
Transcription regulatory region analysis using
signal detection and fuzzy clustering

���& '"-/� ���"0/"-� ���(�1+**� �*! ���&*$"*!"-

�"."((. %�#/ #4- �&+/" %*+(+$&. %" �+-. %0*$ )��� ��. %"-+!"- �"$ �� �5�����

�-�0*. %1"&$� �"-)�*2 �*! ��� %�"-"& % �("'/-+/" %*&' 0*! �*#+-)�/&'�

�� %%+ %. %0(" �./#-&".(�*!� �+*./�*/&�,(�/3 �� �5�
��� �)!"*� �"-)�*2

	������
 �� ������� �� ����� ������
 �� �������� �� ����� 
������
 �� �������� �� ����

Abstract
Motivation: Presently available programs for the recogni-
tion of potential transcription factor binding sites in genomic
sequences generally yield a huge amount of output. These
output lists have to be filtered to obtain biologically
significant elements, which is highly laborious work to be
done manually.
Results: We developed a strategy for systematic verification
and improvement of the underlying profiles, and for their
contextual analysis by a fuzzy clustering approach using
non-redundant libraries of search profiles as a prerequisite.
Availability: The tools mentioned in the paper are available
upon request.
Contact: ewi@gbf.de

Introduction

To our present knowledge, control of gene expression occurs
largely, if not mainly, at the level of transcriptional regula-
tion. This is achieved by a large functional class of proteins,
the transcription factors, which bind with relaxed specificity
to short genomic sequence elements comprising 5–25 bp (for
a review, see McKnight and Yamamoto, 1992; Wingender,
1993). The recognition patterns of many transcription factors
have been defined either as consensus sequence strings using
the 15-letter IUPAC code, collections of which are available
in the literature (Locker and Buzard, 1990; Faisst and Meyer,
1992), or in databases (Wingender et al., 1996a, 1997).
Although the use of these consensus strings is quite wide-
spread and popular, it is much more appropriate to apply
nucleotide distribution matrices (positional weight matrices,
‘profiles’) to describe and identify transcription factor bind-
ing sites (Bucher, 1990; Chen et al., 1995; Quandt et al.,
1995). A large collection of such matrices is part of the
TRANSFAC database (Wingender et al., 1997) and is used by
the program MatInspector (Quandt et al., 1995). To provide
the user with optimized threshold values and to improve these
profiles, additional attempts are required to characterize the
recognition patterns available in terms of the false-positive
and false-negative matches they produce. Further improve-
ment can conceivably be achieved by including additional

characteristics such as structural features in the search routines
(Wingender et al., 1996b).

However, even optimized recognition patterns and pro-
cedures will still most likely yield lots of false-positive and
false-negative matches. An apparently perfect signal will be
without biological significance if placed in the wrong
genomic sequence context, and even a highly aberrant
element may gain function if placed optimally in relation to
other elements. This is taken into consideration by algorithms
like that applied by PromoterScan (Prestridge, 1995). How-
ever, this program does not yet consider the quality of the
matches and the possibility of flexible assignment of matches
to more than just one cluster of potential binding sites. For
these reasons, we have developed a program that detects
clusters of predicted transcription factor binding sites by two-
dimensional fuzzy cluster analysis, taking the DNA position
as the first dimension and the quality of the matches as the
second dimension. However, this methodology requires non-
redundant input lists of potential transcription factor binding
sites, the prediction of which has to be as reliable as possible.
As has been shown previously (Quandt et al., 1995; Frech et
al., 1997a,b), a matrix approach is generally superior to se-
quence comparison approaches using, for example, IUPAC
consensus strings. This paper will therefore describe an
approach for the definition of individual thresholds for each
profile contained in the matrix library used by the program
MatInspector. Moreover, a general matrix comparison
approach is described to establish a non-redundant library as
a prerequisite for the fuzzy clustering analysis of potential
transcription factor binding sites. Applying this method to a
series of experimentally characterized regulatory regions
reveals that it is suitable to filter potential promoters and
enhancers out of the background noise of potential single sites.

Methods and algorithm

Matrix comparison

To compare two nucleotide distribution matrices, the weights
within each column were normalized, the absolute difference
of corresponding cells in corresponding columns was
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calculated and summed up for each column. In order to obtain
the smallest difference for both matrices, they were shifted
along each other, starting and ending with an overlap of at
least four positions. Thus, there are three different cases to
handle: left overhang of the smaller matrix, total overlap, and
right overhang of the smaller matrix. The empty cells in the
overhanging regions were filled with 0.25 since they do not
contribute to the specificity of that matrix. The distance value,
dist, of two matrices MAT1 and MAT2 was then calculated
according to equation (1):

dist�

�
w

i�1

�
B

|fB,MAT1(i)� fB,MAT2(i)|

w (1)

where i is the column index, w is the width of both matrices
(i.e. the sum of the widths of both matrices minus their
overlap) and fB is the normalized frequency of nucleotide B
in either matrix 1 or 2.

After completion of this comparison, the smaller matrix was
reversed and inverted, and underwent the same procedure.
The lowest value obtained from all these comparisons was
taken as the distance value for the two matrices.

To assess the ‘biological similarity’ of the transcription
factors the two matrices refer to, we took advantage of a
comprehensive transcription factor classification scheme have
developed earlier (Wingender, 1997; http://transfac.gbf.de/
TRANSFAC/cl/cl.html). This TF classification is, in fact,
mainly a classification of DNA-binding domains (DBD),
defining a hierarchy of superclasses, classes, families,
subfamilies (optional), ‘genera’ and ‘species’ of transcription
factors. Since the DNA-binding specificity is part of the
definition of a transcription factor family, the family
assignment of two factors can be used now as an already
defined qualitative similarity measure. For this, we assigned
a value of ‘+1’ to matrix pairs, which belong to the same
transcription factor or to transcription factors belonging to the
same family. Those of distantly related factors (belonging to
distinct families, but to the same class) were marked by a value
of 0.5. If the factor of one matrix is as yet ill characterized, a
value of 0 was assigned, whereas all remaining matrix pairs
referring to obviously unrelated factors received ‘–1’. These
values were averaged over all matrix pairs falling into matrix
distance intervals of 0.02 (see above).

Compilation of exon sequences

A standard negative test set consisting of genomic
mammalian exon ≥2 sequences was extracted from the
EMBL database Release 48 (datafiles: hum1.dat, hum2.dat,
mam.dat, rod.dat).

For computational purposes, only entries with at least 35 bp
upstream and 35 bp downstream of the exon sequences were
selected. This has been done because these sequences were
also to be used for analyses with the program ConsInspector

(Frech et al., 1993). This program requires a sequence context
of normally 70 bp. However, for MatInspector runs, only the
exon sequences themselves were used. No redundancy check
was applied. This resulted in a set of 20 397 (exon 2 = 4052)
sequences with 4 223 453 (exon 2 = 956 468) bp and a mean
length of 207 (exon 2 = 236) bases (without the adjacent 35
bp).

The test results showed that the sample of exon 2 sequences
alone is sufficient to obtain reliable results, whereas the use of
all exons ≥2 provides similar results, but is more time
consuming.

Compilation of positive test sets

The SITE table of the TRANSFAC database provides binding
sites of defined transcription factors, including a ‘quality’
measure reflecting the strength of the experimental evidence
given in the literature for each of these sites. Table 1 lists the
quality criteria we applied.

Matrices which were generated on the basis of TRANSFAC
SITE entries are classified according to the least quality of
sites included. The TRANSFAC MATRIX identifier (ID line
in the flat files) reflects this value by appending it instead of
the continuous numbering applied for matrices which were
taken from the literature, e.g. the matrix for the vertebrate
transcription factor CREB generated from sites with a quality
not less than two has the identifier V$CREB_Q2.

Table 1. Criteria for experimental evidence of transcription factor binding sites

Quality Criteria

1 Factor binding as for quality 2 plus functional evidence

2 Binding of highly purified or recombinant factor

3 Factor binding altered by a specific antibody

4 Factor binding competition with a well-characterized binding
sequence

5 Bona fide element

6 Not classified

Therefore, the sequences from which the ‘q’ matrices were
generated are available in the database. Similarly, most
genomic sequences underlying published matrices are already
part of the TRANSFAC database. In contrast, sequences
selected for binding to a given transcription factor by in vitro
selection and amplification have not been included in the
database, but have been published in most cases. They are
used only in those cases where not enough genomic binding
sites have been characterized yet.

Moreover, all matrices were controlled and, in some cases,
had to be corrected for suboptimal alignment or simple
counting errors. However, not all published matrices come
with the underlying sequence set, in which cases the authors
have to be contacted. In total, out of the 259 matrices under
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consideration, 62 matrices were to be corrected and 24 are still
missing the sequence data.

Transformation of MatInspector score into cluster
data points

To facilitate visualization of potential transcription factor
binding sites and their score, we transform the scores
calculated by MatInspector (matrix similarity; see Quandt
et al., 1995) into an inverse quality function Tinv according to
equation (2). As a result, high-scoring matches are close to the
DNA position axis to which they are projected.

Tinv: [0,Xmax] × [Ymin,Ymax]→[0,Umax] × [0,Vmax]  (1)

(x, y) � �x,
Vmax

(Ymax� Ymin)
(Ymax� y)� (2)

where Xmax is the sequence length in bp, Ymax is the estimated
upper limit for quality of false positives, Ymin is the estimated
lower limit for quality of true positives, Vmax is the maximal
range of quality in cluster space, Umax is the sequence length in
cluster space, and Umax = Xmax and Ymin < Ymax.

The cluster algorithms are described elsewhere in greater
detail (Pickert et al., 1997).

Application of TFC to the SV40 genome

The complete simian virus 40 (SV40) genome (EMBL
accession number V01380; 5243 bp) was analysed with
MatInspector using default parameters. Although most of the
known SV40 elements are also part of the training sets used
to construct the relevant matrices, they represent only one out
of 5–108 underlying sequences for each matrix. Thus, the
search for individual elements is not significantly biased by
the training set used.

All suggested hits with a matrix similarity value of <0.9
were removed from the output list (first filter). The data of the
selected potential TF binding sites were transformed as
described above, arbitrarily choosing a Vmax value of 1000
since experience has shown that it is reasonable for fuzzy
clustering to adopt a similar scale for both the y- and the x-axis.
Subsequently, false hot spots are eliminated using a shrink
filter which defines those matrices that recognize identical
sites according to the matrix comparison (see above; second
filter). The allowed maximal cluster size was 500 bp.

Results and discussion

General strategy

Search routines for potential transcription factor binding sites,
such as PatSearch (Wingender et al., 1996b) or MatInspector
(Quandt et al., 1995), normally produce a considerable output
which is difficult to evaluate manually. To clear this kind of
result list, we developed the following strategy:

1. to reduce the redundancy of potential matches due to
very similar search patterns;

2. to improve the reliability of the individual search
patterns;

3. to clear the output list of suggested binding sites which
lack a significant context.

Comparison of transcription factor binding profiles

To reduce redundancy in search patterns, especially in the
matrices from TRANSFAC, all matrices from the
TRANSFAC MATRIX table were compared with each other.
The distance values obtained ranged between 0.105 and
1.347.

Subsequently, we correlated all pairwise matrix similarities
with the biological relationship of the transcription factor they
refer to (see above). Although the resulting values
intentionally reflect a qualitatively rather than quantitatively
exact measure, they can be used to estimate the correlation
between both the computed matrix distance and the similarity
of the factors they refer to. This biological similarity
assessment, on the other hand, is not sufficient for filtering
redundant matrices since there are examples where distinct
matrices are known to describe the interaction of one factor
with several subpopulations of binding sites (e.g. Oct-1).

Counting the density of related or unrelated factors within
certain distance value intervals revealed those ranges where
matrices can be taken as closely related without further proof
(range A, <0.22; Figure 1), where most of them are related
(range B, between 0.22 and 0.48), where most of them are
unrelated (range C, between 0.48 and 0.64) or the value above
which they are unrelated anyway (not shown in Figure 1;
>0.64). For the matrix pairs in ranges B and C, their
relatedness must be proven individually (Figure 1). Among
the 33 411 matrix pairs of the 259 individual matrices, only 25
(0.07%) fall in range A, 325 (0.97%) in range B and 1813
(5.4%) in range C. This means that the redundancy in the
whole matrix library is very limited. As a result of these
studies, any new matrix entered into the database can now
easily be evaluated with regard to pre-existing profiles that
may recognize the same pattern.

Strategy for verification of search patterns

In the TRANSFAC database on transcription factors and their
binding sites, the MATRIX table provides a library of 259
nucleotide distribution matrices (Release 3.1) (Wingender et
al., 1997). They may have been derived from experimentally
proven genomic binding sites, either pre-compiled in the
literature or by ourselves, from random selection studies or
from consensus descriptions generated with ConsIndex
(Frech et al., 1993). From this collection, 220 matrices were
selected as a library for the MatInspector tool (Quandt et al.,
1995). The selection was made by defining a random
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Fig. 1. Matrix comparison results. The expected biological similarity according to the transcription factor classification averaged over intervals
of 0.02 of calculated matrix distance shows three zones that can be distinguished. (A) All matrices in the interval are closely related. (B) The
matrices are mostly related. (C) The matrices in this interval are mostly not related.

Fig. 2. False positives and false negatives of TRANSFAC matrix V$AP1_Q2 (the core similarity threshold was set to 0.85 in both cases). From
these curves, we derive three thresholds recommended to the user: (a) to minimize false negatives; (b) to reduce false positives to 1%; (c) to
minimize both error rates.

expectation value which reflects the number of expected
matches per kilobase of a random sequence and setting a
cut-off of 5.0 at standard default thresholds. To verify the use
of these matrices as well as of the residual matrices which still
could be of use under different parameters, it is necessary to
determine the selectivity, sensitivity and positive prediction
value for each of them. This means to investigate the number
of false-positive (FP) and false-negative (FN) matches which

each of these profiles produces, and thus to provide the basis
for recommending optimal threshold values for each matrix.

Analysis of false positives

Generally, published reports about transcription regulatory
sequence elements do not list false positives, i.e. sequences
which match a given consensus but do not mediate the
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Fig. 3. False positives (FP) versus false negatives (FN) for different AP-1 matrices from TRANSFAC. The indicated matrices will be used in
the outlined intervals as follows [Matrix: (FN | FP)]: 2 (0–7.1 | >2.66); 1 (>7.1–14.7 | >1.57–2.66); 2 (>14.7–20 | >1.175–1.57); 1 (>20–33.1
| >0.75–1.175); 3 (>33.1–100 | <0.75–0).

suspected function. Instead, negative test sets are frequently
compiled from computer-generated random sequences, but
this method does not take account of special features of
real-life sequences (GC richness, etc.). Since regulatory
regions have been found in nearly all parts of a genome,
including intronic sequences, in far upstream or downstream
regions and even within repetitive elements, we decided to
extract all exon ≥2 sequences from the EMBL data library to
assess the amount of FP produced by a given search pattern
of a transcription regulatory signal. We omitted exon 1
sequences since it is known that they may also contain
functional transcription factor binding sites. Although we
cannot rule out that some of the matches found in exon ≥2
sequences would gain function when artificially placed in a
promoter context, these sequences most likely do not exert
any regulatory effect in the natural genomic context. The
major problem of using exon sequences as a negative test set,
however, may arise from some codon bias which could cause
some over- or underrepresentation of certain nucleotide
patterns. Since this will concern only a limited subset of
patterns, if any, this issue will be neglected here, but will be
dealt with in a separate systematic evaluation.

When we examined the number of FP using a series of
nucleotide distribution matrices, we reproducibly found that
restricting the analysis to exon 2 sequences gives nearly the
same results as using the complete library. Therefore, most of

the following investigations were carried out with the exon 2
library.

Combining FP and FN criteria

Combining both FP and FN values raises the question of how
to normalize them to comparable scales. FN range between
0.0 (all true sites found) and 1.0 (no true positives identified).
In contrast, FP values are normally referred to all potential
match positions, i.e. to any position a sequence exhibits, and
therefore are much smaller.

We therefore exploited the specific MatInspector algorithm
which pre-selects for matches with a highly conserved core
sequence and used this as the 100% rate. In this case, both FP
and FN can be plotted using the same scale (Figure 2). Now,
three thresholds can be recommended to the user: one which
reduces the false positives to a pre-defined value (e.g. 1%),
another one which minimizes false negatives (in the example
shown, one AP-1 binding site out of 14 sequences in the
positive test set does not contain the core sequence), and a
third which represents a compromise between both require-
ments.

Because of the somewhat arbitrary choice of the core simi-
larity applied for MatInspector runs, the characteristics shown
in Figure 2 would also have to be recorded in dependence on
this parameter for each profile. As an alternative, we plotted
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Fig. 4. Fuzzy clustering approach for (potential) transcription factor binding sites. An output list of, for example, a MatInspector sequence
analysis run is transformed to data points of the coordinates’ position and inverse quality (derived from the MatInspector scores). TFC introduces
‘prototypes’, points around which clusters are then assembled. The precise position of prototypes is optimized for minimal sum of distances,
the number of prototypes is increased stepwise until all clusters fall within a user-defined maximal cluster width. Throughout the analysis, the
degrees of belongingness of each data point to all clusters is calculated and stored (see example top right). Data points of those clusters which
have at least one member below (i.e. better than) the threshold are projected onto the positional axis.

FP against FN for all related matrices (Figure 3). From these
curves, the user may obtain the number of FP to be expected
when entering the portion of FN he may be willing to tolerate,
or vice versa. In those cases where more than one profile is
available for a certain transcription factor, the program will
automatically choose the most suitable pattern.

Identification of clusters of potential transcription
factor binding sites

Functional transcription factor binding sites generally appear
in clusters which represent, for example, promoters or
enhancers. In contrast, isolated sequence elements normally
are not biologically significant even when they match a
consensus pattern perfectly. Therefore, searching for clustered
potential transcription factor binding sites may help to filter
insignificant items from the output lists of MatInspector or
other sequence scanning routines.

For this purpose, we applied fuzzy cluster algorithms to a
two-dimensional cluster analysis for the following reasons.

1. The two-dimensional analysis allows one to consider the
scoring of the potential sites in addition to the position
along the DNA; this is necessary since (a) the bulk of
low-scoring matches can thus be eliminated semi-
interactively, and (b) individual data points within a
‘cloud’ of suggested low-scoring matches may
nevertheless be assigned to nearby clusters without being
lost by setting an a priori threshold.

2. Fuzzy clustering calculates for each data point a defined
degree of belongingness to every suggested cluster. This
enables one to assign data points to different clusters
flexibly, according to the parameters chosen. This relieves
the necessity to artificially assign data points which are
located just between two or more clusters to one of them.
Moreover, when it has been decided not to consider a
cluster for further analysis, individual members can
nevertheless be ‘saved’ by reassigning them to another
one. Also, a fuzzy approach is best suited to deal with
vague data such as scored binding sites.

The scores of MatInspector output (or of another sequence
scanning routine) are first loaded into a relational database. In
a next step, two filters can be employed.

1. Setting a scoring threshold allows one to get rid of
obvious false-positive matches; to avoid time-
consuming new analysis runs when the proceeding
analysis suggests repeating it with a different threshold,
it is advisable to apply threshold filtering on this level of
analysis rather than adjusting it for the search routine
employed (e.g. MatInspector).

2. A shrink matrix allows one to filter matches produced
by highly similar search profiles; to keep them as
independent data points would mean to generate clusters
(or hot spots) artificially. The basis of the shrink matrix
is provided by the matrix comparison approach
described above.
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Fig. 5. Fuzzy cluster analysis of transcription factor binding sites in the SV40 genome. The suggested potential TF sites are suggested by
MatInspector (Quandt et al., 1995). The data set was pre-filtered for high-scoring matches (matrix similarity > 0.90) and subjected to clustering
using the Gath and Geva algorithm. Note that the scores are transformed to an inverse scale in order to display high-scoring sites close to the
DNA position axis. Clusters with at least one data point below the threshold indicated by the straight line have been accepted, data points
belonging to these clusters are projected onto the DNA position axis. The lower part shows the experimentally verified pattern of TF binding
sites of the SV40 enhancer as recorded in the TRANSFAC database, the arrows point to transcription start sites according to the feature table
of EMBL/GenBank # J02400.

The scores are converted into a quality function. For the
sake of better visualization, this quality is plotted inversely,
thereby assembling the high-scoring matches near the DNA
projection axis and the low-scoring ones in the upper part of
the plot (Figure 4). It is important to scale the quality axis
properly in relation to the positional axis since this defines the
cluster space and thus significantly influences the
partititioning of data points, and therefore the results of the
analysis. It has been shown that the best results are obtained
by setting the quality range 2–3 times higher than the expected
size of transcription regulating regions (promoters,
enhancers), normally around 300–500 bp (Pickert et al.,
1997).

We implemented two fuzzy clustering algorithms: fuzzy
c-means (FCM) (Bezdek, 1981) and Gath and Geva (GG)
(Gath and Geva, 1989). FCM is very fast and searches for
spherical clusters of comparable size. GG extends the
algorithm to different cluster shapes and sizes. The number of
clusters is automatically increased stepwise until the size of all
those clusters which match the adjusted quality criteria is

within a pre-defined size, e.g. <500 bp. A cluster matches the
quality criteria if at least one of its data points is better than a
user-defined threshold. This rule considers the fact that highly
degenerate elements become functional if placed in a proper
context with other sites. While this principle is well known
from many promoter examples, it is debatable whether a
single high-scoring site is sufficient and represents just a first
experimental approach. Each cluster is arranged around a
prototype which, in a simplified view, can be considered as
that point to which all data points of this cluster have minimal
distance. In each step, new prototypes are introduced within
those clusters which are larger than the pre-defined maximal
size.

We applied the GG algorithm to analyse a MatInspector run
for the whole SV40 genome. All hits have been passed
through the two-filter procedures described in Methods and
algorithm, and have been subjected to the fuzzy cluster
analysis (Figure 5). In this case, we made use of the existing
knowledge about the SV40 enhancer to adjust the threshold
for rejecting most of the obviously irrelevant clusters. Among
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the remaining clusters, the first one is located between
positions 27 and 465, and comprises 25 suggested binding
sites. Within the known enhancer region (approximately
positions 1–350), 19 binding sites have been suggested, 13 of
which have been proven experimentally. None of the known
sites for which search profiles (matrices) are available have
been omitted. However, 49 apparently false-positive matches
(i.e. suggested binding sites for which no experimental
evidence has hitherto been published) were removed from the
MatInspector output list of this region.

We conclude that TFC clearly detected the SV40 enhancer
region as the most dense cluster. Similar results have been
obtained for the HBV enhancer I (data not shown). However,
under the conditions applied, additional regions also revealed
clustered potential transcription factor binding sites of much
lower density. They do not appear to represent biologically
meaningful regulatory regions. Lowering the cluster
acceptance threshold drastically and changing the acceptance
rule to more than just one high-scoring element per cluster,
one could even sort out all other clusters except that
representing the authentic enhancer. This clearly shows that
more examples are required to adjust the rules under which
TFC yields acceptable results, but that the tool itself has the
potential to recognize regulatory genomic regions faithfully.

Acknowledgements

We would like to thank T.Werner and Y.Kondrakhin for
helpful discussions, and K.H.Seifart for critically reading the
manuscript. Part of this work was supported by EU grant
BIO4-CT95-0226.

References

Bezdek,J.C. (1981) Pattern Recognition with Fuzzy Objective Function
Algorithm. Plenum Press, New York.

Bucher,P. (1990) Weight matrix descriptions of four eukaryotic RNA
polymerase II promoter elements derived from 502 unrelated
promoter sequences. J. Mol. Biol., 212, 563–578.

Chen,Q.K., Hertz,G.Z. and Stormo,G.D. (1995) MATRIX SEARCH
1.0: a computer program that scans DNA sequences for
transcriptional elements using a database of weight matrices. Comput.
Applic. Biosci., 11, 563–566.

Faisst,S. and Meyer,S. (1992) Compilation of vertebrate-encoded
transcription factors. Nucleic Acids Res., 20, 3–26.

Frech,K., Herrmann,G. and Werner,T. (1993) Computer-assisted
prediction, classification, and delimitation of protein binding sites in
nucleic acids. Nucleic Acids Res., 21, 1655–1664.

Frech,K., Quandt,K. and Werner,T. (1997a) Finding protein-binding
sites in DNA sequences: the next generation? Trends Biochem. Sci.,
22, 103–104.

Frech,K., Quandt,K. and Werner,T. (1997b) Software for the analysis of
DNA sequence elements of transcription? Comput. Applic. Biosci. 13,
89–97.

Gath,I. and Geva,A.B. (1989) Unsupervised optimal fuzzy clustering.
IEEE Trans. Pattern Analysis Mach. Intell., 11, 773–781.

Locker,J. and Buzard,G. (1990) A dictionary of transcription control
sequences. DNA Seq., 1, 3–11.

McKnight,S.L. and Yamamoto,K.R. (1992) Transcriptional Regulation.
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Pickert,L., Klawonn,F. and Wingender,E. (1997) Fuzzy cluster analysis
for identification of gene regulating regions. In Proceedings of the 7th
IFSA World Congress, Vol. IV, Prague, 56–61.

Prestridge,D.S. (1995) Predicting Pol II promoter sequences using
transcription factor binding sites. J. Mol. Biol., 249, 923–932.

Quandt,K., Frech,K., Karas,H., Wingender,E. and Werner,T. (1995)
MatInd and MatInspector—New fast and sensitive tools for detection
of consensus matches in nucleotide sequence data. Nucleic Acids Res.,
23, 4878–4884.

Wingender,E. (1993) Gene Regulation in Eukaryotes. VCH, Weinheim.
Wingender,E. (1997) Classification scheme of eukaryotic transcription

factors. Mol. Biol., (Mosk)., 31, 483–497.
Wingender,E., Dietze,P., Karas,H. and Knüppel,R. (1996a)

TRANSFAC: A database on transcription factors and their DNA
binding sites. Nucleic Acids Res., 24, 238–241.

Wingender,E., Karas,H. and Knüppel,R. (1996b) TRANSFAC database
as a bridge between sequence data libraries and biological function. In
Altman,R.B., Dunker,A.K., Hunter,L. and Klein,T.E. (eds), Pacific
Symposium on Biocomputing ’97 (PSB’97). World Scientific,
Singapore, pp. 477–485.

Wingender,E., Kel,A.E., Kel,O.V., Karas,H., Heinemeyer,T., Dietze,P.,
Knüppel,R., Romaschenko,A.G. and Kolchanov,N.A. (1997)
TRANSFAC, TRRD and COMPEL: Towards a federated database
system on transcriptional regulation. Nucleic Acids Res., 25, 265–268.


