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Abstract

Conventional document retrieval systems (e.g., Alta Vista) return long lists of
ranked documents in response to user queries. Recently, document clustering has
been put forth as an alternative method of organizing the results of a retrieval [4].
A person browsing the clusters can discover patterns that would be overlooked
in the traditional ranked-list presentation.

In this context, a document clustering algorithm has two key requirements. First,
the algorithm ought to produce clusters that are easy-to-browse — a user needs to
determine at a glance whether the contents of a cluster are of interest. Second,
the algorithm has to be fast even when applied to thousands of documents with
no preprocessing.

This paper describes several novel clustering methods, which intersect the doc-
uments in a cluster to determine the set of words (or phrases) shared by all
the documents in the cluster. We report on experiments that evaluate these
intersection-based clustering methods on collections of snippets returned from
Web search engines. First, we show that word-intersection clustering produces
superior clusters and does so faster than standard techniques. Second, we show
that our O(nlogn) expected time phrase-intersection clustering method produces
comparable clusters and does so more than two orders of magnitude faster than
word-intersection.

Key Words: Document Clustering, Intersection-based Clustering, Suffix Trees,
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1 Introduction

Conventional document retrieval systems return long lists of ranked documents that users
are forced to sift through to find documents relevant to their queries. On the Web, this
problem is exacerbated by the high recall and low precision of search engines such as Alta
Vista [5], Hotbot[14], etc. Moreover, the typical user has trouble formulating highly specific
queries and does not take advantage of advanced search options. Finally, this problem gets
worse as the Web continues to grow.

Instead of attempting to reduce the number of documents returned (e.g., by filtering
methods [25] or by advanced pruning options [24]) we attempt to make search engine results
easy to browse. Following the approach outlined in [4], we investigate document clustering
as a method that enables users to efficiently navigate through a large collection of search
engine results. In addition, clustering enables the user to discover patterns and structure in
the document set that could be overlooked in the traditional ranked-list presentation. We
believe that a document clustering method in this context requires:

1. Ease-of-browsing: A user needs to determine at a glance whether the contents of a
cluster are of interest.

2. Speed: Web “surfers” are impatient and expect results within seconds.
3. Scalability: The method should be able to quickly cluster thousands of documents.

4. No Preprocessing: Since clustering is applied to a dynamically generated set of
documents, it cannot rely on preprocessing of the documents to improve its efficiency.

5. Snippet-Capable: The method should produce “reasonable” clusters even when it
only has access to the short document snippets returned by the search engines. Most
users are unwilling to wait for the system to download the original documents.

In this paper we describe and experimentally evaluate several novel clustering methods
that meet the above requirements to varying degrees.

The rest of this paper is organized as follows: The next section is a short overview of
document clustering. Sections 3 and 4 describe word-intersection clustering and phrase-
intersection clustering respectively. Section 5 describes preliminary experiments that com-
pare our novel methods to standard clustering algorithms on collections of snippets returned
by Web search engines. We conclude with a discussion of related and future work.

2 Document Clustering

Document clustering has been traditionally investigated mainly as a means of improving
document search and retrieval. Recently, a technique named Scatter/Gather [4, 12] intro-
duced document clustering as a document browsing method. Our work follows the same
paradigm.

Document clustering algorithms fall into one of two classes: hierarchical and non-hierarchical
(i.e., “flat”) methods [20]. Hierarchical clustering methods [32] create a binary-tree like or-
ganization (a dendrogram) and have the advantage of allowing the clusters to be viewed

at different levels of resolution. Hierarchical agglomerative clustering (HAC) methods start
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with each document in a cluster of its own, iterate by merging the two closest clusters at
each step, and terminate when some halting criterion is reached. Typically, these are greedy
algorithms with no backtracking. HAC methods differ in three principal respects: (1) the
distance function between documents, (2) the distance function between clusters, and (3)
the halting criterion.

HAC clustering methods require the definition of a similarity or distance function between
two documents. Each document is typically represented as a weighted attribute vector, with
each word in the entire document collection being an attribute in this vector. These long,
sparse vectors represent the fact that we are operating in a high-dimensional space where
we do not know in advance which attributes would be significant to our task. The Dice,
Jaccard, and Cosine similarity measures all look at the dot product between two attribute
vectors, and differ by their normalization methods [23].

Given a definition for the distance between two documents, there are many ways to
define the distance between two clusters (i.e., sets of documents). The characteristics of the
resulting clustering® and the time complexity of the HAC algorithm are both greatly determ-
ined by the definition of this cluster distance [30]. The commonly used distance functions
between clusters are Single-Link (which defines the distance as the minimum document dis-
tance between the two clusters), Complete-Link (the mazimum distance) and Group-Average
(the average distance).

Several halting criteria for HAC methods have been suggested [19], but typically they fail
to produce the desired result of having a balanced trade-off between the number of clusters,
their size and their cohesion.

HAC algorithms are typically slow when applied to large document collections. Single-
Link [26, 22, 6] and Group-Average [30] methods typically take O(n?) time?, while Complete-
Link methods typically take O(n?) time [7]. In terms of quality, on the other hand, Complete-
Link algorithms have been shown to perform well in comparative studies of document re-
trieval [29], as they tend to produce tightly bound clusters, i.e., clusters in which all the
documents strongly relate to one another. Single-Link, and to a lesser degree Group-Average
methods, exhibit a tendency toward creating elongated clusters. Elongated clusters have the
undesirable property that two documents can be in the same cluster even though the similar-
ity between them is small. From our experience in the Web domain, algorithms that produce
elongated clusters often result in one or two large clusters, plus many extremely small ones.
The Group-Average methods have another potentially undesirable effect: clusters tend to
have long attribute vectors (i.e., contain many nonzero entries) and similarities can arise
from many low-weighted terms. This can lead to unintuitive clusters. Nonetheless, Group-
Average algorithms have often been the method of choice for document clustering, because
their trade-off between speed and clustering quality appears to be the most satisfying.

The above discussion suggests that traditional document clustering methods fail to meet
the requirements listed in the introduction. Often, the methods generate elongated clusters
that are not easy to browse — it’s difficult to determine at a glance what the contents of a
given cluster are likely to be. Furthermore, O(n?) time clustering is likely to be too slow for

LA clustering is the set of clusters produced by a clustering algorithm.
2Throughout this paper n denotes the number of documents to be clustered. The number of words per
document is assumed to be bounded by a constant.



Web users when n = 1,000 or more. Finally, our experience shows that standard techniques
perform poorly on the short and “noisy” snippets of Web documents.

3 Word-Intersection Clustering

Word-intersection clustering (Word-IC) is a new method designed to address some of the
problems mentioned above. In particular, Word-1C characterizes clusters by the set of words
shared by every document in the cluster. As a result, the centroid of the cluster — the words
common to all the documents in it — can be presented to the user as a meaningful description
of the contents of the cluster. For example, for a query on the word “Clinton” a sample of the
resulting cluster centroids include: {Clinton, budget, economy}, {Buchanan, commentary,
Pat}, and {campaign, Bob, Dole}.

In more technical terms, Word-IC results in non-elongated clusters, has a well motivated
halting criterion and captures a desirable trade-off between the number of clusters, their size
and their cohesion. We now describe Word-IC in detail.

Word-IC is a HAC algorithm that relies on a novel Global Quality Function (GQF) to
quantify the quality of a clustering. We use the GQF as a heuristic to guide the HAC
algorithm and as a halting criterion. At each iteration of the HAC algorithm, the two
clusters whose merge results in the highest increase in the GQF' are merged. The algorithm
terminates when no merge increases the GQF'.

The definition of a cluster’s cohesion is central to Word-IC. We define the cohesion of
a cluster ¢, denoted by h(c), as the number of words common to all the documents in the
cluster. Notice that this measure is a characteristic of the cluster as a set, and not a function
of pair-wise similarities.

We define the score s(c) of a single cluster ¢ to be the product of its size (the number of
documents in the cluster) and its dampened cohesion. We dampen the cohesion to express its
decreasing marginal significance and to normalize it. Empirically, we found the best results
when using a sigmoid function that dampens the cohesion measure to a value between 0 and
1. The parameter § determines the slope of the sigmoid function. Its value can be viewed
as determining the point where the score stops being affected by the cohesion measure, and
remains affected only by the size of the cluster. Thus, § specifies a trade-off between the
two factors determining a cluster’s quality: its size and its cohesion. We define the score of
a cluster of size 1 (a cluster composed of a single document) to be 0.

T+ 7@ (1)

For a clustering C, the GQF(C) is a product of three components: (a) f(C) - A function
that is proportional to the fraction of clustered documents in the collection (an unclustered
document is defined as one in a cluster by itself). This component captures the notion that
unclustered documents are “bad”. (b) 1/¢(|C|) - Where ¢(|C|) is an increasing function in
the number of clusters. This component captures the notion that the fewer clusters there
are, the better. (c¢) Y .cc s(c) - The sum of the scores of all clusters in the clustering. Thus:

GQF(C) = % ch(c) (2)
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Notice that the factors 1/¢(|C|) and > ,cc s(c) in (2) create a tension between two ex-
tremes: having a small number of large clusters of low cohesion vs. many small clusters of
high cohesion. The GQF' thus provides a trade-off between these two extremes. We have
investigated different functional forms for the components of the GQF'; our experiments
have revealed that good results are obtained if f(C) is the ratio of the number of clustered
documents in the collection to the overall number of documents in the collection, and g(|C|)
is the number of clusters of size two or more raised to the power of 0.5.

Word-IC can be performed in O(n?) time. The result is a monothetic classification: all
the documents in a given cluster must contain certain terms if they are to belong to it [21].
These clusters are not elongated, as all the documents in a cluster are similar to all other
members by at least the cohesion of the cluster.

Experimental results in section 5 show that Word-IC is faster and results in higher quality
clusterings than the commonly used cosine-based Group-Average HAC algorithm.

4 Phrase-Intersection Clustering

Word-1C, following the standard document clustering approach, treats a document as a set
of words. This approach disregards some of the information present in a document, for
example the occurrence of phrases (i.e., consecutive sequences of words).

Phrase-intersection clustering (Phrase-IC) is another Intersection-based approach that
looks at the phrases that are common to a group of documents, as an indication of the
group’s cohesion. This approach treats a document as a sequence of words, with the premise
that phrases found in the document can be useful both for the clustering algorithm and as
an indication of the cluster’s content. For example, for a query on the word “Clinton” a
sample of the phrases found common to many documents includes: “progress on the aids
pandemic”, “democratic party”, and “Hillary Rodham Clinton”.

Another advantage of Phrase-IC is that there exist efficient algorithms (for example [13])
for discovering long substrings common to many documents. Thus, for certain definitions of
cluster cohesion based on common phrases we can leverage off this potential computational
advantage.

4.1 Phrase-Intersection Clustering using GQF

A small variation in the definition of the GQF allows us to perform Phrase-IC. We can
change the definition of a cluster’s cohesion to be the length of the longest phrase common
to all the documents of the cluster, instead of the number of words they all have in common.
Phrase-1C using GQF is a HAC method that uses this modified version of the GQF as the
heuristic guiding it and as its halting criteria. Experimental results in section 5 show that
this algorithm performs slightly better than Word-IC.

4.2 Phrase-Intersection Clustering using Suffix Trees

The HAC algorithms suggested so far have O(n?) time complexity, an obstacle to our speed
and scalability goals. Phrase-IC using suffiz trees is an O(nlogn) expected time algorithm
that results in a large speedup without much degradation in quality.
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The suffix tree [31, 11] of a set of strings is a compact trie [10] containing all the suffixes
of all the strings. In our application, we build a suffix tree of all the documents (each treated
as a string). As we are interested in whole words, our data structure is a suffix tree on words
rather than characters, thus saving both time and space. Edges of the suffix tree are labeled
with non-empty strings. Edges from the same node are labeled with strings that start with
different words. The label of a node is the string formed by the concatenation of edge labels
on the path from the root to the node. Each suffix of a document corresponds to exactly
one path from the root to the leaf whose label is that suffix. An internal node, therefore,
represents the point where different suffixes diverge. Equal suffixes from different documents
correspond to the same leaf node, and equal phrases from different documents correspond
to the same node.

The space requirement of the suffix tree is O(n). As the branching factor of a document
suffix tree varies considerably between the different levels, we use different data structures
at the different levels of the tree.

Each node of a suffix tree represents a group of documents and a phrase that is common
to all of them; the sequence of words from the root to the node represents the common
phrase, and all the documents that have a suffix “passing” through the node make up the
group. Therefore, each node of the suffix tree can be viewed as a potential cluster. Each
node is assigned a score that is a function of the length of the phrase, the words appearing
in the phrase, and the number of documents in that cluster.

To construct the suffix tree, when a document is received all its suffixes are inserted into
the tree one by one. The running time of this construction is at worst quadratic in n, but the
observed time complexity of the construction is actually O(n) because of the small expected
constant work of inserting each suffix. This is due to the fact that the average depth of the
tree is less than three even for trees of very large collections, and the character comparison
process for inserting a suffix is expected to look only at a small number of words. These
observations were validated empirically. While there are O(n) time suffix tree construction
algorithms in the literature [28, 11|, the speedups, if any, obtained from these algorithms are
not worth their memory and time overhead.

This construction method has another advantage: because we visit each node in the path
defining a suffix as we insert it, we can update the scores of all the nodes, and keep an
updated priority queue of them, as we build the tree. This takes full advantage of “free”
CPU time that is available due to the delay between the arrival of the documents from the
Web.

In short, the expected construction time of the suffix tree itself is O(n), but the process
of score updates takes O(nlogn) expected time. This is due to the fact that each time we
pass a node while inserting a suffix, we update its score and then (re)insert it into its proper
position in a priority queue of all scored nodes. The number of score updates is expected to
be O(n) and the node (re)positioning in the priority queue takes O(logn) time.

We determine clusters directly from the suffix tree, by presenting selected clusters (nodes)
ordered by their score. These selected clusters may overlap. We argue that this feature of
our algorithm is actually advantageous to the user, as topics do overlap (e.g., topics in book
indices often overlap, not as the result of the editor’s incompetence, but because several
topics may be relevant to the same section). When selecting which clusters to display, we
make sure the overlap between the selected clugters is not high. This process takes O(nlogn),



but the reporting of the top ranked clusters starts immediately. The suffix tree clustering
algorithm, unlike the HAC methods, is not greedy in the sense that all possible clusters with
a non-empty common phrase are identified and scored. However, the algorithm we use to
select which clusters to display to the user is greedy.

5 Preliminary Experiments

In this section we compare the running time and the clustering quality of the different
algorithms.

It is hard to calculate the quality of a clustering algorithm, as one has to know the
“correct” clustering of the different test cases, and this is hard even with an external source of
knowledge (such as human indexing). We chose to apply the algorithms to snippet collections
created by merging several distinct base collections. We then scored the resulting clusterings
by comparing them to the original partition of the snippets into base collections.

We created 88 base collections from the snippets returned by MetaCrawler [24] in response
to 88 different queries. MetaCrawler is a parallel search engine — it routes queries to various
different search engines and collates the results - thus assuring us of a wide and heterogeneous
sample of Web documents. Each of the queries contained between 1 and 4 keywords and was
chosen to define a certain topic in computer science (such as kernel & architecture; biology &
computational; compiler). Each base collection contained approximately 100 snippets; each
snippet contained 40 words, on average. Test collections were created by merging 1 to 8
randomly chosen base collections, giving us test collections ranging from 100 to 800 snippets
in size. 20 test collections of each size were created, for a total of 200 test collections.

We need a scoring method to compare the original partition of the snippets into base
collections with the algorithm generated clusterings. To do so, we look at all pairs of doc-
uments in a single cluster, and count the number of true-positive pairs (the two documents
were also in the same base collection) and false-positive pairs (they were not in the same
base collection).

Let B be a test collection, C' be a clustering of the snippets in B, u(C) be the number of
unclustered documents in C, and ¢(c) and f(c) be the number of true-positive pairs and the
number of false-positive pairs in cluster ¢ € C, respectively. The quality of the clustering C,
denoted by Q(C), is:

ceC c) — c)) —u(C
@) == W;) @) < ®)

We use the square roots of ¢(c) and f(c) to avoid over-emphasizing larger clusters, as the
number of document pairs in a cluster ¢ is O(|c|?). We subtract the number of unclustered
documents, as these documents are misplaced. Finally, we normalize this score by the
maximal score possible, which is simply the sum of the square roots of the number of pairs
in the original base collections. The result is a score between —1 and 1 (with a negative
number meaning more documents were misplaced than were put in their correct document

group).



Note that this scoring metric works best when the clusters do not overlap. Therefore,
when computing this metric for the suffix tree clustering method, we remove a document
from all but the first cluster that it appears in (this puts suffix tree clustering on equal
footing with the other methods by having it create a partition).
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Figure 1: (a) The quality of the clusterings produced by the different algorithms. (b) The
execution times of the different algorithms.

Figures 1(a) compares the quality of the clusters produced by the algorithms as a function
of the number of base collections merged. We compare our clustering algorithms with the
cosine-based Group-Average HAC algorithm (hereafter referred to as COS-GAVG), as it is
one of the most commonly used algorithm for document clustering.

Word-IC, as defined in section 3, includes two principal components: the definition of
cohesion and the GQF. We wish to investigate how the definition of cohesion alone influ-
ences the clustering. To do so, we compare the performances of a variation of the Word-IC
algorithm that does not use the GQF'. This algorithm defines the similarity of two clusters
as the cohesion of the cluster that would be formed upon merging the two clusters, where
cohesion is defined as in Word-IC. It then performs a HAC algorithm, merging at each step
the two most similar clusters. It terminates with a halting criterion similar to the one used
in the COS-GAVG algorithm.

To optimize the halting criterion of COS-GAVG and Word-IC without GQF, we ran
preliminary experiments and chose the criterion that performed best.

All the algorithms show a quality degradation as the number of merged base collection
increases. This is not surprising, as more merged base collections increase the difficulty of
the clustering task. The COS-GAVG algorithm performed poorly in our experiments. The
fact that we are using short, “noisy” snippets, might contribute to the poor quality of its
results. Both Word-IC and Phrase-1C using tl}e GQF show the highest quality results. The



advantages of the GQF can be seen by comparing Word-IC without GQF' with the regular
Word-IC. The suffix tree clustering algorithm is shown to produces results that are not much
worse than the intersection-based ones.

To compare the speed of the algorithms, we clustered snippet collections of 100 to 1000
snippets using a DEC Alpha-station 500, 333 MHz, with 320M RAM. The algorithms were
implemented in C++ and were optimized to the same degree (with the exception of Phrase-
IC — see below).

Figure 1(b) presents the results of this experiment. The times measured are the actual
times spent clustering, without including periods when the system was idle, waiting for doc-
uments to arrive from the Web. The COS-GAVG algorithm is slower than the intersection-
based ones as it requires long attribute vectors. Using GQF' adds a constant factor to the
execution time of Word-IC because of the added complexity. Phrase-IC using GQF' has
not been optimized but is expected to be slower than the COS-GAVG method even after
optimization. The performance of the suffix tree clustering algorithm cannot be seen on the
scale shown, as it clusters 1000 snippets in less than 0.25 seconds. It should be mentioned
that further optimizations could be carried out and might affect the different algorithms to
different degrees, but we expect the relations between them to remain largely unchanged.

6 Future Work

Below, we consider several observations about our clustering methods and the directions
they suggest for future work.

Suffix tree clustering has a great advantage when clustering Web documents because the
suffix tree can be built incrementally as the documents arrive. This allows the use of “free”
CPU cycles as the system waits for the documents. We have adapted a suffix tree construc-
tion algorithm that allows us to also score and sort the potential clusters incrementally, as
the documents arrive. This construction, though having poor worst-case behavior, can be
shown to have O(nlogn) expected time behavior in our domain. We plan to experimentally
compare the speed of different suffix tree algorithms in future work.

While experimenting with the system we have found that certain queries lend themselves
very nicely to Phrase-IC, while other queries do not. We also found that Word-IC and
Phrase-IC often yield complementary presentations of the collection to the user and need
not be viewed as alternatives. For small collections, we could allow the user to view the
results of both algorithms. Will users find multiple distinct clusterings worthwhile? Finally,
a question that still has to be answered is how does clustering whole documents compare
with clustering snippets. Will this result in a substantial improvement in cluster quality?
Will such an improvement outweigh the increased delay? Ultimately, the answers to these
questions are subjective. We plan to deploy a clustering module on top of MetaCrawler,
which will enable us to conduct user studies aimed at answering these questions empirically.

7 Related Work

Dynamic document clustering of online search outputs was introduced in [4], and investigated
in [16] as well, as a means to identify near-duplicate documents. [12] describes user studies
on the Scatter/Gather system that demonstr%te the systems usefulness.



The Scatter/Gather system uses a linear time partition algorithm that relies on clusters
created by applying the COS-GAVG algorithm to a sample (of size \/n) of the collection.
Therefore, the quality of its results are likely to be lower than that of a full COS-GAVG
algorithm. We have demonstrated that our intersection-based approach produces results of
higher quality in some cases.

Conceptual clustering is a clustering method meant to produce clusters that are easy
to understand by restricting the clustering algorithm to only consider clusters that can be
characterized through logical combinations of predicates in a particular predicate language
[27]. Word-IC and Phrase-IC can be viewed as following a similar approach in that the
clusters created can be defined in a clear and simple manner, but they are faster and do not
require the structured background knowledge needed for conceptual clustering.

Measuring the global quality of a partition of the data in a Bayesian context appeared
in COBWEB [9], in AUTOCLASS (3], as well as in other systems [1]. These clustering
techniques are typically slow and do not perform well in domains with sparse attribute
vectors. Only recently has an attempt been made to apply these Bayesian quality measures
to guide a HAC algorithm in the document clustering domain [15], but more comprehensive
comparative studies are required in order to determine the benefit of this method.

Various other methods have been investigated in the document clustering domain. The
non-hierarchical ones include single-pass methods such as assign-to-nearest, as well as multi-
pass methods such as iterative-seed-selection that is used in CLUSTER [18] and in the Cover-
Coefficient method [2]. These methods are fast, but have shown poor results for document
clustering.

MetaCrawler and Excite [8] allow the user to view the documents returned from queries
either as a ranked list or sorted according to site. This can be viewed as a very basic form of
clustering. Alta Vista [5] has introduced LiveTopics, a query refinement tool that performs
word frequency analysis. It does not perform document clustering but addresses the problem
of helping the user handle the large number of documents typically returned by the search
engine in a different way.

8 Conclusion

We have attempted to address the hard problem of enabling users to quickly navigate through
the results of Web search engines. We have described and experimentally evaluated two novel
clustering methods: word- and phrase- intersection clustering. Phrase-intersection clustering
using suffix trees is an O(nlogn) expected time algorithm that appears promising in terms
of the stringent requirements outlined in the introduction including ease of browsing, speed,
and scalability. In addition, we believe that our clustering methods will enable users to
discover patterns and find structure in search engine responses that are not readily apparent
in the standard ranked-list presentation. Of course, additional experiments and extensive
user studies are necessary before we can make definitive claims about the performance of
our algorithms in practice.
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