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Abstract
Motivation: We describe a new content-based approach for
the detection of promoter regions of eukaryotic protein
encoding genes. Our system is based on three interpolated
Markov chains (IMCs) of different order which are trained
on coding, non-coding and promoter sequences. It was
recently shown that the interpolation of Markov chains leads
to stable parameters and improves on the results in microbial
gene finding (Salzberg et al., Nucleic Acids Res., 26,
544–548, 1998). Here, we present new methods for an
automated estimation of optimal interpolation parameters
and show how the IMCs can be applied to detect promoters
in contiguous DNA sequences. Our interpolation approach
can also be employed to obtain a reliable scoring function for
human coding DNA regions, and the trained models can
easily be incorporated in the general framework for gene
recognition systems.
Results: A 5-fold cross-validation evaluation of our IMC
approach on a representative sequence set yielded a mean
correlation coefficient of 0.84 (promoter versus coding
sequences) and 0.53 (promoter versus non-coding se-
quences). Applied to the task of eukaryotic promoter region
identification in genomic DNA sequences, our classifier
identifies 50% of the promoter regions in the sequences used
in the most recent review and comparison by Fickett and
Hatzigeorgiou (Genome Res., 7, 861–878, 1997), while
having a false-positive rate of 1/849 bp.
Contact: ohler@informatik.uni-erlangen.de

Introduction

Today’s state-of-the-art eukaryotic gene-finding algorithms
(such as Kulp et al., 1996; Krogh, 1997; Burge and Karlin,
1998) are based on a statistical framework which is, in many
cases, a generalization of a hidden Markov model (HMM),
also called hidden semi-Markov model. Within this frame-
work, several scoring functions for signals such as splice
sites and for regions such as exons, introns or promoters are

combined. After the search for possible signals and the
judgement of the segments in between, the standard HMM
decoding algorithm then provides the best path through the
graph of all possible segmentations of the whole sequence.
Although much progress has been made with this approach,
there is still a considerable need for robust algorithms to clas-
sify the individual signals and segments, as the accuracy of
the system output depends on the accuracy of its compo-
nents. In the following, we will present new models for the
classification of individual DNA segments, and will mainly
focus on the recognition of eukaryotic promoter regions.

Popular content-based measures for primary DNA se-
quences make use of Markov chains (MCs) of a fixed order
(closely related to oligomer measures) and have been
employed, for example, in the widespread GeneMark and
GeneMark.hmm prokaryotic gene finders (Lukashin and
Borodovsky, 1998). Recently, the linear interpolation of
MCs of different order has been described for microbial gene
recognition (Salzberg et al., 1998). An interpolation provides
a better parameter estimation, as, with increasing order of the
Markov chain, the training algorithms lack a suitable amount
of data because the number of model parameters increases
exponentially.

Here we present a new interpolation scheme which has
been successfully applied by our group for various speech
recognition tasks (see Schukat-Talamazzini et al., 1997). In
the context of speech recognition, interpolated Markov
chains (IMCs) to judge the likelihood of symbol sequences
are commonly referred to as stochastic language models. In
contrast to the method described by Salzberg et al. (1998),
who provided a function including a χ2 test on statistical sig-
nificance to calculate parameters for a linear interpolation,
we use a disjoint part of the training sample to estimate auto-
matically optimal interpolation parameters with respect to a
statistical objective function.

We will show how this kind of IMC can improve the detec-
tion of eukaryotic promoter sequences in unknown genomic
DNA. Recent progress in the understanding of the structure
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and function of these polymerase II promoters is reviewed in
detail by Kornberg (1996; and other articles in the same
issue) or Nikolov and Burley (1997).

The survey of Fickett and Hatzigeorgiou (1997) provides
an excellent introduction to the topic of automated recogni-
tion of eukaryotic promoters and a comparison of the avail-
able systems for general-purpose Pol II promoter prediction.
Among these are linear discriminative (Solovyev and Sala-
mov, 1997) as well as neural network (Reese and Eeckman,
1998) or content-based (Hutchinson, 1996; Audic and Clav-
erie, 1997) methods. Content-based measures were up to
now either plagued by too large a number of false positives,
or imposed restrictions on the number of predictions. The
results obtained by our IMCs will demonstrate the improve-
ment of the recognition rate compared to the best methods
available. Our goal was to build a general-purpose promoter
recognition system that can be applied to the general task of
promoter recognition; computer models constructed for spe-
cific tissue types as in Frech et al. (1998) have a much lower
false-positive recognition rate. On the other hand, there is an
apparent need to add a general promoter recognition module
to a gene recognition system. This should help to split con-
tiguous stretches of DNA into the right number of genes and
detect the correct transcription start site, which might be far
upstream from the translated region.

1. Algorithm

Let us assume that we have K classes Ω1 … Ωk and wish to
classify a sequence w = w1 … wT with symbols wi , taken from
a finite vocabulary V, into one class. In the case of molecular
genetics, the alphabet might consist of amino acids or nu-
cleotides. We can make use of the chain rule to compute the
likelihood of a particular sequence for each class:

Pk :� P(w|�k) � �
T

t�1
P(wi|w1���wi–1

context
,�k) (1)

This equation shows that one symbol in a sequence is de-
pendent on all its predecessors, i.e. on the context of preced-
ing symbols. Using Bayes’ rule, we are able to classify the

sequence into sequence class k
^
 according to the largest a pos-

teriori probability:

k
^
� argmax

k
P(�k|w) � argmax

k
(pk � Pk) (2)

If we have no exact knowledge about the a priori probabil-
ities pk of our sequence classes, the values pk are assumed to
be uniformly distributed and can be neglected. We therefore
need to assign a likelihood to the symbol sequence w. If we
can establish a model which computes this probability, we
have the means to determine how likely a sequence will
occur in a specific class.

1.1 Maximum Likelihood parameter estimation

In the following, we will drop the condition on class Ωk for
simplicity. The right-hand side of equation (1) contains a
context of arbitrary length which cannot be handled; there-
fore, an approximation is made by imposing a restriction. A
possible approximation of the probability P(w) is thus made
by limiting the context length to N – 1:

P(w) � �
T

i�1
P(wi|wi–N�1���wi–1) (3)

The resulting model is called a Markov chain of order N – 1.
Our goal is to obtain parameters—in our case values for the

conditional probabilities P(wi |wi  – N + 1 … wi  – 1)—which
lead to the best possible recognition rate on the K classes
under consideration. As we cannot optimize the recognition
rate directly, we have to use objective functions which show
the desired behaviour and for which a solution can be found.
One well-known objective function is Maximum Likelihood
(ML). If �k denotes the set of the parameters of model Mk for
class �k, we optimize the following function R(�k):

R(�k) � �

nk

i�1
P(wki|Mk) (4)

where nk is the number of training sequences for class k. Each
class is regarded as independent of the others, and ML es-
timation tries to maximize the probability that the given
training sample was generated, knowing to which class each
sequence belongs.

Using a training sample, the ML estimation of the condi-
tional probabilities P

~
(wi|wi�N�1���wi�1) can be performed

simply by counting the oligomers of length N and N – 1 in
a set of training sequences:

P
~
(wi|wi�1

i�N�1) �
#(wi

i�N�1
)

#(wi�1
i�N�1)

(5)

where wy
x is an abbreviation for the partial sequence from

position x to position y, and # denotes the frequency of its
argument in the training sample. Here, we have to meet two
problems.
1. The approximation by a large context gets closer to the

real probability as denoted in equation (1). Unfortu-
nately, the number of parameters which have to be esti-
mated increases exponentially with the number of N,
and thus the ML estimates become far from being reli-
able because of the limited training sample size.

2. With increasing length, some N-mers might not occur
at all in the training sample. This has the consequence
that the likelihood of the whole sequence w is set to zero
if it contains any unseen N-mer. This might be justified
if it really is not a part of the considered class. On the
other hand, the sample size might simply be too small
to contain every single N-mer. As we do not know
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which case is true, we must not set any likelihood to
zero.

A solution to these problems—the trade-off between the
model context and the training sample size, and the problem
of unseen N-mers—can be found by introducing a weighted
interpolation scheme.

1.2 Interpolation techniques

The basic idea of applying interpolation methods is to fall
back on the probability estimation of subsequences shorter
than N if the frequencies of an N-mer v = v1 … vN cannot be
reliably estimated. In principle, interpolation leads us to a re-
estimation of the initial parameter values [equation (5)]. Here,
we will consider two different interpolation techniques. The
first one is the linear interpolation between all conditional
probabilities with increasing context length up to N – 1:

P
^
(vN|vN�1

1 ) :� �0
1
L

(6)

� �1P
~
(vN)

� �2P
~
(vN|vN�1)

...
� �NP

~
(vN|vN�1

1 )

The fraction (1/L) accounts for unseen events and ensures
that no probability is set to zero. The coefficients are non-
negative values which sum up to one to guarantee that the

new parameter values P
^
(� |�) again form a probability dis-

tribution.
Setting all the weights ρ0 … ρN – 1 to zero and ρN to one

is very similar to the well-known oligomer approach, with
the only difference that in a Markov chain the parameters are
normalized with respect to the context [see equation (5)]. The
models with linear interpolation are thus a straightforward
generalization combining oligomers of different length. The
advantage of interpolation is that the model can take into ac-
count statistics of a higher order without running into the
danger of overfitting the model to the training data.

Equation (6) contains only one vector of interpolation co-
efficients, whether all the subsequences up to length N really
occurred in the training data or not. Additionally, all para-
meters are treated equally, whereas the interpolation coeffi-
cient assigned to a parameter with a frequently occurring
context should be larger than the coefficient for a rare event.
By introducing an additional function gi(v′) which scores the
reliability of the context v′ = vN�1

1  monotonically, the linear
interpolation can be extended to handle this problem accu-
rately:

P
^
(vN|v�) :�

�N
i�0

�i � gi(v�) � P
~

i(vN|v�)
�N

i�0�i � gi(v�)
(7)

where P
~
(vN|v�) serves as an abbreviation for the estimates of

different context lengths i, as was shown in detail in equation
(6). This interpolation scheme is called rational interpolation.
It overcomes the problems of linear interpolation by using
the function gi(v′), which we chose to be a sigmoid function
dependent on the frequency of the last i symbols of v′:

gi(v�) �
#i(v�)

#i(v�)� C
(8)

The shape of the sigmoid function is dependent on the con-
stant bias C. In the case of C = 0, the function gi  is always
equal to one and equation (7) becomes equivalent to linear
interpolation. Also, with an increasing amount of training
data, the bias C becomes less and less important; the rational
interpolation thus has the largest impact if the training
sample size is small.

1.3 Maximum Likelihood estimation of interpolation
coefficients

We still lack the means to specify appropriate coefficients ρi
for both linear and rational interpolation. In our approach,
optimal coefficients according to the ML objective function
are calculated using a second disjoint part of the training
sample. This step is called validation and is carried out after
the initial estimation of the conditional probabilities (Section
1.1). There is no closed solution for a maximum of the ML
objective function in the case of IMCs, but for the coeffi-
cients used in linear interpolation, a local optimum can be
found with the iterative Expectation Maximization (EM) al-
gorithm (Dempster et al., 1977): we regard the coefficients
as hidden variables in a double stochastic process. After-
wards, a large weight will be assigned to those contexts for
which we can obtain reliable estimations; if only sparse data
are at hand, the weights belonging to short contexts will be
increased.

For rational interpolation, the EM algorithm cannot be ap-
plied and the computation of locally optimal interpolation
weights is carried out with a gradient descent algorithm in-
stead. The detailed re-estimation formulas are omitted at this
point and can be found in Schukat-Talamazzini et al. (1997).
This automated estimation of optimal parameters is the main
difference of our interpolation methods to those described
for parsing microbial sequences (Salzberg et al., 1998),
where the coefficients are calculated using a predefined
function based on the χ2 statistical test.

1.4 Sequence classification using interpolated
Markov chains

After an IMC has been trained according to Sections 1.1–1.3
for each of the considered sequence classes, the IMCs can be
used in parallel to classify a sequence using equation (2).
Sometimes, though, the focus is put on the right classification
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Fig. 1. Content-based classification with interpolated Markov chains (IMC). The output is the difference between scores of the best background
model and the model of interest; this score is then classified with a suitable threshold.

of only one class. In this case, we have one class of interest
and one or more ‘background’ classes, and it is not important
which particular class a sequence from the background is as-
signed to, as long as it is not classified into the class of in-
terest. This situation occurs in promoter recognition, where
we want to distinguish promoters (‘class of interest’) from
non-promoters (the ‘background’ consists of several models
for exonic, intronic and intergenic sequences). We can tune
the IMCs with respect to sensitivity and specificity for the
class of interest using the following approach. First, we com-
pute the likelihood Pk for each class Ωk, and then we deter-
mine the difference between the score for the model of in-
terest PM and the best of the background models PB. Includ-
ing a length normalization, we obtain the following equation
for the total score S:

S(w) �
PB(w)� PM(w)

len(w)
(9)

In practice, the logarithms of the probabilities are used be-
cause of the more efficient computation and the prevention of
numerically unstable values when regarding long sequences.
In Figure 1, an overview of the resulting algorithm is given.

Choosing a suitable threshold value for the total score S,
we can select any percentage of false positives (i.e. patterns

out of one of the background classes which were classified
into the class of interest). The curve of false-positive rate ver-
sus recognition rate over the whole range is called receiver
operating characteristics (ROC) and will be used to compare
the performance of different classifiers. Additionally, we will
provide the correlation coefficient (CC), which is defined as
follows:

CC�
(TP� TN)� (FN� FP)

(TP� FN) � (TN� FP) � (TP� FP) � (TN� FN)�
(10)

Herein, TP stands for true positives, TN for true negatives,
FP for false positives and FN for false negatives; these
numbers denote the absolute numbers of correctly and
wrongly classified sequences.

1.5 Application of IMCs to search for regulatory
regions

We will now briefly describe our system for the detection of
eukaryotic polymerase II promoters in contiguous DNA se-
quences. The system consists of one IMC model for pro-
moter sequences and two background IMC models for cod-
ing and non-coding sequences. To search for promoters in
contiguous sequences, we use a sliding window of 300 bases
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(motivated by the size of the training sequences; see Section
2). Every 10 bases, the current sequence in the window is
classified as promoter or non-promoter using a scoring
threshold that has previously been selected empirically on
the training data (see Figure 1). Because a whole promoter
region is very likely to cause multiple predictions of several
overlapping windows, a prediction is only made for each
local minimum of the difference between background and
promoter score which lies below the chosen threshold. The
transcription start site is then assumed to be located at posi-
tion 250 within the window. To eliminate single false predic-
tions, a post-processing operation is applied on the graph of
the score function S. By a smoothing algorithm, single false
promoter predictions as well as single non-promoter predic-
tions within a promoter region are filtered out. We chose to
apply the hysteresis threshold algorithm, where a smoothing
cursor of a chosen height is shifted over the curve from left
to right. As the local minima within the smoothed graph
usually comprise several positions with the same value, the
prediction is then made at the position with the lowest value
in the original graph. More detailed information can be found
in Ohler and Reese (1998).

2. Data sets

We have built strongly needed representative training and test
sets for eukaryotic promoter recognition which allow for a
thorough comparison of different methods. These data sets are
suited for algorithms aiming at human and Drosophila mela-
nogaster promoter prediction. The data do not contain only
promoter sequences, which can be retrieved quite easily from
the Eukaryotic Promoter Database EPD, but also carefully
chosen coding and non-coding sequences. For the human pro-
moter set, we extracted all non-related vertebrate sequences,
except retroviruses, from EPD Release 50 (Perier et al., 1998).
Retrieving only human promoter sequences would result in a
too small data set to fit the parameters of our models; EPD
Release 50 contained only 181 independent human se-
quences. Sequences with less than 40 bases upstream or 5
bases downstream from the annotated transcription start site
were discarded to ensure that at least the possible TATA box
and the initiator site were contained in each entry. This re-
sulted in 565 entries, from which sequences of 300 bases (250
upstream and 50 downstream) were extracted.

For the coding and non-coding sequences, we used the
exon and intron sequences of human genes contained in the
data set of 1998 for the GENIE genefinding system (Kulp et
al., 1996; Reese et al., 1997). The exons were concatenated
to form long coding sequences. Then, 300-base-long non-
overlapping sequences were extracted. Owing to the still li-
mited amount of data, we divided the human data into five
sets containing 113 promoter, 180 coding and 869 non-cod-
ing sequences each. On these sets, reliable results can now be

obtained by carrying out a 5-fold cross-validation. In each
experiment, the model is trained on four parts of the sequence
data, leaving one part out at a time and testing the perform-
ance on the part not used for training. Then the average over
all five experiments is computed and used as a result for com-
parison. All the data sets and more detailed information are
publicly available, and can be retrieved via the URL
http://www-hgc.lbl.gov/inf/human.html; this site also con-
tains a link to the similar set of D.melanogaster data. We
encourage researchers working in the field of promoter rec-
ognition to compare their algorithms on these representative
sets.

To evaluate the performance of the system on long con-
tiguous sequences, we made use of the data set in Fickett and
Hatzigeorgiou (1997). Using these data, we evaluated our
IMC-based system on a more realistic problem of recogniz-
ing transcription start sites and the corresponding promoters
in DNA stretches of genomic DNA, and were able to com-
pare our results with other programs. The set consists of 18
vertebrate sequences containing 24 annotated and exper-
imentally proven promoters with a total of 33 120 bp. The
evaluation on the contiguous sequences was carried out on
both strands; recognition results are therefore given in base
pairs instead of single bases.

3. Results and discussion

To get a first impression, we compared different context
lengths (4–6 bases) and interpolation methods (none, linear
and rational) on the classification of human promoters and
coding sequences from the fixed length sequence set (see
Section 2). Figure 2 shows a part of the ROC using IMCs of
sixth order and pure simple hexamer frequencies, for which
the best results could be obtained. The figure shows clearly
that rational interpolation outperforms drastically the oli-
gomer approach without interpolation; it is also superior to
the simpler linear approach, thus confirming that interpola-
tion helps us to avoid the effect of overfitting the models to
the sparse training data.

As a second step, we applied careful 5-fold cross-vali-
dation experiments on the complete fixed-length sequence
set (promoters, introns, coding sequences), using IMCs with
a context length of six and rational interpolation. To get a
better insight, we tested the promoter model not only against
both non-promoter models at once, but also individually
against one non-promoter class. Table 1 therefore contains
the average of the five experiments for three discrimination
tasks: promoter versus coding sequences, promoter versus
intron sequences, and promoters versus both coding and
non-coding sequences. Choosing a threshold for more than
5% of false positives here does not lead to a practically useful
number of predictions.



Interpolated Markov chains for promoter recognition

367

Fig. 2. Comparison of the performance of IMC models with
oligomer statistics without interpolation for eukaryotic promoter
recognition. The results (which are the best for each considered
method) were achieved for hexamers and IMCs based on 7-mers.
The ROC curve for promoter/coding sequence classification in the
range of 0–15% of false positives is shown. The models were trained
on a set of 452 promoters and 720 coding sequences of 300 bases
length, and evaluated on a disjoint test set of 113 promoters and 180
coding sequences.

Table 1. Promoter classification on vertebrate sequences with Markov
chain models using rational interpolation and an order of six. For a certain
percentage of false positives, the corresponding cross-validated recognition
rate and the correlation coefficient are given. The recognition rate with the
highest correlation coefficient is in bold (CDS is coding sequence)

False Recognized promoters (%)

positives Promoter versusPromoter versus Promoter versus
(%) CDS intron CDS/intron

0.0 58.6 (0.68) 12.9 (0.33) 3.9 (0.16)

1.0 69.4 (0.74) 32.2 (0.46) 29.9 (0.45)

2.0 78.8 (0.80) 42.5 (0.51) 41.8 (0.50)

3.0 80.5 (0.81) 49.7 (0.53) 48.7 (0.52)

4.0 85.7 (0.83) 51.9 (0.52) 53.6 (0.52)

5.0 88.9 (0.84) 54.7 (0.51) 56.6 (0.51)

The discrimination performance between promoters and
coding regions is stunning: at a false-positive rate of 5%, al-
most 89% of the promoter sequences were classified correct-
ly (correlation coefficient 0.84). Nevertheless, it is also very
clear that a classification between promoter and introns is
much more difficult: the best CC value obtained was 0.53, at
a false-positive rate of 3% and a recognition rate of 49.7%.
Most probably, this stems from the much weaker information
contained in the introns compared to the strong coding in-
formation of the exons. On applying models on the three-part
set of promoters, non-coding and coding sequences, the re-
sults are comparable to the two-class problem of promoters

and non-coding sequences, resulting from the much larger
sample size of intronic sequences. Corresponding results
were obtained for the D.melanogaster set (Ohler and Reese,
1998).

We applied one model trained on promoters, coding and
non-coding sequences to the task of finding promoter re-
gions in longer vertebrate DNA sequences, following the
principles described in Section 1.5 and using the set of con-
tiguous sequences from the promoter prediction program
survey of Fickett and Hatzigeorgiou (1997). In this survey,
a prediction is judged as correct if an annotated transcription
start site lies within 200 bases downstream and 100 bases
upstream from the predicted site. Using this criterion, and a
threshold set at a rate of 4% false positives (highest CC
value), we could detect 12 out of the 24 promoters (50%)
while having one false prediction on average every 849 bp.
The two programs which achieved the best performance in
the survey could detect 54 and 42 % of the promoters with
a false-positive rate of 1/460 and 1/789 bp, respectively
(Reese and Eeckman, 1998; Solovyev and Salamov, 1997).
These numbers show that the performance of the IMCs is
slightly better than the best available tools for promoter pre-
diction, but the number of test sequences is too small to make
a general statement possible.

An example of the performance on the longest test se-
quence, the human phenol sulphotransferase gene (5663
bases, forward strand of GenBank accession code
HSU54701), is shown in Figure 3. Following the approach
described in Section 1.5, two predictions are made within
this sequence, one of which is located close to one of the two
annotated transcription start sites. A complete graph describ-
ing the regulatory potential over the sequence positions is
calculated. Even if no clear decision is possible at the default
threshold, a manual inspection of the graph may still reveal
where a sudden change from regulatory (low values) to non-
regulatory (high values) takes place.

A closer look at the contiguous sequences in the Fickett
and Hatzigeorgion (1997) data set and the behaviour of the
system concludes this section and helps to reveal some ad-
vantages and shortcomings of the current approach:
� The overall results are certainly influenced by the fact

that our system was established as a promoter predictor
for human sequences, whereas seven of the 18 se-
quences were of non-human origin.

� One start site missed was located only a few bases
downstream of the sequence start. As we score a win-
dow which is assumed to contain 250 bases upstream
and 50 bases downstream, no predictions are made be-
fore position 250.

� In sequence MMG67PRO, three annotated start sites
were located within 300 bp, and our program made
only one detection. This is not unexpected since a
whole 300 bp region is scored at once, and the post-pro-
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Fig. 3. Output of the system on a large contiguous sequence
(GenBank accession HSU54701), before and after applying the
automated smoothing step. The original graph depicts the difference
of the best non-promoter and the promoter model score on the
forward strand of the sequence. Two predictions are made, one for
each local minimum below a predefined threshold on the smoothed
output. Here, the predictions are located at positions 980 and 3580;
the identified annotated transcription start site is located at position
935. Another start site located at position 2002 is not revealed.

cessing smoothes out the small local maxima that
might help to separate the individual start sites.

� The prediction accuracy of the TSS location was quite
good despite the fact that MC do not use location-spe-
cific information: seven of the 12 correct predictions
were made within 30 bases from the annotated start site.

� Only two of the missed promoters were also not detected
by any of the nine programs evaluated in Fickett and
Hatzigeorgiou (1997). On the other hand, one promoter
detected by our MC could not be identified by any other
program. This means that much improvement could be
achieved by a combination of several systems.

At the moment, we do not have a non-promoter model for
intergenic sequences; if a reliable training sample for this se-
quence class can be obtained, the performance is likely to im-
prove because of the more accurate sequence modelling. Ob-
taining such a sample though is difficult; most database entries
contain only single genes, and for large sequences generated
in the genome projects, the genes and especially the transcrip-
tion start site annotations are mostly computational and not
experimentally verified, and therefore not reliable.

The probably most widespread application of MCs so far
is found in gene recognition systems, where they serve as a
classifier for coding versus non-coding parts of a DNA se-
quence. Thus, we also compared the performance of our in-
terpolated models to the standard MC, following the guide-
lines of the coding measure survey of Fickett and Tung

(1992). On the GENIE data set of human exons and introns,
the average recognition rate on 108-bp-long sequences is
85%, which is an improvement of 2.2 per cent points (frame-
independent classification) compared to the best reviewed
method, a non-interpolated Markov chain. Detailed results
will be presented elsewhere.

4. Conclusions

In this paper, we describe the application of IMCs to content-
based DNA classification problems. The performance of our
models on two different applications, the recognition of pro-
moter regions and the discrimination of coding and non-cod-
ing sequences, is consistently better than that of oligomer
models which realize MCs of a fixed order. We therefore rec-
ommend the use of interpolated models in any case, even if
enough data are at hand—due to the estimation of optimal
interpolation parameters, the interpolated model will in the
‘worst’ case again result in a conventional non-interpolated
Markov chain.

For the classification of promoter regions, we could dem-
onstrate on the test set of Fickett and Hatzigeorgiou (1997)
that our method performs equally or better than any signal-
or content-based method in the survey. Signal-based ap-
proaches rely on the application of position-specific models,
e.g. neural networks or weight matrices trained on a fre-
quently occurring pattern such as the TATA box or the initi-
ator site. In the case of general purpose promoter prediction
where no certain combination of transcription factor binding
sites is expected in advance, the judgement of the overall
sequence proves to be equally suitable. Further research to-
wards the integration of content- and signal-based ap-
proaches therefore seems appropriate; a first step in this
direction was described by Solovyev and Salamov (1997).

In our opinion, another important factor for the success of
our promoter recognizer is the competition of several mo-
dels. Promoter predictors which only consist of a model for
promoter sequences and rely on a certain fixed threshold
have to meet the problem that it often depends not only on
the sequence itself, but also on the particular context whether
a region is functionally active. Because we use several mo-
dels and judge the difference of the particular likelihoods,
this is implicitly captured.

The integration of a promoter recognition module into
gene parsers like GENIE (Kulp et al., 1996) or GenScan
(Burge and Karlin, 1997), where the different sensors are
trained separately and can be easily exchanged, is in prin-
ciple straightforward. However, up to now, the only system
incorporating a promoter module is GenScan, and this is a
fairly simple model incorporating weight matrices for the
TATA and the initiator region, coupled with a null model to
cope with promoters with a weakly conserved core region.
According to Burge and Karlin (1997), this approach is due
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to the lack of sensitivity of current predictors. The perform-
ance of promoter prediction algorithms is still much worse
than those for coding regions or signals involved in the tran-
scription process, such as splice sites, and therefore a cau-
tionless employment of a promoter module may lead to an
overall deterioration of the system. Nevertheless, the good
classification results for promoters versus exons, especially,
lead us to the expectation that a future integration of our pro-
moter recognizer into a gene parsing framework will be suc-
cessful.
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