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We present here a simple and fast method allowing the isolation of DNA
binding sites for transcription factors from families of coregulated genes,
with results illustrated in Saccharomyces cerevisiae. Although conceptually
simple, the algorithm proved ef®cient for extracting, from most of the
yeast regulatory families analyzed, the upstream regulatory sequences
which had been previously found by experimental analysis. Furthermore,
putative new regulatory sites are predicted within upstream regions of
several regulons. The method is based on the detection of over-rep-
resented oligonucleotides. A speci®city of this approach is to de®ne the
statistical signi®cance of a site based on tables of oligonucleotide frequen-
cies observed in all non-coding sequences from the yeast genome. In con-
trast with heuristic methods, this oligonucleotide analysis is rigorous and
exhaustive. Its range of detection is however limited to relatively simple
patterns: short motifs with a highly conserved core. These features seem
to be shared by a good number of regulatory sites in yeast. This, and
similar methods, should be increasingly required to identify unknown
regulatory elements within the numerous new coregulated families
resulting from measurements of gene expression levels at the genomic
scale. All tools described here are available on the web at the site http://
copan.cifn.unam.mx/Computational_Biology/yeast-tools
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Introduction

Despite the boom in genomic sequencing, com-
putational analysis of regulatory sequences
remains a relatively marginal domain. The vast
majority of the programs available have been
developed to measure structural relationships
between coding sequences or between proteins.
Non-coding regions represent, however, a striking
interest for the biologist since they govern the
regulation of gene expression. Regulatory pro®les
of known and unknown genes are already being

determined experimentally at a genomic scale,
thanks to the new technologies, such as DNA
microarray technology (Schena et al., 1995, 1996;
Schena, 1996; Goffeau, 1997; Strachan et al., 1997;
Lashkari et al. 1997; DeRisi et al., 1997). Differential
expression measurements will allow us to deter-
mine which set of genes respond at the transcrip-
tional level to virtually any change in
environmental conditions or to the controlled
expression of any chosen transcriptional factor.
Therefore, we will soon be confronted with count-
less families of coregulated genes sharing
unknown regulatory sites. Detecting candidate
elements responsible for this common behaviour
represents an important challenge for the bioinfor-
matician.

For several reasons, the computational detection
of regulatory sites is a dif®cult problem, specially
in eukaryotes: the consensus sequences recognized
by transcriptional factors are generally much short-
er than in prokaryotes, they can be quite variable,
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and can be dispersed over very large distances.
They are generally active in both orientations.

Given the ¯exibility of the regulatory mechan-
isms, one can hardly conceive a comprehensive
method that could systematically detect all kinds
of regulatory signals. Dedicated methods based on
well de®ned models should allow us to unravel
unknown elements of a common type. Based on
this rationale, several programs have been devel-
oped that isolate unknown patterns shared by sets
of functionally related DNA sequences (Waterman
et al., 1984; Galas et al., 1985; Mengeritsky & Smith,
1987; Stormo & Hartzell, 1989; Hertz et al., 1990;
Lawrence & Reilly, 1990; Cardon & Stormo, 1992;
Lawrence et al., 1993; Neuwald et al., 1995; Hertz &
Stormo, 1995; Wolfertstetter et al., 1996). These pro-
grams have each been inspired by a particular type
of signal, and are generally highly ef®cient for the
detection of elements that follow certain rules
either in their internal organization and size, or in
their location.

We present here a method inspired by the regu-
lation of nitrogen metabolism in yeast. When cul-
tured on a medium containing an optimal nitrogen
source (glutamine, glutamate or ammonia), a series
of genes that permit the utilization of alternative
nitrogen sources (proline, arginine, gamma-amino-
butyric acid, etc.) are down-regulated. All these
nitrogen-repression-sensitive genes contain mul-
tiple copies of the so-called GATA boxes in their
upstream regions (Magasanik, 1992). The GATA
consensus box is short (®ve to six conserved
nucleotides), and is found almost everywhere in
the genome. However, a single isolated GATA box
is insuf®cient to properly exert the regulatory func-
tion (Bysani et al., 1991). The speci®city of GATA-
box activity comes from its repetition in several
copies within the upstream region of the controlled
genes.

On basis of this regulatory paradigm, we
designed a simple and fast algorithm that detects
over-represented oligonucleotides within a group
of upstream regions of coregulated genes. The pro-
gram counts all oligonucleotide occurrences within
the sequence set, and estimates their statistical
signi®cance. An essential prerequisite is that the
system has to be calibrated to take into account
the uneven oligonucleotide representation in the
yeast genome, and more speci®cally in non-coding
sequences. The algorithm proved highly ef®cient
for the detection of upstream regulatory sequences
previously found by experimental analysis in
several yeast regulons beyond that one of nitrogen.
In most of these cases, the already known
upstream sequences were detected with a very
high statistical signi®cance. We also detected
unknown motifs with a high statistical signi®cance
which are good candidates as new putative
regulatory sites. A graphical tool was set up to
further assess the interest of signi®cantly over-
represented oligonucleotides on the basis of
positional considerations. A web interface has
been implemented (http://copan.cifn.unam.mx/

Computational Biology/yeast-tools) allowing any-
one to perform a similar analysis on new sets of
coregulated genes. The principles of this method-
ology should be applicable to families of coregu-
lated genes in other genomes, provided the
adequate calibration is done.

Results

Regulatory families

Yeast metabolism has been widely studied and
provides numerous examples of known regulons.
In many cases the transcriptional factor involved in
the common response is known, as well as its bind-
ing site. These families of coregulated genes pro-
vide ideal datasets to calibrate the method, which,
in a further step, could be extended to families
whose regulatory elements are unknown. We built
several families on the basis of the above-men-
tioned criteria. Table 1 gives the composition of
each family, as well as the criterion underlying its
constitution. The genes were in all cases grouped
together based on a genetic criterion, without a
priori consideration on the content of their
upstream regions. Our main source of information
for family constitution was the yeast red book
(Jones et al., 1992), along with some more recent
articles for some of the families.

Two families, YAP and TUP, deserve some
special attention because they were derived from
the results from the ®rst DNA microarray exper-
iment on a genome scale (DeRisi et al. 1997). The
YAP family regroups all the genes whose
expression was induced more than twofold by the
controlled expression of Yap1p. The TUP family
was built on the basis of two criteria: on the one
hand, all genes from this family are derepressed by
a factor greater than 4 in a Tup1 deletion; on the
other hand, they are induced by a factor greater
than 2 during the diauxic shift. The reason for
using a double condition is that Tup1p protein is
not a DNA-binding factor, but is involved in
transcriptional repression by interacting with a
series of distinct DNA-binding factors. Selecting all
the genes derepressed in the Tup1 mutant would
lead to a family of 230 genes, grouping together
the regulons for several transcriptional factors,
involved in distinct metabolic pathways. One of
these factors is Mig1p, which represses a series of
genes when glucose is provided in the culture
medium. This repression is released during the
diauxic shift. Restricting the TUP family to the sub-
set of genes which are also activated during the
diauxic shift amounts to select the targets of
Mig1p.

Contrary to all other families, YAP and TUP
families each contain several genes of unknown
function, for which the only current knowledge is
the fact that they are activated by the Yap1p tran-
scriptional factor, or repressed by Mig1, respect-
ively.
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Clusters of overlapping hexanucleotides
generally reveal wider regulatory sequences

For each family shown in Table 1, we extracted
the set of 800 bp upstream sequences, and per-
formed an hexanucleotide analysis as described
(see Methodology). All hexanucleotides with a sig-
ni®cance coef®cient (brie¯y ``sig``) higher than 0
were retained. The results of this analysis are sum-
marized in Table 2. With the chosen threshold,
very few sequences are retained (about ten per
family, out of the 2080 possible hexanucleotide
pairs). It is clear that in most families, the hexanu-
cleotides with the highest signi®cance coef®cient
(left side of the Table) correspond to the functional
regulatory sites found by experimental analysis
(right side). Highly signi®cant patterns generally
appear clustered with a few additional overlapping
hexanucleotides that have a weaker signi®cance
coef®cient. For instance, the most salient hexanu-
cleotide of the MET family is CACGTG (sig � 7.0),
which can be grouped with two strongly overlap-
ping sequences: TCACGT (sig � 6.1) and GTCACG
(sig � 0.7). When combined, the two most signi®-
cant hexanucleotides correspond in fact to the 7 bp
consensus sequence of the binding site for the
Cbf1p-Met4p-Met28p complex (TCACGTG). In
most families (MET, PHO, PDR, GCN, INO), the
overlapping clusters re¯ect the fact that the recog-
nition domain of the transcriptional factor is wider
than six nucleotides. The maximum signi®cance
indicates the most conserved core that usually cor-
responds to the bases directly interacting with the

transcriptional factor. The decrease of signi®cance
for the lateral overlaps comes from the fact that
these positions are less crucial for the binding. In
some cases however, clustering simply re¯ects a
bias due to the high frequency of a shorter recog-
nition site. This is observed in the nitrogen family,
where GATAAG appears along with AGATAA
and ATAAGA, although the binding site is not
considered to exceed 6 bp.

Oligonucleotide size

In most families, the simple hexanucleotide anal-
ysis of the 800 bp upstream regions allowed us to
detect the regulatory sequences previously found
by means of experimental analysis. Analysis per-
formed with different oligonucleotide sizes gener-
ally reveals the same patterns with different
signi®cance indices. Table 3 shows the variation of
the maximal sig value associated to the principal
sites from each family, as a function of oligonucleo-
tide length used in the analysis. Each regulatory
sequence shows a peak at a speci®c length, but
most of them remain detectable within a reason-
able range.

The oligonucleotide sequence associated with
the peak of signi®cance (bold in Table 3) ®ts well
with the most conserved part of the previously
described consensus (right part of Table 2). Note
that a higher statistical signi®cance only indicates a
stronger over-representation, which does not
necessarily correspond to a functional requirement

Table 1. Composition of the regulatory families, and criterion underlying their constitution

Family Genes Common regulatory property References

NIT DAL5, DAL80, GAP1, MEP1, MEP2, MEP3,
PUT4

Repressed when good nitrogen sources
(glutamine, glutamate, ammonia) are present
in the medium

Magasanik (1992)

MET MET3, MET25, MET2, MET19, MET14,
MET6, SAM1 SAM2, MET1, MET30, MUP3

Repressed by methionine Hinnebusch (1992), Blaiseau
et al. (1997)

PHO PHO5, PHO11, PHO8, PHO84, PHO81 Repressed by Pi Oshima et al. (1996)
PDR YOR1, PDR11, PDR10, GAS1, STE6, SNQ2,

PDR5
Pleiotropic drug resistance Balzi & Goffeau (1995)

GAL GAL1, GAL2, GAL7, GAL80, MEL1, GCY1 Activated when galactose is present and
glucose absent from the culture medium

Johnston & Carlson (1992)

GCN ARG1, ARG3, ARG4, ARG8, ARO3, ARO4,
ARO7, CPA1, CPA2, GLN1, HIS1, HIS2,
HIS3, HIS4, HIS5, HOM2, HOM3, HOM6,
ILV1, ILV2, ILV5, LEU1, LEU2, LEU3,
LEU4, LYS1, LYS2, LYS5, LYS9, MES1,
MET14, MET3, MET6, TRP2, TRP3, TRP4,
TRP5, THR1

General amino acid control; genes activated by
Gcn4p.

Hinnebusch (1992)

INO ACS2, CHO1, CHO2, FAS1, FAS2, FAS3,
INO1, INO2, INO4, OPI3

Repressed in presence of inositol or choline Patlauf et al. (1992)

HAP PET9, ASN1, CIT1, COX5A, CYB2, HEM3,
HMG1, SOD2

Targets of the Hap2/3/4/5p complex

YAP YNL331C, YKL071W, YFL056C, YLL060C,
YOL165C, YCR107W, ATR1, FLR1, FRM2,
YJR155W, OYE3, YLR460C, ECM4, OYE2,
YML131W, MDH2

All genes induced more than twofold by the
expression of Yap1p, in DNA microarray
experiment on a genome scale

DeRisi et al. (1997)

TUP FSP2, YNR073C, YOL157C, HXT15, SUC2,
YNR071C, YDR533C, YEL070W, RNR2,
YER067W, CWP1, YGR243W, YDR043C,
YER096W, HXT6, YLR327C, YJL171C,
YGR138C, HXT4, HXT7, GSY1, YOR389W,
MAL31, YML131W, RCK1

All genes which are both
± derepressed by a factor >4 when TUP1 is
deleted, and
± induced by a factor >2 during the diauxic
shift

DeRisi et al. (1997)
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Table 2. Detection of regulatory sites by oligonucleotide analysis

Hexanucleotide analysis result Sites previously characterized
Family Sequence Ms Occ Exp sig Consensus Bound factors

NIT ATAAGA 6 20 6.0 2.0 Gln3p, Nillp,
GATAAG 6 26 3.0 9.1 GATAAG Gzf3p, Uga43p

AGATAA 7 17 6.1 0.4 (Zn finger)
CTGATA 6 11 3.1 0.1

CCGCGC 2 6 0.7 0.8 ± ±

CGGCAC 4 6 0.8 0.5 ± ±

ACATCT 4 11 2.9 0.4 ± ±

MET CACGTG 9 26 2.0 7.0 Cbflp-Met4p-
TCACGT 9 19 2.9 6.1 TCACGTG Met28p complex

GTCACG 6 8 1.4 0.7 (bHLH-bLZ-bLZ)

TGTGGC 7 10 2.4 0.5
CTGTGG 8 11 2.1 1.6 AAAACTGTGG Met31p, Met32p

ACTGTG 9 12 3.2 0.6 (Zn finger)
AACTGT 10 17 5.5 0.9

ATATAT 19 82 42.3 0.8 ± ±

TATATA 11 80 43.9 0.2

GCTTCC 7 12 3.5 0.2 ± ±

PHO CGCACG 5 6 0.5 1.5
GCACGT 5 10 0.8 4.4 Pho4p
CACGTG 5 12 0.9 1.8 GCACGTGGG (bHLH)
ACGTGG 5 8 0.7 2.8 (high affinity)
CGTGGG 3 5 0.5 0.5

CACGTT 5 7 1.2 0.3 GCACGTTTT Pho4p
ACGTTT 5 11 2.6 0.8 (medium affinity) (bHLH)

CTGCAC 4 8 1.0 1.7 ± ±

TGCCAA 4 12 2.0 2.6 ± ±

PDR TCCGTG 5 8 1.1 1.4
CCGTGG 4 12 1.1 7.4
CGTGGA 5 10 1.1 3.3
GTGGAA 6 11 2.8 0.5

TCCGCGG 3 10 0.8 4.5 Pdrlp, Pdr3p
CCGCGG 2 12 0.6 2.6 TCCGCGGA (Zn2Cys6

CGCGGA 3 10 0.8 4.5 binuclear
CTGCGG 2 6 0.9 0.2 cluster)

GCGCGA 5 6 0.8 0.6 ± ±

AGGCAC 3 7 1.3 0.1 ±
GGCACC 5 6 0.9 0.2 ±

GAL ± - - - - CGGN5WN5CCG Gal4p
(Zn2Cys6

binuclear
cluster)

GCN AGTGAC 17 25 10.4 0.7
GTGACT 16 25 9.4 1.4
ATGACT 26 42 16.1 3.9
TGACTC 26 44 7.3 8.0 RRTGACTCTTT Gcn4p
GACTCA 22 26 6.9 4.3 (bZip)
GACTCT 14 20 7.5 0.6

CAGCGG 16 23 5.8 4.0 ± ±

AACCGG 10 15 5.3 0.2 ± ±
ACCGGC 9 13 3.0 1.4

CATCGA 16 26 10.9 0.8 ± ±
ATCGAA 23 33 16.8 0.2 ± ±

AGAGAG 21 32 16.1 0.2

INO CAACAA 9 28 8.5 3.6 Unknown Unknown
AACAAC 7 18 6.5 0.5
AACAAG 8 19 7.1 0.5

Ino2p/Opi1p
CATGTG 9 15 2.7 3.3 CATGTGAAWT (bHLH/leucine
TGTGAA 9 15 4.9 0.4 zipper)
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on size. For instance, in the NIT family, the signi®-
cance of GATAA (sig � 3.5) is lower than that of
GATAAG (9.1). However, the PUT4 upstream
region does not contain any copy of the GATAAG
pattern, though we know it responds to changes in
nitrogen conditions (Jauniaux et al., 1987). The
response elements for this gene are two GATAA
sites not followed by a G (one GATAAA and one
GATAAC). Moreover, in the pentanucleotide anal-
ysis of the NIT family, ATAAG (sig � 4.1) appears
with a higher sig value than GATAA (3.5),
although the real functional core is GATAA. Reci-
procally, a variant of the gata box, GATTA, does
not appear over-represented in this family, even

though it is known to be functional (but less ef®-
cient than the canonical GATAA: Magasanik,
1992). In summary, the highest signi®cance index
re¯ects a family property, whereas the regulation
of individual genes can rely on variants, even if
these are statistically less signi®cant.

Even though most regulatory sites are already
detected with the simple hexanucleotide analysis, a
systematic scanning of various oligonucleotide
lengths can be crucial for some of them, as shown
for the YAP family. Hexanucleotide analysis only
revealed one pattern (caTTAC) which partly over-
laps the Yap1p binding site (TTACTAA). The most
signi®cant pattern from the heptanucleotide anal-

Table 2ÐContinued

Hexanucleotide analysis result Sites previously characterized
Family Sequence Ms Occ Exp sig Consensus Bound factors

TCTTCA 9 21 7.6 1.0 ± ±

GTTCAA 8 16 5.3 0.5 ± ±

GTCGCA 7 8 1.5 0.5 ± ±

HAP ± ± ± ± ± CCAAT/C Hap2/3/4/5p

AGAGAG 4 14 3.4 1.6
GAGAGA 5 16 3.4 2.8 ± ±

ATGGGG 6 7 1.3 0.2 ± ±
TGGGGC 4 6 0.8 0.3

YAP CGTTCC 9 15 2.7 3.3 ± ±
TTCCGT 7 16 6.0 0.0

caTTAC 11 21 7.6 1.0 TTACTAA Yap1p (bzip)

CTGAAG 11 17 5.5 0.9 ± ±

TUP GGGGTC 9 9 2.0 0.2
GGGGTA 12 26 3.5 8.6 KANWWWWATSYGGGGW Mig1p
TGGGGT 15 19 4.2 3.7 (Zn finger)
CGGGGT 10 14 2.3 3.5
AGGGGC 12 14 3.3 1.6
GTGGGG 14 21 3.2 7.0
GCGGGG 12 12 2.3 2.0
CAGGGG 9 11 2.4 1.0

CGTGGG 11 12 2.5 1.6
TTTGTG 16 33 15.0 1.0

CACGGG 8 9 1.6 1.0
GCACGG 9 11 3.0 0.2
GGCACG 7 11 2.4 1.0
AGGCAC 13 21 4.6 4.3 ± ±

AAAAAA 25 305 226.6 3.1 ± ±
AAAGAA 25 92 62.8 0.2

GGAGGA 14 16 5.8 0.1
AGGAGG 12 16 5.3 0.6 ± ±
AAGGAG 16 24 10.4 0.4

CAAACA 19 33 16.4 0.4 ± ±
ACAAAC 17 30 14.2 0.4

CTCCGC 8 11 3.0 0.3 ± ±

TCTGCA 13 22 9.6 0.1 ± ±
CCTGCA 12 15 5.4 0.0

CGTAGC 9 11 3.1 0.1 ± ±

For each family, all hexanucleotides with a positive signi®cance coef®cient (sig 5 0) are indicated. Signi®cance indices higher than
1 are highlighted in bold. Hexanucleotides are clustered by sequence similarity. Substitutions within a cluster are underlined. The 2
last columns show the sites previously characterized. Note that the highest sig value from each family generally corresponds to the
site experimentally described. Abbreviations: ms, matching sequences, i.e. the number of sequences from the family which contain at
least one occurrence of the pattern, occ, number of occurrences of the pattern among all upstream regions from the family, exp,
expected number of occurrences; sig, signi®cance index, calculated as de®ned in Methodology; bHLH, basic helix-loop-helix motif;
bZip, basic leucine zipper.
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ysis was TTACTAA (sig � 2.3), i.e. the exact Yap1p
binding site. Extending oligonucleotide size up to
nine reveals the extended pattern CATTACTAA,
including simultaneously the most signi®cant hex-
anucleotide and heptanucleotide. Another interest-
ing property is that the Yap1p characteristic
heptanucleotide appears with a much higher sig-
ni®cance when the analysis is performed on short-
er upstream regions (400 bp). In some cases, it is
thus worth trying variations on the upstream
region size to detect binding sites with a preferen-
tial proximal location.

Multiple clusters reveal either multiple sites or
single site variability

Several clusters generally appear from each
family. In some cases, multiple clusters correspond
to distinct regulatory sites. This is clearly the case
in the MET family, where two independent clusters
are detected, the former forming the pattern
GTCACGTG, corresponding to the binding site for
the Gbf1p-Met4p-Met28p complex (Hinnebusch,
1992), and the second revealing the site
AAAACTGTGG, recognized by Met31p and
Met32p (Blaiseau et al., 1997). Alternatively, clus-
ters can be structurally related, and represent var-
iants of the same binding site, as in the PHO
family, where one cluster forms the pattern
GCACGTGGG, shown to bind Pho4p with high
af®nity, and another cluster de®nes the low af®nity
consensus GCACGTTTT for this same transcrip-
tional factor (Oshima et al., 1996). A similar situ-
ation is observed in the PDR family, where one
cluster forms the Pdr1p binding site TCCGCGGA
(Balsi & Goffeau, 1995), and another cluster forms
the TCCGTGGA variant.

Unknown sites revealed by
oligonucleotide analysis

Some additional hexanucleotides are identi®ed
within each family besides those belonging to
known regulatory sequences. Based on the results
for known sites, one can infer that the ideal
unknown site should appear as a cluster of over-
lapping hexanucleotides with a core showing a
high signi®cance coef®cient. Several unknown pat-
terns extracted from the hexanucleotide analysis ®t
with these criteria, and are good candidates as new
regulatory sequences.

A cluster of four hexanucleotides appears in the
TUP family, forming the pattern AGGCACGG,
with a maximal signi®cance index of 4.3. Varying
oligonucleotide size reveals the same pattern with
a ¯anking CAT at left (CATAGGCAC). The GCN
family also contains an unknown pattern,
CAGCGG with a high signi®cance index
(sig � 4.0). In the PHO family, we detected the
TGCCAA hexanucleotide with a good signi®cance
coef®cient (2.6). This pattern is particularly rep-
resented in the PHO5 and PHO84 upstream region,
where it occurs ®ve and four times, respectively.
Interestingly, the feature map (Figure 1) shows that
a pair of TGCCAA sites are found at a more-or-
less conserved position (ÿ204 to ÿ133) in three
upstream regions of the family (PHO11, PHO84
and PHO8).

We have no clue about a possible regulatory
function for these motifs, but some of them could
reveal binding sites for an additional unknown
regulatory factor, in addition to the known factor
for this family. Such a coordinated regulation has
already been demonstrated experimentally in case
of the MET family, and it would thus not be sur-
prising to observe it in some other families.

Table 3. Signi®cance index as a function of oligonucleotide length

Oligonucleotide length
Family Pattern 4 5 6 7 8 9

NIT aGATAAGa 1.8 4.1 9.1 4.6 0.9 ±
MET gTCACGTG 4.4 4.1 7.0 8.2 3.2 ±

AAACTGTGg 1.5 2.3 1.6 4.8 5.2 4.9
PHO CACGTggg 4.7 8.4 4.4 4.3 4.3 ±

aTGCCAA 2.6 1.5 2.6 0.6 ± ±
CTGCAC ± ± 1.7 ± ± ±

INO CAACAAg 2.9 2.1 3.7 1.3 ± ±
cCATGTGAA ± ± 2.7 3.2 6.4 0.4

PDR tCCGTGGa 1.5 3.3 7.4 6.9 4.2 1.4
tCCGCGga 6.9 7.1 4.5 5.6 1.8 1.0

GCN gtGACTCa 5.4 8.8 8.2 7.7 4.7 ±
CAGCGGa 3.3 3.5 4.0 0.6 ± ±

YAP CATTACTAA ± ± 1.0 2.3 2.1 3.2
cCGTTCC 0.1 0.5 3.3 0.3 ± ±

YAP caTTACTAA ± ± 0.7 4.5 2.5 3.5
400 bp cCGTTCC 0.8 0.5 2.4 0.7 0.2 ±
TUP gtGGGGta 10.1 9.0 8.6 5.6 3.0 ±

catAGGCAC 3.3 3.3 4.3 2.6 3.3 1.7

The highest sig value associated to each pattern for each oligonucleotide size is shown. Only positive sig values are shown. Each
pattern shows a peak at a speci®c length (shown in bold). The fragment of the pattern associated to the peak is indicated in bold
and uppercase letters. The row labeled YAP 400 bp shows the signi®cance obtained with upstream regions of 400 bp. All other
results were obtained with 800 bp upstream regions.
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One pattern from the INO family ®ts perfectly
the above criteria, but should be taken with cau-
tion. The analysis of the INO family shows an
unknown hexanucleotide, CAACAA, with an even
higher statistical signi®cance (3.6) than the known
CATGTGAA site (Paltauf et al., 1992). CAACAA
appears clustered with two weakly signi®cant
overlaps (AACAAC, AACAAG), forming the pat-
tern CAACAAC/G. This sequence has not been
detected by experimental analysis (Susan Henry,
personal communication). It is, however, highly
over-represented: 28 occurrences of CAACAA are
observed within nine among the ten genes of the
INO family. Interestingly, the pattern is especially
concentrated in the upstream regions of the FAS
genes (four occurrences in FAS1, six in FAS2 and
®ve in FAS3). Most occurrences are located distally
(between -365 and ÿ800). This speci®c concen-
tration in the FAS genes could suggest a possible
involvement of CAACAA in the response of these
genes to fatty acids, for which the regulatory
elements are unknown. However, four of the six
occurrences observed in FAS2 upstream sequence
are located within a valine-rich coding region from
the upstream gene SSO1. This, of course, does not
prevent them from exerting simultaneously a regu-
latory effect on FAS2, but their statistical signi®-
cance has to be re-evaluated taking into account
their coding function. To allow this, we
implemented a ``non-ORF overlap'' option in our
program for upstream sequence extraction. On the

other hand, restricting the analysis to the non-cod-
ing upstream sequence could be misleading in the
opposite way, leading to the loss of some import-
ant elements. This is particularly well illustrated by
the PHO family, where three genes have a very
closely located upstream ORF (at 181 bp from
PHO8, 238 from PHO84, and 598 from PHO11,
respectively). No less than seven of the ten sites
protected by Pho4p (Oshima et al., 1996) are
located within (®ve sites, see asterisks in Figure 1)
or even upstream from (two sites) the neighbor
predicted ORF. Consequently, when an hexanu-
cleotide analysis is performed on the non-coding
upstream sequences from this family, the CACGTG
and CACGTT are not detected. The best way to
proceed is probably to perform the analysis with
®xed size upstream regions, but keeping in mind
additional possible biases due to the coding
sequences. Eventually, the regulatory activity of
the unknown patterns detected will only be
assessed by experimental testing.

Positional clues

As illustrated in the previous section, the feature
map is helpful to highlight the interest of putative
regulatory motifs on the basis of positional con-
siderations. Two kinds of information can be con-
sidered: the conserved position of a motif across all
sequences of the family; and the concentration of
one signal within one or within a subset of the
upstream sequences.

Figure 1. Feature map of over-represented hexanucleotides in the 800 bp upstream regions from the PHO genes.
The scale bar provides coordinates relative to the ORF start. A speci®c color is associated to each hexanucleotide. The
sites previously found to be bound by Pho4p are marked with an asterisk. Note the fact that ®ve of the known
Pho4p binding sites are located within predicted ORFs (empty boxes). Note also the pair of TGCCAA motifs in the
ÿ100 to ÿ200 regions from PHO11, PHO84 and PHO5, as well as high number of occurrences of this element in the
PHO5 and PHO84 upstream region.
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The same kind of positional considerations can
be applied to known binding sites, as illustrated by
the CTGCGG motif in the PDR family. This variant
of the CCGCGG core appears with a low signi®-
cance coef®cient (0.2). However, the feature map
reveals that ®ve of the six occurrences are concen-
trated in the upstream region of a single gene
(PDR11), which on the other hand, does not con-
tain any occurrence of the CCGCGG core. This var-
iant could re¯ect some regulatory speci®city of
PDR11.

The statistical signi®cance of these positional
inhomogeneities could certainly be assessed by
more elaborate statistical tools. We feel, however,
that place should be left for the biologist's intui-
tion, helped by his knowledge of regulatory
families. The feature map provides a visual sup-
port for this intuition.

Known sites escaping detection

Oligonucleotide analysis enabled us to detect
nine known regulatory elements among eight out
of ten regulatory families. Two elements escaped
detection: the binding sites for Gal4p in the GAL
family, and for the Hap complex in the HAP
family.

Contrary to all other families, not a single hexa-
nucleotide had a positive signi®cance coef®cient in
the GAL family. Penta- and tetranucleotide ana-
lyses revealed some patterns with a low signi®-
cance, none of them reaching the value 1 for sig
(not shown). Trinucleotide analysis reveals two
clearly over-represented sequences: CCG (sig � 2.2)
and GCC (sig � 2.1). Transcriptional regulation of
the GAL genes is mediated by Gal4p, which binds
to dyads of GC-rich trinucleotides separated by an
11 bp sequence with high internal variation. Trinu-
cleotide analysis pointed out these GC-rich
elements, but the complete Gal4p consensus could
not be extracted from this analysis. This suggests
that the oligonucleotide analysis is not appropriate
for these kind of patterns, and points out the need
for an algorithm based on the detection of spaced
pairs of oligonucleotides.

The second element that escaped detection is the
binding site for the Hap complex. This complex is
formed by four proteins (Hap2p, Hap3p, Hap4p
and Hap5p). Hap2p and Hap3p have been shown
to bind DNA, while Hap4p acts as activation
domain for the complex. The Hap2p-Hap3p bind-
ing site contains a conserved motif CCAAT/C pre-
sent in several copies within each upstream region
of the family. We could not detect this motif under
any condition of the analysis. Despite the fact that
CCAAT/C boxes are repeated in four occurrences
per sequence on average, their statistical signi®-
cance remains well below our threshold (ÿ1.6 for
CCAAC and ÿ1.3 for CCAAT), and several unre-
lated patterns appear with a higher signi®cance.
Note that the effective binding site for the Hap
complex contains a second essential region, 10 bp
apart from the CCAAT/C motif (Guarente, 1992).

We are currently developing a program which
would speci®cally detect spaced dyads as found in
these two regulatory systems.

Importance of the expected
frequency calibration

All our analysis was done using oligonucleotide-
speci®c expected frequencies. As an estimate for
these expected frequencies, we used the frequency
observed for each oligonucleotide in the set of all
non-coding sequences from the whole genome.
This choice is fully justi®ed a posteriori by the fact
that in all families, the highest signi®cance indices
correspond to functional regulatory elements. This
probabilistic model is further validated by the very
low level of noise observed. Indeed, a very limited
number of patterns are isolated from each family,
and their majority belongs to the regulatory
sequences previously characterized. The same sig-
nals would have been undetectable without fre-
quency calibration. We illustrate this for the MET
family in Table 4, where we show the rank at
which the patterns selected from Table 2 would
have emerged if all hexanucleotides had been con-
sidered equiprobable (column r2). For instance, the
CACGTG core, which had the highest signi®cance
index for the MET family in Table 2 would have
appeared at the 23rd position. Even worse, the
CTGTGG core, selected at third position with the
frequency tables, would have been the 99th pattern
otherwise. In other words, the binding site for
Met31p would have been undetectable. An accep-
table alternative would have been to calculate
expected frequencies based on the alphabet usage
(i.e. with A and T probabilities of 0.31, C and G
probabilities of 0.19). In this case, the regulatory
signals would have appeared with a reason-
able rank (column r3), though intermingled with
many non-speci®c hexanucleotides (AAAAAA,
AAAAAG, . . . ).

Table 4. Importance of the use of oligonucleotide-
speci®c expected frequencies

Family Pattern r1 r2 r3

MET CACGTG 1 23 5
TCACGT 2 21 6
GTCACG 6 259 24

TGTGGC 8 131 12
CTGTGG 3 99 8
ACTGTG 7 86 17
AACTGT 4 32 18

ATATAT 5 3 2
TATATA 10 1 3

GCTTCC 9 75 7

We compared the rank of all hexanucleotides from Table 2
(r1) with the rank they would have if hexanucleotides had been
considered equiprobable (column r2) or with an estimation of
hexanucleotide probabilities on the basis of yeast non-coding
sequence alphabet (r3). The cores of the two sites previously
characterized by experimentation are highlighted in bold.
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Gene versus family

In these oligonucleotide analyses, we used
families containing from 5 to 38 genes. There is no
methodological constraint on the number of genes
per family, so, in principle, one could analyze
smaller or larger families. The limit case is to con-
sider each gene as a separate family, and to evalu-
ate whether its upstream region contains over-
represented elements. Since multiple copies of a
regulatory sequence are commonly found in the
upstream region of yeast genes, it is conceivable
that some functional elements could be isolated
from the single gene analysis. We performed a sys-
tematical hexanucleotide analysis of the upstream
regions from the 6219 predicted genes from the
yeast genome (the complete results can be con-
sulted on the web site). In a fraction of the genes,
signi®cant patterns are detected. We did not ana-
lyze exhaustively these results, but in some cases
at least the over-represented hexanucleotides corre-
spond to known regulatory elements.

These data were used for a more detailed anal-
ysis of the genes from Table 1. We compared the
hexanucleotides extracted from the gene-by-gene
analysis with those resulting from the family anal-
ysis. We found that patterns that are signi®cant for
a family are not necessarily signi®cant for the indi-
vidual genes. A specially illustrative example
comes from the MET family, where CACGTG has
a very high signi®cance coef®cient (7.0), though it
does not appear from the analysis of any single
gene (individual sig value ranging between ÿ0.9
and ÿ2.2). In other cases, the family-speci®c pat-
tern is signi®cant in a fraction of the family, but its
signi®cance is lower in any gene taken alone. This
is the case for the GATAAG hexanucleotide which
has a signi®cance coef®cient of 9.1 for the whole
nitrogen family. Gene-by-gene analysis detects it in
MEP2 (sig � 3.1) and with a weaker score in MEP3
and GAP1 (sig � 0.7). In the four other genes of the
family it has a negative value (sig � ÿ 1.3),
although it is known to be functional in these
genes.

Reciprocally, some motifs that were not part of
the initial families appear with signi®cant scores in
individual genes. An interesting motif, ATACGA,
is detected with a signi®cance of 3.3 in the
upstream sequence of FAS3, where it occurs seven
times, ®ve of which belong to a stretch of tandem
repeats of the pentanucleotide ATACG. Exper-
iments should permit us to determine whether this
site in tandem is involved in the transcriptional
regulation of FAS3.

The high signi®cance observed in regulatory
families for functional patterns are thus a group
property, which cannot be inferred from the anal-
ysis of individual regulatory regions. A gene-by-
gene analysis provides no guarantee to extract the
functional regulatory elements from upstream
sequences. It is, however, worth remembering that
it can in some cases highlight a speci®c regulatory
property for an individual gene.

Whole genome scanning for putative nitrogen-
sensitive genes

After having determined the upstream sequences
responsible for a regulatory response, one would
naturally like to scan the whole yeast genome for
potentially coregulated genes. As soon as the com-
plete sequence of yeast chromosome III has been
available, Fondrat & Kalogeropoulos (1994) pub-
lished predictions of genes potentially regulated by
various known transcriptional factors. An import-
ant insight of their work is that speci®c rules have
to be established for each transcriptional factor,
taking into account their regulatory characteristics.

A classical way to predict genes putatively regu-
lated by a given transcriptional factor is to scan the
genomic database for matches with the degenerate
consensus of its binding site. Position weight
matrices can also be used when the variability of
the binding site is suf®ciently documented. One
limitation of these approaches is that short sites are
likely to be found in almost every upstream region.
For instance, scanning the set of 800 bp upstream
regions from the 6219 predicted ORFs for the pat-
tern GATAAG would lead to 2086 candidate
genes. Even worse, the GATAA motif, shown func-
tional for the response to nitrogen, is found in 5618
upstream regions. We can, however, build rules
taking into account more information coming from
experimental results, i.e. the knowledge that the
highest sensitivity to nitrogen is generally associ-
ated to a high number of repetitions of the GATA
boxes. Moreover, the majority of the GATA boxes
for which a regulatory activity has been shown are
localized within the 500 bp upstream of the ORF
start.

We tested different conditions for counting
GATA boxes occurrences. Either 800 bp or 500 bp
was used as an upstream region size. Three motifs
were tested: GATAAG (the most signi®cant pattern
of our analysis), GATAA (the common GATA box
description), and GATWA (taking into account the
occasional GATTA variant). For each condition, we
counted the occurrences of the motifs within the
upstream region from each of the 6219 predicted
ORFs. Genes were then sorted according to the
number of occurrences. We compared the selectiv-
ity for each set of conditions, i.e. the capacity to
select in the top of the list a high number of genes
known to be nitrogen-sensitive.

The best results were obtained with the
GATAAG motif and a 500 bp upstream region
size. Three or more occurrences of this motif
(Table 5) were observed in 34 upstream regions, of
which 23 belong to a gene with a known function.
Twenty of these 23 genes are known to be regu-
lated by nitrogen. Given this high proportion, it is
highly probable that several of the 11 unknown
genes also belong to the metabolism of nitrogen. It
should be easy to test experimentally the response
of these genes to nitrogen. Two GATAAG occur-
rences were found in 184 additional upstream
regions, among which 68 belong to genes with a
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known function. Twelve of these 68 genes are
regulated by nitrogen. Additional criteria could be
considered to increase the selectivity among the
genes with two occurrences of GATAAG. On the
one hand, we could take into account the presence
of other GATAA motifs which are not terminated
by a G. Another interesting possibility would be to
select those in which at least two GATA boxes are
closely associated, since the characterized GATA
boxes appear generally clustered.

One could use a similar approach in cases where
two distinct elements are known to be involved in
the same metabolic pathway (as seen in the MET
family), by adding the constraint of a simultaneous
presence of both elements. Positional clues could
also be used, for instance in cases where a repres-
sing sequence (URS) is known to be active only
when located downstream of the activating
sequences (UAS). Speci®c rules should thus be
established for each regulatory model, taking into
consideration the repetitions, combinations, and
positional speci®cities of the known regulatory
elements. The de®nitions of these rules and the
estimation of the value of the predictions require

an expert knowledge for each particular regulon.
Our feeling is that in the future the emphasis
should be put on incorporation of most available
biological information rather than on the develop-
ment of elaborated statistical methods.

Comparison with related methods

Several methods have been published for the
detection of unknown elements within a set of
functionally related sequences. Each of these
methods has been designed on basis of a precise
biological model. Several algorithms (Waterman
et al., 1984; Galas et al., 1985; Mengeritsky & Smith,
1987) allow the detection of elements with high
internal variation, such as the TATA box, or the
ÿ35 box. An essential prerequisite of these
methods is that the regulatory elements have to
share a conserved position relative to a common
reference (e.g. the transcription start). They are
thus well adapted to the analysis of prokaryote
promoters, but would be inappropriate for our
regulatory model.

Table 5. Whole genome scanning for all genes containing three or more occurrences of GATAAG in their 500 bp
upstream region

ORF Locus occ Function

A. Involved in nitrogen metabolism
1 YNL142W MEP2 7 High affinity low capacity ammonia permease
2 YPR138C MEP3 5 Low affinity high capacity ammonia permease
3 YIR032C DAL3 5 Ureidoglycolate hydrolase
4 YKR039W GAP1 4 General amino acid permease
5 YIR028W DAL4 4 Allantoin permease
6 YFL021W GAT1 4 Transcription factor for nitrogen regulation
7 YER060W FCY21 4 Purine-cytosine permease
8 YLR160C ASP3D 3 L-Asparaginase II
9 YLR158C ASP3C 3 L-Asparaginase II
10 YLR157C ASP3B 3 L-Asparaginase II
11 YLR155C ASP3A 3 L-Asparaginase II
12 YKR034W DAL80 3 Transcriptional repressor for several nitrogen regulated genes
13 YJR152W DAL5 3 Allantoate permease
14 YJL110C GZF3 3 Transcriptional repressor for several nitrogen regulated genes
15 YIR031C DAL7 3 Malate synthase 2
16 YIR027C DAL1 3 Allantoinase
17 YEL063C CAN1 3 Arginine permease
18 YDL210W UGA4 3 GABA-specific high-affinity permease
19 YBR208C DUR1,2 3 Urea amidolyase
20 YAL062W GDH3 3 NADP-glutamate dehydrogenase

B. Supposedly not regulated by nitrogen
1 YLL039C UBI4 4 Ubiquitin
2 YKR031C SPO14 3 Phospholipase D
3 YGR082W TOM20 3 Mitochondrial outer membrane import receptor subunit, 20 kDa

C. Unknown genes
1 YIR033W 5 Similarity to Spt23p
2 YOL019W 4 Similarity to Rim9p and YFR012w
3 YDL237W 4 Hypothetical protein
4 YPL150W 3 Similarity to Ser/Thr protein kinases
5 YOL128C 3 Strong similarity to protein kinase Mck1p
6 YIL146C ECM37 3 Hypothetical protein
7 YGR081C 3 Weak similarity to mammalian myosin heavy chain
8 YDL238C 3 Hypothetical protein
9 YDL068W 3 Questionable ORF
10 YBL077W 3 Questionable ORF
11 YBL049W 3 Hypothetical protein

The column labeled occ shows the number of occurrences (occ).
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Three other programs (Coresearch, Consensus
and the Gibbs sampler) are publicly available and
we could directly assess their ef®ciency on our
regulatory families. Coresearch (Wolfertstetter et al.,
1996) detects short over-represented sequences,
and in a second step extends the pattern laterally.
It failed to detect the GATA boxes, for two reasons:
it does not allow to specify an unequal alphabet
utilization, and the scores do not take into con-
sideration the repetitions of a pattern within the
same sequence.

Consensus (Stormo & Hartzell, 1989; Hertz et al.,
1990) overcomes both of these problems: an arbi-
trary alphabet utilization can be speci®ed, as well
as an expected number of matches for the searched
pattern. Specifying a matrix length of six and an
expected number of matches of 35, consensus iso-
lated the GATAAG motif from the NIT family. It
also succeeded in the isolation of regulatory
elements from our other regulatory families,
including the binding site for Gal4p in the GAL
family (with a matrix length of 17), which had
escaped detection by oligonucleotide analysis. One
drawback is that Consensus isolates a single
element from each family (optionally, several
matrices can be retained, but they are variants of
the same regulatory element). It is thus not optimal
for the detection of multiple elements shared by
the same set of sequences. In the case of the MET
family, this inconvenience could, however, be cir-
cumvented by playing with the matrix length: the
Cbf1p-Met4p-Met28p binding site (CACGTG)
appeared as the most signi®cant matrix of length
six, whilst the Met31p binding site (AAACTGTGG)
appeared when matrix length was set to nine.
Another drawback is that the isolation of all these
regulatory elements required the a priori speci®ca-
tion of two parameters: matrix length and expected
number of matches. This second parameter can be
crucial for the isolation of some elements. For
instance in the NIT family, GATAAG is obtained
when the expected number of matches is set to 35,
but escapes detection when this parameter is set to
15. Therefore, the user of Consensus has to scan a
two-dimensional parameter space (pattern length
and expected occurrences), instead of a one-dimen-
sional space (oligonucleotide length) with oligonu-
cleotide analysis. Consensus is also quite slower
than oligonucleotide analysis (several minutes of
processing are required for each family, instead of
a few seconds with our method).

The Gibbs sampler (Lawrence et al., 1993;
Neuwald et al., 1995) can detect shared motifs in
either proteic or nucleic acid sequences, with or
without gaps. With a simple con®guration
(length � 6, expected number of occurrences � 15),
the Gibbs sampler detected the same over-rep-
resented hexanucleotides as our method did. More-
over, increasing the pattern length to 17 allowed to
isolate the Gal4p binding site, which our method
failed to detect. Only the HAP site escaped detec-
tion by the Gibbs sampler, as it did with our meth-
od. Gibbs sampler is thus more sensitive than

oligonucleotide analysis. However, it is essentially
an heuristic method, and is not exhaustive. The
program starts with a set of random positions and
then converges towards an optimal matrix.
Depending on the initial positions, the program
can be attracted by distinct local maxima. In order
to validate the signi®cance of a pattern, it is thus
necessary to run it repeatedly starting from differ-
ent initial conditions. We had to run 100 repetitions
for each family to extract the same range of pat-
terns as with oligonucleotide analysis. Under these
conditions, Gibbs sampler is much slower (20 min-
utes per family) than oligonucleotide analysis (ten
seconds per family). Some important patterns
(CATGTG in the INO family) were detected with a
weak frequency, due to the attraction of a slightly
more signi®cant feature (CAACAA in the same
family). There is thus a risk to miss some import-
ant regulatory features when they are masked by
highly attractive local maxima.

In summary, Consensus and the Gibbs sampler
are slower than oligonucleotide analysis and
require a more precise description of the character-
istics of the pattern searched (i.e. an expected num-
ber of matches), but both programs are much more
ef®cient for the description of large motifs with
higher internal variation. A good trade could be to
use oligonucleotide analysis for a systematic and
fast scan of simple patterns, and Consensus or the
Gibbs sampler to re®ne the description of the pat-
terns detected by oligonucleotide analysis or to
detect other types of patterns.

Conclusions and Perspectives

Based on the model of the regulation of nitrogen
metabolism, we developed an algorithm that
detects over-represented oligonucleotides within
the upstream sequences from a family of coregu-
lated genes. In most of the families here analyzed,
hexanucleotide analysis detected the main motifs
involved in transcriptional regulation. Several
unknown signals were detected, some of which
present a high signi®cance index and are good can-
didates as putative regulatory sites. This does not
mean that the algorithm would detect all kinds of
regulatory signals. For instance, the Gal4p binding
site could not be detected due to its complex struc-
ture (a pair of trinucleotides separated by a non-
conserved sequence). Similarly, HAP sites escaped
detection due to the fact that they are not properly
over-represented. In both of these cases, the anal-
ysis failed to show any signal with high signi®-
cance. One can conclude that when a signal is
selected as highly over-represented, it is very likely
to correspond to a functional regulatory site,
although the opposite is not true.

The main originality of our method, and the
principal reason for its ef®ciency, is the use of
calibrated tables with a speci®c estimation for
each oligonucleotide expected frequency. Similar
frequency tables had already been used in
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another context, for the discriminant intron-exon
analysis (Claverie & Bougueleret, 1986). Another
distinctive feature of our approach is the use of
the total count of occurrences instead of using
the number of matching sequences, as most other
programs do. This is justi®ed by the fact that our
biological paradigm relies on the repetition of the
regulatory signal within each regulatory
sequence. Our implementation also allows to
assess the signi®cance of the number of matching
sequences (i.e. the number of sequences present-
ing at least one occurrence of the oligonucleo-
tide), but in most families (except GCN), this
option did not prove ef®cient in isolating regulat-
ory elements. Indeed, due to the small number of
sequences per family and to the large size of
upstream regions, the fact to encounter a pattern
at least once within each sequence is generally
not statistically signi®cant.

The most appealing feature of oligonucleotide
analysis is its simplicity. The whole statistical
analysis relies on the binomial formula. A direct
consequence is the speed of execution: a family
of ten genes is analyzed in ten seconds. The pro-
cessing time increases linearly with the number
of genes, and is weakly sensitive to oligonucleo-
tide length. The method is straightforward (there
is no iterative process), rigorous (as opposed to
heuristic), and exhaustive (with a single run of
the program, all over-represented patterns of the
chosen size are detected). The cost of the meth-
odological simplicity is that our method is limited
to the detection of short and relatively conserved
motifs: regulatory sites with a highly conserved
core of ®ve to eight nucleotides. Larger conserved
patterns can, however, be reconstituted by the
combination of overlapping oligonucleotides.
Weak substitutive variations of the core (one
variable position) can also be detected, as shown
with the PHO and PDR families. Sophistication
could of course be added for the detection of pat-
terns with more internal variation. Some such
options are in fact implemented: the program can
include an IUPAC degenerate nucleotide code at
any position, but this did not improve ef®ciency
in the cases analyzed here. On the contrary, the
signi®cance of the functional signals is lowered
by their grouping with non-over-represented var-
iants (not shown).

The hexanucleotide analysis allowed us to detect
the regulatory elements from most families. A sys-
tematic analysis of various oligonucleotide lengths
(between ®ve and nine) provides, however, a more
accurate description of the pattern, indicating the
most signi®cant oligonucleotide length and
sequence. An alternative way to extend the
description of the putative regulatory sites would
be to search within the sequence set for all matches
with a short cluster core (for example the hexanu-
cleotide showing the highest signi®cance), and to
extract them accompanied by their ¯anking
sequences. These extended matching sequences
could then be used to build a position weight

matrix, as is done by the program Coresearch
(Wolfertstetter et al., 1996).

Besides the detection of regulatory sites in
families of coregulated genes, counting of oligonu-
cleotide occurrences was used to scan the whole
genome for potential nitrogen-sensitive genes. This
allowed us to select a very small number of genes
presenting a high probability to be regulated by
nitrogen. The next step will be to validate exper-
imentally the transcriptional response of these can-
didates. Another experimental avenue to follow
after detection of unknown regulatory sites, is the
isolation of the related transcriptional factors. This
can be done experimentally, for instance by the
one-hybrid method (see Blaiseau et al. (1997) for an
application to the MET family).

How far can oligonucleotide analysis be
extended to other organisms? It would probably be
of weak ef®ciency in prokaryotes, where regulat-
ory signals are large, and show a higher variation.
On the contrary, there is good hope that it will be
applicable to detect regulatory elements in higher
eukaryotes, where short repeated signals are com-
mon. This feature has already been exploited for
the automatic detection of periodic signals within
single contiguous sequences (Bodnar & Ward,
1987). Some of these signals correspond to speci®c
regulatory elements, while others are thought to
participate in global structural properties of the
DNA. Calibrated frequency tables could become
even more crucial in higher organisms, where
numerous cases of over-represented oligonucleo-
tides have been shown.

The results obtained with the YAP and TUP
families show that oligonucleotide analysis can be
used for families derived from DNA microarray
experiments. Some care should, however, be taken
in the de®nition of the gene family. Indeed, the
response to a change in medium conditions is gen-
erally complex and may involve multiple transcrip-
tion factors. A particularly illustrative case is the
diauxic shift, during which more than 700 genes
are transcriptionally activated and more than 1000
repressed (DeRisi et al., 1997). It is, however, poss-
ible to re®ne the de®nition of the families on the
basis of the temporal pro®le of response (not
shown), or by concomitantly taking into account
information from independent experiments, as we
did for the TUP family. Thanks to the development
of new techniques such as the DNA microarrays
(Velculescu et al., 1997; DeRisi et al., 1997), the rela-
tive level of expression of all yeast genes will be
systematically monitored in cells with different
nutritional metabolisms and/or developmental
states. Oligonucleotide analysis could be applied to
sets of genes for which regulatory elements are
totally unknown. Provided a good criterion can be
found to ensure a correct de®nition of these new
regulons, our method offers the perspective to
rapidly identify candidate upstream regulatory
sequences for them.
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Methodology

Constitution of regulatory families

The essential criterion for the constitution of a regulat-
ory family is that all member genes have to show a com-
mon regulatory response. Families can be de®ned as a
regulon, i.e. a set of genes controlled by a common regu-
lator, or as a stimulon, i.e. a set of genes whose transcrip-
tion responds to a common environmental stimulus
(Neidhardt & Savageau, 1996). When one builds regulat-
ory families, one should avoid to include pairs of struc-
turally related upstream sequences which would
strongly bias the probabilistic calculation. For instance,
GAL1 and GAL10 are regulated by a common intergenic
region, so we had to remove one of them from the GAL
family to avoid counting twice the oligonucleotides of
the same sequence. Another situation to avoid would be
a pair of highly similar upstream regions due to a recent
duplication event.

Definition of regulatory region limits

In yeast, regulatory elements are found almost exclu-
sively upstream from the promoter. One would be
tempted to consider as putative regulatory sequence the
region located between the transcription start and the
immediate upstream coding sequence. However, both
limits are matter of problems. In eukaryotes, and particu-
larly in yeast, the transcription start can hardly be pre-
dicted on the sole basis of the sequence. Its position is
only reliable in the few experimentally determined pro-
moters. Consequently, we chose the beginning of the
ORF as the downstream limit of the putative regulatory
region, although we are aware that this would include in
the analysis sequences downstream of the transcription
start, leading to some loss of statistical signi®cance.

Using the end of the immediate upstream ORF as the
upstream limit of a regulatory region is not very satisfac-
tory either. On the one hand, we have no reason a priori
to discard the possibility that a coding sequence would
simultaneously exert some regulatory action on a neigh-
bor ORF. For instance, there are cases where a putative
ORF is detected in the very close vicinity of a gene of
interest (e.g. YKR032W ends up 67 bp upstream from
DAL80 ORF start), though we know this gene to be
regulated by a larger upstream region. For this reason,
we decided to impose a ®xed length for all considered
upstream sequences. In order to determine the optimal
size for the upstream region, we analyzed the position of
the 308 yeast regulatory sites from Transfac database
(Wingender et al., 1996, 1997; Heinemeyer et al., 1998).
The vast majority (99%) of these sites are located within
a 800 bp range. Consequently, we considered in our
analysis the sequence comprised between coordinates ÿ1
and ÿ800 upstream from the ORF start.

After having retrieved the set of upstream sequences
from the regulatory family, the number of occurrences of
all oligonucleotides of the selected size are counted. This
count takes into consideration multiple occurrences
within the same upstream sequence. The number of
occurrences of each oligonucleotide across the regulatory
family is then compared to its expected value.

Expected oligonucleotide frequencies

The yeast genome is characterized by a sensitive bias
in favor of A-T versus G-C bases ( fA � fT � 0.31;

fG � fC � 0.19). Moreover, nucleotide succession is not
random, and some oligonucleotides are clearly over-rep-
resented, noticeably the poly (A), poly (T) and poly (AT)
chains (Yagil, 1994). An additional bias results from the
fact that oligonucleotides are differentially represented in
coding versus non-coding sequences (Hutchinson, 1996).
A speci®c expected frequency has thus to be used for
each oligonucleotide sequence. One way to calculate the
expected oligonucleotide frequencies is to use the fre-
quency observed in the collection of all 800 bp upstream
regions from the yeast genome. But there is no reason to
systematically restrict the analysis to this precise length,
and in fact, the user can select the length of the
sequences to analyze. We took the biologically de®ned
set of all non-coding sequences from the genome to
evaluate the expected frequencies. Since the intergenic
regions have an average length of 600 bp, this calibration
is also adequate for regions 800 bp long (not shown). We
built tables showing, for each possible oligonucleotide
(b), the frequency observed throughout all non-coding
segments of the whole yeast genome (Fnc{b}), and this for
all sizes between one and nine. These frequencies were
then used to estimate the oligonucleotide-speci®c
expected frequencies (Fe{b}):

Fefbg � Fncfbg
These expected frequencies are used to calculate the
number of expected occurrences for each oligonucleotide
in the set of upstream sequences from the regulatory
family:

E�occfbg� � Fefbg � 2�
XS

i�1

�Li ÿ w� 1� � Fefbg�T �1�

where E(occ{b}) is the expected number of occurrences
for the oligonucleotide b; w is the oligonucleotide length;
S is the number of sequences in the set; Li is the length
of the ith sequence of the set. The factor 2 stands for the
fact that we sum the occurrences on both DNA strands,
since in our model the action of regulatory sites is orien-
tation-insensitive. T represents the total number of poss-
ible matching positions for a pattern of length w across
both strands of the sequence set. Since in our case all
upstream sequences have the same length (L), T can be
simpli®ed as follows:

T � 2� S� �Lÿ w� 1�
Statistical significance

The probability to observe exactly n occurrences of the
oligonucleotide b is estimated by the binomial formula:

P�occfbg � n� � T!

�T ÿ n�!� n!
� �Fefbg�n

� �1ÿ Fefbg��Tÿn� �2�
The probability to observe n or more occurrences of the
oligonucleotide b is:

P�occfbg5n� �
XT

j�n

P�occfbg � j�

� 1ÿ
Xnÿ1

j�0

P�occfbg � j� �3�

One can impose a threshold on P(occ{b} 5 n) in order to
single out the unexpectedly over-represented oligonu-
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cleotides, i.e. those for which the occurrence probability
is very low. The choice of an appropriate threshold
depends on oligonucleotide length. For instance, there
are 4096 possible hexanucleotides. In our case, however,
we summed occurrences on both strands, so that each
oligonucleotide is grouped together with its reverse
complement, except for the 64 palindromic hexanucleo-
tides. The number of palindromic oligonucleotides of
size w is npal � 4w/2, when w is even, and Npal � 0 other-
wise. When the search is performed on both strands, the
number D of distinct oligonucleotides is:

D � 4w ÿ �4w ÿNpal�=2
For hexanucleotides, D � 2080. With a probability
threshold of 0.001, two of them are still expected at ran-
dom within each family. A good criterion is thus to con-
serve only hexanucleotides whose occurrence probability
is lower than 1/D.

On basis of these considerations, we de®ned a signi®-
cance coef®cient:

sig � ÿ log10�P�occfbg5n� �D� �4�
which takes into account the number of distinct oligonu-
cleotides. The highest values for this parameter corre-
spond to the most over-represented patterns. When
selecting only the patterns for which sig 5 0, one expects
less than one pattern to occur at random within each
family. Each increment of 1 for the signi®cance coef®-
cient represents a drop of a factor of 10 for the occur-
rence probability. In other words, one expects to ®nd at
random one pattern with sig 5 1 every ten families, one
with sig 5 2 every 100 families, and one with sig 5 s
every 10s families. The advantage of the signi®cance
coef®cient is that its threshold can be selected and its
values interpreted independently of oligonucleotide size,
upstream sequence size, and number of genes within the
family. This parameter proved very useful to detect
over-represented oligonucleotides, and we systematically
used it rather than the crude probabilities in the descrip-
tion of the results.

Correction for auto-correlated patterns

An essential condition for the validity of the binomial
formula is the independence of successive trials. This
condition is not ful®lled in our case, since the oligonu-
cleotide at each position will depend on the w ÿ 1 pre-
ceding ones, and affect the w ÿ 1 following ones. We
checked the effect of this dependency with random
sequences. The results of this analysis are not detailed
here, but can be consulted on the web site.

For most oligonucleotides, this effect is not sensible,
and the occurrences observed at random ®t perfectly
with the binomial curve. A deviation from the binomial
frequencies is, however, observed in some well de®ned
cases, i.e. for auto-correlated oligonucleotides (e.g.
AAAAAA, ATATAT, ATGATG). Auto-correlation does
not affect the expected occurrence number, but increases
the variance (Kleffe & Borodovsky, 1992). In other
words, the probability to observe either very high or
very low occurrence values is increased for auto-corre-
lated patterns. An auto-correlation coef®cient (Pevzner
et al., 1989) can be calculated to estimate the importance
of this effect. Corrections on occurrence probabilities
(Pevzner et al., 1989; StuÈ ckle et al., 1990; Kleffe &
Borodovsky, 1992) have been proposed in the context of
Markov chain models, but these are not appropriate in
our case (we do not use (k ÿ 1)-mer frequencies to esti-

mate k-mer expected number of occurrences). The auto-
correlation effect is neglected in most approaches based
on binomial or related formulae (Waterman et al., 1984;
Naus & Sheng, 1997), and we did not ®nd any related
correction to the binomial formula in the literature.

In our case, the most important contribution to auto-
correlation is due to the fact that we sum the occurrences
of each pattern on both strands, accordingly with the
biological model. This has a very drastic consequence on
the probabilities of complementary palindromic patterns
(e.g. CACGTG), for which each occurrence on one strand
is systematically accompanied by another occurrence on
the reverse complementary strand (the auto-correlation
coef®cient is thus multiplied by 2). A very simple correc-
tion for this is to calculate the probabilities on the basis
of the single strand occurrences. The correction consists
in replacing T by T/2 and n by n/2 in equations (2) and
(3). With this correction, the occurrence probabilities cal-
culated for complementary palindromic patterns ®t per-
fectly with those observed for random sequences.

For non-palindromic patterns, we noticed that in the
absence of any correction, the autocorrelation was sensi-
tive only for patterns with a periodicity of 1 (e.g.
AAAAAA and TTTTTT) or 2 (e.g. TATATA, CACACA).
This effect was occasionally observed in sets of yeast
upstream regions. In the few cases where a high statisti-
cal signi®cance was assigned to such patterns, they were
especially concentrated in a long continuous stretch on
one or two upstream regions. Such large periodic
stretches are thought to be involved in DNA structure
rather than in speci®c regulatory functions. Since their
presence is easily detected on the feature map, the risk to
misinterpret them is insigni®cant, and we did not judge
necessary to correct the statistics for this level of auto-
correlation.

Feature map

After having selected the signi®cantly over-rep-
resented oligonucleotides, their matching positions
within each upstream sequence are determined, and rep-
resented graphically in a feature map.

Implementation

All programs used in this paper can be run from a
public web interface (http://copan.cifn.unam.mx/Com-
putational Biology/yeast-tools). The only input required
from the user is the name of the genes included in a
regulatory family. A series of modular tools are then pre-
sented, allowing to perform successively each step of our
method: extraction of upstream regions from the geno-
mic sequences, detection of over-represented oligonu-
cleotides, search for all matching positions within the set
of upstream sequences, automatic drawing of a feature
map. At each step, a series of parameters can be modi-
®ed by the user. These parameters are generally intuitive
(upstream region size, oligonucleotide size, search on
single or both strands, etc.) and can be understood by a
non-experimented user. Default values are proposed for
all parameters, so that the whole analysis can be per-
formed without any other intervention than clicking
``OK'' at each step. All results from Table 2 were
obtained without changing any of these default par-
ameters.

Each tool can also be used independently of the
others, with custom input from the user (e.g. searching
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for a known pattern in his sequences, or drawing a fea-
ture map of experimentally described regulatory sites).

All programs are written in Perl (Wall & Schwartz,
1991) and run on a Sun workstation. The web interface is
written in perl-cgi (Gundavaram, 1996). Oligonucleotide
analysis is fast. Processing time grows linearly with the
size of sequences to analyze, with an average speed of
0.8 kb per second. Hexanucleotide analysis of a family
comprising ten genes is typically performed within ten
seconds.
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