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Abstract

Fuzzy clustering algorithms have been widely studied and applied in a variety of areas. They become the major techniques
in cluster analysis. In this paper, we focus on objective function models whose aim is to assign the data to clusters so that a
given objective function is optimized. We propose a new approach in fuzzy clustering and show how it can be used to obtain
a systematic method deriving objective functions. This approach is based on a unifying principle of physics, that of extreme
physical information (EPI) de4ned by Frieden (Physics from Fisher Information. A Uni4cation, 1999). The information in
question is the trace of the Fisher information matrix for the estimation procedure; this information is shown to be a physical
measure of disorder. We use the EPI approach for 4nding the e8ective and minimal constraint terms in objective functions.
With the proposed approach we justify the constraint terms de4ned a priori in the Fuzzy c-means (FcM) algorithm and
Possibilistic and Maximum Entropy Inference approaches. Indeed, these algorithms, by contrast, o8er no such systematic
method of 4nding its constraints. Moreover, in this context, the EPI approach derives the “reason” for the extremization
of objective functions. The resulting formulae have a clearer physical meaning than those obtained by means of classical
algorithms. The updated equations of our algorithm are identical to those of the possibilistic, MEI and FcM with regularization
approaches. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The aim of clustering is to reduce the amount of data
by grouping similar patterns together. Such group-
ing is pervasive in information processing. One of
the motivating reasons for using clustering algorithms
is to provide automated tools to help in constructing
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partitions into categories or taxonomies. Partitional
clustering attempts to subdivide the data set into a set
of subsets or clusters, which are pairwise disjoint, all
non-empty, and produce the original data set via
union. Objects belonging to the same cluster share
common properties that distinguish them from ob-
jects belonging to other clusters. In literature, most
of the clustering algorithms can be classi4ed into two
types:
• hard or crisp. In this case, the algorithm assigns
each feature vector to a single cluster and ignores
the possibility that this vector may also belong to
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other clusters. Such algorithms are exclusive and
the cluster labels are hard and mutually exclusive;

• fuzzy. Fuzzy clustering algorithms consider each
cluster as a fuzzy set; while a membership function
measures the degree of belonging of each feature
vector in a cluster. So, each vector may be assigned
to multiple clusters with some degree of sharing
measured by the membership function.

Fuzzy clustering has been shown to be advantageous
over crisp clustering in that total commitment of a
vector to a given class is not required in each iter-
ation. Thus, these methods are less prone to local
minima than crisp clustering algorithms.
In this paper we consider the second case, more

particularly the fuzzy clustering based on an objective
function [14,7,27]. The objective function assigns a
quality or error to each cluster arrangement, based on
the distance between the data and the typical represen-
tatives of the clusters. These methods can essentially
be categorized in the second level of data analysis de-
4ned in [14] with the aim to group the data on the ba-
sis of a purely qualitative investigation. The problem
of fuzzy clustering is stated as follows:
• let a set of objects Y =(yk)k∈[1; n] be given as the
data, where yk =(yk1; yk2; : : : ; ykp) t is a pattern de-
scribed by p features or measures (i.e., yk ∈Rp);

• let 	=(!i)i∈[1; c] be a family of clusters (i.e., c
represents the number of clusters).

Fuzzy clustering of the objects can be represented by
a real c× n matrix U = [uik ] by interpreting uik as the
degree to which yk belongs to cluster!i. Let us denote
V= [v1; : : : ; vc] the matrix of cluster centers.
This paper is organized as follows. In the follow-

ing subsections, we describe brieJy the objective
functions and constraints used in the principal fuzzy
clustering algorithms. The concept of Fisher in-
formation and the principle of extreme physical
information (EPI) are presented in Section 2. Fol-
lowing this context, we analyze the fuzzy clustering
scenario in Section 3. A functional de4ned on
the class of generalized characteristic functions
based on the Fisher information is introduced in
Section 3.1. It uses no constraint de4ned a pri-
ori and makes it possible to obtain an objective
function connected with the situation described
in fuzzy clustering problems. This is speci4ed in
Section 3.2. The general solution is obtained in
Section 3.3 by resolving a second-order di8erential

equation. The EPI approach justi4cation for fuzzy
clustering is given in Section 3.4. The results are
interpreted in Section 3.5. In Section 3.6, we give a
new algorithm using a 1D complex potential de4ned
according to the observations. It derives from results
obtained in the previous section. Experiments show
the interests of this algorithm for which it is not
necessary to de4ne the number of clusters. Finally,
Section 5 contains our conclusion.

1.1. Objective functions and constraints

The principal problem is how to formulate an objec-
tive function for the clustering problem. The objective
function maps a solution to a real number measuring
the quality of the solution in terms of eLciency or cost.
The formulation determines how various constraints
are encoded into the function. Because the optimal so-
lution is the optimum of the objective function, the
formulation de4nes the optimal solution. In this sense,
there is an optimization problem to be solved. Among
the existing clustering methods, the Fuzzy c-means
[4,3] (FcM) 1 and Possibilistic c-means algorithms
[18] (PcM) 2 are two of the most active and often-used
data analysis methods in recent years. Both FcM and
PcM algorithms described here attempt to 4nd good
cluster structure descriptors (U ∗; V ∗) as minimal so-
lutions of a particular member of family of objective
functions [13]:

Jm(U; V ;Y ) =
c∑

i=1

n∑
k=1

(uik)md2ik

+
c∑

i=1

�i

n∑
k=1

(1− uik)m;

• where U ∈Mfcn or Mpcn, depending on the cho-
sen approach; these sets of all c× n non-degenerate

1 The utilization of the FcM algorithm for various applications
is well described and analyzed by Bezdek [4] and Bensaid and
co-workers [2].

2 Dav(e and Krishnapuram [7,17] have established an uni4ed
view of robust clustering methods and pointed out the similarities
between FcM and Possibilistic approaches.
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constrained matrices are de4ned as

Mfcn =

{
U ∈Rc×n

∣∣∣∣∣
c∑

i=1

uik = 1 ∀k;

0¡
n∑

k=1

uik¡n ∀i; uik ∈ [0; 1] ∀i; k
}

;

where uik denotes the degree of membership of the
kth pattern to the ith fuzzy cluster relative to all
other clusters.

Mpcn =

{
U ∈Rc×n

∣∣∣∣∣ 0¡
n∑

k=1

uik¡n ∀i;

uik¿0 ∃i; uik ∈ [0; 1] ∀i; j
}

;

where uik is the degree of representativity or typi-
cality of the datum yk for the cluster !i;

• where dik is a measure of the distance from yk to
the ith cluster prototype vi ∈V ;

• m¿1 is a fuzzi4er exponent which controls the ex-
tent of membership sharing between fuzzy clusters;

• �= {�1; �2; : : : ; �c}, where �i speci4es the ith cluster
penality term (for the FcM algorithm, �i =0 for
16i6c). The 4rst term in Jm is a squared error
criterion. In this paper, we will consider this term
as a constraint term.

Then the role of this family of objective functions
permit the quantitative measure of the global qual-
ity of a solution and lead the search for a minimal
solution. The clustering problem is formulated as a
constrained minimization problem, whose solution de-
pends on constraint functions that satisfy certain con-
ditions imposed a priori:
• Fuzzy c-means algorithm uses a second constraint
term, originally due to Ruspini [25], on the mem-
bership functions (∀yk ∈Y;

∑c
i=1 uik =1 i.e. sum to

1 over each column of U ). This constraint is neces-
sary to generate the membership update equations
for an iterative algorithm: a minimization of the
FcM objective function without using this constraint
for the membership values results in a null solu-
tion. In the constraint form, FcM generates a fuzzy
partition providing a measure of relative member-
ship degree of each pattern to a given cluster rather
than an individual degree of belonging. However,
the memberships resulting from FcM do not always
correspond to the intuitive concept of degree of
belonging. Then, the cluster centers in fuzzy clus-

tering or estimates for the parameters in switch-
ing regression models using an extended FcM
approach (FcRM) [12] are poor. This can be a
serious problem in situations where one wishes
to generate membership functions from training
data. However, several extended Fuzzy c-means
algorithm, Fc + 2M [21] and Fc + 2RM [20], pro-
vide answers to these problems by introducing a
discounting process between the classical FcM or
FcRM membership functions.

• In order to overcome this problem, Krishna-
puram and Keller [18] proposed the PcM algorithm,
where this normalization constraint is removed.
They added a supplementary term
c∑

i=1

�i

n∑
k=1

(1− uik)m (1)

to the FcM objective function to urge a non-trivial
solution for the membership values. In this case,
the value uik should be interpreted as the typicality
of yk relative to cluster !i (i.e. a possibility of
belonging). However, this constraint forces the
membership values to be close to one as possible
during the minimization process, thus providing a
uniform unity bias [1] placed on all membership
functions. Recognizing the existence of this uni-
form bias present in the PcM algorithm, we prefer
using an alternative second term de4ned by Dav(e
and Krishnapuram [7] to prevent the trivial solution
as follows:
c∑

i=1

�i

n∑
k=1

(uik log(uik)− uik) (2)

with m=1 for the 4rst term in Jm. Note that
uik log(uik) − uik is a monotonically decreasing
function in [0; 1], similar to (1 − uik)m. This for-
mulation of the Possibilistic approach may also
be more appropriate when clusters are expected to
be close to one another [18]. Using this constraint,
the objective function becomes, if we substitute in
Jm, constraint (1) by constraint (2):

Jpcm(U; V ;Y ) =
c∑

i= 1

n∑
k = 1

(uik)d2ik

+
c∑

i= 1

�i

n∑
k = 1

(uik log(uik)−uik):

(3)
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• Now, let us reconsider the 4rst term in the FcM or
PcM objective function:

c∑
i=1

n∑
k=1

(uik)md2ik ;

where weighting exponent m controls the extent
of membership sharing between fuzzy clusters
(m=1 for the chosen Possibilistic approach). This
“strange” parameter, introduced by Bezdek, is un-
natural and has not a physical meaning [19]. In the
above objective functions, we must eliminate m,
but in this case, we cannot generate the member-
ship update equations. So Li and Mukaidono [19]
proposed a new approach to fuzzy clustering by
means of a Maximum Entropy Inference (MEI)
method. Formally, this problem is written as

maximize −
(

c∑
i=1

n∑
k=1

uik log(uik)

)
(4)

subject to the constraints
1. L=

∑c
i=1

∑n
k=1 uikd

2
ik .

2.
∑c

i=1 uik =1.
The term at extremized in (4) de4nes the
entropy of a probability density function. The max-
imum entropy criterion is generally used when we
have only prior information. This concept will be pre-
cised in Section 3.5.3. The resulting formulae have a
more beautiful form and a clearer physical meaning
than those obtained by means of the Fuzzy c-means
method. However, the probabilistic constraint is also
necessary to generate the membership update equa-
tions. Thus, in this case it is also necessary de4ning
the constraint terms a priori.

1.2. Aims of this paper

Whether in determining cluster or in estimating
cluster centers, the existing techniques are essentially
based upon the a priori choice of the formulation (i.e.,
constraints and information terms) of the objective
function. In this paper, we explicitly give a criterion
(obtained from three axioms) for providing theoret-
ical justi4cation of objective functions, constraints,
membership functions and potential functions in
fuzzy clustering. As described previously, in classical

algorithms of extremization, there are some con-
straints that are imposed to satisfy certain conditions
de4ned a priori. The FcM algorithm, the Possibilistic
and Maximum Entropy Inference approaches o8er no
systematic method of 4nding their constraints. More-
over, the objective functions have no signi4cance in
its own right.
We observe as intrinsic data the vectors yi = vi +

xi, i=1; : : : ; c (i.e., the data Juctuations (x1; : : : ; xc)
are presumed to characterize solely the phenomenon
under measurement, xi is a p-vector). Any Juctuation
yi − vi = xi should occur with a probability that is
independent of the absolute size of vi:

pi(yi=vi)=pi(xi); xi =yi − vi:

Our aim is to propose a physical approach to 4nding:
• the e8ective and minimal constraint terms included
in the objective function adapted to the fuzzy clus-
tering problem. J represents these constraint terms;

• the objective function K ;
• the distribution pi(x) relative to the given measure-
ment scenario (i.e., membership functions).

Our work is inspired by the work of Frieden in which
he de4ned and developed a unifying principle of
physics, that of extreme physical information. EPI
provides a mechanism to 4nding the constraint terms
and seeking an exact solution for the unknown distri-
bution of the measurement scenario, whose data have
Fisher information level I . I arises out of a “Jow”
J → I of information from the measured phenomenon
to the data space, where J embodying all unknown
constraints that are imposed by the physical phe-
nomenon under measurement (i.e., stored within the
system). I and J are functionals which depend upon
the values of the unknown distribution pi(x). This
relay of information from the phenomenon to the data
de4ning an information loss K ≡ I − J (i.e., physi-
cal information of the system). K ≡ I − J =extrem
constitutes a variational principle for 4nding J and
pi(x). Aside its advantage in providing a mechanism
for 4nding constraint terms, EPI derives the “reason”
for the extremization of K .
For our purposes, it is useful and easier to work

in the continuous representation space (i.e., with an
in4nite number of elements) with an integral rather
than in the discrete domain (i.e., 4nite number of ob-
jects) with a sum. The integral, K (i.e., the objective
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function in discrete domain), has the form

K[q(x)] ≡ I [q′]− J [q; x]; q; x real;

xi = (xi1; : : : ; xiv; : : : ; xip); dx ≡ dx1 : : : dxp;

q ≡ (q1; : : : ; qi; : : : ; qc);

q′(x) ≡ 9q1
9xi1

;
9q1
9xi2

; : : : ;
9qc

9xcp
;

where I [q′] is the trace of the Fisher information ma-
trix obtained from data for the system. Its formulation
is known; J [q; x] represents all constraints to be deter-
mined; pi(x)≡ qi(x)2. The functions qi are probabil-
ity amplitudes, i.e., whose squares are unknown prob-
ability densities. The probability amplitude qi veri4es
the following elementary properties:

Property 1

lim
|xi|→∞

dqi

dxi
qi = 0: (5)

Property 2

lim
|xi|→∞

qi = 0: (6)

In order to get rid of heavy notations, we will name
as K[q]≡K[q(x)], qi ≡ qi(xi) the integral and the
distributions we want to estimate. K is a functional.
It depends upon the values of one or more functions qi

continuously over the domain of x, their derivatives
with respect to all the xiv, and x. Then our approach
based upon an information criterion allows us to
obtain constraint terms J , the unknown distribution
pi(x), i=1; : : : ; c, and the objective function de4ned
by the physical information K adapted to fuzzy clus-
tering problem. This approach leads to membership
functions or potential functions.

2. Extreme physical information and Fisher
information

The unifying principle of physics, that of EPI, de-
4ned by Frieden [10] permits physics to be viewed
within a uni4ed framework of measurement. Some
implications of this approach in the analysis of com-
plex systems have been considered by Frieden. Indeed
the EPI theory was introduced to provide a scheme

for handling a variety of physics problems in which
a fundamental role is played by the observer into
the phenomenon that he observes: statistical mechan-
ics and thermodynamics, quantum mechanics, the
Einstein 4eld equations, and quantum gravity: : :
Consider the problem of estimating c vectors

vi =(vi1; vi2; : : : ; vip), i=1; : : : ; c. Any Juctuation
yi − vi = xi should occur with a probability

pi(yi=vi)=pi(xi); xi =yi − vi:

Frieden shows that the accuracy in the estimates of
the c parameters vi is determined by the Fisher infor-
mation I that has some useful physical properties [9]
(i.e., Fisher information may be regarded as a physi-
cal measure of disorder which is related to experimen-
tation). It provides new de4nitions of disorder, time
and temperature, and a variational approach 4nding a
multiple-component probability density function law
pi(xi) of a vector variable xi.
The Fisher information 3 I in a multi-parameter,

multi-component measurement scenario obeys [10]:

I [p] =
∑

i

∫
dxi

1
pi(xi)

∑
v

(
9pi(xi)
9xiv

)2

: (7)

This expression further simpli4es if we introduce real
probability amplitude qi(xi) [10]:

I [q] = 4
∑

i

∫
dxi
∑
v

(
9qi

9xiv

)2

; (8)

where qi ≡ qi(xi) is the ith component probability am-
plitude for the Juctuation xi =(xi1; : : : ; xip) in the mea-
surement. They are the basic unknown items of the
problem; q2i (xi) ≡ pi(xi) denotes the probability den-
sity function for the noise value xi.

I [q] is called the intrinsic information, since it is
a functional of the probability amplitudes that are in-
trinsic to the measured phenomenon. Under certain
conditions, information I obeys an I-theorem:

dI(t)
dt

6 0 (9)

3 This information is not the Fisher information per se, but
rather the trace of the Fisher information matrix for the system.
It is actually an upper bound to the Fisher information. Frieden
calls it the information capacity for the estimation procedure.
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with t the time. So that, at equilibrium, I = min. This
means that I is a monotonic measure of system dis-
order. As for the Boltzmann entropy the equilibrium
solution must be the stationary solution that attains in
I the smallest minimum among all possible minima.
We use this theorem in Section 3.
Frieden de4nes a second information item called

bound Fisher information J [q] to embody all con-
straints that are imposed by the physical phenomenon
under measurement. J [q] and q are generally found by
applying the principle of Extreme Physical Informa-
tion consisting of three axioms [10]: conservation law,
existence of information densities, zero-condition on
the microscopic level. These axioms imply the varia-
tional principle and the zero-condition comprising the
overall principle:
• the variational principle is the extremization of the
functional for 4nding q

K[q] = I [q]− J [q] = extrem: (10)

There is no loss of the perturbed Fisher informa-
tion in its relay from the phenomenon to the intrin-
sic data (i.e., due to a measurement, the system is
perturbed, causing a perturbation �J in the bound
information, so it must be that �I = �J , necessarily
�(I − J )= 0);

• the zero-condition

I [q]−  J [q] = 0;  6 1 (11)

is the zeroing of the functional. It is possible to 4nd
with the previous relation the unknown informa-
tion functional J [q]. Information J [q] is ultimately
identi4ed by an invariance principle that character-
izes the measured phenomenon. In Section 3, for
de4ning objective functions, we will use a Fourier
transformation as an invariance principle connect-
ing input space x with another, conjugate space,
x′. The existence of such a unitary transformation
guarantees the validity of the EPI method for fuzzy
clustering [10].

In the following section, we analyze the problem of
4nding the formulation of the optimal objective func-
tions (i.e., the optimal membership functions) under
an optimality criterion de4ned from EPI scheme. To
attain this aim, we give the following de4nitions.

De�nition 1 (Kreinovich et al. [16]). A 4nal crite-
rion is de4ned as a criterion that chooses a unique op-

timal family of functions qi (i.e., a family that is better
with respect to the criterion than any other family).

De�nition 2. The criterion chosen to determine a
family of optimal objective functions in fuzzy clus-
tering is de4ned by the Frieden’s scheme: application
of (1) variational principle, (2) zero-condition and
(3) I-theorem.

If this criterion is 4nal in the sense of De4nition 1,
it means that this criterion must build up an objective
function leading to the search for an optimal solution.
Proving that is one of the aims of Section 3.

3. Extreme physical information in fuzzy clustering

3.1. Scenario and EPI scheme

We 4rst analyze the following scenario. Denote
the true positions of the centroid vectors as vi,
i=1; : : : ; c, where vi =(vi1; vi2; : : : ; vip) are the usual
Cartesian components. A fuzzy clustering problem
has the added diLculty that y is unlabeled (i.e., for
a given data y, the cluster to which y belongs is
not known). In this case, the observation y (y real,
y=(y1; : : : ; yp)) obeys

y = vi + ri; i = 1; : : : ; c; (12)

where ri, a p-vector, is the residual associated with
observation y and vi (i.e. Juctuations). Notice we use
the notation ri instead of xi here.
The structure of the EPI problem is one of 4nd-

ing a probability assignment, the corresponding prob-
ability amplitude qi(ri) (denote q2i (ri) ≡ ui(y)) which
avoids bias, while agreeing with whatever informa-
tion is given, ui(y) lies in [0; 1] and that veri4es the
principle of extreme physical information de4ned pre-
viously. 4 For this scenario, by Eq. (8), the Fisher in-
formation quantity is

I[q] =
c∑

i=1

4
∫

dri
∑
v

(
9qi

9riv

)2

: (13)

4 First, the centroid vectors, vi were assumed to be constant vec-
tors. So the basic unknowns of the problem are the real amplitude
functions qi(ri), i=1; : : : ; c.
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Since ri’s do not range over the same values, we can
apply the EPI scheme on each independent scenario
ri =y − vi; i=1; : : : ; c (i.e., c independent informa-
tions). Then we have

I[q] =
c∑

i=1

I [qi]; (14)

where

I [qi] = 4
∫

dri

p∑
v=1

(
9qi

9riv

)2

: (15)

Corresponding to each information functional I [qi] is
a bound information functional J [qi] (to be found)
which veri4es the EPI approach for the c scenario:
• variational principle implies

I [qi]− J [qi] = extrem; (16)

• zero-condition gives

I [qi]−  J [qi] = 0: (17)

The functions qi of ri; i=1; : : : ; c (probability ampli-
tudes, i.e., whose squares are also membership func-
tions) are to be found.
If we denote the bound information functional J [qi]

as follows:

J [qi] = 4
∫

dri ji(qi; ri);

where ji may be regarded as an information den-
sity. Then, by Eq. (15), Extremum principle, given by
Eq. (16), becomes for qi:

I [qi]− J [qi] = 4
∫

dri

[ p∑
v=1

(
9qi

9riv

)2

− ji(qi; ri)

]

= extrem: (18)

In our case, we consider a general form for ji (i.e.,
depending on qi and ri). The zeroing of Eq. (17)
(Assumption 1: we used  =1 for a suitable solution
of the problem, see Section 3.4 for a justi4cation of
this assumption) gives

I [qi]− J [qi]

= 4
∫

dri

[ p∑
v=1

(
9qi

9riv

)2

− ji(qi; ri)

]
= 0: (19)

Integrating by parts I [qi] and using Property 1, the
zero-condition I [qi]− J [qi] becomes

−4
∫

dri

[
qi

p∑
v=1

92qi

9r2iv
+ ji(qi; ri)

]
= 0: (20)

The answer to these variational problems, given by
Eqs. (18) and (20), is that qi(ri) must obey Euler–
Lagrange equations. Then, we obtain the following
solutions (for i=1; : : : ; c):

p∑
v=1

92qi

9r2iv
= −1

2
9ji(qi; ri)
9qi

(21)

and

qi

p∑
v=1

92qi

9r2iv
= −ji(qi; ri): (22)

By using Eqs. (21) and (22), the information density
solution ji(qi; ri), which satis4es the variational prin-
ciple (18) and the zero-condition (20), is obtained by
integration:

ji(qi; ri) = q2i (ri)fi(ri)

for some functions fi(ri). Substituting the previous
result into Eq. (21) or (22) produces the same solution
of the form of

∇2qi(ri) = −qi(ri)fi(ri); (23)

where the Laplacien ∇2 is with respect to coordinates
of ri. The form of fi(ri) directly a8ects that of qi(ri)
(and ui(y)).
We assume that

fi(riv) = #iv − $ir2iv; #iv; $i constant ∀v = 1; : : : ; p

for the following reasons:
Assumption 2: it is reasonable to require that the

membership function must not change if we apply an
arbitrary rotation around vi in p-dimensional space
Rp (i.e., the criterion is rotation-invariant). So, the
membership function should not depend upon the sign
of ri =y − vi. Hence ui(y) should be even in each
component riv;
Assumption 3: Since we do not have any reason

to believe that some measurements are more accurate
than others, similarly it is reasonable to assume that
ui(y) should depend upon each riv in the same way
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(i.e., covariance requires that the system functionally
depends upon all its coordinates—including the time,
if that is one of the coordinates—in the same way).
Therefore, #iv’s are the same for all the riv: #iv= #′i ,
v=1; : : : ; p;
Assumption 4: it is also reasonable to assume that

the measurement errors are relatively small (i.e., ri
is the residual associated with observation y and vi).
So that we can neglect the terms that are beyond the
quadratic.
These considerations imply that fi(ri) should be ex-

pandable as a power series in even powers of ri,

fi(ri) = #i − $ir2i ; (24)

where #i is proportional to #′i . The constants #i and
$i are to be de4ned. At this point, conditions 1–4 are
merely assumptions. They lead to useful properties for
the objective functions in fuzzy clustering: centroids
are unbiased, coincident solutions for maximum en-
tropy inference and extreme physical information ap-
proaches (cf. Section 3.3). However, we will justify
below these assumptions in Section 3.4 by using a
Fourier transformation as an invariance principle.

3.2. Constraint determination

Using this quadratic form in Eq. (18) leads to an
extremization problem:

I [qi]− J [qi]

= 4
∫

dri

[ p∑
v=1

(
9qi

9riv

)2

− q2i (#i − $ir2i )

]

= extrem; (25)

Eq. (25) is equivalent to, i=1; : : : ; c ($i =const):

1
4$i

(I [qi]− J [qi])

=
∫

dri

[ p∑
v=1

1
$i

(
9qi

9riv

)2

− q2i

(
#i

$i
− r2i

)]

= extrem:

Since the ri’s do not range over the same values, they
are independent. So the EPI problem leads to 4nd

{qi}i∈ [1; c] obeying:

K ′[q] =
c∑

i=1

1
4$i

(I [qi]− J [qi]) = extrem: (26)

For our purposes, it is useful to work with a discrete
form (with a 4nite number of elements):

K ′[U ] =
c∑

i=1

1
4$i

Ifi (ui)

−
c∑

i=1

n∑
k=1

uik

[
#i

$i
− d2(yk ; vi)

]
= extrem;

where we de4ned uik ≡ ui(yk)= q2i (rik), d
2(yk ; vi)=

r2ik . I
f
i (ui) and uik are, respectively, the discrete form

of Fisher information I [qi] and the probability density
q2i (ri). Next, consider the second term in the previous
equation:

Jf(U; V ;Y ) =
c∑

i=1

1
4$i

J (ui; vi;Y )

=−
c∑

i=1

n∑
k=1

uik

[
#i

$i
− d2(yk ; vi)

]

represents all constraints that are imposed by the sce-
nario. On the other hand, this term is

Jf(U; V ;Y ) =−
c∑

i=1

n∑
k=1

uik
#i

$i

+
c∑

i=1

n∑
k=1

uikd2(yk ; vi):

If we denote �i = #i=$i, this relationship is

Jf(U; V ;Y ) =−
c∑

i=1

�i

n∑
k=1

uik

+
c∑

i=1

n∑
k=1

uikd2(yk ; vi):

At this point, we must point out that the constraints
are those of the objective function de4ned a priori by
Krishnapuram and Keller [18] in the particular im-
plementation of the possibilistic approach described
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in Introduction. We also remark that the EPI ap-
proach leads to an objective function de4ned by a 4rst
information term

∑c
i=1 1=4$iI

f
i [ui] intrinsic to the

measured phenomenon and another information term
embodying all constraints that are imposed by the
physical phenomenon under measurement.
By summary, let jepi be the information density

found by applying the Frieden’s scheme de4ned in
Section 2. EPI method leads to an objective func-
tion representing the following c-independent objec-
tive functions:

1
4$i

Ifi [ui]−
n∑

k=1

jepi(uik ; dik ; �i)

= extrem; i = 1; : : : ; c; (27)

with jepi = uikgi(dik), g(dik)= �i − d2ik and �i; $i =
const. The 4rst term de4nes the discrete form of the
Fisher information. This term gives a global measure
of the physical information of the system. The mean-
ing of Eq. (27) is di8erent from the one of classical
methods because no constraint a priori is needed in
order to de4ne it.
The possibilistic approach, de4ned by Krishna-

puram, implies an objective function representing the
following c-independent objective functions:

�iI si [ui]−
n∑

k=1

jpcm(uik ; dik ; �i) = min;

i = 1; : : : ; c; (28)

with jpcm = jepi. The 4rst term de4nes the entropy of
Shannon,

I si [ui] =
n∑

k=1

uik log uik (29)

whose range is the set of nonnegative real numbers.
In comparing the entropy method with the EPI ap-

proach, it is to be noted that Ifi is a local measure of
uik and I si is a global measure of this one.

3.3. General solution

This calculus is quite similar to Frieden [10] in
the determination of the Maxwell–Boltzmann ve-
locity law, more particularly momentum probability
amplitudes.

Substituting Eq. (24) into Eq. (23) gives

∇2qi(ri) + qi(ri)[#i − $ir2i ] = 0: (30)

That is, the answer qi is the solution to a second-order
di8erential equation. We use a method of separation of
variables for solving this partial di8erential equation
by making a substitution of the form

qi(ri) = qi1(ri1)qi2(ri2) : : : qip(rip) (31)

and breaking the resulting equation into a set of p
independent ordinary di8erential equations:

d2qiv(riv)
dr2iv

+ (#′i − $ir2iv)qiv(riv) = 0;

where v=1; : : : ; p;
∑p

v=1 #
′
i =p#′i = #i (Assump-

tion 2).
Now letting

#′i = k2i and $i = '2i

gives

d2qiv(riv)
dr2iv

+ (k2i − '2i r
2
iv)qiv(riv) = 0: (32)

Eq. (32) is called Weber di8erential equation.
Functions

qiv(riv) = exp
{
−
(
'i

2
r2iv

)}
2−n=2pHn(

√
'iriv) (33)

are solutions of Eq. (32) if the constants verify:

k2i = 2'i(n+ 1
2)

or

#′i = 2
√

$i(n+ 1
2);

Hn are the Hermite polynomials, (n is a positive
integer).
Eqs. (31) and (33) give the solutions

qn
i (ri) = Ai exp

{
−|ri|2

(
'i

2

)}
2−n=2(Hn(

√
'iriv))p;

(34)

where Ai is a constant.
As described by Frieden [10], the solution which

attains the absolute minimum in the Fisher information
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I [qi] is the solution at equilibrium (i.e., the Gaussian
solution in our case). Indeed the presence of Hermite
polynomials in the solution (34) causes subsidiary
maxima and minima (Hn admits n+1 extrema). Since
I [qi] contains any derivatives (cf. Eq. (15)), extrema
cause an increased gradient. Following this remark,
the solution at equilibrium of Eq. (30) is this one giv-
ing the smallest minimum I [qi] among all possible
minima (i.e., given by the Minimum Fisher informa-
tion, and obtained by setting n=0 in Eq. (34). This
implies #′i =

√
$i).

Then, the general solution is a Gaussian solution:

qi(ri) = Ai exp
{
−|ri|2

(
'i

2

)}
; (35)

Ai is a constant.
Thus we have the following result for each inde-

pendent scenario y= vi + ri, i=1; : : : ; c and with the
#i’s, $i’s positive reals:
Let the following 4nal criterion 1 be:

Assumptions 2–4 implying

ji(qi; ri) = q2i (#i − $ir2i ):

Variational principle implying

4
∫
dri

[ p∑
v=1

(
9qi

9riv

)2

− ji(qi; ri)

]
= extrem:

Zero condition and Assumption 1 implying

−4
∫
dri

[
qi

p∑
v=1

92qi

9r2iv
+ ji(qi; ri)

]
= 0:

Minimum Fisher information implying

4
∫
dri

p∑
v=1

(
9qi

9riv

)2

=min:

Theorem 1. If ri ∈Rp; and #i =p
√

$i for i∈ [1; c];
∀Ai ∈R the probability amplitudes qi(ri); i=1; : : : ; c;
may verify the ;nal criterion de;ned previously
only if:

qi(ri) = Ai exp
{
−|ri|2 'i

2

}
; i = 1; : : : ; c (36)

and 'i checks: 'i = #i=p; i=1; : : : ; c.

In a discrete form, we obtain ∀i∈ [1; c]:

qi(rik) = Ai exp
{
−d2(yk ; vi)

2a2i

}
; (37)

with a2i =1='i.
Using uik = q2i (rik), we now express uik , i=1; : : : ; c

as follows:

uik = Ci exp
{
−d2(yk ; vi)

�i

}
; (38)

where Ci depends on Ai, and �i = a2i =const.

Comments
• With Ci =1, Eq. (38) produces the same solution
than the possibilistic approach;

• In Section 3.4, we will give a justi4cation of the
EPI approach where the Assumptions 1–4 will not
be useful to de4ne the information density jepi. This
justi4cation leads to a second more general theorem
where the requirement of jepi (i.e., assumptions) is
not necessary;

• Thus, our general approach provides a precise phys-
ical justi4cation for the constrain terms used in the
Possibilistic and MEI approaches;

• qi; i=1; : : : ; c are independent probability
amplitude;

• In the case of the normalization of uik , wished a
posteriori, and by setting Ci =A and �i =2,2 ∀i ∈
[1; c], then the probability densities verify

c∑
i=1

A exp
(
−d2(yk ; vi)

2,2

)
= 1:

It is elementary that this equation implies

A =
1∑c

i=1 exp(−d2(yk ; vi)=2,2)
: (39)

Substituting result (39) into Eq. (38) produces the
same solution than the MEI approach:

uik =
exp(−d2(yk ; vi)=2,2)∑c
j=1 exp(−d2(yk ; vj)=2,2)

: (40)

3.4. EPI approach justi;cation for fuzzy clustering

Here, a one-dimensional analysis is given for sim-
plicity. Extensions to p-dimensional scenario are
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straightforward. Following the scenario described in
Section 3.1, the observation y obeys

y = vi + ri; i = 1; : : : ; c;

where vi, i=1; : : : ; c represent the true positions of
the centroid vectors and ri is the residual, (i.e., a
random excursion) associated with observation y and
vi, whose probability amplitude law qi(ri) is sought.
The measurement perturbs the amplitudes qi(ri),
i=1; : : : ; c of the problem and starts EPI going as a
process. The information expression becomes in one
dimension and for the cluster !i (ri’s do not range
over the same values, so we can apply the EPI scheme
on each independent scenario ri =y− vi, i=1; : : : ; c):

I [qi] = 4
∫
dri

(
dqi

dri

)2

; i=1; : : : ; c: (41)

We use a Fourier transform as invariance principle in
order to guarantee the validity of the EPI approach
[10] for fuzzy clustering.
Let -i(.i) be the characteristic function de4ned as

the inverse Fourier transform (denoted F−1) of the
probability density function pi(ri). Let /i(.i) be the
function such as

/i(.i) ∗ /i(.i) = -i(.i); (42)

where ∗ denotes the convolution product. /i also
uniquely speci4es the probability density function
pi = q2i . One can consider this function as a function
characterizing qi. Using this de4nition, /i veri4es

/i(.i) = F−1[qi(ri)]:

We de4ne a Fourier transform space consisting of
functions /i(.) of .i obeying

qi(ri) =
1
20

∫
d.i/i(.i)e−j.iri : (43)

The unitary nature of this transformation guarantees
the validity of the EPI variational procedure. One of
the interests of the Fourier transform is that it analyzes
the global regularity of qi: the smoother a function
(i.e., the lower the number of continuous derivatives),
the more compact its Fourier transform. Naturally, this
is a global regularity condition. By di8erentiating (43)
and applying Parceval’s theorem, we obtain

∫
dri

∣∣∣∣dqi

dri

∣∣∣∣
2

=
∫
d.i|/i(.i)|2.2i ; i = 1; : : : ; c:

(44)

Using (44) in (41) gives

I [qi] = 4
∫
d.i|/i(.i)|2.2i ; i=1; : : : ; c: (45)

When the invariance principle is the statement of a uni-
tary transformation between measurement space and
conjugate coordinate space, then the solution to re-
quirement zero-condition, given by Eq. (17), is that
functional J be simply the re-expression of I in the
conjugate space. Thus we have:

I = 4
∫
d.i|/i(.i)|2.2i = J; i = 1; : : : ; c: (46)

This is the invariance principle for the given scenario.
The same value of I can be expressed in the new space
(.) where it is called J . J is then the bound informa-
tion for the scenario. With this invariance principle,
we justify Assumption 1:  =1 (cf. Eq. (19)).
A single observation y yields the result that ri

is to be found in the distance interval according to
vi: ri : : : ri + dri. The corresponding probability is
|qi(ri)|2 dri. The uncertainty (i.e., the mean value of
the 2nd power 5 of ri by considering that the corre-
sponding probability is |qi|2) TR and the conjugate
uncertainty T2 are chosen as

(TR)2 =
∫

R

r2i |qi|2 dri; (47)

(T2)2 =
∫

R

.2i |/i|2 d.i: (48)

Proposition 1. ∀qi ∈L2; ∃(#i; $i)∈R2∗+;

$i(TR)2 + (T2)2 = #i

∫
|qi(ri)|2 dri: (49)

Proof. Since qi is a 4nite energy function (property
required for a probability amplitude), (TR)2 and
(T2)2 exist. One only needs, for example, that

$i = 1 (50)

5 (TR) and (T2) include most of the total energy but do not
contain all of it.
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and

#i =
(TR)2 + (T2)2∫ |qi(ri)|2 dri : (51)

End of proof. Then, by Eq. (49), the conjugate un-
certainty T2 obeys

(T2)2 = #i

∫
|qi(ri)|2 dri − $i(TR)2: (52)

Using Eqs. (52), (46) and (41), Extremum principle
becomes for qi:

I [qi]− J [qi]

= 4
∫
dri

(
dqi

dri

)2

−
[
#i

∫
|qi(ri)|2 dri − $i(TR)2

]
= extrem:

Hence, we have shown (cf. Eq. (25)) that, for
i=1; : : : ; c:

I [qi]− J [qi]

= 4
∫
dri

[(
dqi

dri

)2

− (#i − $ir2i )q
2
i (ri)

]
: (53)

So that ji(qi; ri)= q2i (#i−$ir2i ) (cf. Section 3.2). Thus
we have the following result for each independent sce-
nario y= vi + ri, i=1; : : : ; c:
Let the following 4nal criterion 2 be:

Variational principle implying

4
∫
dri

[ p∑
v=1

(
9qi

9riv

)2

− ji(qi; ri)

]
= extrem:

Zero condition implying

−4
∫
dri

[
qi

p∑
v=1

92qi

9r2iv
+ ji(qi; ri)

]
= 0:

Minimum Fisher information implying

4
∫
dri

p∑
v=1

(
9qi

9riv

)2

= min :

Theorem 2. If ri ∈Rp for i∈ [1; c]; ∀Ai ∈R the
probability amplitudes qi(ri); i=1; : : : ; c; may verify
the ;nal criterion de;ned previously only if:

qi(ri) = Ai exp
{
−|ri|2 'i

2

}
; i = 1; : : : ; c;

'i = const; i = 1; : : : ; c:

3.5. EPI interpretation for fuzzy clustering

3.5.1. Coincident global minimum
In summary, the membership functions, ui,

i=1; : : : ; c obtained by EPI, Possibilistic and MEI
approaches are similar. In Possibilistic and MEI ap-
proaches the formulation of the objective function is
given with a priori constraints. Moreover, the nor-
malization constraint is necessary in MEI approach
to obtain membership functions. In EPI approach this
constraint is not necessary. Then it can be used a pos-
teriori. As we saw in Section 3.2, EPI approach leads
to the following c-independent objective functions:

1
4$i

Ifi [ui]−
n∑

k=1

jepi(uik ; dik ; �i) = extrem;

i = 1; : : : ; c: (54)

Possibilistic approach implies an objective function
representing the following c-independent objective
functions:

�iI si [ui]−
n∑

k=1

jpcm(uik ; dik ; �i) = min;

i = 1; : : : ; c; (55)

with jpcm = jepi. It is easy to show that, for the general
solution (37), Fisher information and Shannon infor-
mation verify the relation (as $i =1=�2i ):

1
4$i

Ifi [qi = Ae−r2i =2�i ] = −�iI si [pi = Ae−r2i =�i ]: (56)

Then, the general solution gives a coincident global
minimum 6 for the EPI objective function and Pos-
sibilistic approach using two di8erent information
terms: Ifi and I si (cf. Fig. (1)).

6 By using Legendre’s condition, one can show that the solution
of EPI objective function Eq. (54) is also a minimum.
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Fig. 1. The general solution gives a coincident global minimum
for the EPI objective function and Possibilistic approach using
two di8erent information terms: Ifi and I si . F(q) denotes the set
of families of probability amplitudes.

If the prototype of each cluster can be represented
by the cluster center vi, then it can be easily veri-
4ed that the prototype update equation for the objec-
tive function, de4ned by the approach EPI, can be
written as

vi =
∑n

k=1 uikyk∑n
k=1 uik

: (57)

Eqs. (38) and (57) can be used in an alternative fash-
ion in an iterative algorithm to estimate the cluster
centers vi.

3.5.2. Underlying constraint and uncertainties
For simplicity, we use one-dimensional notation.

The approach is easily generalized to p dimensions.
Let (TR)N and (T2)N be the normalized uncertainties
such as

(TR)2N =
(TR)2∫ |qi|2 dri ; (58)

(T2)2N =
(T2)2∫ |/i|2 d.i

: (59)

Proposition 2. ∃(#i; $i)= (5; 52); 5∈R∗+; such as
∀qi ∈L2; if qi veri;es the ;nal criterion 2; then
the following relation between uncertainties is also
veri;ed: (TR)N (T2)N = 1

2 (i.e.; a balance is attained
between the uncertainties (TR)N and (T2)N ).

Proof. If qi veri4es the 4nal criterion 2, then by
Eqs. (19), it exists #i = #′i =

√
$i, such that qi veri4es

(zero condition in one-dimensional case):

I [qi]− J [qi]

= 4
∫
dri

[(
dqi

dri

)2

− #iq2i + $ir2i q
2
i

]
= 0: (60)

By setting 5= #i, and by Eq. (60), qi veri4es

K[qi; 5] = I [qi]− J [qi; 5]

=
∫ ∣∣∣∣dqi

dri

∣∣∣∣
2

dri − 5
∫

|qi|2 dri

+ 52
∫

r2i |qi|2 dri = 0;

where 5 is a still-to-be-determined real number. With
de4nitions (47) and (48), we may use Parceval’s the-
orem to get∫

|/i|2 d.i =
∫

|qi|2 dri: (61)

With these de4nitions, K[qi; 5] can be simpli4ed to
yield:

KN [qi; 5] = (T2)2N + 52(TR)2N − 5 = 0; (62)

where KN [qi; 5] represents normalized K[qi; 5]. Since
this equation is veri4ed by qi obeying the 4nal criterion
2, we can now determine the value of 5 for which KN

is minimum. If we di8erentiate Eq. (62) with respect
to 5, we obtain the condition for a minimum:

25min(TR)2N − 1 = 0;

from which we 4nd immediately

5min =
1

2(TR)2N
:

So, we obtain

(TR)2N (T2)2N = 1
4 (63)

or

TRNT2N = 1
2 :

Comment: for #i = 5min, Proposition 1 is also
veri4ed.
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3.5.3. Fuzzy clustering with regularization
In this subsection, we discuss fuzzy clustering

problem from the viewpoint of regularization of an
ill-posed problem. A problem is said to be ill-posed
if it fails to satisfy one or more of the following
criteria: solution exists, is unique and depends con-
tinuously on the data. Additional prior assumptions
have to be imposed on the solution to convert an
ill-posed problem into a well-posed one. Recently,
new methods of fuzzy c-means have been proposed
using this concept. In analogy with the maximum
entropy principle, these approaches give preference
to a solution which maximizes a given measure of
entropy or equivalently, minimizes the correspond-
ing information measure. Maximum entropy solution
is then equivalent to minimizing information sub-
ject to constraints given by the objective function of
FcM clustering. In [23], Miyamoto and Mukaidono
show that the concept of regularization plays an
important role in the FcM. Indeed, they consid-
ered Fuzzy c-means to be a regularization for the
Crisp c-means. They regard extremal points {0; 1}
as singular solutions, whereas intermediate points
are considered to be a regular solution 7 (i.e., m is
a smooth factor). In [22], they have reformulated
the MEI approach by considering the entropy term
as a regularization term. Introducing this term, they
show they minimize a functional (given by FcM
objective function) depending on the desired so-
lution regularized by minimizing the total amount
of information. In this context, they consider that
PcM and possibilistic approaches may be viewed
as another regularization. In [15], Ichihashi et al.
show that EM algorithm for gaussian mixture model
can be derived from FcM clustering by introduc-
ing regularization with K–L information instead of
entropy. We show in [21] the concept of regular-
ization extended to fuzzy clustering of overlapping
clusters.
In comparing these entropy-term-based methods

with the EPI approach, it is to be noted that the Fisher
information is a regularization local measure of uik

7 Another viewpoint is considered by Rose et al. in [24]. They
give a probabilistic interpretation of maximum entropy using a de-
terministic annealing approach to clustering. The resulting algo-
rithm is started with high fuzziness (i.e., equal membership in
all clusters) at high temperatures and converges to the non-fuzzy
basic ISODATA algorithm at low temperatures).

and the entropy of shannon is a global measure of
this one. Indeed, EPI approach is based on an in-
formation function that controls derivative values. It
is clear that minimizing the averaged Fisher infor-
mation will have the e8ect of “smoothing” the data.
Besides its advantage in providing a mechanism for
the constraint term determination, EPI derives the
“reason” for the extremization of the objective func-
tion. It does not have to assume maximum ignorance
of some type as in Maximum entropy approaches,
for example. At this point, we must point out that
classical statistical systems, where the probability
laws are simple exponential functions, a local regu-
larization is equivalent to a global regularization (i.e.,
Maximum entropy and EPI approaches agree in this
case).

3.5.4. Harmonic potential in fuzzy clustering
It is interesting to write Eq. (30), found in Sec-

tion 3.3, under a more general form by using the frame-
work of quantum mechanics, and more particularly
that of the SchrUodinger’s equation. For the fuzzy clus-
tering scenario and by 4nal criterion 2, the general so-
lution qi is the solution to a second-order di8erential
equation.

∇2qi(ri) + qi(ri)[#i − $ir2i ] = 0: (64)

By setting, #i = k2i ; $i = '2i ; V (ri)= '2i r
2
i and E= k2i

the general solution qi obeys

∇2qi(ri) + qi(ri)[k2i − '2i r
2
i ] = 0 (65)

or

∇2qi(ri) + qi(ri)[E − Vi(ri)] = 0: (66)

The SchrUodinger’s stationary (i.e., time-independent)
equation, in the presence of a potential 4eld, can be
written as:

˝2
2m

∇2 (r) +  (r)[E − V (r)] = 0; (67)

where the wave function  determines the spa-
tial probability p(r)= | (r)|2.  must be 4nite,
single-valued, and continuous, its derivative with
respect to position must also be 4nite, single-
valued and continuous. Moreover  vanishes at
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in4nity. 8 V (r) is the potential energy of the par-
ticle as function of position r. The eigenvalue
E corresponds to a particular allowable energy
state of the particle and  is the correspond-
ing eigenvector. In this case, the general solution
qi; i=1; : : : ; c, given by the SchrUodinger’s equation,
is the wave function  0 corresponding to the lowest
energy E0:

 0(r)=C exp(− 1
2'r

2); (68)

where the constant C can be determined by the
normalization condition. The associated eigenvalue
is

E0 =
'
k2

: (69)

It is also interesting to note that the 4nal cri-
terion 2 yields to the SchrUodinger’s stationary
equation in the presence of c harmonic poten-
tial 4elds Vi(ri)= '2i r

2
i (#2i is the correspond-

ing eigenvalue) i.e., each cluster center generates
a harmonic potential Vi(ri). The encoding of the
smoothness prior in terms of derivatives including
in Fisher information leads to isotropic potential
functions.

3.6. Schr>odinger’s time-independent equation

3.6.1. Potential function de;ned from observations
In the previous subsection, we saw that the fuzzy

clustering process required harmonic potentials. More
complex potential functions also appear to be im-
mediately useful. For example, they are used in the
Mountain method [26] and in various improved im-
plementations of this method [6,5]. In this section, we
give a new algorithm using a 1D complex potential
de4ned according to the observations yk ; k =1; : : : ; n.
Experiments show the interests of this algorithm
for which there is no need to know the number of
clusters.
Let y be an unspeci4ed point for which one

wants to calculate the potential. To calculate the
potential to this point, it is necessary to evalu-
ate an estimator of the local density around the
observations yk ; k =1; : : : ; n. We use the method

8 So that the wave function can be normalized, i.e.,∫ | |2 dr=1.

described in [8,11]. Let the potential function
V (y) be given for an unspeci4ed y point (cf.
Appendix A). V (y) is characterized by its local
properties. This potential function assumes that
physical properties in a neighborhood of space
present some coherence and generally do not change
abruptly. For a very dense population, the poten-
tial in boundary of this area increases very quickly.
For a very wide population the potential increases
slowly.
We 4rst present two simple examples to provide

insights into generated potential functions. Here we
discuss the shape of potential function V (y) in the
1-D case. Fig. 2a shows the potential function ob-
tained from observations yk . These observations are
represented by symbol ‘+’, and are generated from
a gaussian cluster. Fig. 2b illustrates the behavior of
the potential function V (y) found according to obser-
vations generated from two gaussian clusters.
Now the remaining problem is to determine the

probability amplitudes qi (or  i), i=1; : : : ; c.

3.6.2. Wave functions and fuzzy clustering
Here, we proceed with the solution of the

SchrUodinger’s time-independent equation in the pres-
ence of the potential function V (y) de4ned previously.
As we saw in the previous section, the SchrUodinger’s
time-independent equation, in the one dimension case
and in the presence of a potential 4eld, is

− ˝
2

2m
d2 
dy2

+ V = E ; (70)

where V and  are function of y. V (y) is the potential
energy,  (y) the wave function, and E energy asso-
ciated with the wave function. m is the mass of the
particle and ˝ the Planck’s constant.
Since the SchrUodinger’s equation includes several

constants, it is customary to write ˝2=2m=1. Then,
Eq. (70) becomes:

−d2 
dy2

+ V = E : (71)

In the case of a complex potential, V (y), Eq. (71) can
only be solved approximately (cf. Appendix).
The following experiments illustrate the procedure

for 4nding the probability density function pi ≡ | i|2
from two examplary instances and demonstrate
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Fig. 2. Examples showing potential functions. The potential function translates the densities of observations into variable size areas.
(a) This example illustrates a situation containing one cluster. The potential function is de4ned for all points y and is obtained from
observations yk generated from a gaussian cluster. Observations are represented by symbol ‘+’. (b) This example illustrates a situation
containing two clusters. (c) A typical example of potential function is shown. Potential function is of the form: V (y)=

∏8
i=1 (y − 8i).

the use of potential functions in our fuzzy cluster-
ing approach. The experiments are conducted as
three parts:
• given a set of objects or observations Y =(yk)k∈[1; n];
• computing the potential function V (y) according to
these observations by using Eqs. (73) and (74);

• proceeding to the solution of the SchrUodinger’s
time-independent equation in the presence of the
potential 4eld V (y) in order to determine the prob-
ability density function | i(y)|2 (or |qi(y)|2).

In Fig. 3, we present two examples that provide a clear
computation process.
• A typical example of potential function is depicted
in Fig. 2c. The considered potential function is of
the form: V (y)=

∏8
i=1 (y − 8i). The probability

density functions (i.e., | i(y)|2), solutions of the
SchrUodinger’s equation are plotted in Fig. 3a. Those
which present a well located state are presented
(their shape do not present oscillations). In this ex-
ample, we obtain four probability density functions
characterizing four clusters. At each solution, is as-
sociated an energy.

• In Fig. 2b, the example deals with a situation in
which there are two clusters: it can be seen that
the potential function V (y) translates the densities
of observations into variable size areas. Step 2:
proceeding to the solution of the SchrUodinger’s
equation in the presence of this potential gives two
probability density functions (cf. Fig. 3b) (these
functions present a well located state).
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Fig. 3. The probability density functions, solutions of the SchrUodinger’s equation are plotted. Those which present a well localized state are
presented (their shapes do not present oscillations). At each solution, is associated an energy. (a) In this example, we obtain four probability
density functions characterizing four clusters. The associated potential 4eld is described in Fig. 2c. (b) We obtain two probability density
functions characterizing two clusters. The associated potential 4eld is described in Fig. 2b.

The previous results seem to indicate that the per-
formance of this algorithm is superior (i.e., it is
not necessary to de4ne the number of clusters).
However it is to be borne in mind that this algo-
rithm is computationally and implementationally
more complex. Indeed it is prohibitory for ap-
plications where a pattern is described by p¿3
measures.

4. Conclusion

In fuzzy clustering, the principal problem is how to
formulate an objective function. The formulation de-
termines how various constraints are encoded into the
function. In this article, we give a 4nal criterion lead-
ing to a family of optimal objective functions (for this
criterion). This one is based on the Fisher informa-
tion, I-theorem and the EPI principle of Frieden: vari-
ational principle and zero-condition. We justify the
application of this principle to the problem of fuzzy
clustering. This approach o8ers a systematic method
allowing to obtain and to justify the constraints of the
possibilistic, MEI and FcM approaches. We remark
that the EPI approach leads to an objective function
de4ned by a 4rst information term intrinsic to the mea-
sured phenomenon and another information term em-
bodying all constraints that are imposed by the fuzzy

clustering scenario. The update equations are identi-
cal to that of the possibilistic, MEI or FcM with reg-
ularization (in the case of the wished normalization
a posteriori). It is also shown that uncertainties on
the observations and de4ned on the conjugate space
check a balance. The product of these uncertainties is
minimum. The solution obtained by our approach is
similar to the solution of the SchrUodinger’s stationary
equation in the presence of c harmonic potential 4elds
generated by the cluster centers. Then we give an algo-
rithm using a 1D complex potential de4ned according
to the observations. Even if this algorithm is compu-
tationally and implementationally more complex, it is
interesting because there is no need to know the num-
ber of clusters.

Acknowledgements

The authors would like to thank the anonymous re-
viewers and B. Roy Frieden for the valuable comments
and suggestions.

Appendix A. Potential function de�ned from
observations and wave function

Let y be an unspeci4ed point for which one wants
to calculate the potential. First of all, let us introduce
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the vector dl, whose kth component is the average dis-
tance from the observation yk with its l closer neigh-
bors ykr; r=1; : : : ; l

dl
k ≡ dl(yk) =

1
l

l∑
r=1

d(yk ; ykr); (A.1)

where 1=dl(yk) is an estimator of the local density
around the point yk [8]. l plays a signi4cant role:
• a great value of l, implies a smoothing and decreas-
ing the local properties;

• a low value introduces noise into the values dl(yk).
Let the potential function V (y) be given for an un-
speci4ed y point [8,11]:

V (y) = min
k=1;n

[
dl(yk) +

D(yk)
dl(yk)2

d2(yk ; y)
]
; (A.2)

with

D(yk) =
1
l

l∑
r=1

|dl(yk)− dl(ykr)|; (A.3)

V (y) is characterized by its local properties. In this
function, two terms appear:
• dl(yk), mean distance from yk with its l closer
neighbors,

• d2(y; yk), the distance between y and yk multiplied
by D(yk)=dl(yk)2.

D(yk) controls the sharpness of the potential func-
tion [8,11]. It represents the variation of local density
in the area centered on the observation yk . The de-
nominator dl(yk)2 is a term of modulation on D(yk):
increases in the e8ect of D(yk) in a zone of high den-
sity and reciprocally.
Now, we proceed with the solution of the

SchrUodinger’s time-independent equation in the pres-
ence of the potential function V (y) de4ned previ-
ously. In the case of a complex potential, V (y),
Eq. (71) can only be solved approximately.
Given V (y), the probability amplitudes  i can

be estimated by proceeding to the solution of the
SchrUodinger’s equation. The chosen numerical anal-
ysis method consists in dividing the interval of inte-
gration into n small 4nite length intervals �y, such as:
 j =  ((j − 1)�y) and V j =V ((j − 1)�y).
So, in the discrete case where the surface is sam-

pled at discrete points, we use the second-order

di8erence to approximate the second-order derivative
and Eq. (71) becomes

− j+1 − 2 j +  j−1

�2y
+ V j j = E j: (A.4)

By setting

H =




2
�2y

+ V 1 − 1
�2y

0 0 : : :

− 1
�2y

2
�2y

+ V 2 − 1
�2y

0 : : :

0 − 1
�2y

2
�2y

+ V 3 − 1
�2y

: : :

: : : : : : : : : : : : : : :




:

The 1D SchrUodinger’s equation forms a tri-diagonal
matrix. It is an eigenvalue equation and such that the
solutions to SchrUodinger’s equation appear as a se-
quence of eigenenergies and eigenfunctions:

H = E : (A.5)

Implicitly  0 =  n+1 =0 was 4xed, which corresponds
to the assumption that the wave function vanishes at
in4nity. Mathematically, one replaced a di8erential
equation with boundary conditions by a problem of
eigenvectors.
Comments on the physical signi4cance of the eigen-

values of H:
Let the operator H with a complete, orthonormal

system of eigenfunctions  m be given with eigenvalues
am and a wave function

 (x) =
∑
m

cm m(x): (A.6)

Let the system be in the state given by (A.6). The
result of a measurement can only be one of the eigen-
values am. The probability of measuring am is |cm|2.
Thus, the possible values of the energy are the energy
eigenvalues Em= am.
The potential function translates the densities of ob-

servations into potential wells. The tendency to bind
a pattern (i.e., particle) will certainly grow with the
depth and width of a potential well. The probability
density functions which present a well localized state
(with the lowest energy) correspond to the ground
states (one per potential well).
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