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26, 20133 Milano, Italy, 2Centro di Studio sui Mitocondri e Metabolismo Energetico
del Consiglio Nazionale delle Ricerche, Via Orabona, 4, 70126 Bari, Italy and
3Argonne National Laboratory, Mathematics and Computer Science Division,
9700 South Cass Avenue Argonne, Illinois 60439-4844, USA

Received on September 1, 1999; revised and accepted on November 24, 1999

Abstract
Motivation: The identification of sequence patterns
involved in gene regulation and expression is a major
challenge in molecular biology. In this paper we describe
a novel algorithm and the software for searching nu-
cleotide and protein sequences for complex nucleotide
patterns including potential secondary structure elements,
also allowing for mismatches/mispairings below a user-
fixed threshold, and assessing the statistical significance
of their occurrence through a Markov chain simulation.
Results: The application of the proposed algorithm al-
lowed the identification of some functional elements, such
as the Iron Responsive Element, the Histone stem-loop
structure and the Selenocysteine Insertion Sequence,
located in the mRNA untranslated regions of post-
transcriptionally regulated genes with the assessment of
sensitivity and selectivity of the searching method.
Availability: A Web interface is available at: http://
bigarea.area.ba.cnr.it:8000/EmbIT/Patsearch.html.
Contact: graziano.pesole@unimi.it

Introduction
A major challenge in molecular biology is the understand-
ing of the regulation of gene expression both in a temporal
and spatial framework. Indeed, basic mechanisms of life
including cell growth, development and differentiation de-
pend on the differential and regulated expression of spe-
cific genes.

Although regulatory elements controlling gene expres-
sion are generally embedded in the non-coding part of the
genomes since the beginning of the sequencing era, efforts
of the researchers were mainly focused on the decipher-
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ing of the coding region with the aim of infering the cor-
responding protein sequence and assessing its biological
activity. Consequently, most of the software tools devel-
oped so far are devoted to the analysis of protein coding
sequences (Burset and Guigo, 1996; Fickett and Hatzige-
orgiou, 1997; Snyder and Stormo, 1995) or to the predic-
tion of protein structure (Sternberg et al., 1999).

Since a large part of the genomes, particularly in
eukaryotes, does not code for proteins many sequence
contigs from whole genome sequencing projects will not
provide any useful biological information unless specific
software tools are developed allowing investigators to fill
the gap between data production and interpretation.

Transcriptional or post-transcriptional control of gene
expression involves short DNA or RNA tracts respectively
interacting with specific binding proteins. The DNA
elements controlling transcription such as promoters and
enhancers are definitely better characterized and various
software tools have been devised for their identification
so far (Fickett and Hatzigeorgiou, 1997; Werner, 1999).
Contrary to this, RNA elements usually embedded in
the 5′- and 3′-untranslated regions (UTR) of mRNA are
much less studied and their identification is complicated
by the fact that their activity very often derives mainly
from the specific secondary structure rather than from the
primary nucleotide sequence which instead may be barely
conserved.

Among structural elements located in the UTR region of
mRNAs whose biological activity has been demonstrated
experimentally, there are the Iron Responsive Element
(IRE) (Hentze and Kuhn, 1996), the Histone 3′-UTR stem-
loop structure (Williams and Marzluff, 1995), and many
others which play important roles in the regulation of gene
expression.
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It is then of utmost importance to develop specific
software tools which are able to identify these elements
in other sequences, thus greatly contributing to their
functional characterization.

We present here the PatSearch algorithm which is
able to analyze user submitted sequence collections for
the presence of complex patterns including potential
secondary structure elements also allowing mismatch
and/or mispairing below a user fixed threshold.

The designing of each functional pattern is based on
the available experimental data derived from the literature
and/or from the scientists involved in its functional char-
acterization. The experimental data considered include
expression patterns of genes with recombinant UTRs,
site-specific mutagenesis, RNAse protection and chemical
probing experiments.

To assess sensitivity and selectivity of the pattern search,
a suitable random model is needed which allows us
to compute the number of expected pattern hits. The
simplest way to accomplish this task is by simulation
of natural sequences according to Markov chain models
which in most cases reveal a suitable approximation. The
comparison, for each pattern, between the number of
observed and expected hits according to the simulation
procedure, through a measure of statistical significance,
will provide an assessment of the probability that a pattern
match found in a novel sequence is a good candidate for
the functional activity under investigation.

System and methods
The PatSearch program is written in C language and runs
under the Unix operating system. It is essentially based on
the pattern-matching program ‘scan for matches’ which
was written by Ross Overbeek, David Joerg, and Morgan
Price in 1993. This version of the program described
by D’Souza et al. (1997), with some updates, is also
available through a Web-based system (http://www.mcs.
anl.gov/compbio/PatScan/HTML/patscan.html).

The new version which implements the simulation
procedure for assessing the statistical significance of
pattern hits is available on the Web at the URL: http:
//bigarea.area.ba.cnr.it:8000/EmbIT/Patsearch.html.

Implementation
Defining Patterns and Using Them in Search Requests
The PatSearch pattern matcher takes as input a database
(or a database subset) available on the server site (EMBL,
Genbank, UTRdb and others) or a user defined list of
accession numbers indicating the relevant database on the
Web submission form.

The users are allowed to choose whether they wish
to search for nucleotide (default) or protein sequences,
whether they wish to search on both strands of nucleotide

sequences, the maximum number of hits reported, and
whether overlapping hits should be reported. Sequence
data should use the standard codes:

{A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y} for
amino acids, and {A,C,G,T or U} for nucleotides, where
T and U are equivalent. In the sequence data, upper case
and lower case are equivalent and ambiguity codes are not
recognized and skipped by the pattern matching program.

The PatSearch program locates all sub-sequences from
the input sequences that are matched by a specified
pattern. The pattern description was inspired by ‘regular
expression’ rules, although both the syntax and the
semantics are different, especially for the inclusion of
specific operators for finding complementary helices and
palindromes. Here, we clarify what we mean by a pattern
and how the program locates the sub-sequences matched
by it.

A pattern is a sequence of pattern units:

p1 p2 p3 . . . pn.

These pattern units are separated by white space (i.e. one
or more spaces, tab characters, or end-of-line characters).
All the patterns must be named p1, p2, etc. as well as the
rules r1, r2, etc. (see below) using lower case letters. For
example,

GGCC 3 . . . 8 GAACC

is a valid pattern made up of three pattern units. This sim-
ple pattern would match any sub-sequence beginning with
GGCC, followed by three to eight characters, followed by
GAACC.

For example, the pattern would match both

GGCCACGGAACC

and
GGCCAAAACGGAACC.

PatSearch patterns should use the standard IUB codes.
X is the only ambiguity character allowed for protein
sequences. The ambiguity codes supported for nucleotides
are M-{A,C}; R-{A,G}; W-{A,T}; S-{C,G}; Y-{C,T}; K-
{G,T}; B-{C,G,T}; D-{A,G,T}; H-{A,C,T}; V-{A,C,G}; N-
{A,C,G,T}.

Before presenting a detailed description of pattern units
and their matches, we need to briefly discuss the ability to
reference sections of sequence that have been matched by
a previous pattern unit. Consider the following pattern:

p1 = 4 . . . 4 p1 p1.

Here the first pattern unit is

p1 = 4 . . . 4.

This will match any four-character sequence, and it
will allow later pattern units to reference the matched
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sub-sequence (as p1). Thus, the pattern will match any
12-character sub-sequence that is made up of three repeats
of the same four-character sequence (e.g. ACGTACG-
TACGT).

Similarly,

p1 = 4 . . . 4 p1 p2 = 3 . . . 3 p1 p2 p1 p1 p2

will match AAAAAAAACCCAAAACCCAAAAAAAA-
CCC as well as ACGTACGTACGACGTACGACGTACG-
TACG.

The scan of a sequence S begins by setting the current
position to 1 (the first character of the sequence to be
searched). Then, an attempt is made to match p1 starting
at the current position. If the attempt succeeds, then an
attempt is made to match the next unit. If it fails, then
an attempt is made to find an alternative match for the
immediately preceding pattern unit. If this succeeds, then
we proceed forward again to the next unit. If it fails,
we go back to the preceding unit. This process is called
‘backtracking’. If there are no previous units, then the
current position is incremented by one, and the process
starts again. This process continues until either the current
position goes past the end of the sequence or all of
the pattern units succeed. On success, PatSearch reports
the ‘hit’. If the user chooses to detect also overlapping
patterns, the current position is set to one character past
the start of the match; otherwise, the current position is set
just past the hit region. Then the process begins again to
find another hit.

In the case of two (or more) internal solutions for a
given pattern, only the first match found is reported if the
‘overlap’ option is not chosen. If this option is chosen, all
possible matches will be reported including those with the
same ends and with different interior arrangements (for
example, if a tRNA can fold into two different structures
and a suitable pattern is designed the program will report
both).

Pattern units that apply to both protein and nucleotide se-
quences. Various pattern units apply to both nucleotide
and protein sequences.

(a) String Pattern Unit. This is a string of characters that
may include ambiguity characters.

EXAMPLES. rGGrGG will match AGGAGG,
GGGAGG, AGGGGG, or GGGGGG. CxxCxxxC
will match any eight-character amino acid sub-
sequence in which the first, fourth, and last
characters are C.

(b) Pattern unit with a [mismatches,deletions,insertions]
modifier.
The modifier contains three integers, representing
the number of mismatches, deletions, and insertions
allowed in the matched sub-sequence.

EXAMPLES. TTTATTT[1,0,0] would match
TTTGTTT or any other sub-sequence with a single
mismatch.
TTTATTT[0,1,0] would match TTTTTT or any
other sub-sequence missing a single character of the
pattern unit.
TTTATTT[0,0,1] would match TTTACTTT or any
other sub-sequence with an inserted character.
ACGTACGTACGT[1,1,1] would match ACG-
GTAGGTCGT (very slow). p1[2,0,0] would match
a previously matched sub-sequence (recorded as
p1) allowing two mismatches.
The use of deletions or insertions considerably
slows down matching. Users frequently use loosely
defined modifiers, allowing the pattern to match
almost any sub-sequence.

(c) Range Pattern Unit. This unit has the form:
min. . . max.

EXAMPLES. 0. . . 1 matches either 0 or 1 characters.
1. . . 200 matches any sub-sequence from 1 to 200
characters.
The range pattern units will first match the mini-
mum number of characters; and the length will be
expanded on backtracking if necessary

(d) Either/or pattern unit. This has the form (p1 | p2),
which will match either p1 or p2. The alternatives
may themselves be complex patterns (made up
of more than one pattern unit). Parentheses are
required, as well as spaces before and after the
vertical bar.

EXAMPLES. (CxxC | CxxM) would match
both CAAC and CAAM. ATG (((0 . . . 0 |
3 . . . 3) | 6 . . . 6) | 9 . . . 9) ATG would match
AT G AT G, AT GCCCATG, AT GTTTTTTATG or
AT GGGGGGGGGGATG where CCC, TTTTTT
and GGGGGGGGG are arbitrary sequences.

(e) Start of Sequence. ˆ matches only at the start of a
sequence (and does not ‘consume’ characters).

EXAMPLE. ˆ ATG matches only an initial ATG.

(f) End of Sequence. $ matches only at the end of a
sequence (and does not ‘consume’ characters)

EXAMPLE. ALV $ matches only a terminal ALV.

(g) Palindrome Pattern Unit. <p1 matches the palin-
drome of the sub-sequence previously recorded as
p1.

EXAMPLE. p1 = 4 . . . 4 < p1 matches the sub-
sequence SAPRRPAS.
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Pattern units that apply only to protein sequences. When
constructing patterns for protein sequences, it is useful
to refer to classes of amino acids. The following two
constructs relieve one from the need for ambiguity codes
for amino acids.

(a) any(list of characters) matches a single character if
it is in the list.

EXAMPLES. any(ILV) matches an I an L or a V
any(ILV) 2. . . 3 any(CH) matches IPDH as well as
VQMC.

(b) notany(list of characters) matches a single character
if it is not in the list.

EXAMPLES. notany(ILV) matches any amino acid
other than I, L, or V. any(ILV) 2. . . 3 notany(CH)
matches IPDQ as well as VQMD.

Pattern units that apply only to nucleotide sequences.
When looking for patterns in nucleotide sequences, it is
often necessary to be able to look for regions that ‘loop
back and bind’ a previous region. The most obvious case
is that of a hairpin loop. In the simplest case, this pattern
search can be done easily by using a pattern unit of the
form

∼ p1

which matches the reverse complement of the sub-
sequence recorded in p1. Thus, the pattern

p1 = 6 . . . 8 3 . . . 8 ∼ p1

can be used to match a hairpin loop (sometimes called
a stem-loop) structure in which the stem is six to eight
characters in length, and the loop is three to eight
characters in length. Depending on the choice of the
‘overlapping’ option, in the case of two (or more) internal
solutions for a given pattern, only the first or all the
possible solutions will reported respectively. For example,
if the sequence GCGGGCGACCGC is searched using the
pattern ‘p1 = 3 . . . 5 4 . . . 6 ∼ p1’ if the overlap option
is not chosen, only the first match found is reported—
‘GCG GGCGAC CGC’. If the overlap option is chosen,
in addition to the first match, the two internal matches
are also reported, i.e. ‘GCGG GCGA CCGC’ and ‘CGG
GCGA CCG’.

While useful, more capabilities are needed to search for
many RNA and DNA structures. We have added a number
of features to address this need. Consider the following
pattern (which is written on two lines—a line can be
broken anywhere that one can put spaces in a pattern):

r1 = {au, ua, gc, cg, gu, ug, ga, ag}
p1 = 2 . . . 3 0 . . . 4 p2=2 . . . 5 1 . . . 5 r1 ∼ p2 0 . . . 4∼p1

The ‘pattern unit’ on the first line does not actually
match anything; rather, it defines a ‘pairing rule’ in which
standard pairings are allowed, as well as G–U, U–G, G–A,
and A–G. In this format, r1 = {AU, UA, gc, cg} could be
used to define the ‘standard rule’ for pairings. The second
line consists of six pattern units, which may be interpreted
as follows:

p1 = 2 . . . 3 match 2 or 3 characters (call it p1)
0. . . 4 match 0 to 4 characters
p2 = 2 . . . 5 match 2 to 5 characters (call it p2)
1. . . 5 match 1 to 5 characters
r1 ∼ p2 match the reverse complement of p2,

allowing G–U, U–G, G–A, and A–G
0. . . 4 pairs match 0 to 4 characters
∼p1 match the reverse complement of p1,

allowing only G–C, C–G, A–T,
and T–A pairs.

Thus, r1 ∼ p2 means ‘match the reverse complement of
p2 using rule r1’.

Now let us consider the issue of tolerating mismatches
and bulges.

One may add a qualifier to the pattern unit that
gives the tolerable number of ‘mismatches, deletions, and
insertions’.

Thus,

p1 = 10 . . . 10 3 . . . 8 ∼ p1[1, 2, 1]
means that the third pattern unit must match 10 characters,
which are the reverse complement of the 10 characters in
p1, allowing one ‘mismatch’ (a pairing other than G–C, C–
G, A–T, or T–A), two deletions (a deletion is a character
that occurs in p1, but has been ‘deleted’ from the string
matched by ∼p1), and one insertion (an ‘insertion’ is a
character that occurs in the string matched by ∼p1, but
not in p1). In this case, the pattern would match

ACGTACGTAC GGGGGGGG GCGTTACCT

which is a fairly weak loop.

Weight matrices. A weight matrix can be used as pattern
unit. Suppose you want to match a sequence of eight
characters. The ‘consensus’ of these eight characters is
GRCACCGS, but the actual ‘frequencies of occurrence’
are given in the matrix below. Thus, the first character is
an A 16% of the time and a G 84% of the time. The second
is an A 57% of the time, a C 10% of the time, a G 29% of
the time, and a T 4% of the time, and so on as given below.

C1 C2 C3 C4 C5 C6 C7 C8
A 16 57 0 95 0 18 0 0
C 0 10 80 0 100 60 0 50
G 84 29 0 0 0 20 100 50
T 0 4 20 5 0 2 0 0
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The following pattern unit can be used to search for
inexact matches related to such a ‘weight matrix’:

{(16,0,84,0),(57,10,29,4),(0,80,0,20),(95,0,0,5),

(0,100,0,0),(18,60,20,2),(0,0,100,0),(0,50,50,0)} >450.

This pattern unit will attempt to match exactly eight char-
acters. For each character in the matched sub-sequence,
the entry for that character in the corresponding 4-tuple is
added to an accumulated sum. If the sum is greater than
450, the match succeeds; otherwise it fails. It is also pos-
sible to use ranges as in the following example:

600 > {(16,0,84,0),(57,10,29,4),(0,80,0,20),(95,0,0,5),

(0,100,0,0),(18,60,20,2),(0,0,100,0),(0,50,50,0)} >450

When dealing with nucleotide patterns, each weight
matrix entry is a 4-tuple, but in a protein sequence each
is a 20-tuple (with entries corresponding to the amino acid
codes in alphabetic order). It is clear that such matrices are
almost impossible to formulate or work with, unless they
are automatically generated by a program.

Finally, we note that the crude matrix used above is not
really very well formulated. There is a broad literature
on the use of weight matrices (see Gelfand, 1995). All
we will say here is that it would have been better to
convert the entries in negative log values, normalize
them, and construct the matrix. It makes more sense to
sum the negative logs of the frequencies, rather than the
frequencies themselves.

Postprocessing. It is occasionally very convenient to be
able to ‘reprocess’ a section of a sequence that has already
been matched. For example, consider a pattern with the
form

p1 = 6 . . . 6 GC3 . . . 200 TGCATGCGGC[1, 0, 0] ∼ p1.

This might well match very slowly, given the 3. . . 200
pattern unit. However, the pattern unit TGCAT-
GCGGC[1,0,0] is by far the most discriminating (in
that it fails to match in the vast majority of cases). For
this reason in PatSearch we allow the use of the following
pattern

p1 = 11 . . . 208 TGCATGCGGC[1, 0, 0]
p2 = 6 . . . 6 p1/p2 : (p3 = 6 . . . 6 GC3 . . . 200 ∼ p3$)

and thus a two-pass approach is carried out in which
the input sequence is first matched against the most
discriminating pattern and then the hits from this pass are
processed using the full pattern. The syntax of the last
pattern unit is

list : (subpattern)

where list is a list of recorded sections of sequence (in
this case, just p1/p2/) and subpattern is a pattern to match

against the concatenation of the regions represented by
the list of recorded matches. The post-processing is not
limited to a single rescan.

Simulation Procedure
The simulation procedure we have devised (described
below), allows the user to consider Markov chains of
any order for the generation of simulated sequences.
For example using a Markov chain of the first order,
the actual dinucleotide frequencies are considered for
sequence generation, i.e. simulated sequences maintain
the dinucleotide frequency of natural sequences. In the
case of amino acid patterns the sequences are simulated
taking into account only the actual amino acid frequencies
of the searched proteins.

Let us consider the collection to be searched for a given
pattern which contains N nucleotide sequences of length
Lk (k = 1, . . . , N ). The simulation procedure, carried out
R times for each pattern search, using a Markov chain of
order M , is then described as follows:

(1) iterate n from 1 to R;

(2) iterate k from 1 to N ;

(3) choose randomly the first w-gram (w = M + 1) of
the sequence Sk with probability πik = pik/(Lk −
M), where pik is the observed frequency of the i th
w-gram (i = 1, . . . , 4w) in the sequence k;

(4) Generate nucleotide w + j ( j = 1, Lk − w) using a
M-order Markov chain generator—the key property
of a Markov chain generator of order M is that the
probability of each symbol in the sequence depends
only on the value of the preceding M symbols. In
the case of a zero-order Markov chain the nucleotide
w + j ( j = 1, Lk − 1) will be generated randomly
as A, C, G or T with a probability defined by
their relative frequency in the natural sequences.
If M ≥ 1 the nucleotide w + j will be generated
as A, C, G or T with probability respectively
proportional to the observed frequency of the four
w-grams x j+1, . . . , x j+w−1A, x j+1, . . . , x j+w−1C,
x j+1, . . . , x j+w−1G, x j+1, . . . , x j+w−1T as de-
termined by the value of an extracted random
number.

The order of the Markov chain is chosen by the user (see
Discussion). In the simulation procedure the sequences to
be searched for a given pattern are thus shuffled but retain
the natural wmers composition.

The pattern search can be carried out on a large number
(e.g. 100) of simulated sequence datasets thus allowing
the calculation of expected hits with the relevant SD
values. The statistical significance of the observed hits
can be thus easily calculated by comparing observed
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and expected values with the usual chi-square statistics
[chi-square = (Obs − Exp)2/Exp].

Application
We have used the PatSearch matcher to search for specific
sequence patterns already known to play some functional
role in the regulation of gene expression. In particular,
we considered some cis-acting elements located in the
5′- or 3′-UTR regions of eukaryotic mRNAs which may
play some fundamental role in the post-transcriptional
regulation of gene expression.

The 5′- or 3′-UTR elements usually correspond to short
oligonucleotide tracts, which generally fold into specific
secondary structures and are binding sites for various
regulatory proteins. The pattern description syntax of the
PatSearch program is particularly suitable for modeling
the consensus structure of such functional elements.

Among the cis-acting oligonucleotide patterns located
in the UTR regions of eukaryotic mRNA involved in post-
transcriptional regulation of gene expression the histone
stem-loop element, the IRE and the SElenoCysteine
Insertion Sequence (SECIS) are those more extensively
studied and better characterized (Hentze and Kuhn, 1996;
Hubert et al., 1996; Williams and Marzluff, 1995). The
definition of the sequence patterns specific for each of
the above functional elements was based on the extensive
comparative analysis of the sequence regions whose
biological activity was experimentally demonstrated and
on available experimental data obtained by chemical
probing or site-specific mutagenesis.

In the following section these functional elements are
described in more detail reporting the derived consensus
pattern. These functional patterns, with many others
which are specific of 5′- and 3′-UTR eukaryotic mRNAs,
are collected as entries of the UTRsite database (http:
//bigarea.area.ba.cnr.it:8000/EmbIT/UTRHome/) where a
summary description of their biological activity can be
found.

Histone mRNA 3′-UTR stem-loop structure
Metazoan histone 3′-UTR mRNAs, lacking a polyA tail,
contain a highly conserved stem-loop structure with a
six base stem and a four base loop. Figure 1 shows the
derived consensus stem-loop structure and the relevant
PatSearch pattern we devised for the histone stem-loop
element. In all histone mRNAs analyzed so far no G has
been observed in the four base loop. In all metazoan except
Caenorhabolitis elegans, there are two invariant urydines
in the first and third base of the loop. In C. elegans
the first base of the loop is C. Either 5′ or 3′ flanking
sequences are necessary for high affinity binding of SLBP.
The 5′ flanking sequence consensus is CCAAA and the 3′
flanking sequence consensus is ACCCA or ACCA with

Fig. 1. Consensus structure devised for the histone mRNA stem-
loop element (a). In the corresponding PatSearch pattern (b) only
four and two bases respectively, preceding and following the stem-
loop structure, are constrained to be A or C (M = A/C in the IUB
code).

cleavage occurring after the CA.
The histone 3′-UTR hairpin structure is peculiar in that

the bases of the stem are conserved unlike most functional
hairpin motifs where conserved bases are found in single
stranded loop regions only. The sequence of the stem and
flanking sequences are critical for binding of its interacting
stem-loop binding protein (SLBP).

Iron responsive element
The IRE is a particular hairpin structure located in the
5′- or the 3′-UTR of various mRNAs coding for proteins
involved in cellular iron metabolism. Iron responsive
elements are recognized by transacting proteins known
as Iron Regulatory Proteins (IRPs) which control mRNA
translation rate and stability. Figure 2 shows the derived
IRE consensus structure and the relevant PatSearch
pattern. Two alternative IRE consensus have been found
both showing a bipartite stem interrupted by a bulged C or
by a small internal loop formed by a cytosine nucleotide
opposed to a trinucleotide ending with another cytosine.
Some evidences also suggest a structured loop with an
interaction between nucleotide one and nucleotide five
(connected by a dashed line in Figure 2). The lower stem
can be of variable length and is AU-rich.

Selenocysteine insertion sequence
Specific incorporation of selenocysteine in selenoproteins
is directed by UGA codons residing within the coding
sequence of the corresponding mRNAs. Translation of
UGA, usually a termination codon, as selenocysteine
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Fig. 2. Consensus structure devised for the IRE (a). Two alternative
PatSearch patterns (b) are reported and degenerate nucleotides are
represented by the IUB code (W = A/U; H = not G; N =
any base).

requires a conserved stem-loop structure called SECIS
lying in the 3′-UTR region of selenoprotein mRNAs.
The consensus structure of SECIS element determined
by comparative analysis of several selenoprotein mRNAs
as well as with both RNase and chemical probing is
characterized by a hairpin structure composed of two
helices of different length separated by an internal loop. In
the top helix a quartet of conserved ‘non-Watson–Crick’
base pairs is crucial for functional activity. The derived
consensus structure of the SECIS element and the relevant
PATSEARCH pattern is shown in Figure 3.

Finding functional elements in mRNA UTR sequences
using PatSearch
In order to search for the above described functional
elements in the UTR regions we used the PatSearch
program with input sequences the entries of the UTRdb
database and input patterns those previously described
(Figures 1–3).

A non-redundant database, UTRdb collects all UTR
sequence regions of eukaryotic mRNAs which is struc-
tured in the same taxonomic divisions adopted by the
EMBL/Genbank database. The present version of the
database (release 12, October 1999) contains more than

Fig. 3. Consensus structure devised for the Selenocysteine insertion
sequence (a). In the corresponding PatSearch pattern (b) two
different pairing rules (r1 and r2) are used for different helices
where mismatches and indels are allowed in some cases.

85 000 entries and about 30 million nucleotides.
The UTRdb entries found to contain the IRE element

in the 5′-UTR and the histone stem-loop or the SECIS
elements in the 3′-UTR are listed in Table 1. It is
interesting to note that all 30 3′-UTR sequences containing
the histone 3′-UTR stem-loop pattern in Figure 1 actually
corresponded to histone mRNAs belonging to different
species and including both vertebrates and invertebrates.
A very high selectivity has also been found for the IRE
pattern where 18 out the total 20 matching 5′-UTRs
correspond to mRNAs coding for proteins involved in
iron metabolism regulation and known to contain the IRE
element in their 5′-UTR. A different situation has been
observed for the SECIS pattern which seems to be much
less selective with only 27 out of the total 77 pattern hits
actually corresponding to selenoprotein mRNAs known
to contain a SECIS element in their 3′-UTR region—the
other genes, some of them unknown, apparently do not
code for selenoproteins. Indeed, if the data for the SECIS
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element in Table 1 are considered there are many mRNAs
of unknown function which could possibly undergo a
SECIS-mediated regulation.

The matching patterns found in UTR sequences for
which no experimental data are available can be consid-
ered either functional candidates or just false positives.
This is the case, for example, of the two additional mR-
NAs found to contain the IRE element in the 5′-UTR (see
Table 1) which could be considered as reliable candidates
for IRE-mediated regulation.

If we define the true and false positives (t+ and
f +) as matched functional or non-functional patterns
respectively, and true and false negative (t− and f −) as
unmatched functional or non-functional patterns, we can
calculate the sensitivity and selectivity of the method as
(Snyder and Stormo, 1995):

Sensitivity = t+/(t+ + f −)

Selectivity = t+/(t+ + f +).

The sensitivity represents the percentage of genuine
functional patterns, in total t+ + f −, recognized by the
pattern matcher. The selectivity represents the percentage
of the total positive matches, i.e. t+ + f +, which
actually correspond to genuine functional elements. False
negatives can be recognized as UTR sequences which
fail to match the derived consensus pattern although
their relevant functional activity has been experimentally
demonstrated or consistently predicted on a comparative
basis. On the contrary, true negatives and false positives
can be defined only by experimental check. Therefore,
the degree of selectivity, which gives the probability the
matched pattern has biological activity, cannot be directly
calculated with the formula above.

Our data show that both the histone stem-loop and
the IRE derived consensus patterns are able to match all
UTRs known to contain either of the two elements, thus
suggesting a very high sensitivity level. A good sensitivity
has been observed also for the SECIS element as 90%
(27/30) of the known elements are predicted by the derived
consensus pattern in Figure 3 and only three elements (e.g.
Human Gpx3, Tilapia type I iodothyronine deiodinase
and Rat type I iodothyronine deiodinase mRNAs) fail to
match. Indeed, also in this case total coverage can be
obtained just allowing one more mismatch in helix two
(see the consensus structure in Figure 3). However, the
price to pay for this small increase in sensitivity is a
consistent decrease in selectivity as in the resulting two-
fold increase of matching UTRs.

Assessing statistical significance and selectivity level
by pattern matching simulation
The evaluation of the statistical significance of the ob-
served occurrence of a given pattern can be obtained

through the simulation procedure described in the Imple-
mentation section. Indeed, if a simulation is carried out
which generates a huge number of investigated sequence
dataset where simulated sequences retain the nucleotide
and/or oligonucleotide composition of the natural se-
quences, the execution of the pattern searching algorithm
using the devised consensus pattern allows us to estimate
the average number of matches we may expect just by
chance. Assuming the average number of hits represents
the expected number of hits under a random model we
can easily calculate the statistical significance of the
observed hits through the simple chi-square statistics.
If we assume that the expected number of pattern hits
estimates the number of false positives we can easily
assess the selectivity level for each pattern as previously
defined.

In Table 2 the number of observed and expected
patterns for each of the three functional elements here
considered, calculated using a first-order Markov chain
in the simulation (see Discussion), with the statistical
significance and the selectivity level, are reported. A
conservative estimate of the selectivity level can also be
obtained as the proportion of UTR sequences known to
contain the relevant functional pattern (marked in Table 1)
over all matching UTRs. This is likely to underestimate the
selectivity level as the biological activity of the unknown
matching pattern cannot be excluded without experimental
investigation.

According to simulation data, the highest selectivity,
about 100%, is observed with the histone stem-loop
structure. This means that the probability that a match
is not functional (false positive) is negligible. Indeed, all
found matches correspond to actual histone mRNAs. Also
the IRE pattern was rather selective in 5′-UTRs, with a
selectivity level ranging from 84 to 97%. It is interesting
to note that both histone stem-loop and IRE patterns were
found to be statistically significant only in animal mRNAs
and not in plant or fungi mRNAs where these elements are
not reported to be functional.

The SECIS pattern presented a very low level of se-
lectivity and resulted in being significantly over-occurring
only in rodent and other mammal 3′-UTRs.

Discussion
The enormous flood of sequence data produced by the
many sequencing projects now in progress requires the
development of suitable bioinformatic tools which may
greatly help their functional characterization. Conversely,
the gap between data production and their interpretation
is doomed to increase ever more, making newly produced
genomic sequence data useless over time. Database
searching is the most common approach for the charac-
terization of anonymous sequences where the finding of
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Table 1. List of mRNA sequences matching the histone stem-loop element in the 3′-UTRs, the IRE in the 5′-UTRs and the SECIS in the 3′-UTRs. For each
match the relative position in the UTR region, the UTRdb ID and the EMBL accession numbers are provided. mRNAs known to contain a functional element
are also ticked (

√
)

UTRdb ID Position EMBL AC species Description

Histone 3 pattern
3HSA014005 42. . . 64 Z98744 Human histone H2A

√
3HSA014006 43. . . 65 Z98744 Human histone H2B

√
3HSA014008 32. . . 54 Z98744 Human histone H1.5

√
3HSA014009 35. . . 57 Z98744 Human histone H3.1

√
3HSA014011 22. . . 44 Z98744 Human histone H2B

√
3HSA014092 22. . . 44 AL009179 Human Histone H2B

√
3HSA014093 40. . . 62 AL009179 Human Histone H2A

√
3HSA014094 27. . . 49 AL009179 Human Histone H3.1

√
3HSA014418 46. . . 68 L19778 Human histone H2A.1b

√
3HSA014419 63. . . 85 L19779 Human histone H2A.2

√
3HSA004810 45. . . 67 X14850 Human histone H2A.X

√
3HSA010018 39. . . 61 U90551 Human histone 2A-like

√
3CLO000016 64. . . 86 X80330 Hamster histone H2a.2

√
3CLO000017 26. . . 48 X80330 Hamster histone H3.2

√
3MMU005868 54. . . 76 Z30940 Mouse histone H2A

√
3MMU000265 27. . . 49 Z30939 Mouse histone H3

√
3MMU002585 42. . . 64 X58069 Mouse histone H2A.X

√
3MMU002586 23. . . 45 X80328 Mouse histone H2b

√
3MMU002587 20. . . 42 X80328 Mouse histone H3

√
3MMU004991 33. . . 55 U62672 Mouse histone H3.1-D

√
3MMU004994 26. . . 48 U62675 Mouse histone H3.2-616

√
3MMU004995 34. . . 56 U62675 Mouse histone H2b-616

√
3MPA000003 28. . . 5 X80324 shrew mouse histone H3.1

√
3MPA000004 21. . . 43 X80326 shrew mouse histone H3.2

√
3MPA000005 20. . . 42 X80325 shrew mouse histone H3.1

√
3RNO001863 23. . . 45 M18046 Rat histone H2B

√
3TNI000020 24. . . 46 X54078 Nile tilapia histone H4

√
3XBO000012 24. . . 46 J00985 Xenopus histone H4

√
3EMI000001 22. . . 44 L41834 jackknife clam nuclear protein

√
3PHE000001 27. . . 49 X54114 Pycnopodia histone H3

√
helianthoides

IRE pattern
5HSA001988 13. . . 35 X60364 Human 5-aminolevulinate synthase

√
5HSA003829 8. . . 30 Y09188 Human ferritin L-chain

√
5HSA003858 35. . . 57 D28463 Human ferritin heavy chain

√
5HSA013930 34. . . 56 J04755 Human ferritin H processed pseudogene

√
5MMU001248 15. . . 37 M63244 Mouse amino levulinate synthase

√
5MMU002159 33. . . 55 M60170 Mouse ferritin heavy chain

√
5MMU002160 2. . . 24 J04716 Mouse ferritin light chain

√
5SSC000205 17. . . 39 D15071 Pig ferritin heavy-chain

√
5OMY000025 6. . . 28 D86626 Rainbow trout ferritin H-2

√
5RCA000039 28. . . 50 M12120 Bull frog Ferritin

√
5SSA000004 32. . . 54 S77386 Salmon ferritin middle subunit

√
5XLA000031 506. . . 528 S64727 Xenopus Ferritin

√
5XLA000423 171. . . 193 X51395 Xenopus Ferritin

√
5GGA000387 229. . . 251 M55644 Chicken marker protein (Ch21)
5AAE000011 85. . . 111 L37082 yellow fever mosquito Ferritin

√
5DME001131 64. . . 92 L27705 Fruit fly succinate dehydrogenase iron-subunit

√
5DME001318 252. . . 282 U67304 Fruit fly 70 kDa S6 kinase
5DME001793 151. . . 177 Y15629 Fruit fly ferritin subunit 1

√
5IRI000001 2. . . 26 AF068224 Ixodes ricinus Ferritin

√
5LST000028 22. . . 44 X56778 great pond snail Ferritin

√
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Table 1. Continued

SECIS pattern
3HSA001292 80. . . 139 U37143 Human cytochrome P450 monooxygenase CYP2J2
3HSA002889 168. . . 236 X04076 Human Catalase
3HSA003963 312. . . 366 L07077 Human enyol-CoA: hydratase 3-hydroxyacyl-CoA

dehydrogenase
3HSA004706 212. . . 291 X68314 Human glutathione peroxidase-GI

√
3HSA004716 216. . . 293 X53463 Human glutathione peroxidase-like protein

√
3HSA004727 54. . . 117 X71973 Human phospholipid hydroperoxide glutathione

peroxidase GPx4
√

3HSA006271 1431. . . 1494 L06175 Human P5-1 gene
3HSA006417 16. . . 86 X64652 Human MSSP-1 gene
3HSA006419 16. . . 86 X77494 Human MSSP-2 gene
3HSA006578 254. . . 325 D42072 Human Neurofibromatosis type 1 protein
3HSA009338 2677. . . 2749 U61167 Human SH3 domain-containing protein SH3P18
3HSA010862 541. . . 614 S79854 Human type 3 iodothyronine deiodinase

√
3HSA011363 744. . . 799 AF029750 Human Tapasin
3HSA011596 258. . . 324 + 697. . . 758 Z11793 Human selenoprotein P

√
3HSA012601 196. . . 254 AB003062 Human myosin phosphatase targeting/regulatory subunit
3HSA012772 1796. . . 1853 AB011153 Human KIAA0581 protein
3HSA012839 444. . . 506 AB014524 Human KIAA0624 protein
3HSA012901 1744. . . 1796 AB014586 Human KIAA0686 protein
3HSA014180 111. . . 174 AB002329 Human KIAA0331 protein
3HSA015189 2765. . . 2818 AF061189 Human ectodysplasin-A isoform EDA-A2
3HSA015329 80. . . 140 AF079529 Human cAMP-specific phosphodiesterase 8B
3HSA015816 1546. . . 1624 D26018 Human KIAA0039 protein
3HSA015967 972. . . 1038 S48220 Human type I 5′-iodothyronine deiodinase

√
3SSC000588 48. . . 114 X76009 Pig phospholipid hydroperoxide glutathione

peroxidase
√

3SSC000385 48. . . 115 L12743 Pig phospholipid hydroperoxide glutathione
peroxidase

√
3OCU000306 42. . . 122 X13837 Rabbit glutathione peroxidase

√
3CFA000025 592. . . 656 U11762 Dog type I iodothyronine deiodinase

√
3BTA001004 239. . . 302 +635. . . 697 D25220 Bovine selenoprotein P like protein

√
3BTA000991 613. . . 676 L10325 Bovine glutathione peroxidase

√
3BTA000614 49. . . 119 X13684 Bovine glutathione peroxidase

√
3MMU000179 43. . . 112 AF015284 Mouse selenoprotein W

√
3MMU000508 510. . . 589 U13705 Mouse glutathione peroxidase (plasma )

√
3MMU001204 727. . . 779 AB000733 Mouse AF1q protein
3MMU002046 163. . . 211 D88611 Mouse mGCMb protein
3MMU003946 1888. . . 1947 D26047 Mouse Pig-a protein
3MMU004110 4959. . . 5016 Z11981 Mouse Pvt-1 protein
3MMU004340 271. . . 344 +654. . . 715 X99807 Mouse selenoprotein P

√
3MMU006629 63. . . 132 AF045768 Mouse phospholipid hydroperoxide glutathione

DE peroxidase (Gpx4)
√

3MMU006811 785. . . 859 AF068865 Mouse Delta-like 3 (Dll3) gene
3MMU006926 266. . . 334 U35623 Mouse EAT/MCL-1 gene
3MMU007077 917. . . 976 U51126 Mouse G-protein coupled inwardly rectifying K+

channel
3MMU007214 492. . . 556 AB013874 Mouse Low Density Lipoprotein Receptor Related

Protein 4
3MMU007476 3100. . . 3161 AF091047 Mouse KH domain RNA binding protein QKI-7B
3MXX000230 1888. . . 1947 S78188 Mouse Pig-a protein
3RNO000413 43. . . 113 U25264 Rat selenoprotein W

√
3RNO001801 49. . . 122 X07365 Rat glutathione peroxidase

√
3RNO002117 1303. . . 1362 L03294 Rat lipoprotein lipase
3RNO002575 59. . . 128 L24896 Rat phospholipid hydroperoxide glutathione

peroxidase
√

3RNO002594 1213. . . 1279 L01507 Rat PIT-1-beta
3RNO003011 268. . . 341 +647. . . 708 M63574 Rat selenoprotein P

√
3RNO003546 101. . . 167 U94330 Rat osteoprotegerin
3RNO003908 46. . . 119 X12367 Rat glutathione peroxidase I

√
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Table 1. Continued

3RNO003935 741. . . 813 X57999 Rat type I thyroxine deiodinase
√

3RNO004160 44. . . 115 M21210 Rat glutathione peroxidase (GSH-PO)
√

3RNO004269 629. . . 691 AF025819 Rat Rb binding protein
3RNO004703 275. . . 343 AF072865 Mouse thioredoxin reductase 2

√
3XLA000901 458. . . 529 L28111 Frog iodothyronine 5-deiodinase type III

√
3GGA000765 131. . . 198 X06546 Chicken smooth muscle myosin heavy chain
3DRE000181 542. . . 605 U62619 Zebrafish p21 N-ras oncogene
3DRE000069 320. . . 383 X61389 Zebrafish Pax[zf-a]
3DRE000068 319. . . 381 X63183 Zebrafish pax-6
3DRE000042 91. . . 150 L05383 Zebrafish beta-2-microglobulin
3TAN000010 359. . . 416 Y15794 Theileria annulata spm1 protein
3SMA000174 26. . . 91 L14329 Schistosoma mansoni glutathione peroxidase

√
3DME001485 503. . . 563 S70118 Fruit fly ben gene
3DME001214 627. . . 687 M16599 Fruit fly src-related gene
3DME000747 147. . . 218 L39083 Fruit fly gliotactin
3TCO000026 447. . . 509 AB017258 Turbo cornutus indoleamine dioxygenase like-myoglobin
3CVU000001 17. . . 94 U75914 Caenorhabditis lin-28 gene
3SOL000017 224. . . 285 U34742 Spinacia 24 kDa RNA binding protein
3PVU000075 133. . . 193 U70530 Phaseolus gibberellin 20-oxidase
3MSA000108 55. . . 121 X58711 Medicago sativa heat shock protein
3LLA000010 33. . . 100 X54463 Larix ribulose bisphosphate carboxylase
3LES000079 49. . . 123 M80604 Lycopersicon beta-1,3-glucanase
3CPE000008 69. . . 144 D55645 Cucurbita catalase
3BFI000008 246. . . 306 Y13141 Bromheadia extensin
3ATH002311 208. . . 274 AF057281 Arabidopsis IBC6 gene

Table 2. Number of observed (first row) and expected (second row) matches found by PatSearch application in the different taxonomic divisions of UTRdb of
the derived histone 3′-UTR stem-loop, IRE and SECIS patterns (see description in Figures 1–3). The expected matches represent the average number of hits
over 100 simulated datasets. The third and fourth row of each cell report the significance level (*, <5%; **, <1%; ***, <0.1%; NS, not significant) and the
selectivity level (SL = 1 − Exp/Obs; ND, not determinable), respectively. The fifth row reports the fraction of hits actually corresponding to known functional
elements (i.e. the fraction of marked hits in Table 1 over total hits). The number of searched 5′- and 3′-UTR sequences in the different collections is also shown
in parentheses

Functional Human Other Other mammals Rodent Other vertebrate Invertebrate Fungi Plant

element 5′ -UTR 3′ -UTR 5′ -UTR 3′ -UTR 5′ -UTR 3′ -UTR 5′ -UTR 3′ -UTR 5′ -UTR 3′ -UTR 5′ -UTR 3′ -UTR 5′ -UTR 3′ -UTR
(7651) (8775) (2242) (2969) (7825) (8485) (3238) (3976) (4636) (5785) (1034) (1295) (7221) (9875)

Histone3 12 0 14 2 2 0 0
0.21 ± 0.61 0.02 ± 0.14 0.24 ± 0.53 0.04 ± 0.20 0.04 ± 0.20 0.01 ± 0.10 0.04 ± 0.20

*** NS *** *** *** NS NS
99% ND 100% 99% 100% ND ND
12/12 0/0 14/14 2/2 2/2 0/0 0/0

IRE 4 1 3 6 6 0 0
0.66 ± 0.82 0.16 ± 0.44 0.83 ± 0.98 0.18 ± 0.41 0.17 ± 0.38 0.03 ± 0.17 0.21 ± 0.55

*** * ** *** *** NS NS
84% 84% 72% 97% 97% ND ND
4/4 1/1 3/3 5/6 5/6 0/0 0/0

SECIS 24 8 28 6 7 0 8
19.13 ± 5.03 3.23 ± 2.07 12.80 ± 3.59 5.68 ± 2.57 6.97 ± 3.33 0.86 ± 1.01 9.00 ± 3.81

NS * *** NS NS NS NS
20% 60% 54% ND 1% ND ND
7/24 8/8 14/28 1/6 1/7 0/0 0/8

a statistically significant match with a known gene or
protein often provides decisive information.

If no homologous sequences are found to match in the
database the task of sequence characterization is much
more difficult. In this sense the prediction of putative
functional elements in the non-coding portion of the
mRNAs may provide significant hints. Furthermore, the
prediction of such elements in the UTR of mRNAs

coding for already characterized products could also
provide crucial information on the possible regulatory
pathway controlling gene expression thus guiding further
experimental investigations. However, the occurrence of
false positives cannot be excluded as we do not take into
account the possible effect of the bases upstream and
downstream of the matching sequence.

The automatic annotation of the huge number of EST
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sequences, now providing an almost complete catalogue
of the expressed genes in several organisms, is particularly
interesting in this context also because they mostly consist
of untranslated sequences.

The PatSearch matcher is thus particularly suitable
for searching sequence data for the presence of complex
oligonucleotide patterns whose structure has been pre-
viously derived from experimental characterization of
functional elements.

However, we need to assess the probability that the
found pattern hits are reliable candidates for the functional
activity under investigation and not just false positives
produced by the lack of an adequate knowledge of the
actual functional pattern. To this end we developed a
simulation procedure which can easily allow for calcula-
tion of a given pattern of the number of matches we may
expect just by chance. Indeed, the simulation procedure
rests on the assumption that random generated sequences
reproduce the feature of the natural ones.

It is well known that nucleotide sequences are not
random as they display preference or avoidance for
specific oligonucleotides (e.g. CpG or TpA depletion). For
this reason they are better modeled taking into account
their oligonucleotide composition and not simply their
base composition. In particular, there is some evidence
that natural sequences can be adequately represented
if their dinucleotide composition is taken into account
(Stueckle et al., 1990). Therefore, in the simulation
we used a first-order Markov chain sequence generator
which retains in the simulated sequences the dinucleotide
composition of real sequences known to be strongly
deviating from random expectation.

Results shown in Table 2 provide evidence that this
is a rather conservative approximation as the simulation
procedure predicts a larger number of false positives (i.e.
0.6, 2.2 and 57.7 for histone stem-loop, IRE and SECIS
elements respectively) than those we can estimate in real
sequence data (i.e. 0, 2 and 40 respectively). In addition,
the occurrence of the functional elements considered here
to test the method are found significant in most of the
expected cases. Namely, the IRE is to be found occurring
significantly only in animal 5′-UTRs, where it is known
to have functional activity, but not in plant and fungi
5′-UTRs, where it is known that the regulation of the
expression of genes involved in iron metabolism is not
IRE-mediated. Analogously, the histone stem-loop and the
SECIS elements are found significantly over-represented

just in the 3′-UTRs, as expected, but not in the 5′-UTRs
(data not shown).

The selectivity level, which can be easily calculated by
the simulation procedure may thus provide a reliable es-
timate of the probability that a sequence region matching
with a known consensus pattern is a good candidate for
the functional activity under exam thus providing useful
indications for further investigations.
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