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A B S T R A C T  
Clustering results validation is an important topic in the 
context of  pattern recognition. We review approaches 
and systems in this context. In the first part of  this 
paper we presented clustering validity checking 
approaches based on internal and external criteria. In 
the second, current part, we present a review of  
clustering validity approaches based on relative criteria. 
Also we discuss the results of  an experimental study 
based on widely known validity indices. Finally the 
paper illustrates the issues that are under-addressed by 
the recent approaches and proposes the research 
directions in the field. 

Keywords: clustering validation, pattern discovery, 
unsupervised learning. 

1. I N T R O D U C T I O N  

Clustering is perceived as an unsupervised process since 
there are no predefined classes and no examples that 
would show what kind of  desirable relations should be 
valid among the data. As a consequence, the final 
partitions of  a data set require some sort of  evaluation 
in most applications [15]. For instance questions like 
"how many clusters are there in the data set?", "does 
the resulting clustering scheme fits our data set?", "is 
there a better partitioning for our data set?" call for 
clustering results validation and are the subjects of  a 
number of  methods discussed in the literature. They 
aim at the quantitative evaluation of  the results of  the 
clustering algorithms and are known under the general 
term cluster validity methods. 

In Part I of  the paper we introduced the 
fundamental concepts of  cluster vali&~y and we presented 
a review of  clustering validity indices that are based on 
external and internal criteria. As mentioned in Part I these 
approaches are based on statistical tests and their major 
drawback is their high computational cost. Moreover, 
the indices related to these approaches aim at measuring 
the degree to which a data set confirms an a-priori 
specified scheme. 

On the other hand, clustering validity approaches 
which are based on relative criteria aim at finding the best 
clustering scheme that a clustering algorithm can define 

under certain assumptions and parameters. Here the 
basic idea is the evaluation of  a clustering structure by 
comparing it to other clustering schemes, resulting by 
the same algorithm but with different parameter values. 

The remainder of  the paper is organized as follows. 
In the next section we discuss the fundamental 
concepts and representative indices for validity 
approaches based on relative criteria. In Section 3 an 
experimental study based on some of  these validity 
indices is presented, using synthetic and real data sets. 
We conclude in Section 4 by summarizing and 
providing the trends in cluster validity. 

2. Re la t ive  Cri ter ia .  

The basis of  the above described validation methods is 
statistical testing. Thus, the major drawback of  
techniques based on internal or external criteria is their 
high computational demands. A different validation 
approach is discussed in this section. It is based on 
relative criteria and does not involve statistical tests. The 
fundamental idea of  this approach is to choose the best 
clustering scheme of  a set of  defined schemes according 
to a pre-specified criterion. More specifically, the 
problem can be stated as follows: 

"Let  Palg be the set of parameters assodated with a gpedflc 
clustering algorithm (e.g. the number of clusters n~). Among 
the clustering schemes C,~ i= 1,.., no defined by a ~edflc 
algorithm, for di~rent values of the parameters in Poe, 
choose the one that best flts the data set." 

Then, we can consider the following cases of  the 
problem: 
I) Pdg does not  contain the number of  clusters, no  

as a parameter.  In this case, the choice of  the 
optimal parameter values are described as follows: 
We mn the algorithm for a wide range of  its 
parameters' values and we choose the largest range 
for which nc remains constant (usually ~ << N 
(number of  tuples)). Then we choose as appropriate 
values of  the Poe parameters the values that 
correspond to the middle of  this range. Also, this 
procedure identifies the number of  clusters that 
underlie our data set. 

II) P~/# contains n, as a parameter .  The procedure of 
identifying the best clustering scheme is based on a 
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validity index. Selecting a suitable performance 
index, q, we proceed with the following steps: 
• the clustering algorithm is run for all values of  n, 

between a minimum ncmin and a maximum n .. . . .  
The minimum and maximum values have been 
defined a-priori by user. 

• For each of the values of  n,, the algorithm is run r 
times, using different set of  values for the other 
parameters of  the algorithm (e.g. different initial 
conditions). 

• The best values of  the index q obtained by each 
n, is plotted as the function of  n,. 

Based on this plot we may identify the best 
clustering scheme. We have to stress that there are two 
approaches for defining the best clustering depending 
on the behaviour of  q with respect to n,. Thus, if the 
validity index does not exhibit an increasing or 
decreasing trend as n, increases we seek the maximum 
(minimum) of the plot. On the other hand, for indices 
that increase (or decrease) as the number of  clusters 
increase we search for the values of n, at which a 
significant local change in value of  the index occurs. 
This change appears as a "knee" in the plot and it is an 
indication of  the number of  clusters underlying the 
dataset. Moreover, the absence of  a knee may be an 
indication that the data set possesses no clustering 
structure. 

In the sequel, some representative validity indices for 
crisp and fuzzy clustering are presented. 

2.1 Crisp clustering. 
Crib dasterin& considers non-overlapping partitions 
meaning that a data point either belongs to a class or 
not. In this section discusses validity indices suitable for 
crisp clustering. 

2.1. I The modified Hubert F statistic. 
The definition of  the modified Hubert F [18] statistic is 
given by the equation 

N-I N 

F = (1 / M ) E  E P(i, j ) .  a(i, j )  (1) 
i=| j=i+l 

where N is the number of  objects in a dataset, M=N(N- 
1)/2, P is the proximity matrix of  the data set and Q is 
an NxN matrix whose (i, j) element is equal to the 
distance between the representative points (v¢i, vc) of 
the clusters where the objects xi and x i belong. 

Similarly, we can define the normalized Hubert F 
statistic, given by equation 

N-I  N 

[(lfM) E E(X( i ,  j)- gx)(Y(i, J) - I.tv)] ( 2 )  
~ i=l j=i+l 

CIXC~ Y 

I f  the d(v~i, vci) is close to d(xi, xj) for i, j=I,2,..,N, P and 

Q will be in close agreement and the values of  r" and ~" 
(normalized I )  will be high. Conversely, a high value of  

^ 

F ( r )  indicates the existence of  compact clusters. Thus, 
in the plot of  normalized F versus n, , we seek a 
significant knee that corresponds to a significant 
increase of  normalized F. The number of  clusters at 
which the knee occurs is an indication of  the number of  
clusters that occurs in the data. We note, that for n, = I 
and n, = N  the index is not defined. 

2.1.2 Dunn fami~ of indices. 
A cluster validity index for crisp clustering proposed in 
[5], aims at the identification of  "compact and well 
separated clusters". The index is defined in equation (3) 
for a specific number of  clusters _~ 

I f &,,c,) 
D. = m i n t  m i n  I ~  ,-I} 

, ,=l.....,,,[/=,+i ....... / max diam[c k)ll  0) 
[ k*=i.....,,, j j  

where d(ci, c o is the dissimilarity function between two 
clusters ci and c i defined as d(c~,cj)= rain d(x ,y ) ,  

x~Ct,yeC 1 

and diam(c) is the diameter of  a cluster, which may be 
considered as a measure of  clusters' dispersion. The 
diameter of  a cluster C can be defined as follows: 

diam( C ) = max d ( x, y) (4) 
x,yeC 

I f  the dataset contains compact and well-separated 
clusters, the distance between the clusters is expected to 
be large and the diameter of  the clusters is expected to 
be small. Thus, based on the Dunn's index definition, 
we may conclude that large values of  the index indicate 
the presence of  compact and well-separated clusters. 

Index D,,, does not exhibit any trend with respect to 
number of  clusters. Thus, the maximum in the plot of  
D,, versus the number of  clusters can be an indication 
of  the number of  clusters that fits the data. 

The problems of  the Dunn index are: i) its 
considerable time complexity, ii) its sensitivity to the 
presence of  noise in datasets, since these are likely to 
increase the values of  diam(c) (i.e., dominator of 
equation (3)). 

Three indices, are proposed in [14] that are more 
robust to the presence of  noise. They are known as 
Dunn-like indices since they are based on Dunn index. 
Moreover, the three indices use for their definition the 
concepts of  Minimum Spanning Tree (MST), the 
relative neighbourhood graph (RNG) and the Gabriel 
graph respectively [18]. 

Consider the index based on MST. Let a cluster ci 
and the complete graph Gi whose vertices correspond 
to the vectors of  ci. The weight, we, of  an edge, e, of  this 
graph equals the distance between its two end points, x, 
y. Let Ei MsT be the set of  edges of  the MST of  the graph 
Gi and ei MsT the edge in Ei MST with the maximum 
weight. Then the diameter of  Ci is defined as the weight 
of  ei MsT. Dunn-like index based on the concept of  the 
MST is given by equation 
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O=m l=/ 1} " i~.....,,Aj=~.l,...,,,,/ m a x  diam usr [ ~,=, ........ l 

The number of  clusters at which Dm MsT takes its 
maximum value indicates the number of  dusters in the 
underlying data. Based on similar arguments we may 
define the Dunn-like indices for G G  and RGN graphs. 

2.1.3 The Davies-Bouldin (DB) index. 
A similarity measure Rii between the clusters Ci and C i is 
defined based on a measure of  dispersion of  a duster Ci 
, let si, and a dissimilarity measure between two clusters 
di  b The Rii index is defined to satisfy the following 
conditions [4]: 

1. Rij_>0 
2. Rij = Rii 
3. if si = 0 and s i = 0 then Rii = 0 
4. if s i > sk and dii = dik then Rii > Rik 
5. if s i = Sk and dii < dik then Rii > Rik. 

These conditions state that Rii is non-negative and 
symmetric. 

A simple choice for Rii that satisfies the above 
conditions is [4]: 

Rii = (si + si)/di i. (6) 

Then the DB index is defined as 

DB+ =--L ~ R, (7) 
nc i=1 

R~ = max R r,i=l,...,n~ 
t=l,...,nc,i# j 

It is clear for the above definition that DB,c is the 
average similarity between each cluster ci, i=1, ..., nc 
and its most similar one. It  is desirable for the clusters 
to have the minimum possible similarity to each other; 
therefore we seek clusterings that minimize DB. The 
DB= index exhibits no trends with respect to the 
number of  dusters and thus we seek the minimum 
value of  DB,c in its plot versus the number of  clusters. 

Some alternative definitions of  the dissimilarity 
between two clusters as well as the dispersion of  a 
cluster, ci, is defined in [4]. 

Three variants of  the DBac index are proposed in 
[14]. They are based on MST, R N G  and G G  concepts 
similarly to the cases of  the Dunn-like indices. 

Other validity indices for crisp clustering have been 
proposed in [3] and [13]. The implementation of  most 
o f  these indices is computationally very expensive, 
especially when the number of  clusters and objects in 
the data set grows very large [19]. In [13], an evaluation 
study of  thirty validity indices proposed in literature is 
presented. It  is based on tiny data sets (about 50 points 
each) with well-separated clusters. The results of  this 
study [13] place Caliski and Harabasz(1974), Je(2)/Je(1) 
(1984), C-index (1976), Gamma and Beale among the 
six best indices. However, it is noted that although the 
results concerning these methods are encouraging they 

are likely to be data dependent. Thus, the behaviour of  
indices may change if different data structures were 
used. Also, some indices based on a sample of  
clustering results. A representative example is 
Je(2)/Je(1) whose computations based only on the 
information provided by the items involved in the last 
cluster merge. 

2.1.4 RMSSDT, SPR, RS, CD. 
This family of  validity indices is applicable in the cases 
that hierarchical algorithms are used to cluster the 
datasets. Hereafter we refer to the definitions of  four 
validity indices, which have to be used simultaneously to 
determine the number of  clusters existing in the data 
set. These four indices are applied to each step of  a 
hierarchical clustering algorithm and they are known as 
[16]: 
• Root-mean-square standard deviation RMSSTD) of the new 

cluster 
• Semi-partial R-squared (SPR) 
• R-squared (RS) 
• Distance between two clusters (CD). 
Getting into a more detailed description of  them we can 
say that: 

RMSSTD of  a new clustering scheme defined at a 
level o f  a clustering hierarchy is the square root of  the 
variance of  all the variables (attributes used in the 
clustering process). This index measures the 
homogeneity of  the formed clusters at each step of  the 
hierarchical algorithm. Since the objective of  cluster 
analysis is to form homogeneous groups the RMSSTD 
of  a cluster should be as small as possible. In case that 
the values of  RMSSTD are higher than the ones of  the 
previous step, we have an indication that the new 
clustering scheme is worse. 

In the following definitions we shall use the term SS, 
which means Sum of Squares and refers to the equation: 

N 

( 83 SS= 
i=l 

Along with this we shall use some additional symbolism 
like: 

i) SSw referring to the sum of  squares within group, 
ii) SSb referring to the sum of  squares between 

groups. 
iii) SSt referring to the total sum of squares, of  the 

whole data set. 
SPR for a the new cluster is the difference between 

SSw of  the new cluster and the sum of  the SSw's values 
of  dusters joined to obtain the new cluster (loss of 
homogeneity), divided by the SSt for the whole data set. 
This index measures the loss of  homogeneity after 
merging the two clusters o f  a single algorithm step. I f  
the index value is zero then the new cluster is obtained 
by merging two perfectly homogeneous dusters. I f  its 
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value is high then the new cluster is obtained by 
merging two heterogeneous dusters. 

RS of  the new cluster is the ratio of  SSb over SS,. SSb 
is a measure of  difference between groups. Since SSt = 
SSb + SSw. the greater the SSb the smaller the SSw and 
vise versa. As a result, the greater the differences 
between groups are the more homogenous each group 
is and vise versa. Thus, RS may be considered as a 
measure of  dissimilarity between clusters. Furthermore, 
it measures the degree of  homogeneity between groups. 
The values of  RS range between 0 and 1. In case that 
the value of  RS is zero (0) indicates that no difference 
exists among groups. On the other hand, when RS 
equals 1 there is an indication of  significant difference 
among groups. 

The CD index measures the distance between the 
two clusters that are merged in a given step of  the 
hierarchical clustering. This distance depends on the 
selected representatives for the hierarchical clustering 
we perform. For instance, in case of  Centroid hierarchical 
clustering the representatives of  the formed clusters are 
the centers of  each duster, so CD is the distance 
between the centers of  the dusters. In case that we use 
single linkage CD measures the minimum Euclidean 
distance between all possible pairs of  points. In case of  
complete linkage CD is the maximum Euclidean distance 
between all pairs of  data points, and so on. 

Using these four indices we determine the number 
of  clusters that exist in a data set, plotting a graph of  all 
these indices values for a number of  different stages of  
the clustering algorithm. In this graph we search for the 
steepest knee, or in other words, the greater jump of  
these indices' values from higher to smaller number of  
clusters. 

Non-hierarchical clustering. In the case of  nonhierarchical 
clustering (e.g. K-Means) we may also use some of  these 
indices in order to evaluate the resulting clustering. The 
indices that are more meaningfial to use in this case are 
RMSSTD and RS. The idea, here, is to run the 
algorithm a number of  times for different number of  
clusters each time. Then the respective graphs of  the 
validity indices is plotted for these dusterings and as the 
previous example shows, we search for the significant 
"knee" in these graphs. The number of  clusters at 
which the "knee" is observed indicates the optimal 
clustering for our data set. In this case the validity 
indices described before take the following form: 

RMSSTD 

£ ~  ( x ,  - 7 - k ) 2  
i =  I , , .  nc k = |  
. / = 1 . . .  v 

~ , ( n  o - 1) 
i =  ,.. 
j =  I . . .  v 

(9) 

and 

RS= SS b 
SS ,  

SS ,  - SS w 

SS,  

R S =  

RS = 

SS b S S ,  - SS w 
= 

SS ~ S S ,  

Z (x~ - x ~ )  - 
CS:l'"" L t:l ~ ~' 

j = l . . . v  k= l  

(x~ - 7 ,  

(lo) 

where n, is the number of  clusters, d the number of  
variables(data dimensionality), n i is the number of  data 
values of  i dimension while nii corresponds to the 
number of  data values of  i dimension that belong to 

cluster i. Also xj is the mean of  data values o f  J 
dimension. 

2.1.5 The SD validity index. 
Another clustering validity approach is proposed in [8]. 
The SD validity index definition is based on the 
concepts of  average scatteringJbr clusters and total separation 
between clusters. In the sequel, we give the fundamental 
definition for this index. 
Average scattering Jbr clusters. The average scattering for 
clusters is defined as 

n¢ 

Scat, (n:) = ~ II<>-(v,)ll/ll<,-(a')ll.= (11) 

Total separation between clusters. The definition of  total 
scattering (separation) between clusters is given by 
equation (12) 

Dmax nc nc 
Dis(n,) = vk _vz (12) 

rain k=l ~ z = l  

where D,,~. = max(] Ivi - vii i) Vi, j e{1, 2,3,..., no} is 
the maximum distance between cluster centers. The D,~i, 
= min(I Ivi-  vii i) Vi, j e{1,  2 ..... nc } is the minimum 
distance between cluster centers. 
Now, we can define a validity index based on equations 
(11) and (12) as follows 

SD(n,) = a. Scat(n~) + Dis(n,) (13) 

where a is a weighting factor equal to Dis(c,,,~) where c,,,,< 
is the maximum number of  input clusters. 

The first term (i.e., gcat(n~) is defined in equation (11) 
indicates the average compactness of  clusters (i.e., intra- 
cluster distance). A small value for this term indicates 
compact clusters and as the scattering within clusters 
increases (i.e., they become less compact) the value of  
Scat(nJ also increases. The second term Dis(n~) indicates 
the total separation between the n, dusters (i.e., an 
indication of  inter-cluster distance). Contrary to the first 
term the second one, Dis(nJ, is influenced by the 
geometry of  the dusters and increase with the number 
of  dusters. The two terms of  SD are of  the different 
range, thus a weighting factor is needed in order to 
incorporate both terms in a balanced way. The number 
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of  dusters, n,, that minimizes the above index is an 
optimal value. Also, the influence of  the maximum 
number of  clusters c . . . .  related to the weighting factor, 
in the selection of  the optimal clustering scheme is 
discussed in [8]. It is proved that SD proposes an 
optimal number of  clusters almost irrespectively of  the 
C m a x  value. 

2.1.6 The S Dbw validity index. 
A recent validity index is proposed in [10]. It exploits 
the inherent features of  clusters to assess the validity of  
results and select the optimal partitioning for the data 
under concern. Similarly to the SD index, its definition 
is based on compactness and separation taking also into 
account density. 

In the following, S_Dbw is formalized based on: i. 
clusters' compactness (in terms of  intra-cluster 
variance), and ii. density between clusters (in terms of  
inter-cluster density). 

Let D={vil i=1,. . . ,  n, } be a partitioning of  a data 
set S into c convex clusters where vi is the center of  each 
cluster as it results from applying a clustering algorithm 
to S. 
Let stdev be the average standard deviation of  clusters 

defined as: sider = 7~l]a(v,)l] • 

Further the term I I xl [ is defined as : I I xl I = (xrx) l/z, 
where x is a vector. 
Then the overall inter-duster density is defined as: 

Definit ion 1. Inter-cluster Density (ID) - It evaluates the 
average density in the region among clusters in relation 
to the density of  the clusters. The goal is the density 
among dusters be low in comparison with the density in 
the clusters. Then, inter-cluster density is defined as 
follows: 

l ~ f ~  densiry(u,j) .l (14) 

where vi, v I are the centers of  clusters ci, ci, respectively 
and uij the middle point of  the line segment defined by 
the dusters' centers Vi,  Vj . The term density(u) defined 
in equation (15): 

no 

d~.~(~ )= ~ s(-<,,,, ), (15) 

where nil is the number of  tuples that belong to the 
cluster c~ and % i.e., x~ e c~, q _G S. It represents the 
number of  points in the neighbourhood of  u. In our 
work, the neighbourhood of  a data point, u, is defined 
to be a hyper-sphere with center u and radius the 
average standard deviation of  the clusters, stdev. More 
specifically, functionf(x,t 0 is defined as: 

f(x,u)=(~' if d(x,u)>stdeVotherwise (16) 

A point belongs to the neighbourhood of  u if its 
distance from u is smaller than the average standard 
deviation of  clusters. Here we assume that data ranges 
are normalized across all dimensions of  finding the 
neighbours of  a multidimensional point [1]. 

Definit ion 2. Intrd-cluster yah'ante. It measures the 
average scattering of  dusters. Its definition is given by 
equanon 11. 

Then the validity index S Dbw is defined as: 

S_Dbw (n,) = Scat(n<) + Dens_bw(m) (17) 
The definition of S_Dbw indicates that both criteria of  
"good" clustering (i.e., compactness and separation) are 
properly combined, enabling reliable evaluation of  
clustering results. Also, the density variations among 
clusters are taken into account to achieve in more 
reliable results. The number of  dusters, no that 
minimizes the above index an optimal value indicating 
the number of  clusters present in the data set. 

Moreover, an approach based on the S_Dbw index 
is proposed in [9]. It evaluates the clustering schemes of  
a data set as defined by different clustering algorithms 
and selects the algorithm resulting m optimal 
partitioning of  the data. 

In general terms, S Dbw enables the selection both 
of  the algorithm and its parameters values for which the 
optimal partitioning of a data set is defined (assuming 
that the data set presents clustering tendency). 
However, the index cannot handle properly arbitrarily 
shaped clusters. The same applies to all the 
aforementioned indices. 

2.2 Fuzzy Clustering. 
In this section, we present validity indices suitable for 
fuzzy clustering. The objective is to seek clustering 
schemes where most of  the vectors of  the dataset 
exhibit high degree of  membership in one cluster. Fuzzy 
clustering is defined by a matrix U=[uii], where uii 
denotes the degree of  membership of  the vector xi in 
cluster j. Also, a set of  cluster representatives is defined. 
Similarly to crisp clustering case a validity index, q, is 
defined and we search for the minimum or maximum in 
the plot of q versus n,. Also, in case that q exhibits a 
trend with respect to the number of  clusters, we seek a 
significant knee of  decrease (or increase) in the plot of  
q. 

In the sequel two categories of  fuzzy validity indices 
are discussed. The first category uses only the 
memberships values, uii, of  a fuzzy partition of  data. 
The second involves both the U matrix and the dataset 
itself. 

2.2. I Validily Indices involving on~ the membership values. 
Bezdek proposed in [2] the parfftion coeffcient, which is 
defined as 

n c 

 c=± E4 (is) N ~77~ i=1 
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The PC index values range in [1/no, 1], where m is 
the number of  clusters. The closer to unity the index the 
"crisper" the clustering is. In case that all membership 
values to a fuzzy partition are equal, that is, uii=l/n¢, the 
PC obtains its lower value. Thus, the closer the value of  
PC is to 1/no, the fuzzier the clustering is. Furthermore, 
a value close to 1/n¢ indicates that there is no clustering 
tendency in the considered dataset or the clustering 
algorithm failed to reveal it. 
The partition entropy coqfident is another index of  this 
category. It is defined as follows 

• N nc 

P E = - ~ i ~ l u o ' l ° g , ( u o ) =  -= (19) 

where a is the base of  the logarithm. The index is 
computed for values of  m greater than 1 and its values 
ranges in [0, log, n,]. The closer the value of  PE to 0, the 
crisper the clustering is. As in the previous case, index 
values close to the upper bound (i.e., log, n,), indicate 
absence of  any clustering structure in the dataset or 
inability of  the algorithm to extract it. 

The drawbacks of  these indices are: 
i) their monotonous dependency on the number of  

clusters. Thus, we seek significant knees of  increase 
(for PC) or decrease (for PE) in the plots of  the 
indices versus the number of  clusters., 

fi) their sensitivity to the fuzzifier, m. The fuzzifier is a 
parameter of  the fuzzy clustering algorithm and 
indicates the fuzziness of  clustering results. Then, as 
m ~  1 the indices give the same values for all values 
of  n,. On the other hand when m - )  o0, both PC and 
PE exhibit significant knee at m =2. 

iii) the lack of  direct connection to the geometry of  the 
data [3], since they do not use the data itself. 

2.2.2 Indices involving the membership values and the 
dataset. 

The Xie-Beni index [19], XB, also called the compactness 
and separation validity function, is a representative 
index of  this category. 

Consider a fuzzy partition of  the data set X= {xj; 
j=l,.., n} with vi(i=l,..., no} the centers of  each cluster 
and uii the membership of data point j with regards to 
cluster i. 

The fuzzy deviation of x i form cluster i, dii, is 
defined as the distance between x i and the center of  
cluster weighted by the fuzzy membership of  data point 
j belonging to cluster i. 

dii=uii] I xi -vi I I (20) 
Also, for a cluster i, the sum of the squares of  fuzzy 
deviation of  the data point in X, denoted oi, is called 
variation of  duster i. 

The sum of  the variations of  all clusters, o, is called 
total variation of  the data set. 

The term n=(oi/ni), is called compactness of  cluster 
i. Since ni is the number of  point in cluster belonging to 
cluster i, ~, is the average variation in cluster i. 

Also, the separation of  the fuzzy partitions is defined 
as the minimum distance between cluster centers, that is 

Dmin -~ min I ] vi -vii I 
Then XB index is defined as 

XB=n/N.dmin 
where N is the number of  points in the data set. 

It is clear that small values of  XB are expected for 
compact and well-separated clusters. We note, however, 
that XB is monotonically decreasing when the number 
of  clusters n, gets very large and close to n. One way to 
eliminate this decreasing tendency of  the index is to 
determine a starting point, c . . . .  of  the monotony 
behaviour and to search for the minimum value of XB 
in the range [2, cm=]. Moreover, the values of  the index 
XB depend on the fuzzifier values, so as if m~o0  then 
XB'-~o0. 

Another index of  this category is the Fukqyama- 
Sugeno index, which is defined as 

i=1 j=l 

where v is the mean vector of  X and A is an lxl positive 
definite, symmetric matrix. When A=I, the above 
distance becomes the Eucfidean distance. It is clear that 
for compact and well-separated clusters we expect small 
values for FSm. The first term in brackets measures the 
compactness of  the clusters while the second one 
measures the distances of  the clusters representatives. 

Other fuzzy validity indices are proposed in [6], 
which are based on the concepts of  hypervolume and 
density. Let Z i the fuzzy covariance matrix of  the j-th 
cluster defined as 

E :  u ~ ( x , - v , ~ x , - v j )  r (22) 
~ j =  N m 

E i = I  I./~ 
The fuzzy hyper volume of  j-th cluster is given by equation: 

Vj = Ix j l  */z 
where I ZJl is the determinant of  £j and is a measure of  
cluster compactness. 

Then the total fuzzy hyper volume is given by the 
equation 

nc 

FH = Z V, (23) 

Small values of  FH indicate the existence of  compact 
clusters. 
The average partition density is also an index of  this 
category. It can be defined as 

n¢ 
1 ~ - ,  Sj (24) 

eA=.o 
Then Sj = Zx~Xj u•, where X i is the set of  data points 

that are within a pre-speeified region around v i (i.e., the 
center of  cluster j), is called the sum of  the central 
members of the cluster j. 
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Table 1. Optimal number of clusters proposed by validity indices 
DataSetl I DataSet2 I DataSet3 I N d S e t  

Optimal number  of clusters 
RS, RMSSTD 3 2 5 3 

D B  6 3 7 3 
SD 4 3 6 3 

S_Dbw 4 2 7 3 

A different measure is the partition density index t 
defined as 

PD=S/FH (25) 

where S= E ; : S i .  
A few other indices are proposed and discussed in [11, 
13]. 

2.3 Other approaches for cluster validity 
Another approach for finding the best number of  
cluster of a data set was proposed in [17]. It introduces 
a practical clustering algorithm based on Monte Carlo 
cross-validation. More specifically, the algorithm 
consists of M cross-validation runs over M chosen 
train/test partitions of  a data set, D. For each partition 
u, the EM algorithm is used to define nc clusters to the 
training data, while nc is varied from 1 to c . . . .  Then, the 
log-likelihood Lu(D) is calculated for each model with 
n¢ clusters. It is defined using the probability density 
function of the data as 

Lk(D) = E,:, log f ,  ( x , / ¢ ,  ) 
(26) 

where f i  is the probability density function for the data 
and Oh denotes parameters that have been estimated 
from data. This is repeated M times and the M cross- 
validated estimates are averaged for each n,. Based on 
these estimates we may define the posterior 
probabilities for each value of the number of  clusters no 
p(nc/D). If  one of p(nc/D) is near 1, there is strong 
evidence that the particular number of  dusters is the 
best for our data set. 

The evaluation approach proposed in [171 is based 
on density functions considered for the data set. Thus, 
it is based on concepts related to probabilistic models in 
order to estimate the number of clusters, better fitting a 

data set, and it does not use concepts directly related to 
the data, (i.e., inter-cluster and intra-clusters distances). 

3. A N  E X P E R I M E N T A L  S T U D Y  
In this section we present a comparative experimental 
evaluation of  the important validity measures, aiming at 
illustrating their advantages and disadvantages. 

We consider relative validity indices proposed in the 
literature, such as RS-RMSSTD [16], DB [18] and the 
most recent ones SD [8], and S_Dbw[10]. The 
defirfitions of  these validity indices can be found in 
Section2.1. For our study, we used four synthetic two- 
dimensional data sets further referred to as DataSetl, 
DataSet2, DataSet3 (see Figure la-c) and a six- 
dimensional dataset N d S e t  containing three clusters. 

Table 1 summarizes the results of the validity indices 
(RS, RMSSDT, DB, SD and S_Dbw), for different 
clustering schemes of the above-mentioned data sets as 
resulting from a clustering algorithm. For our study, we 
use the results of the algorithms K-Means[12] and 
CURE[7] with their input value (number of  clusters) 
ranging between 2 and 8. Indices RS, R.MSSTD propose 
the partitioning of  DataSetl into three clusters while 
DB selects six clusters as the best partitioning. On the 
other hand, SD and S Dbw select four clusters as the 
best partitioning for DataSetl, which is also the correct 
number of  clusters fitting the underlying data. 
Moreover, the indices S_Dbw and DB select the correct 
number of  clusters(i.e., seven) as the optimal 
partitioning for DataSet3 while RS, RMSSTD and SD 
select the clustering scheme of five and six clusters 
respectively. Also, all indices propose three clusters as 
the best partitioning for Nd Set. In the case of  
DataSet2, DB and SD select three clusters as the 
optimal scheme, while RS-RMSSDT and S_Dbw select 
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two clusters (i.e., the correct number of clusters fitting 
the data set). 

Here, we have to mention that a validity index is not 
a clustering algorithm itself but a measure to evaluate the 
results of clustering algorithms and gives an indication 
of a partitioning that best fits a data set. The semantics 
of clustering is not a totally resolved issue and 
depending on the application domain we may consider 
different aspects as more significant. For instance, for a 
specific application it may be important to have well 
separated clusters while for another to consider more 
the compacmess of the clusters. In the case of S_Dbw, 
the relative importance of the two terms on which the 
index definition is based can be adjusted. Having an 
indication of a good partitioning as proposed by the 
index, the domain experts may analyse further the 
validation procedure results. Thus, they could select 
some of the partitioning schemes proposed by S_Dbw, 
and select the one better fitting their demands for crisp 
or overlapping clusters. For instance DataSet2 can be 
considered as having three clusters with two of them 
slighdy overlapping or having two well-separated 
clusters. In this case we observe that S Dbw values for 
two and three clusters are not significandy different 
(0.311, 0.324 respectively). This is an indication that we 
may select either of  the two partitioning schemes 
depending on the clustering interpretation. Then, we 
compare the values of Scat and Dens bw terms for the 
cases of two and three clusters. We observe that the two 
clusters scheme corresponds to well-separated clusters 
(Dens_bw(2)= 0.0976 < Dens_bw(3)= 0.2154) while 
the three-clusters scheme contains more compact 
clusters (Scat(2)= 0.21409 >Scat(3)= 0.1089). 

4. CONCLUSIONS AND T R E N D S  IN 
CLUSTERING VALIDITY 

Cluster validity checking is one of the most important 
issues in cluster analysis related to the inherent features 
of the data set under concern. It aims at the evaluation 
of clustering results and the selection of the scheme that 
best fits the underlying data. 

The majority of algorithms are based on certain 
criteria in order to define the clusters in which a data set 
can be partitioned. Since clustering is an unsupervised 
method and there is no a-priori indication for the actual 
number of clusters presented in a data set, there is a 
need of some kind of clustering results validation. We 
presented a survey of the most known validity criteria 
available in literature, classified in three categories: 
external, internal, and relative. Moreover, we discussed 
some representative validity indices of these criteria 
along with a sample experimental evaluation. 

As we discussed earlier the validity assessment 
approaches works better when the clusters are mosdy 
compact. However, there are a number of applications 
where we have to handle arbitrarily shaped clusters (e.g. 
spatial data, medicine, biology). In this case the 

traditional validity criteria (variance, density and its 
continuity, separauon) are not any more sufficient. 

There is a need for developing quality measures that 
assess the quality of the partitioning taking into account 
i. intra-cluster quality, ii. inter-cluster separation and iii. 
geometry of the clusters, using sets of  representative 
points, or even multidimensional curves rather than a 
single representative point. 

Another challenge is the definition of an integrated 
quality assessment model for data mining results. The 
fundamental concepts and criteria for a global data 
mining validity checking process have to be introduced 
and integrated to define a quality model. This will 
contribute to more efficient usage of  data mining 
techniques for the extraction of valid, interesting, and 
exploitable patterns of knowledge. 
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