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Abstract

Balanced clustering algorithms can be useful in a variety
of applications and have recently attracted increasing re-
search interest. Most recent work, however, addressed only
hard balancing by constraining each cluster to have equal
or certain minimum number of data objects. This paper pro-
vides a soft balancing strategy built upon a soft mixture-of-
models clustering framework. This strategy constrains the
sum of posterior probabilities for each cluster to be equal
and thus balances the expected number of data objects in
each cluster. We first derive soft model-based clustering
from an information-theoretic viewpoint and then show that
the proposed balanced clustering can be parameterized by
a temperature parameter that controls the softness of clus-
tering as well as that of balancing. As the temperature
decreases, the actual resulting partitioning becomes more
and more balanced. In the limit, when temperature be-
comes zero, the balancing becomes hard and the actual par-
titioning becomes perfectly balanced. The effectiveness of
the proposed soft balanced clustering algorithm is demon-
strated on both synthetic and real text data.

1 Introduction

Clustering algorithms have been widely studied across
multiple disciplines for several decades [13, 15, 16]. A
central goal of clustering is to group similar data objects
together and to extract a compact representation for each
group. Current clustering methods can be divided into dis-
criminative (similarity-based) approaches [31, 14, 19] and
generative (model-based) approaches [23, 4, 7]. Similarity-
based approaches focus on partitioning data objects ac-
cording to a data-pairwise (dis)similarity measure, whereas
model-based approaches aim at estimating a set of gener-
ative models for each cluster, usually through a maximum
likelihood approach. This paper is based on model-based
clustering.

In many data mining applications, it is often desirable
to have (approximately) balanced clusters. For example,
pre-clustering is sometimes used to build an indexing struc-
ture to facilitate search in very large databases. When a
query comes in, the search engine can first check the cluster
representatives and then only search the individual records
in those closely matched clusters. If the clusters are very
skewed in size, the worst case search time can be close
to the time needed to search over all data records. There-
fore, balanced clusters can significantly reduce search time.
Similarly, in a clustering of a large corpus of documents to
generate topic hierarchies, balancing can greatly improve
navigation by avoiding the generation of highly skewed hi-
erarchies, with uneven depth in different parts of the “tree”
hierarchy or having widely varying number of documents at
the leaf nodes.

In addition to application requirements, balanced clus-
tering is sometimes also helpful because it tends to de-
crease sensitivity to initialization and to avoid outlier clus-
ters (highly under-utilized representatives) from forming,
and thus has a beneficial regularizing effect. This is espe-
cially useful for k-means type algorithms, including the soft
EM variant [5], which are increasingly prone to yielding
unbalanced solutions as the input dimensionality increases.
This problem is exacerbated when a large (tens or more)
number of clusters are needed, and it is well known that
both hard and soft k-means invariably result in some near-
empty clusters in such scenarios [6, 3].

Many clustering algorithms favor balanced clusters even
though there are no explicit balancing constraints in their
objective functions. For example, in divisive hierarchical
clustering, one can pick the largest cluster to split at each
iteration, resulting in a set of relatively balanced clusters.
Frequency sensitive competitive learning [1, 11] penalizes
the distance to large clusters thus eliminates empty clus-
ters. Spectral graph partitioning algorithms [9, 17, 24] use
a modified minimum cut objective that favors balanced par-
titioning since exact minimum cut solution often leads to
completely useless results (e.g., one point in one cluster and



all other points in the other in a bipartitioning). These algo-
rithms, however, do not guarantee the level of balancing and
have no principled way of adjusting it in the final clustering
results.

The problem of clustering large scale data under con-
straints such as balancing has recently received attention
in the data mining literature [6, 30, 27, 2, 33]. Since bal-
ancing is a global property, it is difficult to obtain near-
linear time techniques to achieve this goal while retaining
high cluster quality [12]. Banerjee and Ghosh [3] proposed
a three-step framework for balanced clustering: sampling,
balanced clustering of the sampled data, and populating
the clusters with the remaining data points in a balanced
fashion. This algorithm has relatively low complexity of
O(N log(N)) but relies on the assumption that the data it-
self is very balanced (for the sampling step to work). Here
N is the number of data objects. Bradley et al. [6] de-
veloped a constrained version of the k-means algorithm.
They constrained each cluster to be assigned at least a min-
imum number of data points at each iteration. The data as-
signment subproblem was formulated as a minimum cost
flow problem, which has a high (O(N3)) complexity. In a
previous work [33], we presented a general framework for
adapting any hard model-based clustering to provide bal-
anced solutions. An efficient heuristic was developed to
solve the completely balanced data assignment subproblem
in O(K2N + KN log N) time, whereK is the number of
clusters.

These existing balanced clustering algorithms, however,
mostly concentrated on hard balancing that constraints each
cluster to have equal or certain minimum number of data
objects. In some situations, strict balance is not required
or desired. In this case, hard balancing does not offer the
needed flexibility given the evidence that hard balancing can
group two distant data points together [6].

The contribution of this paper is a soft balancing strategy
built on a general soft model-based clustering framework.
Instead of constraining the actual number of data objects in
each cluster to be equal, we constrain the expected number
of data objects in each cluster to be equal. This is realized
by setting the sum of posterior probabilities to be equal to
N/K for each cluster. The resulting algorithm is parame-
terized by a temperature parameter, which controls the soft-
ness of clustering as well as that of balancing. Therefore, it
provides a knob for users to adjust the level of balancing for
different applications. Also it turns out that this soft balanc-
ing strategy is computationally more efficient compared to
hard balancing and has a time complexity ofO(KN). Fi-
nally, the proposed soft balancing is a general method that
can be applied to any application for which good generative
models exist.

The organization of this paper is as follows. Section 2
gives an information-theoretic derivation of soft model-

based clustering. Section 3 details the soft balancing strat-
egy built upon the general model-based clustering frame-
work. Section 4 demonstrates the effectiveness of the pro-
posed soft balanced clustering algorithms through experi-
mental results on both synthetic and real text data. Finally,
Section 5 summarizes this paper with some concluding re-
marks.

2 Soft Model-based Clustering

In this section, we present a principled, information-
theoretic derivation of model-based clustering. The deriva-
tion process is similar to that of deterministic annealing
[26] and provides a useful generalization of the standard
mixture-of-models clustering [23, 4, 7]. The resulting algo-
rithm is parameterized by a temperature parameterT , which
governs the randomness of posterior data assignments. As
we will see, the standard mixture-of-models clustering cor-
responds to the special caseT = 1 whereas k-means clus-
tering corresponds to the special caseT = 0.

In model-based clustering, one estimatesK models from
N data objects, with each model representing a cluster. Let
us define the loss function of assigning a data objectx to
a clustery to be− log P (x|λy), which is the negative log-
likelihood of x from modelλy [20]. Let the joint probabil-
ity betweenx andy be P (x, y). We aim to minimize the
expected loss

E = −
∑
x,y

P (x, y) log p(x|λy)

= −
∑

x

P (x)
∑

y

P (y|x) log p(x|λy) ,

or equivalently, to maximize the expected log-likelihood

L =
∑

x

P (x)
∑

y

P (y|x) log p(x|λy) . (1)

Note that in practice it is unavoidable to use a sample aver-
age to calculate (1), i.e., to set the priorP (x) to be constant
1/N . As N goes to infinity, the sample average approaches
the expected log-likelihood asymptotically.

Directly maximizing (1) overP (y|x) andλy leads to a
generic model-based k-means algorithm [33], which iter-
ates between the following two steps:

P (y|x) =
{

1, y = arg maxy′ log p(x|λy′);
0, otherwise, (2)

and
λy = arg max

λ

∑
x

P (y|x) log p(x|λy) . (3)

The posterior probabilityP (y|x) in (2) is actually condi-
tioned on current parametersΛ = {λ1, ..., λK}, but for



simplicity we useP (y|x) instead ofP (y|x, Λ) where there
is no confusion. Equation (2) represents a hard data as-
signment strategy—each data objectx is assigned, with
probability 1, to the clustery that gives the maximum
log p(x|λy). When equi-variance spherical Gaussian mod-
els are used, this model-based k-means algorithm reduces to
the standard k-means algorithm [22, 21]. It is well known
that the k-means algorithm tends to quickly get stuck in a
local solution. One way of alleviating this problem is to use
soft assignments.

To introduce some randomness/softness to the data as-
signment step, we add entropy terms to (1) to get an
entropy-constrained objective function. LetX be the set
of all data objects andY the set of all cluster indices. The
new objective is

L1 = L+T ·H(Y |X)−T ·H(Y ) = L−T ·I(X; Y ) , (4)

whereH(Y ) = −∑
y P (y) log P (y) is the cluster prior

entropy,H(Y |X) =
∑

x P (x)
∑

y P (y|x) log P (y|x) the
average posterior entropy, andI(X;Y ) the mutual infor-
mation betweenX andY . The parameterT is a Lagrange
multiplier used to tradeoff between maximizing the average
log-likelihood L and minimizing the mutual information
betweenX andY . If we fix H(y), minimizing I(X;Y )
is equivalent to maximizing the average posterior entropy
H(Y |X), or maximizing the randomness of the data assign-
ment.

Note the added entropy terms do not change the model
re-estimation formula (3) since the model parameters that
maximizeL also maximizeL1. To solve forP (y|x) un-
der constraint

∑
y P (y|x) = 1, we first construct the La-

grangianL = L1 +
∑

x ξx(
∑

y P (y|x)− 1) and then let

the partial derivative ∂L
∂P (y|x) = 0 . The resultingP (y|x) is

given by

P (y|x) =
P (y)p(x|λy)

1
T

∑
y′ P (y)p(x|λy′)

1
T

. (5)

If P (y) is not knowna priori, we can estimate it from the
data asP (y) =

∑
x P (x)P (y|x) . Now we get a model-

based clustering algorithm parameterized by the parameter
T , which has a temperature interpretation in deterministic
annealing [26]. A standard deterministic annealing algo-
rithm for model-based clustering is shown in Fig. 1. Note
that at each temperature, the EM algorithm [8] is actually
used to maximize (4), with cluster labelsY being the hid-
den variable and (5) and (3) corresponding to E-step and
M-step, respectively.

It can be shown that plugging (5) into (4) and setting
T = 1 reduces the objective function to

L∗1 =
∑

x

P (x) log

(∑
y

P (y)p(x|λy)

)
, (6)

Algorithm: model-based clustering via deterministic anneal-
ing

Input: A set of N data objectsX = {x1, ..., xN}, model
structureΛ = {λ1, ..., λK}, temperature decreasing rate
α, 0 < α < 1, and final temperatureTf (usually a small
positive value close to 0).

Output: Trained modelsΛ and a partition of the data
objects given by the cluster identity vectorY =
{y1, ..., yN}, yn ∈ {1, ..., K} .

Steps:

1. Initialization: initialize the model parametersΛ and set
T to be high (a large number);

2. Optimization: optimize (4) by iterating between (5) and
(3) until convergence;

3. Annealing: lower the temperature parameterT (new) =
αT (old), go to step 4 ifT < Tf , otherwise go back to
step 2.

4. For each data objectxn, setyn = arg maxy P (y|xn) .

Figure 1. Deterministic annealing algorithm
for model-based clustering.

which is exactly the (incomplete data log-likelihood) objec-
tive function that the standard mixture-of-models clustering
maximizes. It is a common practice to refer to the mixture-
of-models clustering that maximizes (6) as EM clustering.
As T goes to 0, (5) reduces to (2) and the algorithm re-
duces to model-based k-means, independent of the actual
P (y)’s (unless they are 1 and 0’s). For anyT > 0, iterat-
ing between (5) and (3) gives a soft model-based clustering
algorithm that maximizes (4) for a givenT .

This analysis makes it clear that model-based k-means
and EM clustering can be viewed as two special stages
of the deterministic annealing process, withT = 0 and
T = 1, respectively, and they optimize two different ob-
jective functions (L vs. L − I(X;Y )). Since largerT in-
dicates smoother objective function and a smaller number
of local solutions, theoretically the EM clustering (T = 1)
should have a better chance of finding good local solutions
than the model-based k-means algorithm (T = 0). So it
makes sense to use the EM clustering results to initialize the
model-based k-means, which has been heuristically used in
practice (e.g., using mixture-of-Gaussians to initialize stan-
dard k-means). It can be viewed as a one-step deterministic
annealing algorithm (temperature decreases one time from
T = 1 to T = 0). Of course, a better approach is always to
start at a highT À 1 and gradually reduceT toward 0.

The computational complexity for all the algorithms de-
scribed above is linear in the number of data samplesN ,
provided that we use a constant (maximum) number of iter-



ations and a model training algorithm that has linear com-
plexity.

3 Model-based clustering with soft balancing

In previous work [33], we have built a generic bal-
anced hard clustering algorithm, based upon model-based
k-means. In this section we shall show how we can build
soft balancing based on the soft model-based clustering
framework presented in the previous section.

Instead of enforcing the exact number of data objects
grouped into each cluster to be equal, we constrain the sum
of posterior probabilities for each cluster to be equal to
N/K, which equalizes the expected number of objects as-
signed to each cluster. This is a soft balancing constraint in
that the actual partitioning can be unbalanced. Our exper-
imental results show that the softness of balancing can be
characterized byT , the same parameter that parameterizes
the softness of clustering.

After taking into account the soft balancing constraints

∑
x

P (y|x) =
N

K
, ∀y , (7)

we construct the Lagrangian w.r.t.P (y|x) as

L = L1 +
∑

x

ξx(
∑

y

P (y|x)− 1)

+
∑

y

ηy

(∑
x

P (y|x)−M

)
,

where ξx and ηy are Lagrange multipliers. Taking the
derivative ∂L

∂P (y|x) = 0 , and after some algebra, we get

P (y|x) =
P (y) [eηyp(x|λy)]

1
T

∑
y′ P (y′) [eηy′p(x|λy′)]

1
T

. (8)

For balance clustering, it makes sense to setP (y) to be
1/K, which eliminatesP (y) from (8). For simplicity, let
βy = eηy . Plugging (8) into (7), we get

∑
x

[βyp(x|λy)]
1
T

∑
y′ [βy′p(x|λy′)]

1
T

=
N

K
. (9)

To solve forβy ’s in (9), we take an iterative optimization
approach since a closed form solution is not available. The
iterative formula forβy can be derived from (9) as

β(t+1)
y =




N/K
∑

x
p(x|λy)

1
T∑

y′
(
β

(t)
y′ p(x|λy′ )

) 1
T




T

, (10)

wheret is the iteration number. We useβ(0)
y = 1,∀y. To

avoid possible underflow problem with very small likeli-
hoodp(x|λy), we operate on log-likelihoodlog p(x|λy) and
log βy and use the following implementation:

log β(t+1)
y = T · log

(
N

K

)
−

T · log


∑

x

e
1
T log p(x|λy)

∑
y′ e

1
T

(
log β

(t)
y′ +log p(x|λy′ )

)

. (11)

Now we have a soft balancing strategy parameterized
by the temperature parameterT . Experimental results (see
Fig. 2) show that the iterative estimation oflog βy converges
fast for a highT but can be very slow for a lowT . To avoid
long estimation time for a low temperature (e.g.,T = 0.01),
we take an annealing approach for computinglog βy. That
is, starting from a high temperature (e.g.,T = 0.1) and
quickly lower the temperature towardT = 0.01. At ev-
ery temperature we run a small number of iterations and
initialize log βy ’s using the values computed from previous
temperature. As shown in Fig. 2(d), this annealing method
can converge fast even for low temperature settings.

Compared to hard balancing, soft balancing for model-
based clustering can be solved exactly and efficiently us-
ing the iterative strategy described above. If we use a
fixed number of maximum iterations, the time complexity
for computinglog β’s will be O(KN). In hard balancing
[6, 33], a linear programming problem has to be solved and
the time complexity isO(K3N3) for an exact solution and
O(K2N + KN log N) even for an approximate solution.
This is not surprising since for hard clustering, the posterior
probabilitiesP (y|x) are either 0’s or 1’s , creating a much
harder integer programming problem.1 For this reason, we
recommend using a temperatureT away from 0 (e.g., let
T > δ, whereδ > 0 is a small positive number) for our soft
balancing strategy.

4 Experimental results and discussions

In this section, we first introduce several criteria used
to evaluate balanced clustering results, followed by results
and discussions on both synthetic datasets and real text doc-
ument datasets.

4.1 Clustering evaluation

To evaluate the performance of our balanced clustering
algorithms, we use three criteria—balance, objective func-
tion value, and mutual information between cluster labels
and class labels (if they exist).

1Fortunately, the resulting integer programming problem can be re-
duced to a linear programming problem [6]. Even so, the complexity is
still high.



We measure the balance of a clustering by normalized
entropy (of the distribution of cluster sizes) that is defined
as

Nentro = − 1
log K

K∑

j=1

Nj

N
log

(
Nj

N

)
, (12)

whereNj is the number of data samples in clusterj. A nor-
malized entropy of 1 means perfectly balanced clustering
and 0 extremely unbalanced clustering.

The expected log-likelihood objective (1) is used as an
internal measure of clustering quality. For the text datasets,
where class labels are available, we calculate a normalized
mutual information (NMI) criterion as an external measure
of how well the clustering results conform to existing class
labels. There are several choices for normalization; we shall
follow the definition given in [28]:

NMI =

∑
h,l nh,l log

(
N ·nh,l

nhnl

)
√(∑

h nh log nh

N

) (∑
l nl log nl

N

) , (13)

wherenh is the number of data samples in classh, nl the
number of samples in clusterl andnh,l the number of sam-
ples in classh as well as in clusterl. TheNMI value is
1 when clustering results perfectly match the external cate-
gory labels and close to 0 for a random partitioning. This
is a better measure than purity or entropy which are both
biased towards highK solutions [29, 28].

4.2 Results on synthetic datasets

We first tested the soft balanced clustering algorithms
on a synthetic dataset—the t4 dataset (Fig. 3(a)) included
in the CLUTO toolkit [18]. There are no ground truth la-
bels for this dataset but there are six natural clusters plus
a lot of noise according to human judgment. The best al-
gorithm that can identify all the six natural clusters uses a
hybrid partitional-hierarchical approach [19, 18]. It parti-
tions the data into a large number (e.g., 30) of clusters and
then merges them back to a proper granularity level.

We intend to use our balanced clustering algorithm to get
a partition of 30 clusters. These fine granularity clusters can
be merged using a hierarchical clustering algorithm to form
a cluster hierarchy, for further interactive analysis. But here
we are only concerned with the partitional step.

Spherical Gaussian distributions are used to model clus-
ters. For a spherical Gaussian model, the covariance matrix
is a constant times identity matrix and the constant is the
variance of the Gaussian model which is constrained to be
the same for every dimension. The pdf of a spherical Gaus-
sian model can be written as

p(x|λ) =
1

(
√

2πσ)d
exp

(
−‖x− µ‖2

2σ2

)
, (14)

whereλ = {µ, σ}, µ is the mean vector,σ the standard
deviation, andd the number of dimensions.

The balanced clustering results are shown in Fig. 3. As
can be seen from the histogram distribution of cluster sizes
in Fig. 3(d), model-based clustering with soft balancing can
generate more balanced results (higher normalized entropy)
than model-based clustering without balancing. Further-
more, low temperature (Fig. 3(d)) leads to more balanced
actual partitioning, as well as better clustering quality in
terms of the average log-likelihood measure. Fig. 3(c) in-
dicates that our algorithm generates unbalanced solutions
when the temperature is high.

4.3 Results on text datasets

We used two datasets from the CLUTO toolkit2 [18]. A
summary of the datasets is shown in Table 1. The traditional
vector space representation is used for text documents, i.e.,
each document is represented as a high dimensional vec-
tor of “word”3 counts in the document. The dimensionality
equals the number of words in the vocabulary used.

Table 1. Summary of text datasets. (For each
dataset, nd is the total number of documents,
nw the total number of words, and K the num-
ber of classes.)

Data Source nd nw K

classic CACM/CRANFIELD/ 7094 41681 4
CISI/MEDLINE

tr11 TREC 414 6429 9

All the datasets have already been preprocessed [32]. We
further removed those words that appear in two or fewer
documents. Theclassicdataset was obtained by combining
the CACM, CISI, CRANFIELD, and MEDLINE abstracts
that were used in the past to evaluate various information
retrieval systems4. CACM consists of 3,203 abstracts from
computer systems papers, CISI consists of 1,460 abstracts
from information retrieval papers, MEDLINE consists of
1,033 abstracts from medical journals, and CRANFIELD
consists of 1,398 abstracts from aeronautical systems pa-
pers. The datasetstr11 was derived from TREC collections.

4.3.1 Experimental setting

We use multinomial models in the model-based clustering
of text documents. A multinomial model for clustery rep-
resents a documentx by a multinomial distribution of the

2http://www.cs.umn.edu/∼karypis/CLUTO/files/datasets.tar.gz.
3Used in a broad sense since it may represent individual words,

stemmed words, tokenized words, short phrases, etc.
4Available from ftp://ftp.cs.cornell.edu/pub/smart.



words in documentx

P (x|λy) =
∏

l

Py(wl)x(l)
, (15)

wherex(l) is the number of times wordwl occurs in doc-
umentx. To make the likelihood comparable for docu-
ments of different lengths, we normalize the log-likelihood
according to a fixed length̄Ld (which is chosen to be the
average length of all documents)

log P (x|λy) =
L̄d∑
l x

(l)

∑

l

x(l) log Py(wl)

The parametersPy(wl)’s can be estimated by counting the
number of documents in each cluster and the number of
timeswl occurs in all documents in clustery [25]. With
Laplacian smoothing, the parameter estimation of multino-
mial models amounts to

Py(wl) =
1 +

∑
x P (y|x)x(l)

∑
l

(
1 +

∑
x P (y|x)x(l)

) . (16)

4.3.2 Results and discussions

Fig. 2 shows how the number of iterations needed to es-
timate thelog βy ’s in (11) changes with different temper-
atures. Clearly, high temperature leads to faster estima-
tion whereas the iterative process can take a very long time
for low temperatures (e.g., Fig. 2(a)). As mentioned in
Section 3, we can employ an annealing approach just for
computing log βy ’s. Fig. 2(d) shows that by running a
small number of iterations at a sequence of decreasing tem-
peratures, we were able to compute an approximate (very
close) solution forlog βy ’s in 100 iterations, which is much
smaller than the number of iterations needed in Fig. 2(a).

The soft balanced clustering results fortr11 and clas-
sic datasets are shown in Fig. 4, with results fortr11 on
the left column and results forclassicon the right. The
first row shows balance measures, the second row average
log-likelihood measures, and the last row normalized mu-
tual information measures across seven different tempera-
tures. The x-axis is on a log(T) scale, which provides a
better visualization than using the T scale. The vertical bar
at each temperature shows± 1 standard deviation over
10 runs of each experiment (with random initialization for
each run). The balance of clusterings has a general trend
of going down with increasing temperature. But the clus-
tering quality, in terms of both average log-likelihood and
normalized mutual information, seems to peak somewhere
in the middle. This is intuitive in that toward very low tem-
perature setting, a highly balanced clustering starts group-
ing distant data objects together, whereas toward the other
end, highly fuzzy posterior assignments fail to discriminate
between different clusters and thus fail to generate a good
partitioning.

5 Concluding remarks

Several recent balanced clustering algorithms focused on
hard balancing. Acknowledging that balance is not the cen-
tral goal of a clustering algorithm, we have presented a soft
balancing strategy built upon a general soft model-based
clustering framework, parameterized by a temperature pa-
rameter. It offers a continuous spectrum of solutions de-
pending on where the temperature knob is set. At one end of
the spectrum (zero temperature) is the hard balancing where
all posterior probabilities are either 0 or 1. Toward the other
end (high temperature), we can get very unbalanced clus-
terings even though the expected number of data objects in
each cluster is constrained to be equal. Experimental results
show that clusterings of the highest quality often occur in
the middle of the spectrum.

The proposed soft balancing also has a computational
advantage compared to hard balanced clustering algorithms.
With a complexity linear in the number of data objects, it is
better positioned for large scale data mining applications.

Since the proposed algorithm is built on a general model-
based clustering framework, it can be readily applicable
to other applications. For example, balanced time series
clustering can be constructed with appropriate models (e.g.,
Markov chains or hidden Markov models), and can be use-
ful in financial world for building balanced portfolios.

Finally, there are several model selection methods [10]
for estimating number of clusters in a general model-based
clustering framework. The interaction between model se-
lection and balancing can be investigated.
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Figure 2. Iterative estimation of log β’s for nine multinomial models trained on tr11 dataset for different
temperatures (each curve corresponds to one of the nine clusters/models): (a) the estimation takes
more than 350 iterations to converge for T = 0.01; the estimation converges faster for (b) T = 0.04
and ever faster for (c) T = 0.1; (d) an annealing strategy is used to accelerate convergence for
T = 0.01—we iterate 30 times for T = 0.1, then 30 times for T = 0.04, and finally 40 times for T = 0.1.
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Figure 3. Balanced clustering results on t4 dataset: (a) t4 dataset; histogram distribution of cluster
sizes when clustering t4 into 30 groups using (b) EM clustering with spherical Gaussian models and
no balancing; (c) mixture-of-spherical Gaussians clustering with soft balancing (T=1); (d) mixture-
of-spherical Gaussians clustering with soft balancing (T=0.4).
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Figure 4. Soft balanced clustering results for tr11 and classicdatasets: balance (normalized entropy)
results for (a) tr11 and (b) classic; average log-likelihood results for (c) tr11 and (d) classic; normalized
mutual information results for (e) tr11 and (f) classic.


