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Abstract

Motivation: The importance of the various kinds of repet-
itive nucleotide sequences for the workings of bacterial
DNA has been widely recognized. This work is concerned
with the distribution of a particular group of repetitive
sequences, the short-sequenced interrupted extragenic
palindromes, on the genetic maps of Escherichia coli
K-12, Haemophilus influenzae Rd and Neisseria meningi-
tidis Z2491 and MC58. A tool has been developed based
upon a statistical hypothesis test taking into account
the markovian structure of random sequences in order
to determine the non-random character of extragenic
palindromes.

Results: Totals of 7631, 12904, 4722 and 5477 non-
random short interrupted palindromes have been found on
the E.coli, H.influenzae, and N.meningitidis serogroup A
and serogroup B genomes, respectively. Their distribution
patterns on the respective genomes vary according to
the bacterial species considered. Based on their position
on the genome, palindromes could be distinguished as
those which integrate longer, repetitive sequences, those
which stand in isolation, and still others are associated to
specific genome sites.

Availability: The complete list of the observed palin-
dromes is available at the site http://www/Incc.br/~atrv.

Contact: atrv@l|[ncc.br

Introduction

There are numerous reports dealing with the occurrence
of repeat sequences in non-coding DNA regions on
prokaryotic genomes (for recent reviews see Bachellier
et al., 1996, 1999; Rudd, 1999). Although their functions

4To whom correspondence should be addressed at Laboratério Nacional de
Computacdo Cientifica, Rua Getilio Vargas 333, Quitandinha, Petrépolis.

are not completely elucidated, they seem to be involved
in physiological processes as diverse as the expression
of both upstream and downstream genes, transcription
termination and the structural organization of the bacterial
nucleoid, among others (Bachellier et al., 1996, 1999).
Palindromes are a peculiar kind of repeat often found
associated with those sequences. Besides, due to their
structural organization palindromes stand out from the
surrounding sequences as a highly suitable structure for
recognition by specific proteins (Calladine and Drew,
1997, Pinder et al., 1998).

Efforts to investigate a possible functional role for non-
coding (extragenic) sequences, including palindromes,
have often resorted to statistical methods. In search of
over- and under-represented sequences, Schbath et al.
(1995) used Markov chain models to assess statistical
properties of motifs in DNA sequences. More recently,
Gelfand and Koonin (1997) demonstrated that short
palindromic sequences recognized by restriction enzymes
are avoided at a statistical level in the genome of several
bacteria. In a somewhat distinct and more general context,
linguistic text analysis techniques have shown that non-
coding sequences exhibit statistical properties similar to
both natural and artificial languages, which denote their
information-containing nature (Mantegna et al., 1994).
Using statistical analysis on lines different from those in
the above-mentioned works, we confirm here the non-
random character of extragenic short sequence (4—13 bp
or ‘words’) interrupted (by up to 30 bp) palindromes
present on the Escherichia coli K-12 genome (Blattner
et al., 1997), implying an organization compatible with
the presence of biological information. Similar findings
have also been observed on the genome of two bacterial
pathogens, Haemophilus influenzae Rd (Fleischmann et
al., 1995) and Neisseria meningitidis serogroup A strain
72491 (Parkhill et al., 2000) and serogroup B strain
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MC58 (Tettelin et al., 2000). The results obtained indicate
that the distribution pattern of short palindromes on the
bacterial genomes is species-dependent.

Systems and methods
Problem statement

In the quest for evidence of under- or over-represented
palindromic structures in the DNA, Vasconcelos (1995)
and Vasconcelos et al. (1996) have produced a series of
computer programs for searching sequences of general
structure w-g-w’ (w is a sequence and w' is its inverted
complementary repeat; g is a gap sequence) limited to
the extragenic region, protein- and stable RNAs-coding
regions being excluded.

A question that naturally arises is whether the observed
frequencies of these structures depart from those obtained
when DNA sequences are randomly generated. The extent
of such departure may be evidence of the presence of
biological information. The present work addresses this
question by means of a hypothesis test, taking advantage
of the fact that truly random sequences correspond to
independent and equally probable symbols. Moreover,
a simple regression model is generated that allows to
extrapolate the behavior of random sequences for cases
where w length is greater than 10 bp.

Problem description

Let S = {so,s1,...,5.—1} be a sequence of L symbols
generated by some probabilistic scheme over an alphabet
F={f1, 2, f3, fa} ={A,C, T, G} of size Q = 4.

Let S7(i) = {s;, Sidly v Si+T71} ief{0,1,...,L —
T} be the subsequence of S; made by the T symbols
starting at position i. We use a star-notation to represent
the inverted complementary repeat (i.c.r. for short) of a
sequence or an isolated symbol. Therefore the sequence
§7.(i) is the i.c.r. of S7 (i) while s;; stands for the i.c.r. of
the symbol s,,. A sequence S is called a palindrome when
S=S"

In general terms, when the previously mentioned struc-
ture w-g-w’ is found in the sequence Sy, and w is located
at position i, the length of the gap sequence g is referred
as the i.c.r. distance d; (T).

The graphic of these distances occurrences can be
formally introduced by means of the sequence {d;(7T)}
produced by the following algorithm:

e Foreach i ranging from0to K = L — 2.T do:

e Search for the smallest j in the range {i +
T,...,L — T} such that:

L. Sr(j) = S73)
2.ifi > 0and j < L — T then s,_; # s;.‘+T
(constraint C1)

«———  SEQUENCE S,

v

these symbols must not be complementary
Position

i i+T j L-1

word S < 4D)=j-i-T —> word S*
<—T——> <—T—>

word S cannot occur here

‘ word S* cannot occur here

Fig. 1. Schematic representation of the process for the detection
of a perfect short-sequence interrupted palindrome embedded in a
sequence (S7), using the algorithm described in this work.

31f] > i+T+2thens,~+T 75 S;‘f_l
(constraint C2) '

e If such j does not exist, make &;(T) = —1.
Otherwise:

e Search for the smallest k£ in the range {i +
1,...,j — T} such that St (k) = ST (i)

If such k exists, make d;(T) = —1

Otherwise maked;(T)=j—i—T

e Nexti.

The variables d; (T') can assume values in the set 2; =
{—1,0,1,..., K —i}. When this distance is out of range,
or there are nested subsequences, this fact is indicated by
forcing this variable to assume the value —1. Constraints
C1 and C2 are included in order to avoid the i.c.r. found to
be part of a longer one.

The algorithm just described seeks in the sequence Sp
for symbol arrangements as illustrated in Figure 1.

We also denote by {N;(T); € {—1,0,1,..., K}} the
set of random variables (r.v. for short) that represent
the number of d;(T) elements with value j. Formally
speaking, the graphic of i.c.r. distances occurrences is one
realization of such random variables.

From a formal point of view, we wish to use the
observed sequence {N;(T)} as the decision statistics
associated to the following binary hypothesis test:

Hj :St. is made of statistically independent
and equiprobable symbols.

Hj S is not made of statistically independent
and equiprobable symbols.

If we are able to assess the expected value m ; and the
standard-deviation o; of the r.v. N;(T) under the Hp-
assumption, then the knowledge of the observed values of
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these r.v.’s for real data will allow to accept or reject Hy
for this specific value of j.

In order to make this matter absolutely clear, the
rejection of Hy for a particular value of j, may be an
indication of the presence of some biological information
and its acceptance by no means should be interpreted as
lack of this information. In this way, Hy rejection should
be seen as an indicator to the researcher of what i.c.r.
distances are more likely to convey biological meaning.

The expected value of the r.v. N;(T') under Hy, for j in
the range {0, 1, ..., K}, is given by:

E{N;(T)}

1
= {2+(K—j— 1)-(1—§>}'P{do(T)=j}
=0k (J) - Pldo(T) = j}.

Evaluation of P{do(T) = j} under Hy assumption

For the sake of clarity, let us introduce some useful
notations and definitions:

(a) Let X be the set of all sequences of size T over
the alphabet {A, C, G, T} whose generic element is
denoted by S.

(b) the events A;(S) = {S7(i) = S} where S € X.
(c) theevent R; = {s7 # S;_1+j}~

We can formally state that the concerned probabilities
can be expressed as:

1 T
P{dy(T) = j} = (§> > Pi(S)

SeX

where P;(S) is the probability of {dy(T') = j} condition-
ally to {s7(0) = S}.

It is easy to show that, for the cases j = O and j = 1,
this probability does not depend on S and is given by:

INT 1 TAJj
Pj(S)=<§> .|:]_2.<§>i| j €10, 1}

For j > 2, and representing A as the complementary
event of A, then:

i T4j—i
Pj(S):P{mAi(S)§ N Ai(S*)§AT+j(S*);Rj}
i=1 i=T
j=2

No doubt that the assessment of these probabilities is
a formidable task. Instead, we propose to evaluate them
by means of a finite state machine and the associated
homogeneous Markov chain having S; as the input

sequence. The purpose of this machine is to detect the first
occurrence of the word S* without previously detecting
the word S, except at the very beginning of the input
sequence and assuring the occurrence of constraint C2.

We can define the associated Markov chain as {W, :
n € {0, 1, ...}} representing the state of the machine after
receiving symbol s, as input; for the sake of simplicity we
assume that this happens ‘at instant n’.

The machine state is here defined as a triple (x, y, z)
where:

(1) x and y respectively represents, at instant n, the
maximum number of trailing symbols of the input
subsequence {sg, s1, ..., S,} which agrees with the
same size prefix of the word S* and word S.
Therefore x and y belong to the set {0, 1, ..., T}.

(ii) z represents, at instant 2, the input symbol located at
position n- max(x, y) if such value is non-negative.
In this case, when word S* is detected, z is the input
symbol that precedes it. If n- max(x, y) is negative
(which corresponds to the case where Sy begins
with word S*), we indicate this fact by forcing z
to be the symbol Z. Hence z belongs to the set
{Z,A,C, T, G}.

Due to the fact that all event probabilities we are willing
to assess are conditioned to the event {s7(0) = S}, the
state W7 _1 must be of the form (x, T, Z). Therefore all
subsequent states have a z-value different of Z.

The requirement of first occurrence of word S* can be
easily met by forcing the chain to jump from states of the
form (T, y, z € F) to an special absorbing state denoted
by (T + 1, T + 1, Z) irrespective of the input symbol.

For the cases where § is not a palindrome, it is desired
to detect word S* without previously detecting the word S.
States of the form (x, T, z € F) should be made absorbent
in order to prevent reaching states like (7', y, ?) (where
? stands for ‘don’t care’) at later instants. Unfortunately
there are two singular situations where this may prove
incorrect. Nevertheless they can be circumvented by the
addition of dummy states.

Table 1 presents the next-state transition table for the
case where the sequence S is ACT. The probability
P;(S) can be evaluated by assessing the probability the
chain reaches a state of the form (3,0, z) from state
(0, 3, Z) after j steps. Notice that all transitions occur with
probability 1/0.

It is convenient at this point to discuss the number
of states of this chain. It is possible to show that the
associated Markov chain is characterized by a state
transition probability matrix P with dimension M not
greater than (Q + 1) - (2T + 1), thus exhibiting a linear
growth with variable 7.
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Table 1. Next state transition matrix for sequence S = ACT

Current Input symbol

state A C G T

03z 117 00C 00G 00T
00z 11z 00C 00G 00T
11z 11A 02z 20z 00T
02z 11C 00C 00G 03z
20z 11G 00C 00G 30z
03z 03z 03z 03z 03z
30z 447 44z 447 44z
447 44z 44z 44z 44z

z belongs to the set {A, C, G, T}

Table 2. Number of total and distinct words of length 7

Value of Number of Number of Reduction
T words representatives factor
4 256 36 0.1406
6 4.096 528 0.1289
8 65.536 8.256 0.1259
10 1048.576 131.328 0.1252

Note that the probability under scrutiny can now be
rewritten as:

| L2 2
Pk(S)za-Z > P{Wisar-
u=1 v=1

Fo#fiE

= (T’ Vs fu)/WT = E(fv)}

where E( f,) is the state reached from (x, T, Z) when the
input symbol is f;.

The evaluation of Py(S) must be done for all Q7
possible words S. This calculation effort can be somewhat
reduced if we observe that there are distinct words with
the same associated matrix P and when this occurs, we
say the words are equivalent. In order to establish the
formal rules that define this equivalency, let the words
be Sl = {S11, S125 o v vy S1T} and Sg = {S21, 8§22, oo vy SQT}
and consider the function @ that associates sj; to sy
for k ranging from 1 to 7. If ® is a 1-1 function and
(®(a) = B = P(a*) = B*) then words Sy and S, are
equivalent for the purposes of Markov chain.

This equivalence relation induces a partition in the set
of all words of size T and a representative word for each
member of this partition can be established. It is quite easy
to observe that the above partition substantially reduces
the calculation, as shown in Table 2.

Values of Prob[d,(T)=k] For Different Values of T

1E-02
T=4
1E-03 |- T=5
T=6
1E-04 =7
T=8
1E-05 |-
T=9
1E-06| =10
1E-07 Lot rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr eyt

0 5 10 15 20 25 30 35 40 45 50 55 60
Palindrome Distance (bp)

Fig. 2. Probability distribution of the distance dy(T) for T varying
from 4-10.

An upper bound for the variance of N;(T) under Hy

Straightforward but cumbersome calculations, together
with the fact that sequence Sy, is stationary, allow to state
that the variance of N;(T") can be upper-bounded by:

Var{N;(T)} < Vo - x00(j) + V1 - x11(J)

where:

1
Vo:1+2-<1+§>~miﬂ(k—j»2'T+j_1)

Vi=(+2-p)-k=j)—p-(p—1)
p=minK —j—1,2-T+j—1)
Xoo(J) = P(do(T) = j) - [1 = P(do(T) = j)]

1
xu(j) = (1 - E) - P(do(T) = j)

1
1—(1——=)P(do(T) =j) |-
(i ) ran =)

This result was obtained by taking into account that N; (T')
is a sum of Bernouilli distributed random variables and in
this case, we have E[x - y] < E[x].

Needless to say that this bound can be a coarse exagger-
ation for the above variance, but since we are particularly
interested in the regions for k where assumption Hj is re-
jected, the use of the upper-bound for the cases of H fail-
ure makes us extremely confident that we are far from the
random situation.

A regression model for P{do(T) = k}

The computation just described was implemented as a
program in a microcomputer platform and the value of
P{dy(T) = k} was computed for words of size 7 in
the range 4-10 and palindrome distances (variable k) in
the range 0-60. Their logarithmic plots can be seen in
Figure 2.
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Table 3. Parameters a(7') and b(T') for the model P{dy(T) =k} = a(T) -
exp{—b(T) - k}}

T a(T) b(T) R square
4 2.844 788E—03 7.569 6519E—03 9.999979E—01
5 7.186 220E—04 1.918 8781E—03 9.999991E—-01
6 1.815364E—04 4.8292903E—04 9.999 968E—01
7 4.554371E-05 1.2134177E—04 9.999910E—-01
8 1.141 839E—05 3.0412735E—-05 9.999977E—01
9 2.857318E—-06 7.6169201E—06 9.999 986E—01

10 7.148 496E—07 1.905 6144E—06 9.999973E—01

Table 4. Parameters U, and Vy for the model a(T) = U, - VaT b(T) =
Up -V

Parameter U \%4 R squared
a 7.2259014E—-01 2.5101301E-01 0.999 998
b 1.951 5888E+-00 2.5059080E—01 0.999 993

Since no closed form was obtained for these probabil-
ities and due to the fact that an exponential behavior can
be observed on most of the equations, one may wonder if
an exponential model can be fitted into these probabilities.
A regression analysis was made for the previously men-
tioned values of 7" and k and the results are summarized in
Table 3.

The extreme closeness to one of the R squared coef-
ficients does reveal that an exponential model is a fair
choice. Nevertheless we still have the job of investigating
the relationship of the parameters ¢ and b in connection
with 7. Again, exponential models seem quite adequate
and Table 4 summarizes the results concerning the regres-
sion analysis for them.

These results suggest as a general model for the referred
probability the following expression:

Prob{dy(T) =k} = U, - VaT - exp{—Up - VbT k).

Results and discussion

Some general considerations on the observed results
which apply (unless otherwise stated) to the four examined
genomes are aligned below.

As expected, the total number of palindromes decreases
with the increase in the sequence length (Figures 3, 5
and 6). Palindromes with w = 3 bp are not distinguishable
from random distribution. The search had been initially
planned to cover g values in the range 0-60 bp; however,
the results have shown that frequencies for g > 20 bp,
with a few exceptions, could not be distinguished from
random occurrences; therefore, the cut-off score has been
set at 30 bp. Perfect palindromes with w > 13 bp

are so rare as to be considered isolate cases (Figure 3,
panel H, and results not shown). Taken together, these
results suggest that rather than perfect palindromes, the
occurrence of some degree of mismatching between w and
w’ seems to be the rule, particularly for larger values of w.

The maximal frequencies of occurrence in each of the
examined palindrome length categories were found at low
g values (Figures 3, 5 and 6). Exceptions were noted for
both N.meningitidis genomes, where frequency peaks at
g values of 18 bp and 23 bp (w = 6 bp), and 27 bp
(w = 9 and 10 bp) have been identified (Figure 6; see
details below), and in the case of E.coli, notably at g values
of 11, 16-19 bp (all with w = 7 bp; Figure 3, panel D and
discussion below). Some short perfect palindromes may
eventually be part of a larger (usually repetitive) structure
or an operon. Under this condition, palindromes may serve
to localize specific regions on the genome map.

It is quite common to find a palindrome embedded
in another palindrome, but it is not known whether this
arrangement serves any functional purpose. Besides, since
our searches were exclusively directed to the finding
of perfect palindromes, there follows that frequencies
reported in this paper are the minimal figures attributable
to the various short palindrome sizes found on the bacterial
genomes. Obviously a perfect palindrome and a sequence
differing from it by a single or just a few mismatches
usually belong to the same homology group.

E.coli K-12. The frequencies of occurrence of variously
sized (13 bp > w > 4 bp) interrupted (30 bp > g = 0 bp)
palindromes in the extragenic DNA of the E.coli K-12
genome are shown in Figure 3. As described above, the
non-random character is based on the numerical occur-
rence of each length group. A total of 7631 palindromes
were found. Their complete listing and localization
on the E.coli genome are available for download from
http://www.Incc.br/~atrv. This total includes palindromes
which are part of repetitive sequences of various types, as
described by Bachellier et al. (1996, 1999) and by Rudd
(1999), whose findings are here confirmed.

We have noticed that perfect palindromes are distributed
all round the E.coli K-12 genome, but in a few regions
their concentrations are particularly high, as is the case
around 6, 35, 44, and 93 min on the genetic map
(Figure 4). Two examples will serve to illustrate this
point. First, in the 44 min region, downstream of gene
asnW, there are 10 short perfect palindromes of the
types 6-6-6; 5-5-5 (2); 4-4-4 (3); 5-4-5; 7-17-7; 7-11-
7, and 10-10-10, within a sequence 453 nt long (from
nt 2055596 to 2056049 on the E.coli K-12 genetic
map). Second, between ORFs {338 and 0139 there are
23 perfect palindromes over a 1287 nt long region (from
nt 2065343 to 2066630): 4-4-4 (6); 5-4-5 (5); 4-7-4
(5); 4-5-4 (3); 5-5-5 (2); 6-4-6, and 6-10-6. On the other
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2000,0

1000,0

o0 LY

0,0

Number of occurrences

80,0

40,0

0,0
0 5 10 15 20 25 30

2000,0

1000,0

0,0

200,0

100,04

0,0 T T T

60,0

Distance g (base pairs)

Fig. 3. Comparative distribution of randomic (calculated) and observed palindromes in the E.coli K-12 DNA extragenic regions. ------ s
randomic (average =+ standard deviation); ——, observed (from data base). w size (in bp): from A—G, 4-10, respectively; H, 13. g is the gap

size between w and its inverted complementary sequence w’.

150

100

50 T

Palindrome counting

0 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Position (minutes)

Fig. 4. Distribution of nonrandom occurrences of all extragenic
short sequence (4-10 bp) interrupted perfect palindromes on the
genetic map of the E.coli K-12 chromosome.

hand, they are relatively scarce around 50—60 min on the
genetic map (Figure 4). Preliminary analysis of our results
indicates that some particular palindromic sequences
are preferentially associated with certain g lengths; a
more detailed description of such findings is forthcoming
(Vasconcelos and de Almeida, to be published).

The detection of short perfect palindromes previ-
ously known to be present on the E.coli K-12 genome
was an essential preliminary requisite to validate the
presently proposed tool. That this was the case has been
demonstrated by focusing on palindrome-containing
repetitive sequences such as the palindrome units (PU;
Gilson et al., 1987) or the bacterial interspersed mosaic
elements (BIME; Bachellier er al., 1997). All such
previously described structures (Bachellier et al., 1999)
have been recognized by our method. Thus, on Figure 3,
panel D, peaks corresponding to ¢ = 11, 16-19 bp
are essentially BIMEs constituted by the Z', Y, and
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1400,0
1200,0
1000,0
800,0
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Distance g (base pairs)

Fig. 5. Comparative distribution of randomic (calculated) and observed palindromes in the N.meningitidis Z2491 DNA extragenic regions.
—————— , randomic (average =+ standard deviation); ——, observed (from data base). w size (in bp): from A-G, 4-10, respectively. g is the

gap size between w and its inverted complementary sequence w’.

7?2 categories of PUs, as described by Bachellier et
al. (1996, 1999). It is worth noting that interrupted
palindromes with g = 12, 13, 14, or 15 bp (that is,
intermediate between the significant 11 and 16 bp dis-
tances mentioned above) could not be differentiated
from DNA sequences randomly generated (Figure 3,
panel D), a result that adds up to the reliability of the
method.

H.influenzae Rd and N.meningitidis strains Z2491 and
MC58.

To extend the results obtained with E.coli K-12, and to
determine whether specific types of repeats found in other
bacterial species would be identified using the approach
here described, the complete genomes of three pathogenic
bacteria (H.influenzae and N.meningitidis serogroup A

strain Z2491 and serogroup B strain MC58) have been
submitted to a similar study. Methods were analogous
to those described above for E.coli, except that for each
strain the respective individual parameters have been used.
The frequencies of occurrence of short palindromes on
those genomes as a function of their w size are shown in
Figures 5 and 6. The total figures are 12904 and 4722,
for H.influenzae and N.meningitidis 72491, respectively.
Their complete listing is available at http://www.Incc.br/
~atrv. The finding that the distribution pattern of short
palindromes on the genomes of N.meningitidis serogroups
A and B strains are quite similar was not surprising,
considering that they are similar by more than 90%
(Tettelin et al., 2000); the present search has been centered
on the serogroup A strain, but for our purposes serogroups
A and B strains have been considered as a single entity.
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Fig. 6. Comparative distribution of randomic (calculated) and observed palindromes in the H.influenzae DNA extragenic regions. ------ s
randomic (average + standard deviation); ——, observed (from data base). w size (in bp): from A-G, 4-10, respectively. g is the gap size

between w and its inverted complementary sequence w’.

The palindromes on the H.influenzae genome have
practically always a g size below 10 bp, an exception
being a peak at g = 24 bp for w = 10 bp. The distribution
is quite distinct for the palindromes on the N.meningitidis
genomes, which are mostly concentrated at g sizes < 5 bp;
the conspicuous peaks at higher g sizes are accounted for
by palindromes found within repetitive sequences.

A few instances are worth reporting, such as that of the
Correia elements which, on the N.meningitidis genomes,
differ somewhat from the original sequence reported on
the N.gonorrhoeae genome (Correia et al., 1988). We
found that the sequence between the inverted complemen-
tary repeats contains several short, generally overlapping
palindromes, in the succession 4-6-4 (w = GGCG);
6-18-6 (w = CCTTAG); 6-23-6 (w = CGATTC), and
4-5-4 (w = GTAC), plus a 6-3-6 type (w = AGAGAA)

embedded in the 6-18-6 and a 6-2-6 type (w = GGTGCT)
embedded in the 6-23-6 sequence. Everyone of these
palindrome types is represented by a high frequency of
occurrence in Figure 6, panels A and C.

The dRS3 repeat sequence, reported as a 6-8-6 palin-
drome (Parkhill er al., 2000), has been identified as a 8-
4-8 type (Figure 6, panel E), since two additional inner
nucleotides, at the ATTCCC end, are also inverted, in line
with the observation of Van der Ende er al. (1999). The
complementary GGGAAT end extends farther as an in-
ternal 10-27-20 palindrome (48 occurrences) which corre-
sponds to the peak at Figure 6, panel 7. These examples in-
dicate that the searching approach here developed, besides
the identification of species-specific sequences, provides
further insight into their molecular composition.

Several possibilities may be raised to account for the
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widespread distribution of the short interrupted palin-
dromes on bacterial genomes. Whether they represent a
leftover from ancestral species or still play some structural
(adjuvant of DNA coiling, for example) or regulatory role
(as described for other repeat sequences), is not yet clear.
However, the present work reveals that the most notable
feature of the examined genomes is the presence of very
prominent peaks at g = 4 and/or 5 bp, irrespective of w
size. Since they are not essentially repetitive in nature,
we are inclined to consider that we are dealing here with
repetitive structures rather than repetitive sequences.
Taking into account that such structures stand out from
the surrounding sequences as highly suitable for recog-
nition by protein motifs such as «-helix, B-sheet, and
leucine zipper (Calladine and Drew, 1997), and also that
palindrome-containing repetitive structures do interact
with different proteins for physiological purposes (Stern
et al., 1988; Engelhorn et al., 1995), it is tempting to
advance the suggestion that the repetitive palindromic
structures may act as extragenic sites for interaction with
specific proteins.
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