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Abstract

Classical fuzzy clustering methods are not able to compute a partition in a set of points when classes have noncon-
vex shape. Furthermore we know that in this case, the usual criteria of class validity such as fuzzy hypervolume or
compactness–separability, do not allow to #nd the optimal partition. The purpose of our paper is to provide a clustering
method able to divide a set of points into nonconvex classes without knowing a priori their number. We will show that it
is possible to reconcile a fuzzy clustering method with a hierarchical ascending one while maintaining a fuzzy partition by
a method called unsupervised fuzzy graph clustering. To that e9ect, we shall use the Fuzzy C-Means algorithm to divide
the set of points into an overspeci#ed number of subclasses. A fuzzy relation is then established between them in order
to extract the structure of the set of points. It can be represented by a graduated hierarchy. Finally, we present a new
criterion to #nd the cut of the hierarchy giving the optimal regrouping. This one allows to #nd the real classes existing
into the set of points. The given results are compared with those obtained by other classical cluster validity criteria and
we propose to study the in<uence of the number of initial subclasses on the #nal computed partition. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Our works deal with unsupervised classi#cation methods used to identify the functioning modes of indus-
trial processes. In this #eld classes may have nonconvex shape. A lot of works deal with supervised and
unsupervised classi#cation methods for classes of elliptic shape. Nagy has provided the problem of classes of
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nonconvex shape in 1965 [20]. Since a lot of works dealing with hierarchical methods [22] and structurally
constrained clustering [10] has been proposed. But we know that fuzzy clustering methods give good results
when the shape of the classes is elliptic and when these classes are separable by an hyperplane. In any other
cases it is absolutely necessary to use a classic hierarchical method. This one has several de#ciencies. Indeed
what we obtain as a result is a hard partition of the set of points, where the notion of graduated membership
does not exist. Moreover, the hierarchical classi#cation methods require a very important memory space when
the number of samples increases, which makes its applications diJcult in real time. Also the addition of
a point changes possibly in a major way, the structure of the graduated hierarchy what may entail some
important calculations. To make up for these inconveniences, we have shown that it is possible to reconcile
the fuzzy techniques of clustering with those of graduated hierarchies [4,13]. The purpose of our paper is to
present the method we have developed from the creation of the subclasses up to their fusion which implies
the use of a proximity graph built according to a graduated hierarchy. The major diJculty of such a method
comes from the determination of the optimal cut of the hierarchy. In order to compute it we introduce a new
criterion. We will see that this one allows to #nd the number of classes existing in the set of points. To #nish,
we will apply our method called unsupervised fuzzy graph clustering (UFGC) on several examples in order
to show its ability to compute a fuzzy partition into a set of points without knowing the number of classes a
priori.

2. Division of the set of points into subclasses

The #rst stage of our algorithm consists in using the Fuzzy C-Means algorithm [4] to divide the set into
c′ subclasses. This principle has been used by Frigui and Krishnapuram in the URCP algorithm [11]. The
result of this algorithm is a fuzzy membership matrix U ′. The element u′kj represents the membership degree
of sample xj to subclass SCk . Each subclass must belong to one real class only.
Therefore, the number of subclasses must be much greater than the number of real classes. In our example

presented in Fig. 1, c′ must be higher than 3. It is possible to use some heuristic criteria to choose c′. We
used the fuzzy hypervolume, compactness and separability criteria to that e9ect [6]. The partition we obtained
into 12 subclasses for our example, is presented in Fig. 1. We can note that each subclass belongs to one
real class only.

3. Similarity degrees between subclasses

In [8], we studied the notion of hard neighbourhood between subclasses. We noted that our algorithm
includes a major restriction: the initial set of points must not present ambiguous points otherwise, we will
observe fusions that should not exist between subclasses. The clustering algorithm based on a hard graph
endures a lack of hardiness that can greatly decrease its performances. That is why we have introduced the
concept of fuzzy neighbourhood. The neighbourhood or proximity between two subclasses can be quanti#ed
by a coeJcient. The one we are using is the similarity degree de#ned by Frigui and Krishnapuram [11].

nkl = 1−
∑

xi∈SCk or xi∈SCl |u′ik − u′il|∑
xi∈SCk u

′
ik +

∑
xi∈SCl u

′
il
:

We obtain a neighbourhood matrix N , the size of which is c′ × c′. The element nkl corresponds to the
proximity value between subclass SCk and subclass SCl. Nearer the value of nlk is to 1, the closer the
subclasses are to one another. The terms on the diagonal are all equal to 1 because each subclass is a
neighbour of itself. Furthermore, the matrix N is symmetrical.
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Fig. 1. Division of the set into 12 subclasses. All points marked by a similar letter belong to the same subclass.

The obtained matrix N , which is calculated by using the fuzzy similarity degree for our example, is the
following:

N = 10−2:




100 1:44 0:53 0:68 3:42 2:00 1:06 5:12 1:96 12:5 0:73 4:31

1:44 100 2:05 1:60 1:71 3:74 4:04 2:82 5:79 1:22 9:40 8:90

0:53 2:05 100 11:5 0:43 1:71 4:90 0:95 0:85 0:40 10:5 0:86

0:68 1:60 11:5 100 0:45 2:79 8:35 1:36 0:78 0:46 3:09 0:91

3:42 1:71 0:43 0:45 100 0:99 0:71 1:51 10:8 15:1 0:70 5:00

2:00 3:74 1:71 2:79 0:99 100 14:5 15:6 1:52 1:05 2:40 3:42

1:06 4:04 4:90 8:35 0:71 14:5 100 3:29 1:25 0:69 5:70 1:96

5:12 2:82 0:95 1:36 1:51 15:6 3:29 100 1:80 1:86 1:37 5:87

1:96 5:79 0:85 0:78 10:8 1:52 1:25 1:80 100 2:97 1:72 7:26

12:5 1:22 0:40 0:46 15:1 1:05 0:69 1:86 2:97 100 0:58 3:68

0:73 9:4 10:5 3:09 0:70 2:40 5:70 1:37 1:72 0:58 100 1:68

4:31 8:93 0:86 0:91 5:00 3:42 1:96 5:87 7:26 3:68 1:68 100




:
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Fig. 2. Reduced fuzzy proximity graph for our example.

4. Construction of the fuzzy proximity graph and of the dendogram

4.1. Fuzzy proximity graph and reduced graph

The neighbourhood matrix N de#nes a fuzzy proximity graph in which the vertices represent the subclasses
and the arcs represent the links. The arcs are graduated by the proximity degrees. The graph corresponding
to the neighbourhood matrix of our example includes 12 vertices and 66 arcs, knowing that the arcs linking
a subclass to itself are not represented and that matrix N is symmetrical. The representation of a graph of
this size is not comfortable. That is why it is possible to associate a reduced graph representing the highest
c′−1 proximity degrees linking the c′ vertices. In our case, it is a chain linking the 12 vertices as it is shown
in Fig. 2. We note that this graph re<ects structures existing in the set of points. Calculations are based on
matrix N , consequently, they take account of the complete graph. Furthermore it is possible to de#ne the
remoteness matrix F . It is the complementary matrix to matrix N where fkl=1− nkl whatever k and l. The
higher the value of fkl is, the more distant subclasses SCk and SCl are from each other. Graph and graduated
hierarchy associated to matrix F are, respectively, shown in Figs. 2 and 3.

4.2. Dendogram

We call dendogram or graduated hierarchy a tree the leaves of which are samples subject to classi#cation.
The hierarchy is graduated if any part h is associated to a numerical value v(h)¿0 compatible with the
following relation: If h⊂ h′ then v(h)¡v(h′).
A hierarchy is associated to the graph shown in Fig. 2. It is graduated according to the remoteness values

of matrix F . Two subclasses or two sets of subclasses are associated at each level. This operation is repeated
until all subclasses are merged into one class only. For our example, we have obtained the dendogram shown
in Fig. 3.
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Fig. 3. Dendograms for our example for the two levels of cutting: (a) �=0:88 and (b) �=0:915.

5. Defuzzy#cation of the proximity graph

5.1. Level of the cut of the graduated hierarchy

To recover real classes, it is absolutely necessary to cut the dendogram or the graduated hierarchy at a
level �. For example the two levels �=0:88 and 0.915 give the sets of subclasses shown in Fig. 3. We note
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Fig. 4. Graphs obtained by the relations of di9erent levels: �1 (a); and �2 (b) for our example.

that these sets are completely di9erent from one cut to another. Consequently the #nal partition depends on
the level of the cut.

5.2. Existence of a fuzzy order relation

The neighbourhood matrix N de#nes a fuzzy relation [9] which expresses the idea of neighbourhood between
subclasses. It can be decomposed into a series of relations of level �. If N is a fuzzy order relation where
nkl ∈ [0; 1], the relation of level � which is associated to N is de#ned by N� such as

n�kl = 1 if nkl ¿ � and n�kl ¡ �:

This decomposition entails the defuzzy#cation of the proximity graph into a hard graph which determines the
structure of the set of points. The remaining arcs are no longer graduated. Two subclasses are then considered
as neighbouring and consequently merged if an arc exists between the two vertices which correspond to them.
For the two levels of cut �1 = 0:12 and �2 = 0:085, we have obtained the two hard neighbourhood graphs shown
in Fig. 4. We can note that the connected components of these graphs correspond to the sets of subclasses
obtained by the cuts of the dendogram. Furthermore, values �1 and �2 are, respectively, complementary to
values �1 and �2. Consequently, the relation of level � gives the same result than the cut of level � into the
dendogram. In our exercises, we have used the fuzzy relation de#ned by matrix N to recover the structure of
the set of points.

6. Fusion of subclasses

The last stage of the algorithm consists in searching for the connected components [14] of the hard proximity
graph or sets of subclasses in the dendogram. For each point we have at our disposal a membership degree
for each subclass. It is necessary to achieve a fusion in order to obtain a membership degree for each real
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class. This fusion is made by a limited sum [18]. When a number si of subclasses SCk exists within a class
Ci, the membership function of a point x to this class is de#ned by

ui(x) = min

[
1;

si∑
k=1

u′SCk (x)

]
:

The new membership matrix is calculated from the matrix U ′ resulting from the Fuzzy C-Means algorithm.
A sum is achieved between lines corresponding to the subclasses which must be merged. We obtain a
membership matrix U the size of which is c× n with c being the number of connected components and
n the number of points. The element uij represents the membership degree of the point xj to the new class
Ci. The obtained membership matrix depends on the chosen level of the cut.

7. Research on the optimal cut

Few criteria can help us to determine the cut to be made into the graduated hierarchies. Those proposed in
[4,19] give good results with classes of spherical or elliptical shapes. With classes of complex shapes, there
exists no adequate criteria to #nd the optimal partition. The criterion we propose, uses the principle of the
compactness criterion de#ned in [25]. The global compactness of a partition is de#ned by

cogl =
1
n

c∑
i=1

n∑
j=1

(uij:dji)2;

where dji represents the distance from the point xj to the nearest centroid of class Ci because of the multi-
prototype approach used in our algorithm. cogl allows one to measure the global compactness of the set of
points.
According to the same model, we de#ne a compactness measure for each class Ci:

coCi =

∑n
j=1 (uij:dji)

2

|Ci| where |Ci| is the fuzzy cardinal de#ned by |Ci| =
n∑
j=1

uij:

The average compactness of the created classes into the set of points is de#ned by the following expression:

coav =
1
c

c∑
i=1

coCi =
1
c

c∑
i=1

∑n
j=1 (uij:dji)

2∑n
j=1 uij

:

If the number of classes c is equal to 1, the global compactness and the average compactness are equivalent.
Indeed uij =1 ∀j which induces

n∑
j=1

uij = n:

Consequently we have

coav =
1
n

n∑
j=1

(uij:dji)2 that is to say: coav = cogl:

Our study concerns the general case where the number of researched classes is higher than 1. The case
where c is equal to 1 remains marginal and most of the criteria do not function for this value. The global
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compactness de#ned by Frigui and Krishnapuram represents the average distribution of the points around the
centroids of all the classes according to the membership levels. The considered cardinal using for calculating
the average value is the total number of points n. The compactness we have de#ned for one class is based
on the same model. It represents the average distribution of the points around the centroids of one class. The
considered cardinal is now the fuzzy cardinal |Ci| of class Ci. Then the average compactness is computed
from the compactness of all the classes in order to obtain a value which translates the distribution of the
points around the centroids of the classes. These de#nitions are equivalent on condition that the partitioning
is optimal that is to say when the computed clusters correspond to the real classes. The de#nition of our
criteria is based on this hypothesis of equivalence between average and global compactness when the optimal
partition into c∗ classes is attained. In this case, its ratio tends towards 1 and we propose the minimisation
of the following criterion for determining the number of classes existing in the set of points:

Kc =
∣∣∣∣1− coav

cogl

∣∣∣∣ =
∣∣∣∣∣1− 1=n

∑c
i=1

∑n
j=1 (uij:dji)

2

1=c
∑c

i=1 [
∑n

j=1 (uij:dji)
2=
∑n

j=1 uij]

∣∣∣∣∣ :
We will show that this criterion functions for the case where all the classes include the same number of
points. It is supposed that the optimal partition is attained for a number c∗ of classes. The membership
degrees tending towards 1 give the following property:

n∑
j=1

uij → ni with ni the number of points into each class Ci:

This tendency induces that

coav → 1
c∗

c∗∑
i=1

∑n
j=1 (uij:dji)

2

ni
: (1)

As all the ni are equal, the average compactness becomes

coav → 1
c∗:ni

c∗∑
i=1

n∑
j=1

(uij:dji)2 that is to say: coav → cogl: (2)

If the partition includes too many classes, relation (1) is not veri#ed and the criterion cannot reach the
optimal value. Indeed subclasses are very near one from each other and because of the orthogonality condition,
the membership degrees uij are very lower than the value 1. If the partition does not include enough classes,
relation (1) is veri#ed. The additional fusions which appeared, unbalance the sizes of classes. Relation (2) is
no more veri#ed, which does not allow one to #nd the optimal number of classes.
These results imply that when the optimal partition is attained, the criterion Kc tends toward 0. The

minimisation of the criterion allows one to #nd the optimal partition of the set of points and consequently
to determine the number of classes existing in it on condition that all of them would have the same number
of points. We have veri#ed experimentally that this criterion functions even if classes do not have the same
number of points.
Table 1 illustrates the results we obtained for our example. We can note that the minimum is attained for

three classes. The corresponding partition is presented in Fig. 5. The obtained classes are similar to the real
classes.
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Table 1
Values of the criterion Kc as a function of the number of classes

�× 10−2 8 8.5 9 10 10.5 11 12 14 15 15.5 16

Kc × 10−2 0.5 0.25 6.48 9.46 12.2 8.6 11 6.47 3.22 1.37 1

Number of clusters 2 3 4 5 6 7 8 9 10 11 12

Fig. 5. Graphic results of classi#cation. Points marked by a similar number belong to the same class.

8. Comparison with other cluster validity criteria

A lot of cluster validity were proposed during the last 10 years. They come from di9erent studies dealing
with the number of clusters existing in a set of points [5,15,17,23]. These studies started with hard partitions.
In 1996 Hardy realised a comparative appraisal of the hard approaches allowing to determine the number
of clusters [16]. These ones were translated to the fuzzy partitions [1,2,4,24]. Among the criteria which we
can use to determine the number of clusters, we can notably cite the ones which are used with the classical
Fuzzy C-Means algorithm [4]. We have chosen to compare our criterion to the most used in the #eld of fuzzy
clustering: partition coeJcient [2], partition entropy [3], proportion exponent [24], Fukuyama and Sugeno
index [12], compactness separability [25] and an index called “Compose Within and Between Scattering”
[21]. All these indexes are described in Table 2. We have adapted those using the distance between point xk
and centroid vi of class Ci to the multiprototype approach. Indeed dki represents the distance between point
xk and the nearest centroid of class Ci in our case.



332 A. Devillez et al. / Fuzzy Sets and Systems 128 (2002) 323–338

Table 2
Description of the cluster validity criteriaa

Validity criteria Functional description Optimal cluster number

Partition coeJcient F =
1
n

n∑
k=1

c∑
i=1

u2ik max(F; U; c)

Partition entropy H =− 1
n

n∑
k=1

c∑
i=1

uik log(uik) min(H;U; c)

Fuzzy hypervolume Fhv =
c∑
i=1

[det(�i)]1=2 min(Fhv; U; c)

Compactness separation CS(U )=

∑c
i=1

∑n
k=1 u

2
ik :d

2
ki

n(minvi∈Ci ; vj∈Cj ; i �=j{vi − vj})
min(CS; U; c)

Fukuyama and Sugeno FS(U )=
c∑
i=1

n∑
k=1

u2ik (d
2
ki − ‖vi − Qv‖2) min(FS; U; c)

Compose within and between scattering CWB(U )= � Scat(c) + Dis(c) min(CWB; U; c)

a Qv is the grand mean of all data and vi is the nearest centroid of the class Ci to the point xk .

For the fuzzy hypervolume �i is the fuzzy covariance matrix of class Ci de#ned by

�i =
Si∑c
i=1 u

2
ik
;

where Si is the fuzzy dispersion matrix de#ned by

Si =
c∑
i=1

u2ik(xk − vi) · (xk − vi)T:

For the index CWB we have used

Scat(c) =
1=c

∑c
i=1[(�(vi))

T�(vi)]1=2

[(�(X ))T�(X )]1=2

and

Dis(c) =
Dmax

Dmin

c∑
i=1

1∑c
z=1 minvl∈Ci; vm∈Cz; l=1–c′ ; m=1–c′ ; l �=m ‖vl − vm‖

where

�(X ) =




1
n

n∑
k=1

(x1k − x1)2

...
1
n

n∑
k=1

(xpk − xp)2



; �(vi) =




1
n

n∑
k=1

uik(x1k − v1i )2

...
1
n

n∑
k=1

uik(x
p
k − vpi )2



;
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Table 3
Values of di9erent criteria for our example

Number of 2 3 4 5 6 7 8 9 10 11 12
clusters

Kc 0.05 0.0025 0.065 0.095 0.122 0.086 0.110 0.065 0.032 0.013 0.010
F 0.887 0.782 0.765 0.746 0.725 0.702 0.688 0.659 0.623 0.601 0.572
H 0.207 0.417 0.485 0.551 0.614 0.680 0.726 0.799 0.894 0.954 1.034
Fhv 0.033 0.047 0.061 0.072 0.082 0.094 0.103 0.116 0.128 0.139 0.150
CS 0.087 0.092 0.088 0.084 0.080 0.077 0.083 0.078 0.110 0.105 0.107
FS −78:2 −164:2 −162:6 −159:5 −152:8 −146:5 −140:3 −131:1 −128 −119:9 −118:7
CWB 4.387 4.256 4.098 5.407 6.071 5.855 6.187 6.519 7.365 7.213 7.481

Dmax = max
i=1–c; z=1–c; i �=z

[
min ‖vl − vm‖

vl∈Ci; vm∈Cz; l=1–c′ ; m=1–c′ ; l �=m

]
;

Dmin = min
i=1–c; z=1–c; i �=z

[
min ‖vl − vm‖

vl∈Ci; vm∈Cz; l=1–c′ ; m=1–c′ ; l �=m

]
;

� = Dis(cmax):

Table 3 presents the results we have obtained for our example including two classes of parabolic shape
and one class of elliptic shape. The set of points was divided into 12 subclasses before application of UFGC
algorithm. The usual criteria attain their optimal value for a number of 2, 7 or 12 clusters. Criterion CWB
attains its optimal value for four clusters whereas criteria Kc and FS attain their optimal values for three
clusters. On this example criterion Kc is classi#ed among the most performing criteria for validating the
computed fuzzy partition.

9. In*uence of the initial number of subclasses

In order to validate our criterion, we have studied its sensibility to the number of subclasses computed by
Fuzzy C-Means in our algorithm. We can suppose that this number has an in<uence on the #nal partition and
on the optimal value of criterion Kc. We know that this number must be enough high in order that all the
subclasses belong to one real class only. As a consequence, we have chosen to provide this study from 12 to
30 subclasses. For 10 or 11 subclasses, our algorithm does not function because one subclass may belong to
2 real classes. Table 4 presents the evolution of criterion Kc for di9erent number of subclasses. We can note
that this criterion gives always three clusters. To #nish, we conclude that our methodology with criterion Kc is
not sensible to the initial number of subclasses if this last one is high enough. Nevertheless, the determination
of this parameter believes a weak point of the method; even some heuristics could be used to determine it.

10. Applications

We have applied our criterion to three examples in order to show its ability to determine the number of
classes existing into a set of points. These examples include diJculties currently met in the classi#cation
#eld.
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Table 4
Values of criterion Kc for di9erent numbers of subclasses

Number of clusters

2 3 4 5 6 7 8 9 10 11 12

Number 14 1.51 0.37 7.56 12.89 15.84 11.71 13.58 17.04 11.05 9.05 2.29
of 16 1.75 0.79 1.77 10.30 15.58 23.95 16.96 20.88 25.35 18.07 15.21
initial 18 2.21 0.44 3.74 12.80 17.66 25.37 18.44 21.30 25.38 20.45 17.69
subclasses 20 2.13 0.1 6.88 15.16 20.37 23.80 24.80 17.72 18.51 20.33 21.38

22 1.27 0.14 5.59 8.37 20.76 23.94 29.20 34.00 25.91 21.22 23.99
30 0.33 0.02 16.63 16.86 24.38 38.61 37.43 36.92 41.56 43.44 44.27

Fig. 6. Set of points of example 1. All the points marked by the same letter belong to the same subclass.

10.1. Example 1

The set of points is presented in Fig. 6. It includes 400 points divided into four classes of varying shape
and density. It is divided into 10 subclasses as it is shown in Fig. 6. Table 5 shows the values of criterion Kc
as a function of the number of classes. We can note that the minimum is attained for a value of four classes,
which corresponds to the real number. The obtained classes are similar to the real ones. So our criterion
succeeds for this set of points.
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Table 5
Values of the criterion Kc as a function of the number of classes for example 1

�× 10−2 7 8 10 14 16 18 19 20 21 23

Kc × 10−2 1.69 1.69 1.29 1.29 1.29 2.78 2.76 6.44 1.98 2.53

Number of clusters 3 3 4 4 4 5 6 7 8 9

Fig. 7. Set of points of example 2. All the points marked by the same letter belong to the same subclass.

Table 6
Values of the criterion Kc as a function of the number of classes for example 2

�× 10−2 8.5 9 12 14 16 17 20 22 24 26

Kc × 10−2 0.75 1.66 0.27 0.27 0.27 2.57 5.67 2.79 2.01 2.94

Number of clusters 2 3 4 4 4 6 7 8 9 10

10.2. Example 2

This example uses the same set of points as previously to which we have added some ambiguous points
between classes. It is divided into 10 subclasses as it is shown in Fig. 7. We note in Table 6 that criterion
Kc is minimised for a value of four subclasses which corresponds to the real number.
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Fig. 8. Set of points of example 3. All the points marked by the same letter belong to the same subclass.

Table 7
Values of the criterion Kc as a function of the number of classes for example 3

�× 10−2 0.5 0.7 1.3 1.4 4.3 5.1 6.8 7.4 8.5 9 10

Kc × 10−2 14.4 0.07 24.6 24.6 36.8 20.8 23.4 21.3 14.5 10.6 3.91

Number of clusters 2 3 4 5 6 7 8 9 10 12 15

10.3. Example 3

To #nish, we have applied the method to the set of points coming from a study concerning the classi#cation
of plastic bottles [7] and presented in Fig. 8. It comprises of three classes of elongated and titled shape which
constitutes generally a diJculty in classi#cation. It was divided into 14 subclasses as it is shown in Fig. 8.
The number of classes found by criterion Kc is 3 as we can see in Table 7.

11. Conclusion

This study presents an unsupervised classi#cation method together with its application to a set of points
including classes of complex shapes. The examples we have chosen show the ability of our criterion to
determine the number of classes in a set of points whatever the shape of the classes. The classi#cation
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method is based on the division of the set into subclasses. The number of these initial subclasses has no
in<uence on the #nal partition on condition that it would be high enough. It can be determined by heuristics
methods [7], but we can consider that this determination is a weak point of the method. For all these reasons,
we can conclude that the UFGC algorithm is able to compute a fuzzy partition in a set of points without
knowing a priori the number of classes. Indeed, we have proposed a criterion more performing than the usual
criteria of class validity. However, the method presents several limits when distributions of classes are uneven
and when classes do not appear clearly in the set of points. In these cases the proximity measure allowing one
to establish a graduated hierarchy or a fuzzy order relation between subclasses is not eJcient. A consequence
is that the partition computed by the UFGC algorithm does not respect the shape of the real classes. Moreover
criterion Kc does not succeed in the computing of the number of clusters. The problem of such classes is the
basis of our future works dealing with unsupervised fuzzy clustering.
Finally, we can note that our methodology combines the clustering method of the Fuzzy C-Means and

the hierarchical ascending method. It shows several positive aspects: the number of classes may be un-
known and classes can have complex shapes, something which was impossible with the Fuzzy C-Means
algorithm.
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