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Fig. 4. R, the average percentage of distance computations, as in (7), with
a truncated Gaussian kernel function and truncation level 3. The parameter
o in the cluster creation condition of (6) is varied from 0.01 to 8. Window
size h = 0.304.

70% of the distance computations can be saved, as seen in Fig. 4. As
seen before with the Epanechnikov kernel function, extremely small
or large values of a were not acceptable, because they produced too
many small clusters or just a few large clusters. With a in the range of
0.2 ~ 1.0, it was observed that about 40 ~ 80% savings in distance
computation could be achieved.

IV. CONCLUSION

In this correspondence, a computationally efficient Parzen density
estimation algorithm is developed by using a simple branch-and-
bound procedure applied to the preclustered data samples. Not only
those kernel functions having finite support for nonzero values, such
as the Epanechnikov kernel function, but also those kernel functions
having nonzero values over the entire feature space, were applicable
to this algorithm through truncation. By choosing a proper parameter
value for cluster generation, substantial savings in computation could
be realized. Values that were found to be satisfactory were those close
to the critical distance D,.. Experimental results verified that savings
were significant. To further enhance the computational efficiency,
this proposed algorithm can be used in conjunction with the data
reduction technique [4].
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A Least Biased Fuzzy Clustering Method

Gerardo Beni and Xiaomin Liu

Abstract—A new operational definition of cluster is proposed, and a
fuzzy clustering algorithm with | biases is formulated by making
use of the Maximum Entropy Principle to maximize the entropy of
the centroids with respect to the data points (clustering entropy). We
make no ptions on the ber of clusters or their initial positions.
For each value of an adimensional scale parameter .3', the clustering
algorithm makes each data point iterate towards one of the cluster’s
centroids, so that both hard and fuzzy partitions are obtained. Since the
clustering algorithm can make a multiscale analysis of the given data
set we can obtain both hierarchy and partitioning type clustering. The
relative stability with respect to .3’ of each cluster structure is defined
as the measurement of cluster validity. We determine the specific value
of 4 which corresponds to the optimal positions of cluster centroids by
minimizing the entropy of the data points with respect to the centroids
(clustered entropy). Examples are given to show how this least-biased
method succeeds in getting perceptually correct clustering results.

Index Terms—Clustering, fuzzy clustering, maximum entropy princi-
ple, cluster validity.

I. INTRODUCTION

Cluster analysis attempts to discover an inherent structure in a
set of data points as a partition in (or hierarchy of) subgroups of
points (clusters). Many algorithms have been proposed for solving
this problem [1], and their merits are still debated. The problem
is intrinsically difficult because no a priori information on the data
distribution can be assumed. In most traditional clustering algorithms,
the relationship between data points and clusters is represented in
one of two ways: a) each data point may belong to one and only one
cluster (hard clustering), as e.g., in [2]; b) each data point may belong
to one or more clusters with a certain degree of membership (fuzzy
clustering), as e.g., in [3). The latter type of representation is more
general and more precise in principle, although its practical value
is still not clearly proven. In this correspondence, we will choose
the fuzzy clustering approach and obtain a unique hard clustering
partition as a byproduct.

Any clustering algorithm (fuzzy or hard) runs typically as follows:a
membership function generates (usually assuming the initial positions
of the cluster centroids) a partition; the fitness of this partition
is measured by a cost function (usually defined in term of the
membership function). An iteration scheme is implemented until the
membership function generates a partition which minimizes the cost
function.

Unfortunately, if the cost function used is not convex and has
local minima (a typical case), the algorithm may be trapped into one
of them, resulting in a nonoptimal partition. Obtaining an optimal
partition with the cost function converging to the global minimum,
depends on whether or not a “right” number of cluster centroid for the
centroids has been assumed at the beginning of the algorithm; and it
depends also on whether or not these centroids have been positioned
properly. Our algorithm is independent of such initial choices.
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Recently, some efforts aimed at this nonconvex optimization
problem have been made successfully. The simulated annealing
method introduced in {4] has in principle the capability of achieving
a global minimum [5], if the schedule obeys T x 1/logn (where T
is the temperature and n is the number of the current iteration). Such
schedules are not realistic in many applications. A more practical
algorithm, the deterministic annealing approach, has been proposed
in [6]. Both algorithms [4], [6] operate under the control of a scale
parameter analogous to the temperature in statistical mechanics. The
capability of the deterministic annealing method [6] to avoiding local
minima is higher than that of other popular techniques, e.g., the /-
means algorithm [7], but the minimization of its cost function still
may encounter local minima traps.

[t is important to note that in the traditional clustering algorithms,
even though a priori knowledge may not play a role, the user’s
judgment plays a critical role. In fact, the number of cluster centroids
as well as their initial positions are assumptions made by the user.
With such assumptions, the algorithm discovers a cluster structure
within the data set, but the chosen cluster number may be incorrect,
or the data set may be totally at random and hence “‘unclusterable.”
Thus, the answers to two basic questions “How many clusters?” and
“Are the data at random?” are generally provided by the user and not
by the algorithm. This is not the case for the algorithm presented here.

To evaluate the user’s assumptions, typically, clustering tendency
and cluster validity are tested [8], [9]. Most formulations of cluster
validity, such as those discussed in [8] and [9], measure the ratio of
“separation” to “compactness” of a partition. The ‘best’ partition is
the one which optimizes such a validity function. The difficulty is
that a validity function measuring objectively the intuitive notion of
separation/compactness is difficult to define. In this paper the criterion
for cluster validity (discussed in detail in Sections II-D and E) is
inherent in the clustering algorithm itself and does not require any
further assumptions.

Generally, the performance of traditional clustering algorithms
is also affected by the metric chosen. Although it is well known
that different distance measures can lead to different partitions, the
distance is typically chosen to be Euclidean [11] and the scale is
chosen intuitively from inspection. By choosing a metric in this way,
a fundamental subjective bias may be introduced. This issue has
been addressed recently [12] where clustering is attempted without a
metric. In our algorithm, the metric is not avoided, but it is derived:
both scale and form of the distance function are calculated as intrinsic
properties of the data set.

Fuzzy clustering techniques may also induce biases in the choice
of the membership function. The Maximum Entropy Principle (MEP)
{13] which ensures a maximum of fairness in handling “lack of
information,” is used in this paper to minimize such bias in the choice
of the membership function, as shown in Section II-B.

In this correspondence, we propose a clustering algorithm based on
a resolution parameter ;3. For a given resolution ;3, a subgroup of data
points (a cluster) converges towards one fixed point (their cluster’s
centroids). The relative stability of a partition with respect to 3 is
used to measure its validity. Since each data point associates each
cluster with a grade of membership, our algorithm may be regarded
as a type of fuzzy clustering based on a new operational definition
of cluster (Section II-A).

The rest of the correspondence is organized as follows. In Section
11, we discuss the formulation of the clustering algorithm. After the
new definition of cluster, we introduce the cluster membership via the
Maximum Entropy Principle (Section Ii-B); the bounds on resolution
parameter ,3 are discussed next (Section II-C). The cluster validity
measure is presented in Sections II-D and E and the overall algorithm
in Section II-F. In Section III, we give some representative examples

of the algorithm and compare the clustering results of this algorithm
with the fuzzy c-means clustering algorithm of [3]. In the conclusion
(Section IV) we summarize the method and the main findings.

II. LEAST BIASED Fuzzy CLUSTERING METHOD

A. No-bias Operational Definition of Cluster

In fuzzy clustering methods, typically the \" points of a data set{;
1.2--- N}, are related to the ~ cluster centroids {&,.m =
1---4} via membership functions. It is convenient to visualize each
cluster centroid @, as “active” in trying “to own” (i.e., “to cluster”)
data points by distributing its total (normalized to 1) membership
among them, which we call the clustering membership pr. (T, € )
(i.e., the probability that centroid m will cluster the data point /).
As a result, each data point is “owned” (i.e., “clustered”) by every
centroid to an extent given by what we call the c/ustered membership
Jtirn. Numerically, clustering and clustered memberships are identical
(i.e., prmi( i &) = pim) but the latter is not normalized.

We now make the plausible assumption (the only one of the
method) that the centroids have no-bias towards any of the points;
hence they position themselves at zero average distance from all the
data points, i.e., the possible locations of the centroids satisfy the
condition:

1 =

(F,— &) =0 o

where 7 is the location of the centroid and the average () is calculated
over the clustering membership distribution for all V' data points.
Equation (1) is our no-bias operational definition of cluster centroid.
The entire clustering algorithm, including the metric and the number
of centroids, follows from (1).

Since we do not specify the number of clusters in the data set, &
will be used to represent the centroid of any possible cluster for the
time being. Hence, we denote the clustering membership pr.. (¥ ¢)
by p.(&;. &), which satisfies the normalization condition:

N
N opEa =1 )

=1
and rewrite (1) as
N

Y = Opi(FE) =0,

=1

(1a)

Since we do not wish to make any further assumptions besides that
of no-bias, we seek a no-bias form of the clustering membership.
For this we shall use the minimally prejudiced (least presumptive)
probability distribution for describing the clustering membership.
Thus, we apply the Maximum Entropy Principle (MEP) [13] under
the constraints (1a) and (2). The entropy of the clustering membership
distribution (which we shall call the clustering entropy) of a centroid
at location ¢ is

N
S = —Z pi(F.7) log p.(F.. 7). 3)

=1

In the next subsection we show how the centroid numbers, lo-
cation, clustering memberships and “hard” clustering partitions can
be derived from (la), (2), and (3) by using the MEP, without any
further assumptions.
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B. Membership Distribution from MEP
The constraint (1a) is a vector equation. If the spatial dimension
is K, then (la) will be equivalent to K equations:
N

Z(.z’,,. — o )pi(F. ) = 0.

=1

a=1--LK. 4)

Further, the K equations in (4) are equivalent to 2K equations:

N
ST @il Fe @) = Aa.

=1

a=1.--1L: (5a)

N
S AT g Fe @) = =40 a=1---k.  (5b)
=1

where A, is an arbitrary constant 4,, > 0 and the distance functions
¥ are defined as follows:

+ Lia = Ca- Tin —cq > 0.

a (lin.Ca) = ¢
Fal ) {U. Tin — o <00 (62)

_ 0. X — Ccq > 0.
Falianca) = {J',,. — Can rio — o < 0. (6b)

Equations (6a), (6b) are used to separate the data points into two
groups for each spatial dimension a; one (the other) group is for the
points whose values .« are less (more) than ¢, i.e., at the “left”
("right”) of @ Note that we do not make any restriction on how to
choose the value of 4, for each spatial dimension . Equations (5a),
(5b) will be used as our constraint functions instead of (la).

We can now determine the form and magnitude of the clustering
membership distribution p;(¥..7) by applying the MEP to the
clustering entropy S, (3), under the 2" + 1 constraints of (2), (5a),
(3b). It is well known that entropy maximization yields a distribution
of the Gibbs type; in fact by maximizing the clustering entropy we
obtain:

"
pi(F.8) = z7! exp Z [f,frf,f(.rm. Co)
a=1
+ 3, fal@in.ca)) (7
where 3% are 2 Lagrange multipliers for a = 1--- L'; and Z is
the partition function:

N

. .
exp Z [—J,T flrin.ca) + 37 f7 (20 ca))-

=1 a=1

Z =

®

Given a set of A, for a = 1--- I, the Lagrange multipliers
* which “physically” represent resolution paramelers, can be
determined by the equations:

dlog Z .
—W::’.“. a=1---Kk. (9)

Thus, assigning the K parameters A, is equivalent to assigning the
2K resolution parameters 1% In fact, for the spatial dimension . 3F
is the resolution applied to the group of data points at a “positive
distance” from the centroid. Similarly, .3, is the resolution applied
to the group of data points at a “negative distance” from the centroid.
Since there is no reason to expect any spatial anisotropy between the
directions right and left of the centroid (i.e., there is no left or right
bias), it is expected that indeed 3} = 3 = 4. fora =1--- 1 .
Thus we obtain a vector resolution paramerer; on the data space.
By manipulating this resolution vector, we can deal with the diffi-
culties raised by inhomogeneous scales in feature space. This will
be discussed in detail in another paper. In this correspondence, we
restrict our applications to a homogeneous feature space; thus, the

resolution vector .J is reduced to a scalar by 3, = J,fora =1--- K.
In this way, our equations in (7) and (8) are simplified to:

pilFi. &) =Z7" exp[=3D(F..7). (7a)

N
Z = Z exp [—3D(F. ).

=1

(8a)

where 3 is the resolution parameter, and D is city-block distance
between F; and ¢ D is defined as

N

D(F.F) =) |t

a=1

(10

e

Given .3 and the position of a centroid ¢, the cluster membership
value p,(F,.) for data point .'; in this cluster can be calculated by
(7a), (8a). On the other hand, knowing the cluster membership value
p:(F.. @) of each data point, the location of this cluster’s centroid can

be determined from the basic constraint equation (1a). By subsittuting
the explicit form of p,(.F;. ) given by (7a), (8a) into (1a) we have

N 2.
Z(.FI_F)T“W_‘H)M_Zo. an
= S~ exp[-3D(7.7)
=1
or
N

< Zi“, exp [—3D(F. 7))

=Y Tl = . (12)

! Z exp[~3D(F,.3)]

=1
Equation (12) is an implicit nonlinear equation for ¢. It leads an
initial value of 7 to iterate towards a fixed point:

N

A0 =N Fpd ),

=1

n=0--2.

(13)

Convergence to the same fixed point is not guaranteed by starting
from an arbitrary location. However, we have found that, by choosing
the initial location to coincide with a data point, the convergence is
unambiguous for a given resolution. The algorithm to find how many
centroids satisfy (12) for a specific resolution 3 is the following.

1) Find the position of the centroid @ by iterating (12) starting

from #(®) = F, where T, is any data point.

2) Repeat step 1 for all data points.

3) Classify the results. The data points starting from which we

obtain the same centroid position & form the cluster (hard) of
that centroid.

In the next section, we will discuss the bounds on the resolution
parameter 3.

C. Bounds on the Resolution Parameter .3

As discussed in previous sections, the resolution parameter /3 is,
so far, chosen arbitrarily since there is no bias on the choice of the
constant 4, in the constraint equations (5a), (5b). However, limits
on the maximum value of .3 can be imposed. For example, in every
physical measurement the measured values are only known to within
the limits of the experimental uncertainty. Thus, the resolution /3, in
order to be meaningful, should not exceed 2/<,in, wWhere =i is the
accuracy of measurement of the data set. If we denote this value of
the resolution as Jiax, then, for 3 > Jumax, the resolution can be
considered redundant and hence discarded.

Besides by the experimental uncertainty, the maximum resolution
may be limited in other ways. Three notable examples are now given:
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Fig. 1. Clustering results, according to the least biased clustering algorithm, as applied to the data of (a). (b) Optimal clustering result. (c) The typical

partitioning results by the fuzzy c-means clustering algorithm in [3]. (d) Number of clusters as a function of the resolution parameter for the data set. Note
that the partition remain with ten clusters for the longest range 3 (from 3, ; (10) = 0.27 o 3, (10) = 0.76. (e) Validity diagram. We can see from this
diagram that the cluster structure with 10 clusters is the most probable one. (f) Clustered entropy showing minimum at #(10) = 0.76.

1) the experimental resolution, i.e.. Jiux = 2/ 2 mins dimensions such that all the data points are included into a
2) the data resolution, i.e., }uax = 2/Duin, where Dy is the hypercubic box of side Dy if the box is subdivided in a

minimum distance between points; binary fashion, and \'; is the number of byperbins with one
3) the most cost-effective resolution, i.e., J.x = '2'\’+1/D,,m. or more points; then among all the number of binary divisions

where D,.. is equal to the largest range for all the feature A.\ is the one yielding the maximum of AN ;(A)/AN.
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The results of the examples presented in Section III are based on
choice 3 for Juax.
In any case, the aspects of the clustering algorithm discussed in
the rest of part 2 are independent of the choice of 3,,ax.
We define 3" = 3/ 3imax and consider .3’ in the range 0 < 3" < 1.
By substituting .3’ in the basic clustering formula (12) we can write:
N

N D & exp[- D7)

F=Y Fip(FLE =1 (14)
=! Z exp [— 3 D'(7.. 7))
=1
where D' is an adimensional city-block distance given by
I
D& @)=Y masltin = aal. (15)
=1

We will use (14) instead of (12) as the form of the basic equation
in the rest of the description of the clustering algorithm.

D. Validity of the Number of Clusters

Since we are making no assumptions on the value of the resolution
parameter we solve (14) for all the values of .3’ in the range
0 < 3 < 1; all is meant to within the chosen, finite numerical
quantization of the values of 3. Let 1/ be the quantization parameter
so that the total number of considered values of .3, and of solutions to
(14), is @ (Note that we have chosen () = 100 for all the examples
presented in this correspondence).

We regard these () solutions as equally likely events. All thesolu-
tions yielding the same number of clusters ~ can be counted: p(~).
Their fraction P’(~) of the total Q. P(~) = p(~)/Q can be regarded
as the probability that the solution to (14) will yield ~ clusters when
nothing is known about the value of .3, which is what we assume
since this is a no-bias clustering algorithm. Equivalently, P°(~ ) can be
regarded as the measure of the “validity” of ~. Hence, the value of ~
corresponding to the maximum of P(~ ). 5o, is the most likely number
of clusters. Figures 1(d) and (e) illustrate the meaning of P(~). Both
fizures refer to the data set shown in Fig. 1(a). The configuration
can intuitively be viewed as ten clusters. Fig. 1(d) shows that, by
increasing 3’

1) the solutions yield an increasing number of cluster (as ex-

pected); and more importantly:

2) the number of solutions corresponding to a given number of

clusters is not (necessarily) increasing. In fact, typically, there is

a maximum (and local maxima). This is illustrated in Fig. 1(e)

which shows I’(~) for the same example. There is a maximum

at 5o = 10, which agrees with human perception of the data.
So far, we have established that the cluster partitions with the highest
valdity are those with ~o clusters, i.e., those with the number of
clusters most likely to occur. We will establish which of the partitions
with ~o clusters is the most valid in the next section.

E. Validity of Partitions

In determining the most likely number of cluster, we have looked
for partitions that maximize the clustering entropy, (3). this cor-
responds to positioning the clustering centroids without bias with
respect to the data points. All the solutions found from (14), including
those which we are considering now, i.e., those with ~g clusters,
have the property. This maximum entropy property corresponds to
the tendency to create uniform (e.g., disordered) clusters and it is
easy to interpret in physical, e.g., in statistical mechanics models.

On the other hand, the clustering problem is not just a physical
problem, but an information problem. Clustering has a meaning

(a)
P(y)

5 10 15 20
(b)

Fig. 2. (a) Four Gaussian clusters with overlapping boundaries. (b) The
cluster validity diagram for the data set.

only for an intelligent observer. The intuitive notion of separation
of clusters corresponds to a tendency to order (i.e., to increasing
information) which is not conveniently modeled mechanically, since
it corresponds to decreased entropy. Within our no-bias context,
however, it can be quantified as follows. If we regard the data
points as having a tendency to be clustered preferentially by only
one centroid they will tend to separate. The maximum separation is
obtained by minimizing the clustered entropy , which we define next.

From the definitions of clustering and clustered memberships of
Section 1I-A, we have

N 70

- A\'
IDIITED ) WINESH

(=1 m=l1 m=1 =1

(16)

where ~¢ is the number of clusters found for a specific value of 7.
From (16), we have

\

20
Hime
> =L

=1 =1

a7

Thus, we can regard fi,,, /%o as a probability: the probability for the
ith data point to be clustered by the mth cluster centroid. We can
define the clustered entropy S’ for all the data points as

N oo - o -
/ Mo (&) Hind(EiC0)
S =- log . (18)
LT
which can be simplified as follows:
1 e &
S == Lo (Foc @) log 1,0 (T @) — log ~o).
o & 2
(19)
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(©)

Fig. 3. (a) Three-dimensional “cigar-shaped” data. In the }" and Z directions, the data are distributed as Gaussians. The data points are randomly distributed
in the \ direction. (b)The partitioning result of the fuzzy c-means algorithm for the data set in Fig. 1(a). The cigar-shaped structure is not recovered. (c)
The partitioning result of the least biased fuzzy clustering algorithm. A cigar-shaped clustering result is obtained.

From this, we obtain by noting that p,...(Zi. &.) = jt;m (see Section
11-A):
, 1 70
§'== Z} S + log 7. 0)
where S, is the mth cluster’s clustering entropy.

Within the range of values of 3’ yielding ~o clusters we can
find the 3’ corresponding to the minimum value of S’ by using
(20). However, it turns out that the minimum value of S’ always
corresponds to the largest value of’,:3’ (for v = 40). Hence it is easy
to determine this value 3,,..(~0) from the validity diagram. This
3! ax(70) corresponds to the most valid partition for 4 = 0. Figure
1() shows that the minimum of the clustered entropy coincides with
the largest value of /3’ for a fixed number of clusters. We can see that
the optimal partition is obtained for 3;,..(70 = 10) = 0.76 from
Fig. 1(b), which shows the optimal (hard) partition.

F. Qutline of the Algorithm

For clarity, we recapitulate the main steps of the clustering algo-
rithm.

1) Choose the maximum resolution 3,,.x. See Section II-C, case
3). :

2) For 3'(= 3/3max) within 0 < 3’ < 1, find the number of
distinct & which satisfies (14). See Sect. II-B.

3) Determine the optimum number of clusters vo from the validity
diagram. See Section 1I-D.

4) For ~o clusters, find the maximum value of 3’ = 3 ax(v0).
See Section II-E.

5) The centroid positions for 3p,..(70) and the associated data
points (step 3, Section II-B) form the optimal (hard) clustering
partition. The fuzzy clustering partition is obtained from the
membership function, (7a) of section II-B.

III. EXAMPLES

We have generated additional data sets to test the performance of
ourclustering algorithm. The first artificial data set is closer to real
world data. It has four clusters with Gaussian distributions as shown
in Fig. 2(a). The four clusters are partially overlapping. The validity
diagram of the data set from our clustering algorithm in Fig. 2(b)
indicates that the most valid clustering result of the data set consists
of four clusters. The final positions of the four cluster’s centroid
calculated by our algorithm are marked by crosses in Fig. 2(a).

The ability of our algorithm to find the optimal position of a
cluster’s centroid is shown also in the following example. Two

clusters with “cigar” shaped data are shown in the Fig. 3(a). The
distributions in Y and Z directions are Gaussian. In the X direction,
the points are randomly distributed over a limited range. In this
case, the fuzzy c-means algorithm [3] cannot find the “correct”
centroid’s positions of these two clusters. This results is shown by
Fig. 3(b), which is obtained after assigning each data point to its
nearest centroid. The partitioning result of the least biased clustering
algorithm is shown in Fig. 3(c). A cigar-shaped partitioning results
is obtained.

The fuzzy c-means clustering algorithm has also been applied
to the same data set in Fig. 1(a) (from our algorithm, the optimal
partition with ten clusters is obtained as shown in Fig. 1(b). The
initial positions of ten centroids were chosen randomly. A typical
clustering result is shown in the Fig. 1(c), where the crosses indicate
the calculated positions of the ten cluster centroids. Obviously, it is
not an optimal clustering result. If the initial positions of the ten
centroids were fortuitously chosen to be those obtained from our
algorithm, then the fuzzy c-means algorithm would give the “right”
clustering result, but the algorithm by itself cannot guarantee this.

We have also applied our algorithm to Fisher’s “iris” data [15].The
data set consists of two sepal and two petal measurements from 150
irises, 50 from each species (1, Setosa, 2, Versicolor, 3, Virginica).
From {151, we know that the group 1 is well separated from groups
2 and 3 but 2 and 3 are overlapped. The cluster validity diagram
for this data set is shown in Fig. 4. The diagram indicates that
the cluster structure with two cluster is best, the next best one has
three clusters, and the next has one. For the cluster structure with
two clusters, the first cluster has all the 50 points from Setosa, the
second cluster includes 100 data points from Versicolor and Virginica.
For the partitioning with three clusters, our algorithm has correctly
reclassified 124 out of 150, or 83% of the irises. This result is not as
good as the clustering results in [12], which claims 88% correctness.
But this comparison cannot be used to judge which algorithm is
actually superior, since the judgment is based on some additional
information (i.e., the knowledge of the kinds of trees) which is not
in the original data set. Without this extra information, one cannot
calculate the actual overlapping part of the two clusters.

Finally, the computation load of the algorithm presented here
is rather heavy. For each .3' of the () intervals on the entire
valid adimensional resolution range, the computation time is of the
same order of the fuzzy c-means algorithm, but there are Q@ such
computations to be carried out. A much more efficient computational
method. for the same algorithm presented in this paper will be
discussed in a forthcoming paper [16]. In this method, the cluster
number is recovered by selecting some initial centroid’s positions
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Fig. 4. The cluster validity diagram for the iris data.

rather than using all the data point’s positions. The selection of the
initial centroid’s positions is based on the following heuristics. If the
initial centroid position (i.e., the position of a data point) converges
(by using the iteration formula in (14)) to a cluster centroid, then the
data points which are closer than that point to the cluster centroid
will also converge to the same centroid.

IV. CONCLUSION

Many algorithms have been devised for clustering; all necessarily
includingconsiderable subjective bias. In this paper we have presented
an algorithm which we believe uses the least amount of subjective
bias. The main idea is that the subjective bias is minimized if “ig-
norance” is treated most fairly. The fairest way of treating ignorance
is to optimize the appropriate entropy, as shown by the Maximum
Entropy Principle. In our case, we have applied this idea to optimize
both the “compactness” and the “separation” of the clustering, in one
case maximizing, in the other minimizing an entropy.

The clustering algorithm’s formulation presented here follows from
two*‘claims.”

Claim A: Given a set of data points {7} the optimal number of
clusters is 1) the mostprobable number of clusters in 2) the maximum
entropy membership distributionfor which 3) the average deviation
from the average vanishes, i.e., (¥ — (¥)) = O (averages() are
calculated over membershipdistributions).

The meaning of this claim is easily understood by noting that:
point 1) refersto the number of clusters that is associated with the
most probable resolution parameter, assuming the latter to be chosen
randomly (i.e., in the absence of any information on the metric,
there is no subjective bias introduced on the scale of the metric),
point 2) refers to the fact that the probability distribution for a
point to belong to a cluster must be a maximum entropy distribution
iparameterized by the scale of the metric) to satisfy the criterion
of lack of information (no bias); point 3) refers to the fact that the
clusters should be as compact/uniform as possible.

To find the optimal position of the clustering centroids (after their
number has been established) Claim A is supplemented with Claim
B that is:

Claim B: The optimal positions of the cluster centroids correspond
to theresolution which yields the minimum clustered entropy for all
the partitions with the optimal number of clusters.

The meaning of this claim is that the clusters should be as separated
aspossible and thus their centroids should be those that yield the
minimum clustered entropy.

The only subjective element in the solution is in the form of
the requirement of compactness, i.e., (i — (&)} = 0, which, more
generally, could be written as {d(.F;. {#))) where d(a,b) is a distance
function not necessarily of the form d(a.b) = a —b.

Besides the low-bias, some other advantages of this algorithm are
summarizedas follows. The solution gives us both hierarchy type
clustering results and partitioning type clustering results; also the
solution gives both hard and fuzzy partitions and a global optimal
partition. The compactness/uniform and separation measurements are
integrated in the clustering algorithm, but not used as the criterion
to evaluate a partition’s quality. The cost function is the clustered
entropy which measures the inter cluster influences; thus, the cluster
validity measurement results from our clustering procedures itself.
Finally, the clustering-tendency test is implied in the algorithm. In
constructing the validity diagram, we keep the cluster structure with
one cluster to compete with other cluster structures. If it is the most
valid, we can conclude that the data set is not well separated and
consider it as being uniform.
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