eyes
and mouth in all figures? Explain.

5.13 Exercises 370

(a) (b) (c) (d)

Figure 5.55. Figures for exercise 10.

(b) Could you use K-means to find the patterns represented by the nose, eyes
and mouth in the figures? Explain.

(c) What limitation does clustering have in detecting all the patterns formed
by patterns of points formed by Figure 5.55c?

12. K-means Clustering.

For the following sets of two-dimensional points, provide a) a sketch of how
they would be split into clusters by k-means for the given number of clusters
and b) indicate approximately where the resulting centroids would be. Assume
that we are using the squared error objective function. If you think there is
more than one possible solution, then please indicate for each solution whether
it is a global or local minimum.

(a) K = 2. Assuming that the points are uniformly distributed in the circle,
how many possible ways of partitioning the points into two clusters are
there (in theory)? What can you say about the positions of the resulting
two centroids? (Again you don’t need to provide exact centroid locations,
just a qualitative description.)

(b) K = 3. The distance between the edges of the circles is slightly greater
than the radii of the circles.

(c) K = 3. The distance between the edges of the circles is much less than
the radii of the circles.

(d) K = 2.

(e) K = 3. Hint: Use the symmetry of the situation and remember that we
are looking for a rough sketch of what the result would be.

13. Match the following similarity matrices, which are sorted according to cluster
labels, with the sets of points that are shown. Clusters are shown in the figures
by differences in color and shape of the markers. There are 100 points in each
figure.

14. Compute the entropy and purity for the following confusion matrix.

5.13 Exercises 371

(a) (b) (c) (d)

(e)

Figure 5.56. Figures for exercise 11.

(a) (b) (c) (d)

Figure 5.57. Figures for exercise 12.

15. Given the following similarity matrix and set of cluster labels, compute the
correlation between the similarity matrix and the incidence matrix.

16. Using the data in problem 14, compute the silhouette coefficient for each point,
each of the two clusters, and the overall clustering.

17. F measure for evaluating a hierarchical clustering

An external quality measure for hierarchical clustering is the F measure, a
measure that combines the ideas of precision and recall. We treat each cluster
as if it were the result of a query and each class as if it were the desired set
of documents for a query. We then calculate the recall and precision of that

Table 5.10. Confusion matrix for exercise 13
Cluster Entertainment Financial Foreign Metro National Sports Total Entropy Purity

#1 1 1 0 11 4 676 693

#2 27 89 333 827 253 33 1562

#3 326 465 8 105 16 29 949

Total 354 555 341 943 273 738 3204

5.13 Exercises 372

(a) (b) (c) (d)

Figure 5.58. Figures for exercise 12.

Table 5.11. Table of cluster labels for Exercise 14
Point Cluster Label

P1 1

P2 1

P3 2

P4 2

cluster for each given class. More specifically, for cluster j and class i
Recall(i, j) = nij/ni
Precision(i, j) = nij/nj
where nij is the number of members of class i in cluster j, nj is the number
of members of cluster j and ni is the number of members of class i.

The F measure of cluster j and class i is then given by
F (i, j) = (2 ∗Recall(i, j) ∗ Precision(i, j))/((Precision(i, j) +Recall(i, j))

For an entire hierarchical clustering the F measure of any class is the maximum
value it attains at any node in the tree and an overall value for the F measure
is computed by taking the weighted average of all values for the F measure as
given by the following.
F =

∑
i
ni
n maxF (i, j)

where the max is taken over all clusters at all levels, and n is the number of
documents.

Compute the F measure for the eight objects {p1, p2, p3, p4, p5, p6, p7, p8}
and hierarchical clustering shown below. p1, p2, and p3 belong to class A,

Table 5.12. Similarity matrix for Exercise 14
Point P1 P2 P3 P4

P1 1 0.2 0.35 0.45

P2 0.2 1 0.3 0.4

P3 0.35 0.3 1 0.1

P4 0.45 0.4 0.1 1

5.13 Exercises 373

{p7, p8} {p3, p6} {p4, p5} {p1, p2}

{p1, p2, p3, p4, p5, p6, p7, p8}

{p3, p6, p7, p8} {p1, p2, p4, p5}

Figure 5.59. Cluster tree for exercise 16.

while p4, p5, p6, p7, and p8 belong to class B.)

Chapter 6 374

Chapter 6

Visualization

6.1 Introduction

Visualization is the process of converting data (information) into a visual format
so that the characteristics of the data and the relationships among data items or
attributes can be analyzed or reported. In everyday life, visual techniques such as
graphs and tables are often the preferred approach used to explain, for example,
the weather, the economy, and the results of political elections. Likewise, while
algorithmic or mathematical approaches are often emphasized in most technical
disciplines, data mining included, visual techniques often play a key role in these
fields. Regardless of the application, visualization takes advantage of the well-known
abilities of human beings to rapidly interpret large amounts of visual information.
The goal of this chapter is to provide an introduction to the usefulness of visual

techniques for exploring data, both for understanding the data beforehand and for
detecting patterns - visual data mining if you will. To that end, we first discuss
some basic concepts of visualization, and then present a number of visualization
techniques that are widely applicable. Nonetheless, the reader should be aware that
visualization is a broad topic, and we will only be able to explore a small (but
hopefully quite useful) part.

6.1.1 What is Visualization?

Data visualization is the display of information in a graphic or tabular format, either
on the printed page or on a display. One important component of this process is
the mapping of information to a visual format. This involves mapping the objects,
attributes, and relationships involved in a set of information onto to visual objects,
attributes and relationships. For example, consider Figure 6.1, which shows the
adjusted (for inflation—1995-1996 is the baseline) and unadjusted Gross Domestic
Product (GDP) of New Zealand from 1990 to 1999. The objects correspond to the
economic information for a year, while the attributes of each object are the year,
the unadjusted GDP, and the adjusted GDP.

6.1.2 Motivations for Visualization 375

1990 1992 1994 1996 1998 2000
70

75

80

85

90

95

100

105
Gross Domestic Product of New Zealand (1990−1999)

Year

G
ro

ss
 D

om
es

tic
 P

ro
du

ct
 (b

ill
io

ns
 o

f d
ol

la
rs

)

GDP
Adjusted GDP

Figure 6.1. The Gross Domestic Product of New Zealand (1990-1999), both adjusted for inflation is the

baseline) and unadjusted.

Another key component of visualization is the interpretation of the visualized
information by the observing human being and the formation of a mental model of
the information. For example, upon seeing Figure 6.1, most people would quickly
interpret the data as consisting of two GDP time series. Furthermore, they also
would rapidly notice relationships across objects such as the overall upward trend
of GDP in each individual time series. It might take a bit longer to notice the
relationships between attributes, such as the fact that the growth in the inflation
adjusted GDP is always less than that of the unadjusted GDP.

6.1.2 Motivations for Visualization

The overriding motivation for using visualization is that people are very good at
quickly absorbing large amounts of visual information and finding patterns in such
information. For instance, consider Figure 6.2, which shows the Sea Surface Temper-
ature (SST) in Celsius for July, 1982. This one picture summarizes the information
in about 250,000 numbers and is readily interpreted in a few seconds. For a person
to try to interpret the data in any other way, would require far more time, and
patterns, such as the boundaries between areas of different temperature, would not
be so easy to detect.
Another very general motivation for visualization is to make use the domain

knowledge that is ‘locked up in people’s heads.’ While the use of domain knowledge
is a very important task in data mining, it is often difficult or impossible to fully
utilize such knowledge in statistical or algorithmic tools. In some cases, an analysis
can be performed using non-visual tools, and then the results presented visually for
evaluation by the domain expert. In other cases, having a domain specialist examine
visualizations of the data may be best way of finding patterns of interest since, by
using domain knowledge, a person can often quickly eliminate many uninteresting
patterns and direct focus to the patterns that are of interest.
Even if visualization is not sufficient for the complete analysis, often it is a

useful supplementary technique. Thus, visualization is often used as part of data
exploration in order to get an idea of the nature of the data. For instance, by
plotting a single attribute, we can determine if the values of that attribute have a

6.1.3 Visualization and Different Types of Data 376

longitude

la
tit

ud
e

−180−150−120 −90 −60 −30 0 30 60 90 120 150 180

90

60

30

0

−30

−60

−90
Temp

0

5

10

15

20

25

30

Figure 6.2. Sea Surface Temperature (July, 1982).

well-know distribution, e.g., normal, what the range of values are, etc. Additionally,
plotting pairs of attributes may reveal facts about the relationships of variables, e.g.,
may show that two attributes strongly related. Furthermore, visualizing data as a
preliminary step may reveal problems with the data, e.g., a person may realize that
one attribute has a lot of values that are -1 and further investigation may show that
this indicates a missing value that wasn’t clearly identified in the data description.

6.1.3 Visualization and Different Types of Data

As we saw in Chapter 2, there are a number of different types of data, i.e., record
(matrix), graph, and ordered, and these different types of data have different char-
acteristics, e.g., sparsity or the number of dimensions. The type of data greatly
affects the way in which information is plotted. For example, time series data is of-
ten plotted as a line graph (see Figure 6.1, when only a few time series are involved.
However, if many time series are involved and these time series have a spatial re-
lationship to one another, e.g., the sea surface temperature at each point on the
ocean, then we may choose to display only a slice of the data, e.g., the temperature
at each point on the ocean for a particular month—see Figure 6.2.
Dimensionality has a very strong effect on the type of visualization. Specifi-

cally, while data objects that have only one, two or three dimensions, and can often
be easily mapped directly to a two- or three-dimensional graphical representation,
it is often not immediately clear how multi-dimensional data should be visually
represented. Thus, often visualization techniques are classified with respect to the
dimensionality of the data to which they can be applied—1, 2, 3, or higher dimen-
sion.
The type of attributes are also important. For example, a continuous attribute

can be associated with the x, y, or z co-coordinate of a plot, while a nominal
attribute, since its values lack a natural order, does not lend itself to such a rep-
resentation. On the other hand, the values of a categorical attribute can easily be
associated with separate columns in a table, while a continuous variable would need
to be discretized. As another example, for data that represents information about

6.1.4 General Categories of Visualization 377

physical objects, e.g., the velocity of air in the atmosphere, often our data objects
are two- or three-dimensional locations that have attributes associated with them,
e.g., speed and direction, and thus, visualization techniques for such data typically
map each physical point to point on the image. As an example of a more abstract
type of data, graph data, e.g., the links between a set of web pages, might be best
displayed by using graph drawing techniques, which try to display the nodes and
links of a graph—often an inherently high-dimensional object—in a way that does
not obscure potentially useful information, such as groupings of highly linked web
pages.

6.1.4 General Categories of Visualization

The following discussion hints at at the fact that visualization techniques are often
specialized to the type of data. Indeed, new visualization techniques and approaches,
as well as specialized variations of existing approaches, are being continuously cre-
ated, typically in response to new kinds of data and types of data visualization tasks.
Despite this specialization and the ad hoc nature of visualization, researchers have
nonetheless developed some generic classes of visualization techniques. Once such
classification is strictly based on the type of data:

• one-dimensional

• two-dimensional

• three-dimensional

• multi-dimensional

• hierarchical

• graph

• other

Another sort of categorization, which is based on generic classes of applications, is
the following:

scientific visualization The basic data concerns physical objects, e.g., the atmo-
sphere or a kidney.

information visualization The data is not physical, but rather is more conceptual
or symbolic, e.g., a set of documents or the data describing the structural and
dynamic characteristics of a communications network.

statistical graphics Typical multivariate continuous or categorical data of the
type traditionally associated with statistics, such as the results of controlled
experiment on the effect of a drug or the results of a survey.

6.2 General Concepts 378

Notice that last set of three categories may overlap to some extent and that these
three categories are roughly independent of the previous set. Other categorizations
are also possible, e.g., a distinction is frequently made between techniques used for
categorical and continuous data.
In what follows, we will present graphical techniques using the first set of cate-

gories, i.e., one-dimensional, etc., while at the same time attempting to clearly state
the applicability of each technique, e.g., “this technique is only useful for categorical
data.”

6.2 General Concepts

In this section, we will explore some of the general concepts related to visualiza-
tion. Mostly, we will consider general approaches for mapping the data and its
attributes to visual characteristics, including issues related to the arrangement of
visual objects. We will, however, also consider some general do’s and don’ts for
‘good’ visualization.
We briefly discuss a number of visualization techniques, but postpone illustrating

them until we talk about specific approaches later in this chapter. We will however,
assume that the reader is familiar with line graphs, bar charts and scatter plots. If
not the reader, may wish to postpone reading the following sections until have read
the section on specific visualization techniques.

6.2.1 Representation: Mapping Data to Graphical Elements

The first step in visualization is to map data objects, their attributes, and the
relationships between data objects to graphical elements. Objects are usually repre-
sented in one of three ways. First, if only a single categorical variable of the object is
being considered, then objects are often lumped into categories based on the value
of that attribute and these categories are displayed as as an entry in a table or
an area on a screen (consider a bar charts). Secondly, if an object has multiple
attributes, then the object can be displayed as a row (or column) of the table or
as a line on a graph. Finally, the object is often interpreted as a point in two- or
three-dimensional space, where graphically, the point might be a small circle, cross,
box, etc.
For single attributes, the representation depends on the type of attribute, i.e.,

nominal, ordinal, or continuous (interval or ratio). Ordinal and continuous at-
tributes can be mapped to continuous, ordered graphical features: location along
the x, y, or z axes, intensity, color, or size (diameter, width, height, etc.). For
categorical attributes, we can use distinct graphical features, e.g., position, color,
shape, orientation, embellishments, etc., to indicate the different categories, but care
should be taken not to read any additional meaning into graphical features, such as
color and position, which have an inherent ordering associated with their values.
Representing relationships via graphical elements occurs either explicitly or im-

plicitly. If we have graph data, then the standard graph representation—a set of

6.2.2 Arrangement 379

nodes with links between the nodes—is normally used. If the nodes (data objects)
or links (relationships) have attributes or characteristics of there own, then this is
represented graphically, as indicated in the previous paragraph. To illustrate, if the
nodes are cities and the links are highways, then the links of the cities might repre-
sent population, while the width of the links might represent the volume of traffic
on the highway.
In most cases, though, the relationships in the data are implicitly mapped to re-

lationships between graphical elements when the objects and attributes are mapped
to graphical elements. In the simplest example, if the data object represents a phys-
ical object that has a location, e.g., a city or a part of a part of physical object,
then the relative positions of the graphical objects corresponding to the data objects
tend to naturally preserve the actual relative positions of the objects. Likewise, if
there are two or three continuous attributes, then if these attributes are taken as the
coordinates of the data points, the resulting graph often gives considerable insight
into the relationships of the attributes and the data points.
However, in general, it is hard to ensure that a mapping of objects and attributes

will also result in the relationships being mapped to easily observed relationships
among graphical elements. We will make some specific comments on this issue as
we examine specific visualization techniques, but for now, we merely observe that
this is one of the more challenging aspects of visualization. In other words, given
a set of data, there are many implicit relationships in the data; thus, a key task of
visualization is to choose a technique that makes the relationships of interest easily
visible.

6.2.2 Arrangement

In the previous section it was mentioned representation of objects and attributes
was important for good visualization. The arrangement of items within the visual
display is also crucial. We will illustrate this with three examples: one involving
tables, one involving graphs, and one involving three dimensional data.
We begin by illustrating the importance of rearranging a table of data. In

Table 6.2.2, which shows nine objects with six binary attributes, there is not clear
relationship among object and attributes, at least at first glance. However, if we
permute the rows and columns of this table as shown in Figure 6.2.2, then it is clear
that there are really only two types of objects in the table—one that has all ones
for the first three attributes and one that has only ones for the last three attributes.
As another example of the value of arrangement, consider Figure 6.3, which

shows a graph. If the connected components of the graph are separated, as in
Figure 6.4, then the relationships between nodes and graphs become much simpler
to understand.

6.2.3 Selection

Another key concept in visualization is selection, which is the elimination or the de-
emphasis of certain objects and attributes. Consider, for example, if the data objects

6.2.3 Selection 380

1 2 3 4 5 6

1 0 1 0 1 1 0

2 1 0 1 0 0 1

3 0 1 0 1 1 0

4 1 0 1 0 0 1

5 0 1 0 1 1 0

6 1 0 1 0 0 1

7 0 1 0 1 1 0

8 1 0 1 0 0 1

9 0 1 0 1 1 0

Table 6.1. A table of nine objects (rows) with six binary attributes (columns).

6 1 3 2 5 4

4 1 1 1 0 0 0

2 1 1 1 0 0 0

6 1 1 1 0 0 0

8 1 1 1 0 0 0

5 0 0 0 1 1 1

3 0 0 0 1 1 1

9 0 0 0 1 1 1

1 0 0 0 1 1 1

7 0 0 0 1 1 1

Table 6.2. A table of nine objects (rows) with six binary attributes (columns) permuted so that the relationships

of rows and columns is clear.

Figure 6.3. A generic graph: nodes are objects, links represent relationships.

6.2.4 Do’s and Don’ts 381

Figure 6.4. A generic graph: nodes are objects, links represent relationships.

being considered have many attributes, e.g., 10, then it becomes difficult to visualize
all the attributes at the same time. (In section ??, we discuss ways to visualize many
attributes, but such solutions are only partially satisfactory.) Likewise, if there are
many objects, visualizing all the objects may result in a display that is too crowded.
The most common approach to handling many attributes is projection, i.e., only

a subset of attributes—usually two—is chosen for display. Such an approach can
be implemented manually; if the dimensionality is not two high, a matrix of such
bivariate-plots can be constructed for simultaneous viewing. Alternatively, a visu-
alization program can automatically show a series of two-dimensional projections,
where the sequence is based on some strategy. In both cases, the hope is that
visualizing a collection of data ‘slices’ will give a more complete view of the data.
When the number of data points is high—in some cases more than a few hundred—

or if the range of the data is large, a visualization often becomes less useful. Some
data points obscure other data points, or a data object may not occupy enough
pixels to allow its features to be clearly displayed, e.g., the shape of an object can
not be used to encode a characteristic of the object if only one pixel can be used to
display the object. In these situations, it is useful to be able to eliminate some of
the objects, either by ‘zooming’ in on a ‘region’ of the data, or by simply taking a
sample of the data points.

6.2.4 Do’s and Don’ts

The following is a short list of visualization do’s and don’ts. While most of these
guidelines should make a lot of sense, they should not be followed blindly, i.e., as
always, guidelines are no substitute for thoughtful consideration of the problem at
hand.
The following are the ACCENT principles for effective graphical display which

were put forth by D. A. Burn.

Apprehension Ability to correctly perceive relations among variables. Does the
graph maximize apprehension of the relations among variables?

Clarity Ability to visually distinguish all the elements of a graph. Are the most
important elements or relations visually most prominent?

Consistency Ability to interpret a graph based on similarity to previous graphs.

6.3 Visualization Techniques 382

Are the elements, symbol shapes and colors consistent with their use in pre-
vious graphs?

Efficiency Ability to portray a possibly complex relation in as simple a way as
possible. Are the elements of the graph economically used? Is the graph easy
to interpret?

Necessity The need for the graph, and the graphical elements. Is the graph a more
useful way to represent the data than alternatives (table, text)? Are all the
graph elements necessary to convey the relations?

Truthfulness Ability to determine the true value represented by any graphical
element by its magnitude relative to the implicit or explicit scale. Are the
graph elements accurately positioned and scaled?

Edward R. Tufte has also enumerated the following principles for graphical ex-
cellence:

• Graphical excellence is the well-designed presentation of interesting data—a
matter of substance, of statistics, and of design.

• Graphical excellence consists of complex ideas communicated with clarity, pre-
cision, and efficiency.

• Graphical excellence is that which gives to the viewer the greatest number of
ideas in the shortest time with the least ink in the smallest space.

• Graphical excellence is nearly always multivariate.

• And graphical excellence requires telling the truth about the data.

6.3 Visualization Techniques

In this section, we describe specific visualization techniques. As mentioned above
we will pursue the techniques in the following order:

• one-dimensional

• two-dimensional

• three-dimensional

• multi-dimensional

• hierarchical

• graph

• other

6.3.1 Visualizing One-dimensional Data 383

Most of these techniques are available in a wide variety of mathematical and
statistical packages. Also, there are a number of publicly available data sets available
on the World Wide Web. Thus, we encourage the reader to actually try these
visualization techniques for themselves as they proceed the following sections.
A word about data. In the following illustrations of plots, we will use several

different data sets. We describe these data sets briefly.
One of data sets that we use is the Iris data set. It consists of information on

150 iris flowers from three different types of irises—50 flowers from each type of iris.
Each flower is characterized by five attributes:

1. sepal length in centimeters

2. sepal width in centimeters

3. petal length in centimeter

4. petal width in centimeters

5. class (Iris Setosa, Iris Versicolour, Iris Virginica)

6.3.1 Visualizing One-dimensional Data

Stem and Leaf Plots

Stem and leaf plots can be use to provide insight into the distribution of one di-
mensional integer or continuous data. (We will assume integer data initially, and
then explain how stem and leaf plots can be applied for continuous data.) For the
simplest type of stem and leaf plot, we split the values into groups, where each
group contains those values that are the same except for the last digit. Each group
becomes a stem, while the last digits of a group are the leaves. Hence, if the our
values are two digit integer, e.g., 35, 36, 42, and 51, then the stems will be the
high-order digits, e.g., 3, 4 and 5, while the leafs are the low order digits, e.g., 1, 2,
5, and 6. By plotting the stems vertically and leafs horizontally, we can provide a
visual representation of the distribution of the data.
To illustrate consider the following set of integers, which is the sepal length in

centimeters (multiplied by 10 to make the values integers) taken from the iris data
set. For convenience the values have also been sorted.

Figure 6.5. Sepal length data from the Iris data set.

43 44 44 44 45 46 46 46 46 47 47 48 48 48 48 48 49 49 49 49 49 49 50 50 50 50 50 50 50 50 50

50 51 51 51 51 51 51 51 51 51 52 52 52 52 53 54 54 54 54 54 54 55 55 55 55 55 55 55 56 56 56

56 56 56 57 57 57 57 57 57 57 57 58 58 58 58 58 58 58 59 59 59 60 60 60 60 60 60 61 61 61 61

61 61 62 62 62 62 63 63 63 63 63 63 63 63 63 64 64 64 64 64 64 64 65 65 65 65 65 66 66 67 67

67 67 67 67 67 67 68 68 68 69 69 69 69 70 71 72 72 72 73 74 76 77 77 77 77 79

The steam and leaf plot for this data is shown in Figure 6.6. Each number in
Figure 6.5 is first put into one of the vertical groups—4, 5, 6, or 7— according to its

6.3.1 Visualizing One-dimensional Data 384

Figure 6.6. Stem and leaf plot for the sepal length from the Iris data set.

4 : 34444566667788888999999

5 : 0000000000111111111222234444445555555666666777777778888888999

6 : 000000111111222233333333344444445555566777777778889999

7 : 0122234677779

Figure 6.7. Stem and leaf plot for the sepal length from the Iris data set.

4 : 3444

4 : 566667788888999999

5 : 000000000011111111122223444444

5 : 5555555666666777777778888888999

6 : 00000011111122223333333334444444

6 : 5555566777777778889999

7 : 0122234

7 : 677779

tens digit. It last digit is then placed to the right of the colon. Often, especially if
the amount of data is larger, it is desirable to split the stems. For example, instead
of placing all values whose ten’s digit is 4 in the same ‘bucket,’ we repeat the stem
‘4’ twice, putting all values 40-44 in the bucket corresponding to the first stem and
all values 45-49 in the bucket corresponding to the second stem. This approach is
shown in the stem and leaf plot of Figure 6.3.1. Other variations are also possible.

Dot Plots

A dot plot is a variation on a stem and leaf plot, where we do not show the digits
in each bucket, but rather, only show a dot for each data object that falls in each
bucket. A dot plot for the sepal length data is shown in Figure 6.8.

Histograms

Histograms are a way of representing the distribution of values for attributes with
numerical values. The idea is to divide the range of values into bins—typically, but
not necessarily, of equal width—and to count the number of values in each bin. A
bar plot is then constructed such that each bin is represented by one bar and the
area of each bar is proportional to the number of values (data objects) that fall into
the corresponding range.
If all intervals are equal width, then all bars are the same width and the height

is proportional to the number of values. If the attribute is categorical, then often
one bin is allotted to each value, unless the number of values is large.

6.3.1 Visualizing One-dimensional Data 385

Figure 6.8. Dot plot for the sepal length from the Iris data set

To illustrate this type of plot, we have constructed a variety of histograms using
sepal width, sepal length, petal width, and sepal length in Figure 6.9. Since the
shape of a histogram depends on the number of bins, we show the same histograms
first with 10 bins in Figure 6.9, and then with 20 bins in Figure 6.10.
There are also some variations of the histogram as well. A relative (frequency)

histogram replaces the count by the relative frequency. However, this is just a change
in scale of the y axis, and the shape of the histogram does not change. Another
common variation, especially for categorical data, is the Pareto histogram, which is
a the same as a normal histogram except that the categories are sorted horizontally
in decreasing order of count from left to right.

Tukey Box Plots

Box plots are another way of showing the distribution of the values of a single
numerical attribute. Figure 6.11 shows a labelled plot. The lower and upper ends
of the box indicate the 25th and 75th percentiles, respectively, while the middle line
in the box indicates the values of the 50th percentile. The top and bottom lines of
the ‘tails’ indicate the 10th and 90th percentiles. Outliers are shown by ‘+’ marks.
We give a specific examples of box plots using, once more, the first four attributes

of the Iris data set. The box plots for these attributes are shown in Figure 6.12.
Notice that since box plots are relatively compact, many of them can be shown on
the same plot. Simplified versions of the box plot, which take less space, can also
be used.

Percentile Plots and Empirical Cumulative Distribution Functions

A type of diagram that is more quantitative in terms of showing the distribution
of the data is the plot of an empirical cumulative distribution function (ECDF).
While this may sound complicated, the concept is straightforward. In statistics, a

6.3.1 Visualizing One-dimensional Data 386

4 4.5 5 5.5 6 6.5 7 7.5 8
0

5

10

15

20

25

30

Sepal Length

C
ou

nt

(a) Sepal Length.

2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

30

35

40

45

50

Sepal Width

C
ou

nt

(b) Sepal Width.

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

Petal Length

C
ou

nt

(c) Petal Length.

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

45

Petal Width

C
ou

nt

(d) Petal Width.

Figure 6.9. Histograms of Four Iris Attributes - 10 bins.

6.3.1 Visualizing One-dimensional Data 387

4 4.5 5 5.5 6 6.5 7 7.5 8
0

2

4

6

8

10

12

14

16

Sepal Length

C
ou

nt

(a) Sepal Length.

2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

30

Sepal Width

C
ou

nt

(b) Sepal Width.

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

Petal Length

C
ou

nt

(c) Petal Length.

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

35

Petal Width

C
ou

nt

(d) Petal Width.

Figure 6.10. Histograms of Four Iris Attributes - 20 bins.

outlier

10th percentile

25th percentile

75th percentile

50th percentile

10th percentile

Figure 6.11. Description of Box Plot.

6.3.1 Visualizing One-dimensional Data 388

Sepal Length Sepal Width Petal Length Petal Width

0

1

2

3

4

5

6

7

8

V
al

ue
s

Figure 6.12. Box plot for Iris attributes.

cumulative distribution function shows, for each value of a statistical distribution,
the fraction of points that are less than that value. An empirical cumulative distri-
bution function shows, for the value of each point, the fraction of points that are
less than this value. Since the number of points is finite, the empirical cumulative
distribution function is a step function.
To illustrate, we show the ECDF’s of the IRIS attributes in Figure 6.13.

6.3.1 Visualizing One-dimensional Data 389

4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

(a) Sepal Length.

2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

(b) Sepal Width.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

(c) Petal Length.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

(d) Petal Width.

Figure 6.13. Empirical CDF’s of Four Iris Attributes.

6.3.2 Visualizing Two-dimensional Data 390

Quantile-Quantile Plot

Normal Probability Plot

Bar Plot

Pie Chart

6.3.2 Visualizing Two-dimensional Data

Scatter Plot

Tables

Matrices

6.3.3 Visualizing Three-dimensional Data

Scatter Plots

Matrices

Surface Plots

Contour Plots

Slices

Vector Field Plots

6.3.4 Visualizing Four-dimensional Data

Surface Plots

Scatter Plots

Slices

Visualizing Temporal Data

Frequency Plots

Animation

6.3.5 Visualizing Higher-dimensional Data

Parallel Coordinates

Parallel coordinates are an approach for displaying data that have many attributes.
The idea is the following: We have one coordinate axis for each attribute, but instead
trying to place coordinate axes perpendicular to each other, as is normal, we place
them parallel to each other. Also, instead of representing an object as a point, we
represent it as a line, i.e., for each value of an attribute of an object, we put a point
on the corresponding coordinate axis value and then connect all of these points.
It might be expected that this would yield quite a mess; however, in many cases,

object tend to fall into a small number of groups, where the points in each group

6.4 Exercises 391

 Figure 6.14. A parallel coordinates plot of the four iris attributes.

have similar values for their attributes. If so, and if the number of data object is
not too large, then the resulting parallel coordinates plot, can be quite illuminating.
To illustrate, we show a parallel coordinates plot of the four numerical attributes

of the Iris data set in Figure 6.14. We have ‘colored’ the lines with their class label
to make the plot more informative. Notice that the parallel coordinates plot shows
that the classes are reasonably well-separated in the petal width and petal length
variables, but less well-separated for sepal length and sepal width.
One of the drawbacks of parallel coordinates is that the detection of patterns

in such a plot may depend on the order. For instance, if lines are crossing over
one another a lot, the picture can become confusing, and thus, it can be desirable
to order the coordinate axes in such a way that, we sequences of axes with less
crossover. The reader should compare Figure 6.15, where we have put the attribute
that is most ‘mixed,’ i.e., sepal width, at the top of the figure to Figure 6.14, where
this attribute in in the middle.

Star Coordinates

Faces and Multidimensional Icons

6.4 Exercises

This chapter has no formal exercises. Nonetheless, it is recommended that students
obtain one or more of the data sets available at the UCI Machine Learning Repos-
itory (http://www.ics.uci.edu/ mlearn/MLRepository.html) and apply as many of
the different visualization techniques described in the chapter as possible. To do
that it is necessary to have access to software that supports the visualization tech-
niques. The bibliographic notes provide some pointers in that regard, including
some resources that are freely available (R and WebStat).

6.5 Bibliographic Notes 392

 Figure 6.15. A parallel coordinates plot of the four iris attributes.

6.5 Bibliographic Notes

The basic visualization techniques are readily available, being an integral part of
most spreadsheets (Microsoft EXCEL [126]), statistics programs (SAS [91], SPSS
[169], R [59], and S-PLUS [39]), and mathematics software (MATLAB [182] and
Mathematica [198]). Furthermore, documentation of visualization techniques—often
with illustrative examples—is often provided by these packages. Most of the graphics
in this chapter were generated by using MATLAB, although some were created
using WebStat [147], a convenient Web accessible statistics package with graphics
capabilities. The statistics package R is also freely available.
The literature on visualization is large and extensive, covering many fields and

many decades. One of the classics of the field is The Visual Display of Quan-
titative Information by Edward R. Tufte [187]. A useful reference for informa-
tion visualization—both principles and techniques—is Visualization Information by
Robert Spence. This book also provides a thorough discussion of many “dynamic”
visualization techniques that are not covered in this chapter, e.g., brushing and zoom
and pan. Two other books that may be of interest to those interesting in pursuing
visualization are Readings in Information Visualization: Using Vision to Think [30]
and Information Visualization in Data Mining and Knowledge Discovery [55].
The Finally, there is a great deal of information available on the World Wide

Web. Since web sites come and go frequently, the best strategy is a search using
“information visualization,” “data visualization,” or “statistical graphics.” How-
ever, we do want to single out for attention “The Gallery of Data Visualization,” by
Michael Friendly [62]. The ACCENT Principles for effective graphical display can
be found there, or in there original publication [28].

Chapter 7 393

Chapter 7

Anomaly Detection

Chapter 8 394

Chapter 8

Special Topics in Data
Mining

8.1 Spatio-temporal Data Mining

8.2 Network Intrusion Detection

BIBLIOGRAPHY 395

Bibliography

[1] R. Agarwal and J. Shafer. Parallel mining of association rules. IEEE Trans-
actions on Knowledge and Data Engineering, 8(6):962–969, March 1998.

[2] R. C. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algo-
rithm for generation of frequent itemsets. Journal of Parallel and Distributed
Computing (Special Issue on High Performance Data Mining), 61(3):350–371,
2001.

[3] C. Aggarwal, Z. Sun, and P. Yu. Online generation of profile association rules.
In Proc. of the Fourth Int’l Conference on Knowledge Discovery and Data
Mining, pages 129–133, New York, NY, 1996.

[4] C. Aggrawal and P. Yu. Mining large itemsets for association rules. Data
Engineering Bulletin, 21(1):23–31, March 1998.

[5] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. In L. M.
Haas and A. Tiwary, editors, SIGMOD 1998, Proceedings ACM SIGMOD
International Conference on Management of Data, June 2-4, 1998, Seattle,
Washington, USA, pages 94–105, Seattle, Washington, June 1998. ACM Press.

[6] R. Agrawal, T. Imielinski, and A. Swami. Database mining: a performance
perspective. IEEE Transactions on Knowledge and Data Engineering, 5:914–
925, 1993.

[7] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between
sets of items in large databases. In Proc. ACM SIGMOD Intl. Conf. Manage-
ment of Data, pages 207–216, Washington D.C., USA, 1993.

[8] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of Int. Conf.
on Data Engineering, Taipei, Taiwan, 1995.

[9] D. Aha. A study of instance-based algorithms for supervised learning tasks:
mathematical, empirical, and psychological evaluations. PhD thesis, University
of California, Irvine, 1990.

BIBLIOGRAPHY 396

[10] K. Ali, S. Manganaris, and R. Srikant. Partial classification using association
rules. In Proc. of the Third Int’l Conference on Knowledge Discovery and
Data Mining, pages 115–118, Newport Beach, CA, August 1997.

[11] K. Alsabti, S. Ranka, and V. Singh. Clouds: A decision tree classifier for large
datasets. In Proc. of the Fourth Int’l Conference on Knowledge Discovery and
Data Mining, pages 2–8, 1998.

[12] M. R. Anderberg. Cluster Analysis for Applications. Academic Press, New
York, December 1973.

[13] R. Andrews, J. Diederich, and A. Tickle. A survey and critique of techniques
for extracting rules from trained artificial neural networks. Knowledge Based
Systems, 8(6):373–389, 1995.

[14] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Order-
ing points to identify the clustering structure. In A. Delis, C. Faloutsos, and
S. Ghandeharizadeh, editors, SIGMOD 1999, Proceedings ACM SIGMOD In-
ternational Conference on Management of Data, June 1-3, 1999, Philadelphia,
Pennsylvania, USA, pages 49–60. ACM Press, June 1999.

[15] P. Arabie, L. Hubert, and G. De Soete. An overview of combinatorial data
analysis. In P. Arabie, L. Hubert, and G. De Soete, editors, Clustering and
Classification, pages 188–217. World Scientific, Singapore, January 1996.

[16] D. Barbara, J. Couto, S. Jajodia, and N. Wu. Adam: A testbed for exploring
the use of data mining in intrusion detection. SIGMOD Record, 30(4):15–24,
2001.

[17] K. Bennett and C. Campbell. Support vector machines: Hype or hallelujah.
SIGKDD Explorations, 2(2):1–13, 2000.

[18] P. Berkhin. Survey of clustering data mining techniques. Technical report,
Accrue Software, San Jose, CA, 2002.

[19] L. Bing, W. Hsu, and Y. Ma. Integrating classification and association rule
mining. In Proc. of the Fourth Int’l Conference on Knowledge Discovery and
Data Mining, New York, NY, 1998.

[20] A. Blum and P. Langley. Selection of relevant features and examples in ma-
chine learning. Artificial Intelligence, 97(1-2):245–271, 1997.

[21] L. Breiman, J. H. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Chapman & Hall, New York, 1984.

[22] L. Breslow and D. Aha. Simplifying decision trees: A survey. Knowledge
Engineering Review, 12(1):1–40, 1997.

BIBLIOGRAPHY 397

[23] M. M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander. Lof: identifying density-
based local outliers. In W. Chen, J. F. Naughton, and P. A. Bernstein, editors,
Proceedings of the 2000 ACM SIGMOD International Conference on Manage-
ment of Data, May 16-18, 2000, Dallas, Texas, USA, pages 93–104, Dallas,
TX, May 2000. ACM Press.

[24] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: General-
izing association rules to correlations. In Proc. ACM SIGMOD Intl. Conf.
Management of Data, pages 265–276, Tucson, AZ, 1997.

[25] S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting and
implication rules for market basket data. In Proc. of 1997 ACM-SIGMOD
Int. Conf. on Management of Data, pages 255–264, Tucson, AZ, June 1997.

[26] W. Buntine. Learning classification trees. In D. Hand, editor, Artificial In-
telligence frontiers in statistics, pages 182–201. Chapman & Hall, London,
1993.

[27] C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[28] D. A. Burn. Designing effective statistical graphs. In C. R. Rao, editor, Hand-
book of Statistics 9. Elsevier/North-Holland, Amsterdam, The Netherlands,
September 1993.

[29] C. Cai, A. Fu, C. Cheng, and W. Kwong. Mining association rules with
weighted items. In Proc. of IEEE International Database Engineering and
Applications Symposium, pages 68–77, 1998.

[30] S. K. Card, J. D. MacKinlay, and B. Shneiderman, editors. Readings in Infor-
mation Visualization: Using Vision to Think. Morgan Kaufmann Publishers,
San Francisco, CA, January 1999.

[31] Q. Chen, U. Dayal, and M. Hsu. A distributed olap infrastructure for e-
commerce. In Proc. of the Fourth IFCIS International Conference on Coop-
erative Information Systems, pages 209–220, Edinburgh, Scotland, 1999.

[32] V. Cherkassky and F. Mulier. Learning From Data: Concepts, Theory, and
Methods. Wiley Interscience, 1998.

[33] D. Cheung, S. Lee, and B. Kao. A general incremental technique for maintain-
ing discovered association rules. In Proc. of the Fifth Intl. Conf. on Database
Systems for Advanced Applications, Melbourne, Australia, 1997.

[34] P. Clark and R. Boswell. Rule induction with cn2: Some recent improvements.
In Machine Learning - Proc. of the Fifth European Conference (EWSL-91),
pages 151–163, 1991.

BIBLIOGRAPHY 398

[35] P. Clark and T. Niblett. The cn2 induction algorithm. Machine Learning,
3(4):261–283, 1989.

[36] W. G. Cochran. Sampling Techniques. John Wiley & Sons, 3rd edition, July
1977.

[37] W. Cohen. Fast effective rule induction. In Machine Learning: Proc of the
Twelfth International Conference, 1995.

[38] R. Cooley, P. Tan, and J. Srivastava. Discovery of interesting usage patterns
from web data. In M. Spiliopoulou and B. Masand, editors, Advances in Web
Usage Analysis and User Profiling, volume 1836, pages 163–182. Lecture Notes
in Computer Science, 2000.

[39] I. Corporation. S-plus. http://www.insightful.com, 2003.

[40] S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning
with symbolic features. Machine Learning, 10:57–78, 1993.

[41] T. Cover and P. Hart. Nearest neighbor pattern classification. Knowledge
Based Systems, 8(6):373–389, 1995.

[42] T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John
Wiley & Sons, 2003.

[43] J. W. Demmel. Applied Numerical Linear Algebra. Society for Industrial &
Applied Mathematics, September 1997.

[44] P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, and P. Tan. Data
mining for network intrusion detection. In Proc. NSF Workshop on Next
Generation Data Mining, Baltimore, MD,, 2002.

[45] P. Domingos. The rise system: Conquering without separating. In Proc. of
the Sixth IEEE Int’l Conf. on Tools with Artificial Intelligence, New Orleans,
LA, 1994.

[46] P. Domingos. The role of occam’s razor in knowledge discovery. Data Mining
and Knowledge Discovery, 3(4):409–425, 1999.

[47] G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends
and differences. In Proc. of the Fifth Int’l Conference on Knowledge Discovery
and Data Mining, San Diego, CA, 1999.

[48] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised dis-
cretization of continuous features. In International Conference on Machine
Learning, pages 194–202, 1995.

[49] R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley & Sons,
Inc., New York, second edition, 2001.

BIBLIOGRAPHY 399

[50] W. duMouchel and D. Pregibon. Empirical bayes screening for multi-item
associations. In Proc. of the Seventh Int’l Conference on Knowledge Discovery
and Data Mining, pages 67–76, San Francisco, CA, August 2001.

[51] M. Dunham. Data Mining: Introductory and Advanced Topics. Prentice Hall,
2002.

[52] T. Elomaa and J. Rousu. General and efficient multisplitting of numerical
attributes. Machine Learning, 36(3):201–244, 1999.

[53] F. Esposito, D. Malerba, and G. Semeraro. A comparative analysis of meth-
ods for pruning decision trees. IEEE Trans. Pattern Analysis and Machine
Intelligence, 19(5):476–491, May 1997.

[54] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In E. Simoudi,
J. Han, and U. Fayyad, editors, KDD ’96, Proceedings of Second Interna-
tional Conference on Knowledge Discovery and Data Mining, August 2-4,
1996, Portland, Oregon, USA, pages 226–231. AAAI Press, August 1996.

[55] U. Fayyad, G. G. Grinstein, and A. Wierse, editors. Information Visualization
in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers, San
Francisco, CA, September 2001.

[56] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuousval-
ued attributes for classification learning. In Proc. 13th Int. Joint Conf. on
Artificial Intelligence, pages 1022–1027. Morgan Kaufman, 1993.

[57] L. Feng, H. Lu, J. Yu, and J. Han. Mining inter-transaction associations with
templates. In Proc. 1999 Int. Conf. on Information and Knowledge Manage-
ment (CIKM’99), pages 225–233, Kansas City, Missouri, Nov 1999.

[58] D. Fisher. Iterative optimization and simplification of hierarchical clusterings.
Journal of Artificial Intelligence Research, 4:147–179, 1996.

[59] T. R. P. for Statistical Computing. R: A language and environment for sta-
tistical computing and graphics. http://www.r-project.org/, 2003.

[60] A. Freitas. Understanding the crucial differences between classification and
discovery of association rules - a position paper. SIGKDD Explorations,
2(1):65–69, 2000.

[61] J. Friedman and N. Fisher. Bump hunting in high-dimensional data. Statistics
and Computing, 9(2):123–143, April 1999.

[62] M. Friendly. Gallery of data visualization.
http://www.math.yorku.ca/SCS/Gallery/, 2003.

BIBLIOGRAPHY 400

[63] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Mining optimized
association rules for numeric attributes. In Proceedings of the 15th Symposium
on Principles of Database Systems, pages 182–191, Montreal, CA, June 1996.

[64] F. H. Gaohua Gu and H. Liu. Tra6/00: Sampling and its application in
data mining: A survey. Technical report, National University of Singapore,
Singapore, 2000.

[65] M. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequential pattern mining
with regular expression constraints. In Proc. of the 25th VLDB Conference,
pages 223–234, Edinburgh, Scotland, 1999.

[66] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest - a framework for
fast decision tree construction of large datasets. Data Mining and Knowledge
Discovery, 4(2/3):127–162, 2000.

[67] George Karypis. Cluto 2.1: Software for clustering high-dimensional datasets.
/www.cs.umn.edu/k̃arypis, August 2002.

[68] D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen. Data mining,
hypergraph transversals, and machine learning. In Proc. 16th Simposium on
Principles of Database Systems, Tucson, AZ, May 1997.

[69] E. Han, G. Karypis, and V. Kumar. Min-apriori: An algo-
rithm for finding association rules in data with continuous attributes.
http://www.cs.umn.edu/˜han, 1997.

[70] E. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for asso-
ciation rules. In Proc. of 1997 ACM-SIGMOD Int. Conf. on Management of
Data, 1997.

[71] E. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering based on as-
sociation rule hypergraphs. In SIGMOD’97 Workshop on Research Issues in
Data Mining and Knowledge Discovery, Tucson, AZ, 1997.

[72] J. Han and Y. Fu. Discovery of multiple-level association rules from large
databases. In Proc. of the 21st VLDB Conference, pages 420–431, Zurich,
Switzerland, 1995.

[73] J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane. Dmql: A data mining
query language for relational databases. In Proc. of 1996 ACM-SIGMOD Int.
Conf. on Management of Data, Montreal, Canada, 1996.

[74] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers, San Francisco, 2001.

[75] J. Han, M. Kamber, and A. K. H. Tung. Spatial clustering methods in data
mining: A review. In H. J. Miller and J. Han, editors, Geographic Data

BIBLIOGRAPHY 401

Mining and Knowledge Discovery, pages 188–217. Taylor and Francis, London,
December 2001.

[76] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate gen-
eration. In Proc. ACM-SIGMOD Int. Conf. on Management of Data (SIG-
MOD’00), Dallas, TX, May 2000.

[77] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press,
2001.

[78] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, Prediction. Springer, 2001.

[79] M. Hearst. Trends & controversies: Support vector machines. IEEE Intelligent
Systems, 13(4):18–28, 1998.

[80] D. Heckerman. Bayesian networks for data mining. Data Mining and Knowl-
edge Discovery, 1(1):79–119, 1997.

[81] C. Hidber. Online association rule mining. In Proc. of 1999 ACM-SIGMOD
Int. Conf. on Management of Data, Philadelphia, PA, 1999.

[82] A. Hinneburg and D. A. Keim. An efficient approach to clustering in large
multimedia databases with noise. In R. Agrawal and P. Stolorz, editors, KDD
’98, Proceedings of Fourth International Conference on Knowledge Discovery
and Data Mining, August 27-31, 1998, New York City, New York, USA, pages
58–65. AAAI Press, August 1998.

[83] A. Hinneburg and D. A. Keim. Optimal grid-clustering: Towards breaking
the curse of dimensionality in high-dimensional clustering. In M. P. Atkin-
son, M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie, editors,
VLDB’99, Proceedings of 25th International Conference on Very Large Data
Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages 506–517, New
York, September 1999. Morgan Kaufmann.

[84] J. Hipp, U. Guntzer, and G. Nakhaeizadeh. Algorithms for association rule
mining - a general survey. SigKDD Explorations, 2(1):58–64, June 2000.

[85] H. Hofmann, A. Siebes, and A. Wilhelm. Visualizing association rules with
interactive mosaic plots. In Proc. of the Sixth Int’l Conference on Knowledge
Discovery and Data Mining, pages 227–235, 2000.

[86] J. Holt and S. Chung. Efficient mining of association rules in text databases.
In Proc. of the 1999 ACM CIKM Int’l Conf on Information and Knowledge
Management, pages 234–242, Kansas City, Missouri, 1999.

[87] R. Holte. Very simple classification rules perform well on most commonly used
data sets. Machine Learning, 11:63–91, 1993.

BIBLIOGRAPHY 402

[88] M. Houtsma and A. Swami. Set-oriented mining for association rules in rela-
tional databases. In Proc. of the Eleventh Int’l Conference on Data Engineer-
ing, pages 25–33, Taipei, Taiwan, 1995.

[89] F. Hussain, H. Liu, C. L. Tan, and M. Dash. Trc6/99: Discretization: an
enabling technique. Technical report, National University of Singapore, Sin-
gapore, 1999.

[90] T. Imielinski, A. Virmani, and A. Abdulghani. Discovery board application
programming interface and query language for database mining. In Proc. of the
Second Int’l Conference on Knowledge Discovery and Data Mining, Portland,
Oregon, 1996.

[91] S. I. Inc. Sas:statistical analysis system. http://www.sas.com/, 2003.

[92] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for min-
ing frequent substructures from graph data. In Proc. of The Fourth European
Conference on Principles and Practice of Knowledge Discovery in Databases,
Lyon, France, 2000.

[93] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall Ad-
vanced Reference Series. Prentice Hall, Englewood Cliffs, New Jersey, March
1988.

[94] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM
Computing Surveys, 31(3):264–323, September 1999.

[95] D. Jensen and P. Cohen. Multiple comparisons in induction algorithms. Ma-
chine Learning, 38(3):309–338, March 2000.

[96] G. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset se-
lection problem. In Machine Learning: Proc. of the Eleventh International
Conference, pages 121–129, San Francisco, CA, 1994.

[97] I. T. Jolliffe. Principal Component Analysis. Springer Verlag, 2nd edition,
October 2002.

[98] M. Joshi, G. Karypis, and V. Kumar. Scalparc: A new scalable and efficient
parallel classification algorithm for mining large datasets. In Proc. of 12th
International Parallel Processing Symposium (IPPS/SPDP), Orlando, April
1998.

[99] G. Karypis, E.-H. Han, and V. Kumar. Chameleon: A hierarchical clustering
algorithm using dynamic modeling. IEEE Computer, 32(8):68–75, August
1999.

[100] G. Karypis, E.-H. Han, and V. Kumar. Technical report 99-020: Multilevel re-
finement for hierarchical clustering. Technical report, University of Minnesota,
Minneapolis, MN, 1999.

BIBLIOGRAPHY 403

[101] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction
to Cluster Analysis. Wiley Series in Probability and Statistics. John Wiley
and Sons, New York, Novemeber 1990.

[102] M. Klemettinen. A Knowledge Discovery Methodology for Telecommunication
Network Alarm Databases. PhD thesis, University of Helsinki, 1999.

[103] R. Kohavi. A study on cross-validation and bootstrap for accuracy estima-
tion and model selection. In Proc of the Int’l Joint Conference on Artificial
Intelligence (IJCAI’95), 1995.

[104] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2):273–324, 1997.

[105] W. Kosters, E. Marchiori, and A. Oerlemans. Mining clusters with associa-
tion rules. In The Third Symposium on Intelligent Data Analysis (IDA99),
Amsterdam, August 1999.

[106] D. H. Krantz, R. D. Luce, P. Suppes, and A.Tversky. Foundations of Mea-
surements (Vol I). Academic Press, New York, 1971.

[107] J. B. Kruskal and E. M. Uslaner. Multidimensional Scaling. Sage Publications,
August 1978.

[108] C. Kuok, A. Fu, and M. Wong. Mining fuzzy association rules in databases.
ACM SIGMOD Record, 27(1):41–46, March 1998.

[109] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proc. of
the 2001 IEEE International Conference on Data Mining, pages 313–320, San
Jose, CA, November 2001.

[110] P. Langley, W. Iba, and K. Thompson. An analysis of bayesian classifiers. In
Proc. of the 10th National Conference on Artificial Intelligence, 1992.

[111] W. Lee, S. Stolfo, and K. Mok. Adaptive intrusion detection: A data mining
approach. Artificial Intelligence Review, 14(6):533–567, 2000.

[112] D. Lewis. Naive (bayes) at forty: The independence assumption in information
retrieval. In 10th European Conference on Machine Learning (ECML 1998),
1998.

[113] W. Li, J. Han, and J. Pei. Cmar: Accurate and efficient classification based
on multiple class-association rules. In Proc. of the 2001 IEEE International
Conference on Data Mining (ICDM’01), pages 369–376, 2001.

[114] B. Lindgren. Statistical Theory. CRC Press, January 1993.

[115] B. Liu, W. Hsu, and S. Chen. Using general impressions to analyze discov-
ered classification rules. In Proc. of the Third Int’l Conference on Knowledge
Discovery and Data Mining, pages 31–36, 1997.

BIBLIOGRAPHY 404

[116] B. Liu, W. Hsu, and Y. Ma. Mining association rules with multiple minimum
supports. In Proc. of the Fifth Int’l Conference on Knowledge Discovery and
Data Mining, pages 125–134, 1999.

[117] B. Liu, W. Hsu, and Y. Ma. Pruning and summarizing the discovered asso-
ciations. In Proc. of the Fifth Int’l Conference on Knowledge Discovery and
Data Mining, pages 125–134, San Diego, CA, 1999.

[118] H. Liu and H. Motoda, editors. Feature Extraction, Construction and Selec-
tion: A Data Mining Perspective. Kluwer International Series in Engineering
and Computer Science, 453. Kluwer Academic Publishers, July 1998.

[119] H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and Data
Mining. Kluwer International Series in Engineering and Computer Science,
454. Kluwer Academic Publishers, July 1998.

[120] H. Liu, H. Motoda, and L. Yu. Feature extraction, selection, and construc-
tion. In N. Ye, editor, The Handbook of Data Mining, pages 22–41. Lawrence
Erlbaum Associates, Inc., Mahwah, NJ, 2003.

[121] O. Mangasarian. Data mining via support vector machines. Technical Report
Technical Report 01-05, Data Mining Institute, May 2001.

[122] N. Megiddo and R. Srikant. Discovering predictive association rules. In Proc.
of the 4th Int’l Conference on Knowledge Discovery in Databases and Data
Mining, pages 274–278, New York, August 1998.

[123] M. Mehta, R. Agrawal, and J. Rissanen. Sliq: A fast scalable classifier for
data mining. In Extending Database Technology, pages 18–32, 1996.

[124] R. Meo, G. Psaila, and S. Ceri. A new sql-like operator for mining association
rules. In Proc. of the 22nd VLDB Conference, pages 122–133, Bombay, India,
1996.

[125] R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The multi-purpose in-
cremental learning system aq15 and its testing application to three medical
domains. In Proc. of 5th National Conference on Artificial Intelligence, Or-
lando, August 1986.

[126] I. Microsoft. Microsoft excel 2002. http://www.microsoft.com/office/excel/default.asp,
2003.

[127] R. Miller and Y. Yang. Association rules over interval data. In Proc. of 1997
ACM-SIGMOD Int. Conf. on Management of Data, pages 452–461, Tucson,
AZ, May 1997.

[128] MIT. Mit total data quality management program.
http://web.mit.edu/tdqm/www/index.shtml, 2003.

BIBLIOGRAPHY 405

[129] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[130] L. C. Molina, L. Belanche, and ngela Nebot. Feature selection algorithms:
A survey and experimental evaluation. In IEEE International Conference on
Data Mining, 2002.

[131] B. Moret. Decision trees and diagrams. Computing Surveys, 14(4):593–623,
1982.

[132] Y. Morimoto, T. Fukuda, H. Matsuzawa, T. Tokuyama, and K. Yoda. Algo-
rithms for mining association rules for binary segmentations of huge categor-
ical databases. In Proc. of the 24th VLDB Conference, pages 380–391, New
York, August 1998.

[133] A. Mueller. Fast sequential and parallel algorithms for association rule mining:
A comparison. Technical Report CS-TR-3515, University of Maryland, August
1995.

[134] S. Murthy. Automatic construction of decision trees from data: A multi-
disciplinary survey. Data Mining and Knowledge Discovery, 2(4):345–389,
1998.

[135] H. Nagesh, S. Goil, and A. Choudhary. Parallel algorithms for cluster-
ing high-dimensional large-scale datasets. In R. L. Grossman, C. Kamath,
P. Kegelmeyer, V. Kumar, and R. R. Namburu, editors, Data Mining for Sci-
entific and Engineering Applications, pages 335–356. Kluwer Academic Pub-
lishers, Dordrecht, Netherlands, October 2001.

[136] R. Ng and J. Han. Efficient and effective clustering method for spatial data
mining. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, VLDB’94, Proceed-
ings of 20th International Conference on Very Large Data Bases, September
12-15, 1994, Santiago de Chile, Chile, pages 144–155, New York, September
1994. Morgan Kaufmann.

[137] R. Ng, L. Lakshmanan, J. Han, and A. Pang. Exploratory mining and prun-
ing optimizations of constrained association rules. In Proc. of 1998 ACM-
SIGMOD Int. Conf. on Management of Data, 1998.

[138] F. Olken and D. Rotem. Random sampling from databases - a survey. Statistics
& Computing, 5(1):25–42, March 1995.

[139] J. Osborne. Notes on the use of data transformations. Practical Assessment,
Research & Evaluation, 28(6), 2002.

[140] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In
Proc. of the 14th Int’l Conf. on Data Eng., pages 412–421, Orlando, FL, Feb
1998.

BIBLIOGRAPHY 406

[141] C. R. Palmer and C. Faloutsos. Density biased sampling: an improved method
for data mining and clustering. ACM SIGMOD Record, 29(2):82–92, 2000.

[142] J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining
association rules. SIGMOD Record, 25(2):175–186, 1995.

[143] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In 7th Int’l Conf. on Database Theory, Jan 1999.

[144] J. Pei, J. Han, H. Lu, S. Nishio, and S. Tang. H-mine: Hyper-structure mining
of frequent patterns in large databases. In Proc. of the 2001 IEEE Interna-
tional Conference on Data Mining, pages 441–448, San Jose, CA, November
2001.

[145] J. Pei, J. Han, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu. Prefixspan:
Mining sequential patterns efficiently by prefix-projected pattern growth. In
Proc of Int’l Conf. on Data Engineering (ICDE’01), Heidelberg, Germany,
April 2001.

[146] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu. Mining access patterns efficiently
from web logs. In PAKDD 2000, April 2000.

[147] G. G. A. S. Procedures. Webstat 3.0. http://www.stat.sc.edu/rsrch/gasp/,
2003.

[148] F. J. Provost, D. Jensen, and T. Oates. Efficient progressive sampling. In
Knowledge Discovery and Data Mining, pages 23–32, 1999.

[149] J. Quinlan. C4.5: Programs for Machine Learning. Morgan-Kaufmann Pub-
lishers, 1993.

[150] G. Ramkumar, S. Ranka, and S. Tsur. Weighted association rules: Model and
algorithm. http://www.cs.ucla.edu/˜czdemo/tsur/, 1997.

[151] M. Ramoni and P. Sebastiani. Robust bayes classifiers. Artificial Intelligence,
125:209–226, 2001.

[152] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, December 2002.

[153] S. Safavian and D. Landgrebe. A survey of decision tree classifier methodology.
IEEE Trans. Systems, Man and Cybernetics, 22:660–674, May/June 1998.

[154] M. Sahami. Learning limited dependence bayesian classifiers. In Proc. of the
Second Int’l Conference on Knowledge Discovery and Data Mining, 1996.

[155] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in
spatial databases: The algorithm gdbscan and its applications. Data Mining
and Knowledge Discovery, 2(2):169–194, 1998.

BIBLIOGRAPHY 407

[156] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating mining with relational
database systems: Alternatives and implications. In Proc. of 1998 ACM-
SIGMOD Int. Conf. on Management of Data, Seattle, WA, 1998.

[157] K. Satou, G. Shibayama, T. Ono, Y. Yamamura, E. Furuichi, S. Kuhara, and
T. Takagi. Finding association rules on heterogeneous genome data. In Proc.
of the Pacific Symposium on Biocomputing, pages 397–408, Hawaii, January
1997.

[158] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining
association rules in large databases. In Proc. of the 21st Int. Conf. on Very
Large Databases (VLDB‘95), Zurich, Switzerland, Sept 1995.

[159] A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associ-
ations in a large database of customer transactions. In Proc. of the 14th Inter-
national Conference on Data Engineering, pages 494–502, Orlando, Florida,
February 1998.

[160] M. Seno and G. Karypis. Lpminer: An algorithm for finding frequent itemsets
using length-decreasing support constraint. In Proc. of the 2001 IEEE Inter-
national Conference on Data Mining, pages 505–512, San Jose, CA, November
2001.

[161] J. Shafer, R. Agrawal, and M. Mehta. Sprint: A scalable parallel classifier for
data mining. In Proc. of the 22nd VLDB Conference, pages 544–555, 1996.

[162] G. Sheikholeslami, S. Chatterjee, and A. Zhang. Wavecluster: A multi-
resolution clustering approach for very large spatial databases. In A. Gupta,
O. Shmueli, and J. Widom, editors, VLDB’98, Proceedings of 24rd Interna-
tional Conference on Very Large Data Bases, August 24-27, 1998, New York
City, New York, USA, pages 428–439, New York, August 1998. Morgan Kauf-
mann.

[163] S. Shekhar and Y. Huang. Discovering spatial co-location patterns: A sum-
mary of results. In Proc. of the 7th International Symposium on Spatial and
Temporal Databases(SSTD01), Los Angeles, CA, 2001.

[164] T. Shintani and M. Kitsuregawa. Hash based parallel algorithms for mining
association rules. In Proc of the 4th Intl. Conf. Parallel and Distributed Info.
Systems, December 1996.

[165] A. Silberschatz and A. Tuzhilin. What makes patterns interesting in knowl-
edge discovery systems. IEEE Trans. on Knowledge and Data Engineering,
8(6):970–974, 1996.

[166] C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets: Generalizing
association rules to dependence rules. Data Mining and Knowledge Discovery,
2(1):39–68, 1998.

BIBLIOGRAPHY 408

[167] L. Singh, B. Chen, R. Haight, and P. Scheuermann. An algorithm for con-
strained association rule mining in semi-structured data. In PAKDD-99, pages
148–158, 1999.

[168] P. Smyth and R. Goodman. An information theoretic approach to rule in-
duction from databases. IEEE Trans. on Knowledge and Data Engineering,
4(4):301–316, 1992.

[169] I. SPSS. Spss: Statistical package for the social sciences.
http://www.spss.com/, 2003.

[170] R. Srikant and R. Agrawal. Mining generalized association rules. In 21rst
Very Large Database Conference, pages 407–419, Zurich, Switzerland, 1995.

[171] R. Srikant and R. Agrawal. Mining quantitative association rules in large
relational tables. In H. V. Jagadish and I. S. Mumick, editors, Proceedings of
the 1996 ACM SIGMOD International Conference on Management of Data,
pages 1–12, Montreal, Quebec, Canada, 4–6 1996.

[172] R. Srikant and R. Agrawal. Mining quantitative association rules in large
relational tables. In Proc. of 1996 ACM-SIGMOD Int. Conf. on Management
of Data, pages 1–12, Montreal, Canada, 1996.

[173] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and
performance improvements. In Proc. of the Fifth Intl Conf. on Extending
Database Technology (EDBT), Avignon, France, 1996.

[174] R. Srikant and R. Vu, Q.and Agrawal. Mining association rules with item
constraints. In Proc. of the Third Int’l Conference on Knowledge Discovery
and Data Mining, 1997.

[175] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clus-
tering techniques. In KDD Workshop on Text Mining, August 2000.

[176] S. S. Stevens. Measurement. In G. M. Maranell, editor, Scaling: A Sourcebook
for Behavioral Scientists, pages 22–41. Aldine Pub. Co, Chicago, 1974.

[177] K. S. Sudipto Guha, Rajeev Rastogi. Cure: An efficient clustering algorithm
for large databases. In L. M. Haas and A. Tiwary, editors, SIGMOD 1998, Pro-
ceedings ACM SIGMOD International Conference on Management of Data,
June 2-4, 1998, Seattle, Washington, USA, pages 73–84. ACM Press, June
1998.

[178] E. Suzuki. Autonomous discovery of reliable exception rules. In Proc. of
the Third Int’l Conference on Knowledge Discovery and Data Mining, pages
259–262, 1997.

BIBLIOGRAPHY 409

[179] P. Tan and V. Kumar. Mining association patterns in web usage data. In
International Conference on Advances in Infrastructure for e-Business, e-
Education, e-Science and e-Medicine on the Internet, L’Aquila, Italy, January
2002.

[180] P. Tan, V. Kumar, and J. Srivastava. Indirect association: Mining higher or-
der dependencies in data. In Proc. of the 4th European Conference on Princi-
ples and Practice of Knowledge Discovery in Databases, pages 632–637, Lyon,
France, 2000.

[181] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric frame-
work for nonlinear dimensionality reduction. Science, 290(5500):2319–2323,
December 2002.

[182] I. The MathWorks. Matlab 6.5. http://www.mathworks.com, 2003.

[183] H. Toivonen. Sampling large databases for association rules. In T. M. Vija-
yaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, editors, In Proc. 1996
Int. Conf. Very Large Data Bases, pages 134–145. Morgan Kaufman, 09 1996.

[184] H. Toivonen. Sampling large databases for association rules. In Proc. of the
22nd VLDB Conference, pages 134–145, Bombay, India, 1996.

[185] H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hatonen, and H. Mannila.
Pruning and grouping discovered association rules. In ECML-95 Workshop on
Statistics, Machine Learning and Knowledge Discovery in Databases, 1995.

[186] S. Tsur, J. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and
A. Rosenthal. Query flocks: A generalization of association rule mining. In
Proc. of 1998 ACM-SIGMOD Int. Conf. on Management of Data, Seattle,
Washington, 1998.

[187] E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press,
Cheshire, CT, USA, March 1986.

[188] J. W. Tukey. On the comparative anatomy of transformations. Annals of
Mathematical Statistics, 28(3):602–632, September 1957.

[189] A. Tung, H. Lu, J. Han, and L. Feng. Breaking the barrier of transactions:
Mining inter-transaction association rules. In Proc. of the Fifth Int’l Confer-
ence on Knowledge Discovery in Databases and Data Mining, pages 297–301,
San Diego, CA, August 1999.

[190] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New
York, 1995.

[191] V. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

BIBLIOGRAPHY 410

[192] H. Wang and C. Zaniolo. Cmp: A fast decision tree classifier using multivariate
predictions. In Proc. of the Sixteenth Int’l Conference on Data Engineering,
449-460, 2000.

[193] K. Wang, Y. He, and J. Han. Mining frequent itemsets using support con-
straints. In Proc. of the 26th VLDB Conference, Cairo, Egypt, 2000.

[194] K. Wang, S. Tay, and B. Liu. Interestingness-based interval merger for nu-
meric association rules. In Proc. of the Fourth Int’l Conference on Knowledge
Discovery and Data Mining, New York, NY, 1998.

[195] R. Y. Wang, M. Ziad, Y. W. Lee, and Y. R. Wang. Data Quality. The Kluwer
International Series on Advances in Database Systems Volume 23. Kluwer
Academic Publishers, January 2001.

[196] Warren S. Sarle. Measurement theory: Frequently asked questions.
ftp://ftp.sas.com/pub/neural/measurement.faq, 1996.

[197] I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, 1999.

[198] I. Wolfram Research. Mathematica 4.2. http://www.wolfram.com/, 2003.

[199] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Proc
of the IEEE Int’l Conf. on Data Mining (ICDM’02), Maebashi City, Japan,
December 2002.

[200] C. Yang, U. Fayyad, and P. Bradley. Efficient discovery of error-tolerant
frequent itemsets in high dimensions. In Proc. of the Seventh Int’l Conference
on Knowledge Discovery and Data Mining, pages 194–203, San Francisco, CA,
August 2001.

[201] M. Zaki. Parallel and distributed association mining: A survey. IEEE Con-
currency, special issue on Parallel Mechanisms for Data Mining, 7(4):14–25,
December 1999.

[202] M. Zaki. Generating non-redundant association rules. In Proc. of the Sixth
Int’l Conference on Knowledge Discovery and Data Mining, 2000.

[203] M. Zaki and C. Hsiao. Charm: An efficient algorithm for closed association
rule mining. Technical Report TR 99-10, Rensselaer Polytechnic Institute,
1999.

[204] M. Zaki and M. Orihara. Theoretical foundations of association rules. In
Proc. of 3rd SIGMOD’98 Workshop on Research Issues in Data Mining and
Knowledge Discovery (DMKD’98), Seattle, WA, June 1998.

BIBLIOGRAPHY 411

[205] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast
discovery of association rules. In Proc. of the Third Int’l Conference on Knowl-
edge Discovery and Data Mining, 1997.

[206] M. J. Zaki, S. Parthasarathy, W. Li, and M. Ogihara. Evaluation of sampling
for data mining of association rules. Technical Report TR617, Rensselaer
Polytechnic Institute, 1996.

[207] Z. Zhang, Y. Lu, and B. Zhang. An effective partioning-combining algorithm
for discovering quantitative association rules. In Proc. of the First Pacific-Asia
Conference on Knowledge Discovery and Data Mining, 1997.

[208] N. Zhong, Y. Yao, and S. Ohsuga. Peculiarity oriented multi-database min-
ing. In Principles of Data Mining and Knowledge Discovery: Third European
Conference, pages 136–146, Prague, Czech Republic, 1999.

Appendix A 412

Appendix A

Statistics

Appendix B 413

Appendix B

Linear Algebra

