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Abstract  The summarization and evaluation of the advances in fuzzy clustering theory are made in the
aspects including the criterion functions, algorithm implementations, validity measurements and
applications. Several important directions for a further study and the application prospects are also
pointed out.
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Clustering is such a procedure that objects are distinguished or classified in accordance with their
similarity. During this course there is no teacher to provide guidance, hence it is also called
unsupervised classification. And cluster analysis is to study or cope with unsupervised classification of
given objects with mathematical methods. As the old saying goes, things of one kind come together[1].
So, clustering is not a new question, and it will be uninterruptedly deepened with the development of
human society.

Most traditional cluster analysis methods are crisp partitioning, in which every given object is
strictly classified into a certain group. Hereby, the boundaries among classes are sharply in such
partition. However, in practice, the class attributes of most objects are not strict but ambiguous, hence it
is suitable for soft partitioning. Fortunately, the fuzzy sets theory proposed by Zadeh[2] provides a
powerful tool for such soft partitioning. Thus, people began to deal with clustering with fuzzy fashion
and named them fuzzy cluster analysis. Since fuzzy clustering obtains the degree of uncertainty of
samples belonging to each class and expresses the intermediate property of their memberships, it can
more objectively reflect the real world. Thereby, it has become the main content of studies on cluster
analysis.

It was Ruspini who proposed the concept of fuzzy partition firstly[3]. With this concept, some
typical fuzzy clustering algorithms, such as methods based on the similarity and fuzzy relations[4], the
transitive closed package of fuzzy equivalent relation[5], the convex decomposition of data[6], or
dynamic programming and indistinguishable relation are developed one after the other. Unfortunately,
these methods are unsuitable for the case with large amount data and difficult to meet the requirements
of real time realization. Since their practical applications are not very wide-ranged, studies on them are
reduced progressively. So far, the objective-function-based method is very popular for its simple
designing and wide uses, and for its easy convertion into optimization problems and its implementation
with computer. With the development of computer, objective-function-based method has become a
studying hotpot in cluster analysis.

Hereinafter, the summarization of the advances in objective-function-based fuzzy clustering is
made in the aspects of evolution of objective function, in the ways of algorithm implementation, styles
of validity measurements and in practical applications. The systematic summarization about the
traditional cluster analysis and other types of fuzzy clustering methods can be referred to refs. [1, 7
10].

1  The evolution of objective function in fuzzy clustering

In mathematical terms, the fuzzy clustering problem can be expressed as classifying a set of given
patterns, { } ,,, 21 noooO L= , into c fuzzy subsets (clusters) .,,, 21 cSSS L Let 

ikµ (1 i c, 1 k

n) denote the membership degree of pattern 
ko  in the fuzzy subset 

iS , then one obtains the fuzzy c-

partition of the given patterns, { }             1,            1 nkciU ikµ= . Such an operation as partitioning

these unlabeled patterns is called fuzzy cluster analysis. To obtain reasonable classification results, the
partitioning criterion, i.e. the criterion of similarity or dissimilarity, )(⋅D  needs to be defined firstly.
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Provided that every fuzzy subset, )            1( ciS i
 has a cluster prototype 

ip , the similarity between

pattern 
ko  and subset 

iS  can be measured by the degree of distortion of this pattern from the

prototype 
ip , ),( ikik poDd = .

By the distance between the observed value of pattern set O , { } s
n RxxxX ⊂=  ,,, 21 L , and

the feature values of the clustering prototype, { }ciB i             1, β= , one can easily construct an

objective function for the fuzzy clustering problem as eq. (1). Objective-function-based fuzzy clustering
algorithm will obtain the optimal fuzzy c-partition by solving such a nonlinear programming problem
with constraints.
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where ζ  is a penalty item, Cf ik ∈)(µ  the constraint condition and m the fuzzy weighting exponent.

Obviously, this objective function is determined completely by parameter sets { }XmBDU ,,),(, ⋅ .

Corresponding to these parameters, the evolution of the fuzzy clustering objective function will be
summarized from the following five aspects.

( ) Studies on fuzzy partition matrix U.  As mentioned above, most traditional cluster analysis
methods are hard partitioning, in which }1,0{)( ∈ki xµ  is the indicator function of the membership of

sample 
kx , and class-label vector, T

ckkkkx ),,,()( 21 µµµµ L=  is the base vector of the Euclidean c-

space. To express the similarity information between patterns, Ruspini et al.[3] introduced the concept of
fuzzy partition into cluster analysis and generalized )( kxµ  from {0,1} to [0,1], which extended label

vector )( kxµ  to a hyperplane, ∑ =
=

c

i ki x
1

1)(µ , in the Euclidean c-space. Hereby, the label vector

can be called a fuzzy or probabilistic label. However, the probabilistic constraint makes the membership
function represent only the degrees of sharing of patterns across fuzzy classes but not the typicality. To
this end, Krishnapuram et al.[11] proposed possibilistic c-partition by relaxing the probabilistic constraint

∑ =
=

c

i ki x
1

1)(µ . In this way, label vector )( kxµ  becomes a unit hypercube without origin. Such a

possibilistic clustering algorithm has good noise-proof performance but poor convergence property.
Moreover, it is easy to trap into the local optima and results in bad classification. In order to combine
the advantages of crisp and fuzzy clustering, Selim et al.[12] presented the concept of semi-fuzzy
partitioning only by keeping the fuzzier elements and defuzzifying the other elements in the partitioning
matrix. Such a matrix obtained not only has certain distinctness but also keeps the fuzziness of samples
distribution. So, the correctness and the convergence property of classification are improved in this way.
Later, Kamel et al.[13] and Pei Jihong et al.[14] developed modified version of semi-fuzzy partition from
different viewpoints respectively, i.e. threshold fuzzy clustering algorithm and sectional set soft
clustering algorithm. The soft partitions above are compared in table 1.

Table 1  Comparison of four space partitioning concepts

Item Possibilistic Fuzzy Traditional (Crisp) Semi-fuzzy

Label vector
sets })0,,0,0{(0
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Physical
means

typicality of samples to
each class

degree of sharing of
samples across classes

indicator function of
samples membership

either fuzzy
or crisp case

Convergence slower slow fast faster
Sensitivity higher low high low
Noise-proof better good poor good

How to improve the convergent speed and decrease the sensitivity to initialization of possibilistic
partitioning is still an important task for a further study on cluster analysis from the viewpoint of fuzzy
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partition. If a breakthrough were made in this aspect, a novel space partitioning method with good
noise-proof performance and good convergence property would be obtained, which will not only enrich
the theory of the available soft clustering but also shorten their pragmatizing course.

( ) Studies on the criterion of similarity )(⋅D .  It is impossible for a single clustering criterion

to solve all the possible problems of unsupervised classification. Therefore, many functions of
similarity, such as maximum likelihood function[15], maximum entropy criterion[16], minimum volume
criterion[17] and information criterion[18] are proposed. Among the available clustering criterions, the
within-group sum of squared error (WGSSE) function is a very popular one.

The classical WGSSE function was originally designed to define the traditional hard c-means and
ISODATA algorithms. With the emergence of fuzzy sets theory, Dunn[19] firstly generalized WGSSE to
square weighting WGSSE function. Later, Bezdek[20] extended it to an infinite family of criterion
functions which formed a universal clustering objective function of fuzzy c-means (FCM) type
algorithms with eq. (1). The studies on criterion functions have mainly been focused on the
measurements of similarity or distortion )(⋅D , which are often expressed by the distances between the

samples and prototypes. Different distance measurements are used to detect various structural subsets.
The distance functions in common use are shown in table 2.

Table 2  Distance functions in common use

Name Distance functions Character and purpose

Minkowski
p

ps

i iip babaD
1
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Including a family of distance with 1  p , it can be
used to detect hypercubes structural subsets with the shapes
from  to  in feature space.
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Being the Minkowski distance with p = 2, it can be used to
detect hyperspherical structure with the shape of  in
feature space.
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Being the Minkowski distance with p = 1, it can be used to
detect hypercubes structural subsets with the shape of  in
feature space.

Maximum ii
si

babaD −=
=

∞
,,1

max),(
L

Being the Minkowski distance with p = , it can be used to
detect hypercubes structured subsets with the shape of 
in feature space.

Mahalanobis
DA(a,b)=(a-b)T A(a-b), A is a positive
definitive matrix

It can be used to detect hyperellipsoidal structural subsets in
feature space.

Bobrowski et al.[21] discussed fuzzy c-means algorithms with 
1L  (D1 in this review) and )( ∞∞ DL

norms which are the two extreme cases in the class of Minkowski distances. They found that, in some
cases, better results could be obtained by using the two norms than the usual Euclidean norm, )( 22 DL .

Their work suggests that different distance functions should be explored in cluster analysis. In addition,
weighting Euclidean distance, a special case of Mahalanobis distance with A being a diagonal matrix, is
also widely used in the cases in which the different contributions of each feature of pattern to
classification are emphasized[22].

Searching a certain structure from given data sets can be looked as finding an appropriate distance
function. It leaves us such a question of what is the criterion for selecting an appropriate distance
function. Furthermore, whether or not to develop a fuzzy clustering algorithm does not depend on the
distance measurement defined in advance. Few of the existing references involve such questions. So, it
needs further efforts.

 ( ) Studies on clustering prototype B.  An objective-function-based fuzzy clustering is also
called a prototype-based method since the construction of objective function depends on the definition
of prototypes. Hereby, the types of prototypes should be specified in advance. Studies on prototypes
were carried out with the development and requirements of clustering applications. Originally, cluster
analysis is only applied to detecting hyperspherical structures from a given data set, so prototypes are
“points” in feature space and are also called clustering centroids[20]. In order to detect non-
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hyperspherical structural clusters, Bezdek et al.[23] defined )1            0( −prr  dimensional linear cluster

prototypes })({Span}{}){;( iir svsvB += through the point ∈v p, which are shown in table 3.

Table 3  Linear cluster prototypes defined by Bezdek

Dimension Cluster prototype Functions and features

0=r vvB =∅);(0 : point detecting hyperspherical and hyper-ellipsoidal
structural subsets.

1=r   );();(1 svLsvB = : line detecting linear structural subsets

2=r    ),;(),;( 21212 ssvPssvB = : plane detecting plane structural subsets

2 r p-1       }){;(}){;(1 iip svHPsvB =− : hyperplane detecting hyperplane structural subsets

In addition, to detect “thin shell” structural pattern subsets, Dave constructed two types of
prototypes, i.e. spherical[24] and ellipsoidal[25] shells, which are applied to edge detection with better
results. To meet the requirements of application, shell prototypes are generalized to rectangular[26],
convex polytopes[27], and even to any shaped shell[28]. Meanwhile, line-shaped prototypes are also
extended to curves, such as parabolas[29], quadratic curves and quadratic polynomials[30].

Clustering based on objective functions strongly depends on the prototypes, therefore, it demands
that, on the one hand, the priori information should be used sufficiently to select appropriate prototypes;
on the other hand, distance measurement should be incorporated to select reasonable similarity
criterions.

( ) Studies on weighting exponent m.  In the objective function of fuzzy clustering, {Jm:1 m

} , Bezdek[20] introduced a weighting exponent m and made Dunn’s function a special case (m = 2) of

Jm. One may have felt that it is unnatural and unnecessary for the emergence of m from the viewpoint of
mathematics[16]. However, since Jm is generalized from the WGSSE function, such a generalization will
be invalid without weighting the membership function with m. Parameter m is also called a smooth
factor, which controls the membership sharing between fuzzy clusters[20]. Therefore, it is important to
select a value of m if one implements fuzzy clustering. Unfortunately, it lacks for theoretical basis for
optimal choice of m at present.

Bezdek had given an empirical range of 1.1 m 5. Later, he came to a conclusion from the
viewpoint of physical interpretation that FCM algorithm is of specific physical significance in the case
of 2=m [31]. Cheung and Chen[32] found that m should be selected in the range of 1.25 1.75 for the
applications of character recognition. From the aspect of convergence property of algorithms, Bezdek et
al.[33] considered that the value of m depends on the number of samples, says n, and suggested that the
value of m should be greater than n (n-2). However, Pal et al.[34] obtained the best choice of m when m
being in the interval [1.5, 2.5], and the interval midpoint, m = 2, has often been preferred for many
users of FCM algorithm.

 All the above ranges of m come from experiments or experience, which are heuristic. But it does
not provide the straightforward way of optimal choice of m. In addition, it lacks for test approaches for
the selected optimal m. These open problems call for further investigation to establish the theoretical
basis for optimal choice of m.

( ) Studies on various data sets X.  In practical applications, one often meets various types of
data sets. For this reason, if one wants to construct an appropriate objective function for fuzzy
clustering, he should consider the types of the given data sets firstly. Most of the common data are
point-sets in feature space, ⊂X s. Besides this, relational data[35], directional data[36], interval and
fuzzy numbers[37] and other formed data were also studied, and some significant conclusions were
drawn. Another type of data sets, symbolic pattern[38] also attracted wide attention in concept clustering,
which consists of the usual number valued data, interval valued data, fuzzy numbers and linguistic
forms. But the most common data encountered are partially labeled data, data contaminated by noise or
mixed data with multi-structural subsets.

In view of partially labeled data, Pezdrcy[39] proposed partially supervised fuzzy clustering
algorithm to utilize the priori information contained in the data sets sufficiently. Bensaid[40] further
developed this theory and applied it to image segmentation with better results. For the data
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contaminated by noise, a lot of robust clustering algorithms were presented to overcome the
interference of noise. Dave et al.[41] made a systematic summarization for these robust algorithms, on
which we will not give more details here. As to mixed data with multi-structural subsets, Gustafson et
al.[42] proposed a clustering algorithm with a fuzzy covariance matrix, which can detect the ellipsoidal
and linear structure simultaneously from the given data sets. Meanwhile, Jawahar[43] had some tries for
clustering with various geometric structures. Except these, there are few reports involving this aspect.

There remain many problems on clustering for the above three types of data. To make the fuzzy
clustering much more effective, one should further analyze the various cases of the practical data and
develop clustering algorithms which can utilize priori information, resist the noise and detect multi-type
structures simultaneously.

2  Studies on the ways for realizing fuzzy clustering

Having constructed the criterion function for clustering, we will study how to optimize the
objective function and obtain optimal clustering results, i.e. studying the ways of algorithm realization.
The existing ways were mainly classified into three classes, alternative optimization (AO), neural
networks (NN) and evolutionary computing (EC). In what follows, we will summarize the advances of
these three aspects.

( ) Realization based on AO.  In the course of optimizing objective function, people had ever
tried to use such methods as dynamic programming, branch and bound and convex cut. However, the
great amount of storage space and CPU time limited their applications. The most widely used method is
fuzzy c-means type algorithm, an iterative optimization approach proposed by Dunn[19] and Bezdek[20].
So far, studies in this aspect mainly focus on the proof of convergence property, the choice of stop
criterions and on the initialization of the clustering prototypes.

By many times modification, the AO algorithm was proved to converge along a sub-sequence to
either a local minimum or a saddle[44,45]. As to the stop criterions, two types of methods are designed[46],
i.e. the differences of prototypes or partition matrices between the successive iteration are less than a
pre-specific threshold. Unfortunately, since FCM type algorithms are hill climbing with local search
strategy in essence, they are very easy to trap into local optima. That is, they are sensitive to
initialization. To obtain global optima or satisfied solutions, people place hope on good initialization.
Mountain function is one of the famous initialization methods, which was proposed by Yager et al.[47].
However, the amount of calculation increases exponentially with the dimensions of samples. To
overcome its drawbacks, Chiu[48] modified this method and made the computing amount only depend
on the number of samples, which solved the contradictories between the precision and complexity of
computing. In addition, there are still other initialization methods, such as density function estimation[49],
morphological method[50], methods with fuzzy measurement and Marr operators.

( ) Realization based on NN.  The application of neural networks in cluster analysis stems from
the Kohonen’s learning vector quantization (LVQ), self-organization feature mapping (SOFM)[51] and
Grossberg’s adaptive resonance theory (ART)[52]. The main properties and features of these clustering
neural networks are shown in table 4.

Table 4  Comparison of two kinds of clustering neural networks

Item Kohonen’s clustering NN Grossberg’s clustering NN

Input quantity precise valued quantity valued or fuzzy linguistic quantity

Output quantity cluster prototypes (feature vector) classification results
Learning ways competitive learning (gradient descent) fuzzy logic operation

Number of clusters specified in advance automatically determining

Utilization spercial hard clustering,
feature mapping

spercial hard clustering,
pattern classification

Since neural networks are of capability in parallel processing, people hope to implement clustering
at high speed with network structure. However, the classical clustering NN shown in table 4 can only
implement spherical hard cluster analysis. So, people made much effort in the integrative research of
fuzzy logic and neural networks, which falls into two categories as follows. The first type of studies
bases on the fuzzy competitive learning algorithm, in which the methods proposed by Pal et al.[53],
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Xu[54], and Zhang[55] respectively are representatives of this type of clustering NN. These novel fuzzy
clustering NNs have several advantages over the traditional ones. The second type of studies mainly
focuses on the fuzzy logic operations, such as the fuzzy ART[56] and fuzzy Min-Max NN[57].
Unfortunately, the researches on the last type are scattered. Moreover, they are not only few in amount,
but also immature in theory.

( ) Realization based on EC.  Evolutionary computing (EC) is a random search strategy with
the mechanism of natural selection and group inheritance, which is constructed on the basis of
biological evolution. For its performance of parallel search, it can obtain the global optima with a high
probability. In addition, EC has some advantages such as simple, universal and robust. To achieve
clustering results quickly and correctly, evolutionary computing was introduced to fuzzy clustering with
a series of novel clustering algorithms based on EC.

This series of algorithms falls into three groups. The first group is simulation-annealing-based
approach. Some of them can solve the fuzzy partition matrix U by annealing[58]; the others optimize the
clustering prototype gradually[59]. However, only when the temperature decreases slowly enough can the
stimulate annealing converge to the global optima. Hereby, the great CPU time limits its applications.
The second group is the approach based on genetic algorithm[60] and evolutionary strategy[61], whose
studies are focused on such aspects as solution encoding, construction of fitness function, designing of
genetic operators and choice of operation parameters[62]. The third group, i.e. the approach based on
Tabu search is only explored and tried by AL-Sultan[63], which is very initial and requires further
research.

By comparing the three groups of approaches above, we obtained the results shown in table 5. We
see that the three group methods have their own advantages and disadvantages, which enlighten us
whether we can incorporate their advantages to develop a new clustering algorithm with high speed,
high precision and insensitivity to initialization. For instance, both introducing gradient operator to EC
and training NN with EC are promising study directions.

Table 5  Comparison of three ways for implementing fuzzy clustering

Item AO-based approach NN-based approach EC-based approach

Search method gradient descent gradient descent random search

Convergent speed higher high low

Precision of computing high high limited by encoding
Structure of algorithms sequential parallel on features parallel on individual

Sensitivity to initialization high high low

3  Studies on fuzzy cluster validity

To analyze the given data sets effectively, one should judge whether there are cluster structures, i.e.
one should have a clustering tendency test at first. If there exist such structures, an appropriate
algorithm should be employed to discover them. This process is called a cluster analysis. After
obtaining these structures, one needs to verify the reasonableness of the result as well, i.e. cluster
validity evaluation. In general, the cluster validity problem can be converted into determining the
optimal number of clusters[20].

Most of the available studies on cluster validity are designed for the hard c-means and fuzzy c-
means algorithms, which were reviewed by Dubes and Jain in 1980[9,64]. The existing validity function
can be divided into three classes from the ways of their definitions, i.e. the functions based on fuzzy
partition, geometric structure and statistic information of data respectively, which are shown in table 6.

No universal validity function for clustering is the main reason of emergence of new functions in
an endless stream. Since single measurement cannot solve all the possible problems of cluster validity,
the available validity functions will exist together for a long time. So, it is important to provide a
guideline that helps users to choose an appropriate validity function for their application. Because most
functions are designed for FCM algorithm, only few effort has been made for fuzzy line, plane and
other prototypes of clustering algorithms except for fuzzy c-shell clustering proposed by Dave[72] and
Krishnapuram[30]. In addition, with the development of possibilistic and semi-fuzzy clustering, the
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Table 6  Comparison of three cluster validity functions

Item Fuzzy partition based Geometric structure based Statistic information based

Theoretical
basis

good clustering results corr-
esponding to a more “sharp”
partition of data

Every cluster should be com-
pact and well-separated.

Optimal partition provides better
statistic information

Advantages
simple, small amount of comp-
uting

related closely with the struc-
tures of the data set

related closely with the distribution
of the given data set

Disadvan-
tages

lack of direct connection  with
the structures of data

complex, large amount of com-
puting

Performance depends on the
consistence of the assuming and
practical distribution.

Typical
studies

degree of separation[20],
partition entropy[20],
proportion exponent[65]

partition coefficient[66],
separated coefficient[6,7]

Xie-Beni’s index[68]

Vogel’s PFS clustering[69],
Jain’s Bootstrap method [70],
entropy formed functions[71]

validity measurements need further enriching and developing for them to consummate the theory of
cluster validity.

The above validity functions are mainly used to determine the reasonable number of clusters to
guarantee the more effective clustering result. However, in practical applications, even if the number of
clusters takes the proper value, it will not be able to obtain the true structures of data for selecting
inappropriate algorithms or inappropriate parameters. All the questions urge us to find more suitable
functions to supervise clustering in practical application. Such a job was initiated by Huntsbergery[73].
In order to get better effect of image segmentation, he introduced a supervised function into the FCM
algorithm and obtained a great success. Later, Bcnsaid[74] modified Xie-Beni’s index[68] and proposed a
new standard one. He pointed out that the study of cluster validity function should not only answer the
question of the optimal number of clusters, but also supervise clustering algorithm to obtain
classification sufficiently, which will better fit for the practical case.

4  Studies on the applications of fuzzy clustering

The development of fuzzy clustering theory promotes its applications. But in the meantime, the
requirement of practical applications accelerates the development of the fuzzy clustering theory. With
the development in theory so far, fuzzy clustering has been widely used in numerous fields with
satisfied effects and considerable economic benefit. Its applications range from channel equalization in
communication systems, code-book design in vector quantization coding, time-series predication,
neural networks training and parameter estimation to medical diagnosis, and from weather forecast,
food classification to water quality analysis. The above applications are introduced in refs. [1, 7 10,
20, 62]. Here we will not give unnecessary details. For the successful applications of fuzzy clustering in
pattern recognition and image processing, we will mainly summarize the two aspects in detail.

( ) Applications in pattern recognition.  The classical pattern recognition theory consists of two
branches, i.e. supervised and unsupervised classification, in which unsupervised classification is
corresponding to cluster analysis. The natural connection with pattern recognition makes fuzzy
clustering successfully applied in this field firstly. The significant advantage of fuzzy clustering lies in
its active self-learning and independent of supervisor or training samples.

One of the most important problems in pattern recognition is feature extraction. Fuzzy clustering
can not only extract features from raw data directly[75], but also select the optimal feature sets or reduce
the dimensionality of obtained features[76]. After extracting the features, the next step is to design
classifiers. Fuzzy clustering can provide the nearest-prototype classifier[76] as well as the classifier based
on fuzzy IF-THEN rules[77]. Of course, the prototype and fuzzy rule will be obtained by clustering
algorithm.

In addition, in some practical applications of pattern recognition, such as character recognition,
speech recognition and radar target recognition[81], fuzzy clustering is also playing an important role in
the raw data domain[24,25,30] as well as in transform domains[78].

( ) Applications in image processing.  Image processing is a significant component of computer
vision. The subjective property of human vision makes image processing suitable for analysis with
fuzzy fashion. And the shortness of training images asks unsupervised processing. Because fuzzy
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clustering just meets these requirements, it becomes a powerful analytic tool in image processing.
In image processing, one of the widest uses of fuzzy clustering is image segmentation. Since the

image segmentation can be equivalent to the unsupervised classification of pixels, Coleman et al.[82]

proposed a clustering-algorithm-based image segmentation method in 1979. Later, incorporating a
series of advanced techniques, such as two-dimensional histogram[83], pyramid structure[84], wavelet
analysis[85] and fractal[86], people presented many novel methods to segment gray-level images with
fuzzy clustering. It is also fruitful in research of texture image segmentation[86], color image
segmentation[87], sequential images segmentation[87] and segmentation of remotely sensed images[88]

based on fuzzy clustering. Furthermore, fuzzy clustering is widely applied in boundary detection[24,25,30],
image enhancement[89], image compression[90], curve fitting[62] and in other branches of image
processing.

With the development of applications, there occur some new requirements for fuzzy clustering
theory. Firstly, the fast implementation of clustering algorithms is an urgent demand in image
processing. Secondly, in order to obtain better results, the fuzzy clustering needs to incorporate some
new techniques. Thirdly, some priori knowledge in practical problems should be used to supervise
clustering for improving the speed and performance of processing. In addition, since most of the
existing fuzzy clustering algorithms are proposed for static data sets, it also needs to study the case of
dynamic data sets. The above requirements call for further innovations in theory of fuzzy clustering.

5  Concluding remarks

This review systematically summarizes the advances of fuzzy clustering from four aspects, such as
the evolution of objective functions, implementation of algorithms, measurements of cluster validity
and practical applications. The characteristics of the existing algorithms and their application prospects
are also analyzed. In addition, several important directions for further study are pointed out from
different viewpoints. Studies on these directions will positively promote the further improvement in
theory and development of application of fuzzy clustering.

References
 1. He Qing, Advance in fuzzy clustering theory and application, Fuzzy Systems and Mathematics, 1998, 12(2): 89.
 2. Zadeh, L. A., Fuzzy sets, Inf. Cont., 1965, 8: 338.
 3. Ruspini, E. H., A new approach to clustering, Inf. Cont., 1969, 15: 22.
 4. Tamra, S. et al., Pattern classification based on fuzzy relations, IEEE SMC, 1971, 1(1): 217.
 5. Zkim, L., Fuzzy relation compositions and pattern recognition, Inf. Sci., 1996, 89: 107.
 6. Wu, Z., Leathy, R., An optimal graph theoretic approach to data clustering: theory and its application to image

segmentation, IEEE PAMI, 1993, 15(11): 1101.
 7. Anderberg, M. R., Cluster Analysis for Applications, New York: Academic Press, 1973.
 8. Ryzin, J. var, Classification and Clustering, New York: Academic Press, 1977.
 9. Dubes, R. C., Jain, A. K., Algorithms for Clustering Data, NJ: Englewood Cliffs, Prentice Hall, 1988.
 10. Li Xianghao et al., Fuzzy Clustering Analysis and Its Applications, Guiyang: Guizhou Press of Science and Technology,

1994.
 11. Krishnapuram, R., Kill, J. M., A possibilistic approach to clustering, IEEE FS, 1993, 1(2): 98.
 12. Selim, S. Z., Ismail, M. A., Soft clustering of multidimensional data: a semi-fuzzy approach, Pattern Recognition, 1984,

17(5): 559.
 13. Kamel, M. S., Selim, S. Z., A threshold fuzzy c-means algorithm for semi-fuzzy clustering, Pattern Recognition, 1991,

24(9): 825.
 14. Pei Jihong, Fan Jiulun, Xie Weixin, A new effective soft clustering method: sectional set fuzzy c-means clustering, Acta

Electronica Sinica, 1998, 26(2): 83.
 15. Trauwaert, E., Kaufman, L., Rousseeuw, P., Fuzzy clustering algorithms based on the maximum likelihood principle,

Fuzzy Sets and System, 1991, 85(42): 213.
 16. Li, R. P., Mukaidino M., A maximum entropy approach to fuzzy clustering, IEEE-FUZZ’95, 1995: 2227.
 17. Krishnapuram, R., Kim J. W., A clustering algorithm based on minimum volume, IEEE-FUZZ’96, 1996: 1387.
 18. Liaw, J. N., Kashyap R. L., A new sequential classifier using information criterion window, Pattern Recognition, 1994,

27(10): 1423.
 19. Dunn, J. C., A fuzzy relative of the ISODATA process and its use in detecting compact well separated cluster, J. Cybernet,

1974, 3: 32.
 20. Bezdek, J. C., Pattern Recognition with Fuzzy Objective Function Algorithms, New York: Plenum Press, 1981.
 21. Bobrowski, L., Bezdek, J. C., c-means clustering with the l1and l  norms, IEEE SMC, 1991, 21(3): 545.
 22. Yuan, B. et al., Evolutionary fuzzy c-means clustering algorithm, IEEE-FUZZ’95, 1995: 2221.
 23. Bezdek, J. C., Anderson I., An application of the c-varieties clustering algorithm to polygonal curve fitting, IEEE SMC,

1985, 15(5), 1985: 637.



REVIEWS

Chinese Science Bulletin    Vol. 45  No. 11    June  2000 969

 24. Dave, R. N., Fuzzy shell clustering and applications to circle detection in digital image, Inter. J. General System, 1990,
16(4): 343.

 25. Dave, R. N., Generalized fuzzy c-shells clustering and detection of circular and elliptical boundaries, Pattern Recognition,
1992, 25(7): 713.

 26. Hoeppner, F., Fuzzy shell clustering algorithms in image processing: fuzzy c-rectangular and 2-rectangular shells, IEEE FS,
1997, 5(4): 599.

 27. Suh, I. H., Kim, J. H., Rhee, F. C., Fuzzy clustering involving convex polytopes, IEEE-FUZZ’96, 1996: 1013.
 28. Gao Xinbo et al., Template based fuzzy clustering algorithm and its fast implementation, in Proc. of ICSP’96, 1996: 1269.
 29. Hathaway, R. J., Bezdek, J. C., Switching regression models and fuzzy clustering, IEEE FS, 1993, 1(3): 195.
 30. Krishnapuram, R., Frigui, H., Nasraoni, O., Fuzzy and possiblistic shell clustering algorithms and their application to

boundary detection and surface approximation, Part , , IEEE FS, 1995, 3(1): 29.
 31. Bezdek, J. C., A physical interpretation of fuzzy ISODATA, IEEE SMC, 1976, SMC-6: 387.
 32. Cheung, Y. S., Chan, K. P., Modified fuzzy ISODATA for the classification of handwritten Chinese characters, in Proc. Int.

Conf. Chinese Comput., Singapore, 1986: 361.
 33. Bezdek, J. C., Hathaway, R. J., Sabin, M. J., Tucker, W. T., Convergence theory for fuzzy c-means: counter-examples and

repairs, IEEE SMC, 1987, 17(5): 873.
 34. Pal, N. R., Bezdek, J. C., On cluster validity for the fuzzy c-means model, IEEE FS, 1995, 3(3): 370.
 35. Hathaway, R. J., Davenport, J. W., Bezdek, J. C., Relational duals of the c-means clustering algorithms, Pattern

Recognition, 1989, 22(2): 205.
 36. Yang, M. S., Pan, J. A., On fuzzy clustering of directional data, Fuzzy Sets and Systems, 1997, 91(3): 319.
 37. Yang, M. S., Ko, C. H., On a class of fuzzy c-numbers clustering problems for fuzzy data, Fuzzy Sets and Systems, 1996,

84:49.
 38. Sonbaty, Y. E., Ismail, M. A., Fuzzy clustering for symbolic data, IEEE FS, 1998, 6(2): 195.
 39. Pezdrcy, P., Algorithms of fuzzy clustering with partial supervision, Pattern Recognition Letters, 1985, 3: 13.
 40. Bensaid, A. M., Hall, L. O., Bezdek, J. C., Clarke, L. P., Partially supervised clustering for image segmentation, Pattern

Recognition, 1996, 29(5): 859.
 41. Dave, R. N., Krishnapuram, R., Robust clustering methods: a unified view, IEEE FS, 1997, 5(2): 270.
 42. Gustafson, E. E., Kessel, W. C., Fuzzy clustering with a fuzzy covariance matrix, in Proc. IEEE CDC, San Diego, CA,

1979: 761.
 43. Jawahar, C. V., Biiswas, P. K., Ray, A. K. et al., Detection of distinct geometry: a step towards generalized fuzzy clustering,

Pattern Recognition Letters, 1995, 16: 1119.
 44. Bezdek, J. C., A convergence theorem for the fuzzy ISODATA clustering algorithm, IEEE PAMI, 1980, 1(2): 1.
 45. Bezdek, J. C., Hathaway, R. et al., Convergence and theory for fuzzy c-means clustering: counter-examples and repairs,

IEEE PAMI, 1987, 17(5): 873.
 46. Ismail, M. A., Selim, S. A., Fuzzy c-means: optimality of solutions and effective termination of the algorithm, Pattern

Recognition, 1986, 19(6): 481.
 47. Yang, R. R., Filev, D. P., Approximate clustering via the mountain method, IEEE SMC, 1994, 24(8): 1279.
 48. Chiu, S. L., Fuzzy model identification based on cluster estimation, J. Intelligent and Fuzzy Systems, 1994, 2: 267.
 49. Chaudhuri, D., Chaudhuri, B. B., A novel multi-seed nonhierarchical data clustering technique, IEEE SMC, 1997, 27(5):

871.
 50. Postairs, J., Zhuang, R. D., Lecocq-Botte, C. G. et al., Cluster analysis by binary morphology, IEEE PAMI, 15(2): 170.
 51. Kohonen, T., Self-Organization and Associative Memory, Berlin: Springer-Verlag, 1984.
 52. Grossberg, S., Nonlinear neural networks: principles, mechanisms and architectures, Neural Networks, 1988, 1: 17.
 53. Pal, N. R., Bezdek, J. C., Tsao, E. C. K., Generalized clustering networks and Kohonen's self-organization scheme, IEEE

NN, 1993, 4(4): 549.
 54. Lei Xu, Krrzyzak, A., Oja, E. et al., Rival penalized competitive learning for clustering analysis, RBF net and curve

detection, IEEE NN, 1993, 4(4): 636.
 55. Zhang, D., Kamel, M., Elmasry, M. T. et al., Fuzzy clustering neural network (FCNN): competitive learning and parallel

architecture, J. of Intelligent and Fuzzy Systems, 1994, 2: 289.
 56. Carpenter, C. A., Grossberg, S. et al., Fuzzy ARTMAP: A neural network architecture for incremental supervised learning

of analog multidimensional maps, IEEE NN, 1992, 3(5): 698.
 57. Simpson, P. K., Fuzzy min-max neural networks, Part : clustering, IEEE FS, 1993, 1(1): 32.
 58. Asultan, K. S., Selim, S., A global algorithm for the fuzzy clustering problem, Pattern Recognition, 1993, 26(9): 1357.
 59. Rose, K., Gurewitz, E., Fox, G. C. et al., A deterministic annealing approach to clustering, Pattern Recognition Letters,

1990, 11: 589.
 60. Buckles, B. P. et al., Fuzzy clustering with genetic search, IEEE-FUZZ’94, 1994: 46.
 61. Babu, G. P., Murty, M. N., Clustering with evolution strategies, Pattern Recognition, 1994, 2(27): 321.
 62. Gao Xinbo, Study of fuzzy clustering with evolutionary computing and neural networks, Thesis for Master, Xi’an: Xidian

University Press, 1996.
 63. AL-Sultan, K. S., Fediji, C. A., A tabu search-based algorithm for the fuzzy clustering problem, Pattern Recognition, 1997,

12(30): 12023.
 64. Dubes, R. C., Jain, A. K., Validity studies in clustering methodologies, Pattern Recognition, 1979, 11: 235.
 65. Windham, M. P., Cluster validity for fuzzy c-means clustering algorithms, IEEE PAMI, 1982, 4(4): 357.
 66. Dunn, J. C., Well-separated clusters and the optimal fuzzy partitions, J. Cybernet, 1974, 4: 95.
 67. Gunderson, R., Applications of fuzzy ISODATA algorithms star tracker printing systems, in Proc. 7th Triennial World IFAC



REVIEWS

970 Chinese Science Bulletin    Vol. 45  No. 11    June  2000

Congr., 1978: 1319.
 68. Xie, X. L., Beni, G., A validity measure for fuzzy clustering, IEEE PAMI, 1991, 13: 841.
 69. Vogel, M. A., Wong, A. C., PFS clustering method, IEEE PAMI, 1979, 3: 237.
 70. Jain, A. K., Moreau, J. V., Bootstrap techniques in cluster analysis, Pattern Recognition, 1987, 20(5): 547.
 71. Beni, C., Liu, X. M., A least biased fuzzy clustering method, IEEE PAMI, 1992, 16(9): 954.
 72. Dave, R. N., Validating fuzzy partitions obtained through c-shells clustering, Pattern Recognition Letters, 1996, 17: 613.
 73. Huntsbergery, T. L., Jacobs, C. L., Cannon, R., L. et al., Iterative fuzzy image segmentation, Pattern Recognition, 1985,

2(18): 131.
 74. Bensaid, A. M., Hall, L. O., Bezdek, J. C. et al., Validity-guided (re)clustering with applications to image segmentation,

IEEE FS, 1996, 4(2): 112.
 75. Ramdas, V., Sridhar, V., Krishna, G., An effective technique for feature extraction, Pattern Recognition Letters, 1994, 15:

885.
 76. Bezdek, J. C., Castelaz, P. F., Prototype classification and feature selection with fuzzy sets, IEEE SMC, 1977, 2(7): 87.
 77. Gao Xinbo, Xu Chunguang, Xie Weixin, Fuzzy partitioning of feature space for pattern classification based on supervised

clustering, IEEE ISPACS’98, Melbourne, 1998: 387.
 78. Jolion, J.M., Meer, P., Bataouche, S., Robust clustering with applications in computer vision, IEEE PAMI, 1991, 8(13):

791.
 79. Wu Youshou, Ding Xiaoqing, A new clustering method for Chinese character recognition system using artificial neural

networks, Chinese J. of Electronics, 1993, 2(3): 1.
 80. Huang, Z., Kuth, A., A combined self-organizing feature map and multi-layer perception for isolated word recognition,

IEEE SP, 1992, 40(11): 2651.
 81. Stewart, C., Lu, Y. C., Larson, V., A neural clustering approach for high resolution radar target classification, 1994, 27(4):

503.
 82. Coleman, G. B., Andrews, H. C., Image segmentation by clustering, Proc. IEEE, 1979, 5(67): 773.
 83. Liu Jianzhuang, 2-D based image segmentation method with fuzzy clustering, Acta Electronca Sinica, 1992, 20(9): 40.
 84. Trivedi, M. M., Bezdek, J. C., Low-level segmentation of aerial image with fuzzy clustering, IEEE SMC, 1986, 16(4): 589.
 85. Porter, R., Canagarajah, N., A robust automatic clustering scheme for image segmentation using wavelets, IEEE IP, 5(4):

662.
 86. Chaudhuri, B. B., Sarkar, N., Texture segmentation using fractal dimension, IEEE PAMI, 17(1): 72.
 87. Pei Jihong, Study of image segmentation methods based on fuzzy information processing, Doctorial Thesis, Xi’an: Xidian

University Press, 1998.
 88. Chen, S. W., Chen, C. F., Chen, M. S. et al., Neural-fuzzy classification for segmentation of remotely sensed images, IEEE

SP, 1997, 45(11): 2639.
 89. Shih, E. Y., Moh Jenlong, Chang Fuchun, A new art-based neural architecture for pattern classification and image

enhancement without prior knowledge, Pattern Recognition, 1992, 25(5): 533.
 90. Wai-Chi Lai et al., A VLSI neural processor for image data compression using self-organization networks, IEEE NN, 1993,

3(3): 506.
(Received July 23, 1999, accepted December 24, 1999)


