
Eukaryotic Promoter Recognition
James W. Fickett1,3 and Artemis G. Hatzigeorgiou2

1Bioinformatics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406; 2Synaptic Ltd.,
13671 Acharnai, Greece

Computational analysis of polymerase II (Pol II)
promoters may contribute to improved gene iden-
tification and to prediction of the expression con-
text of genes. Before assessing the state of computa-
tional promoter recognition per se in the main body
of this review, we will provide a context by giving a
brief overview of these two problems.

Partitioning a Genome into Genes

Only recently has it become common to determine
eukaryotic genomic sequences large enough to con-
tain several genes. With these data comes a new
problem for gene finding programs: to partition a
set of exons correctly among several genes.

One line of development in eukaryotic gene
identification begins with coding region identifica-
tion by statistical means and adds pattern recogni-
tion for sites of transcriptional, splicing, and trans-
lational control to produce algorithms capable of
suggesting overall gene structure (for review, see
Gelfand 1995; Fickett 1996a). To date, most devel-
opment effort has focused on integration of the
various kinds of pattern information in the rela-
tively simple case where a single complete gene is
present in the input sequence. In this case, current
algorithms usually suggest a putative protein trans-
lation similar to that in the literature, though there
is still significant room for improvement (Burset
and Guigo 1996). The extension of these algorithms
to deal with a sequence containing multiple or par-
tial genes is just beginning (Burge and Karlin 1997;
http://gnomic.stanford.edu/∼chris/GENSCAN-
W.html). Because the signals that control the start
and stop of transcription and translation, and the
location of splicing, are still not very well under-
stood, it is not uncommon for a gene-finding algo-
rithm to confuse internal with initial and terminal
exons, thus wrongly partitioning the exons. The
problem is compounded by our incomplete under-
standing of alternative splicing control elements.

Another line of development in gene identifica-
tion is based on homology (e.g., Gish and States
1993; Gelfand et al. 1996). If there is a close homo-
log in the databases to one of the genes in the se-
quence under analysis, sequence similarity will usu-
ally group the exons for this gene correctly. Still, in
many cases there is no close homolog and no guar-
antee when there is some homolog that the en-
coded protein lacks insertions/deletions.

Clearly, some means of recognizing the begin-
nings of genes, probably via the promoter, or the
ends, probably by means of the polyadenylation sig-
nal or translation termination signal (e.g., Kondra-
khin et al. 1994; Wahle and Keller 1996; Dalphin et
al. 1997; Solovyev and Salamov 1997), would enable
a major advance. The promoter seems to be a much
richer signal than the 38 processing signals, though,
as we shall see below, it is not easy to take advantage
of the information in the promoter.

Determining the Correct Protein Translation

Of course, the single most important goal in gene
identification is to correctly deduce the protein
product(s) of the gene. After partitioning the ge-
nome into genes, the greatest difficulty in eukary-
otes is correctly determining the splicing structure.
Locating the correct initiation codon is also a diffi-
cult and important step in this case. If the transcrip-
tion start site (TSS) is known, and there is no intron
interrupting the 58-untranslated region, Kozak’s
(1996) rules can probably locate the correct initia-
tion codon in most cases.

In prokaryotes the problem is of a different
nature. Because splicing is normally absent, divid-
ing the genome into gene units is ordinarily
straightforward. This does not make the correct de-
duction of protein product trivial, however, for
finding the correct initiation codon within an open
reading frame (ORF) is difficult. In this case, pro-
moter location, though useful, does not provide the
key information that it does for eukaryotes because
of the existence of multicistronic operons. Rather,
for prokaryotes, the key need is reliable localization
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of the ribosome binding site (Shine and Dalgarno
1974).

Determination of Expression Context

Many experimental techniques are being developed
for cataloging the expression context of genes
(e.g., Prashar and Weismann 1996 and references
therein). Development of computer algorithms to
predict expression context from genomic sequence
has received much less attention but may represent
an important opportunity.

Gene expression is regulated at many levels, in-
cluding chromatin packing (for review, see Kingston
et al. 1996), transcription initiation (see below),
polyadenylation (for review, see Wahle and Keller
1996), splicing (for review, see McKeown 1992),
mRNA stability (e.g., Decker and Parker 1994),
translation initiation (for review, see Kozak 1992),
and others. But it is generally thought that the
single most important point of regulation is at tran-
scription initiation. The initiation of transcription
seems to be regulated in large part by coordinate
binding of many proteins to the promoter and, for
some genes, to one or more enhancers. Specific
combinations of binding sites, then, may provide
the information necessary to suggest a particular ex-
pression context, and it is here that computational
work to date has focused.

In most cases, researchers in this area have
taken the locations of transcriptional regulatory re-
gions (promoters and enhancers) as given and, in
attempting to define those patterns in the DNA
(combinations of binding sites) that determine ex-
pression context, have only attempted to give pat-
terns with sufficient information content to sort
regulatory regions into those that are active in a
particular context and those that are not (e.g., Cla-
verie and Sauvaget 1985; Fondrat and Kalogeropou-
los 1994; Pedersen et al. 1996; Rosenblueth et al.
1996). For this approach to be successful in the long
run, reliable algorithms must be developed for the
recognition of promoters and enhancers in general.
Another approach to the problem is to attempt to
define patterns with very high information content,
capable of distinguishing regulatory regions active
in a specific context from all the other DNA in the
genome (e.g., Fickett 1996b; Tronche et al. 1997).
With this approach, one can imagine that general
promoter recognition would eventually consist of
separately recognizing a large number of specific
cases. It is too early to clearly define the benefits of
either strategy, and in any case, techniques devel-

oped with one approach will almost certainly trans-
fer in part to the other.

Eukaryotic Promoter Recognition

In the rest of the paper we concentrate on the key
problem of general eukaryotic promoter recogni-
tion. First, we review a few salient points from re-
cent advances in biochemical understanding of
transcription initiation, next, the core computa-
tional resources and techniques are discussed, and
then currently available tools are described. To give
some feeling for the current state of the art, the
application of these tools to some recently deter-
mined promoter sequences is also described. Fi-
nally, we discuss prospects for the future.

Eukaryotic Transcription Initiation

The biochemical mechanisms controlling transcrip-
tion initiation in eukaryotes are currently under in-
tense investigation. Recent advances are reviewed
in, for example, Burley and Roeder (1996); Chao
and Young (1996); Kaiser and Meisterernst (1996);
Kornberg (1996); Novina and Roy (1996); Roeder
(1996); Stargell and Struhl (1996); Verrijzer and
Tjian (1996); Ptashne and Gann (1997); Smale
(1997). Here we will attempt to summarize the con-
clusions most relevant to sequence analysis.

The so-called preinitiation complex (PIC) recog-
nizes the core promoter and initiates transcription.
The PIC includes, besides Pol II, the general initia-
tion factors (or general transcription factors, GTFs)
TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH. Each of
these may itself be a multiprotein complex. TFIID,
which consists of TATA-binding protein [TBP; the
so-called TATA box is ∼25 bp upstream of the tran-
scription start site (TSS) in metazoans] and several
TBP-associated factors (TAFs), is the only one of
these known to have site-specific DNA-binding abil-
ity (though several other GTFs are known to be in
close contact with the DNA; cf. Coulombe et al.
1994). TBP is one of the major determinants of this
DNA-binding specificity, and the consensus se-
quence or position weight matrix (PWM) often used
to recognize the TATA box (Bucher 1990) is prob-
ably characterizing the DNA-binding specificity of
TBP (see Singer et al. 1990; Wiley et al. 1992).

Around the TSS there is a loosely conserved ini-
tiator region (abbreviated Inr; for review, see Kauf-
mann et al. 1996; Smale 1997) that is one determi-
nant of promoter strength and, in the absence of a
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TATA box, can determine the location of the TSS. To
some extent, the TATA box and the Inr are inter-
changeable. For example, TFIID containing a mu-
tated TBP defective in DNA binding cannot func-
tion on TATA-only promoters, but supports tran-
scription from Inr-containing promoters (Martinez
et al. 1995). There is evidence that several different
proteins can bind to the Inr. Some of these seem to
be capable of directing the initiation of transcrip-
tion even in the absence of TBP (e.g., YY1; cf. Ush-
eva and Schenk 1994). Javahery et al. (1994) (see
also Purnell et al. 1994; Kraus et al. 1996) compare
the sequence requirements for Inr activity in mam-
mals to those for DNA binding of several proteins
and to the initiation site characterization derived by
Bucher (1990) and conclude that in most cases basic
Inr activity is probably mediated by a single protein
within the TFIID complex, though possibly modu-
lated by others. On the other hand, TFIID (via
TAFII150 or TAFII250), TFII-I, and Pol II all seem to
have Inr-specific binding capacity and possible in-
volvement in mediating Inr specificity of transcrip-
tion initiation (for review, see Smale 1997).

Drosophila TAFII150 contacts the DNA as far as
35 bp 38 of the transcription start site (Verrijzer et al.
1994) and could perhaps also be involved in func-
tionally important patterns downstream of the Inr.
Ince and Scotto (1995) identified a conserved region
20–45 bp downstream of the 38-most TSS in a set of
14 promoters lacking both a TATA box and an Inr,
and having a similar pattern of multiple start sites.
This site, with consensus GCTCCS, was found to
bind two proteins in a sequence-specific manner
and, by mutation, was found to be essential for the
pattern of TSS in at least one of the genes. Larsen et
al. (1995) found a conserved motif, CTNCNG, at
about +8 in a large-scale alignment of mammalian
promoters. Burke and Kadonaga (1996) found an
RGWCGTG motif at about +30 in a number of
TATA-less Drosophila promoters. Mutation analysis
demonstrated function, and footprinting showed
TFIID binding. At present, the generality of these
patterns is unknown.

To a first approximation, it seems that gene ex-
pression is controlled by a proximal promoter,
which with the PIC determines the location of tran-
scription initiation, together with a number of spe-
cific regulatory regions (often, but not always, 58 to
the proximal promoter), that specify the tissue, de-
velopmental stage, or biochemical context of gene
expression (for an overview, see Tjian 1995). Usually
each such regulatory region contains binding sites
for a number of specific transcription factors, some-
times called activators or repressors, that seem to act

synergistically. There may be many such regions,
and they may either enhance or repress expression
of the gene in particular circumstances (see Yuh and
Davidson 1996 for an elegant example). Often these
specific regulatory regions are active even if their
location of orientation is changed, in which case
they are termed enhancers. Enhancers may be lo-
cated up to tens of thousands of base pairs from
the TSS.

Transcription factor binding sites are typically
5–15 bp long. The nucleotide specificity at differ-
ent positions within the site varies. For a site n long,
the information content of the binding specificity
is typical much less than the maximal 2n bits.
Note that if a protein is to be sufficiently discrimi-
natory to have a binding site only once every N
bases, its binding specificity must have informa-
tion content at least log2N bits (cf. Schneider et al.
1986).

Protein–protein interactions mediating syner-
gistic action of multiple transcription factors may
impose spacing constraints on the protein–DNA-
binding sites. To take one example from among
many, insertion of 5 bp (CCAAC) between a MyoD
site and the TATA box in the desmin promoter was
found to reduce myotube expression to 45% of nor-
mal, whereas insertion of 10 bp (CGGAGTGTCG)
gave 85% of normal expression (Li and Capetanaki
1994).

There is also dependence between the DNA se-
quence at the binding site of one transcription fac-
tor and the ability of that factor to interact with
another. For example, there has been evidence for
over a decade that activator inducibility probably
depends on the sequence of the core promoter (e.g.,
Struhl 1986). Emami et al. (1995) reviewed the field
and tested various chimeric transcription factors
with synthetic promoters containing a TATA box,
an Inr, both, or neither. Among a number of inter-
esting conclusions, they found that Sp1 contains
multiple activation domains, one of which prefer-
entially interacts with a core promoter containing
an Inr. Another example of Inr/TATA differences is
found in the FcgR1b gene, which contains a canoni-
cal Inr but not a TATA box. FcgR1b is normally ex-
pressed only in myeloid cells, and is g-interferon
(IFN-g)- but not IFN-a-inducible. When a 3-bp mu-
tation introduced a TATA box 30 bp upstream of the
transcription initiation site, the altered gene re-
sponded to IFN-a as well as IFN-g, and cell type
specificity was lost (Eichbaum et al. 1994). In a few
cases, detailed studies have shown that point muta-
tions in the TATA box destroy the ability of an up-
stream enhancer binding transcription factor to up-
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regulate expression (e.g., Harbury and Struhl 1989;
Diagana et al. 1997).

The mechanism by which core promoter se-
quence differences are translated into different re-
ceptivity to specific transcription factors remains
unclear. In some cases, a conformational change
may be involved. Diagana et al. (1997) showed that
when base changes in the TATA box destroy muscle-
specific activation of MyHC, the contacts between
TBP and the TATA box also change. In some cases,
the mechanism may be differing composition of the
PIC. Human TAFII30 was found by Jacq et al. (1994)
to be present in only some TFIID complexes and to
be required for activation by the AF-2 containing
region E of the human estrogen receptor. Similarly,
some TAFs are almost certainly subject to alternative
splicing (e.g., Weinzierl et al. 1993). It would be sur-
prising if the core promoter sequence did not influ-
ence the makeup of the PIC and, hence, the possi-
bility of activation by specific transcription factors.

There are transcription factors not part of, but
very frequently acting in concert with, the PIC. For
example, on the order of half of all vertebrate pro-
moters contain a somewhat conserved sequence el-
ement with a core sequence similar to CCAAT (Be-
noist et al. 1980; Efstratiadis et al. 1980). There seem
to be a large number of factors that interact with
CCAAT-like sequences, not all of which are known
to actually influence transcription initiation (see
Tsutsumi et al. 1993 for a list). CCAAT box-binding
factor (CBF, also called NFY and CP1) is a trimeric
transcription factor that is known to be involved in
the activity of a number of promoters (see Sinha et
al. 1996 for an overview). CBF may recruit other
common factors to many promoters as well (Wright
et al. 1994). Consensus sequences for the DNA-
binding sites of CBF match well a mathematical
derivation (PWM) of CCAAT commonality between
many promoters, so that CBF may be the major fac-
tor involved in CCAAT-box function (Bucher 1990).
The heavily studied CCAAT/enhancer-binding pro-
tein (C/EBP) family (for overviews, see Zhao et al.
1993; Osada et al. 1996) contains at least six mem-
bers with very similar DNA-binding specificity
(Osada et al. 1996) and is known to activate tran-
scription through the CCAAT box of at least some
promoters (Cao et al. 1991). There are also repres-
sors known to act through the CCAAT box (e.g.,
Pattison et al. 1997).

CpG islands (also known as HTF islands and
MFIs) are regions of vertebrate genomes defined pri-
marily by the lack of methylation at CpG doublets
(for an overview, see Bird 1987). CpG islands are
strongly associated with TSS, a fact that gives rise to

experimental procedures for isolating promoters
(e.g., Shago and Giguere 1996). 5-Methyl-C often
mutates to T, so that in most vertebrate DNA CpG
occurs at less than one-fourth the frequency ex-
pected from the C + G content. However, in CpG
islands CpG is much less under-represented. This,
together with a somewhat higher than average
C + G-content, may allow discrimination of CpG is-
lands in typical DNA sequence data, where the
methylation pattern is unknown (e.g., Gardiner-
Garden and Frommer 1987).

Any model fully describing determinants of the
transcription initiation site (and rate) will include
not only discriminatory patterns in DNA sequence
but also three-dimensional structure. Compare, for
example, the partial explanation of sequence speci-
ficity in the TATA box based on the structure of the
DNA–TBP complex (Juo et al. 1996); the competi-
tion between histones and transcription factors in
gene activation/repression (for review, see Kingston
et al. 1996); and the existence of transcription fac-
tors whose function seems to be reshaping the DNA
to bring distant sites into proximity (see, e.g.,
Wolffe 1994). Unfortunately, the data available on
the structural aspects of transcription initiation,
particularly the data of general predictive value, re-
mains minuscule compared to relevant data on se-
quence specificity of protein–DNA contacts, so that
transcription factor binding sites will probably re-
main the focus of promoter recognition algorithms
for some time.

Techniques and Resources

Because transcription initiation seems to be brought
about by the cooperative binding of a number of
proteins to the DNA, the primary computational ap-
proach to promoter recognition has been to com-
bine modules recognizing individual binding sites,
using some overall description of how these sites
should be spatially arranged.

Sometimes binding specificity is characterized
using consensus sequences, that is, by giving the
most preferred base at each position within a site.
But this approach loses much of the information
and is of marginal utility. For example, the DNA-
binding specificity of the (very large) family of basic
helix–loop–helix family of transcription factors
(e.g., Kadesch 1993) is often specified as CAnnTG.
However, this pattern occurs about once every 256
bp. If all the factors of this family really bound so
frequently and without differing specificity, they
could certainly not accomplish their role of control-
ling terminal differentiation of many different tis-
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sue types. In fact, their binding is more specific and
differs from factor to factor (e.g., cf. Hsu et al. 1994
and Wright et al. 1991).

A PWM assigns a weight to each possible
nucleotide at each position of a putative binding
site and gives as a site score the sum of these
weights. It has been shown that in at least some
cases this score approximates the energy of protein
binding (Berg and von Hippel 1988 and references
therein; cf. also Barrick et al. 1994). It is widely rec-
ognized that a PWM is a more informative descrip-
tion of a protein’s DNA-binding specificity than is a
consensus sequence, and PWMs are often used
where enough information is available to build
them. Frech et al.(1997a,b) have reviewed both
tools for building the PWM (specialized multiple lo-
cal alignment algorithms) and tools used to search
for putative transcription factor binding sites. The
statistical significance of PWM match scores has
been treated by Hofmann and Bucher (1995) and
Claverie and Audic (1996).

The PWM methodology is predicated on the hy-
pothesis that different positions within the site
make independent contributions to binding. Al-
though a number of cases are known where this
approximation seems to be a reasonable one (e.g.,
Berg and von Hippel 1988 and references therein;
Fickett 1996c), most who have used PWMs know of
cases where the method gave poor results. This
could be attributable to many reasons, for example,
the existence of multiple isoforms of the protein,
leading to different classes of sites (e.g., Andres et al.
1995), or alternative protein conformations in-
duced by the DNA structure (e.g., Bonven et al.
1995), leading to correlated preferences at different
positions. It will probably be important to apply
nonlinear methods of separation (and perhaps de-
velop new ones) for this problem. Nonlinear meth-
ods have been successfully applied in the recogni-
tion of splicing junctions. Brunak et al. (1991) used
multilayer neural nets; Burge and Karlin (1997) used
decision trees; and a number of investigators have
used position-specific oligonucleotide counts (e.g.,
Solovyev and Salamov 1997 and references therein).

To build any model of the DNA-binding speci-
ficity of a protein, one needs a number of known
sites (it would be valuable to have the strength of
the sites as well, but this information is rarely avail-
able). For core promoter elements the best data
source may be the Eukaryotic Promoter Database
(EPD; Bucher and Trifonov 1986), a collection of
experimentally mapped TSSs and surrounding se-
quences. For other transcription factors, one tradi-
tional data source has been the Transcription Factor

Database (TFD; Ghosh 1990), but this database is no
longer maintained. Currently maintained collec-
tions include TRANSFAC (Wingender et al. 1996)
and the Transcription Regulatory Region Database
(TRRD; Kel et al. 1994). If one is interested in a par-
ticular factor, there is no substitute for reading the
literature to find both natural sites and random oli-
gonucleotide selection data (for an overview, see
Wright and Funk 1993), and understanding the de-
gree of evidence for each putative site. For hundreds
of recently discovered transcription factors, binding
site data may be scarce or absent. In some cases, it
may be possible to predict the specificity of a new
factor from that of a closely related factor whose
specificity is known (e.g., Choo and Klug 1994; Su-
zuki and Yagi 1994).

Bucher (1990) constructed PWM for several core
promoter elements; these are widely used in pro-
moter recognition algorithms. PWM for many spe-
cific transcription factors have been collected in
TRANSFAC and TRRD (see also Chen et al. 1995).
Because some of the sites used to build these matri-
ces have questionable experimental support, one
should exercise caution in applying them.

Most of the work in this area has centered
around characterizing transcription factor binding
sites and their relative localization. Approaching a
different aspect of the problem, Benham (1996) has
described methods to predict regions of helix desta-
bilization, likely to coincide with certain gene fea-
tures, including transcriptional regulatory regions.
Also, the advent of large-scale model organism se-
quencing allows one to identify functionally impor-
tant regions of all kinds (though not to differentiate
between the different possible functions) by means
of sequence conservation. The application of this
technique, termed phylogenetic footprinting, to the
discovery of gene regulatory regions has been re-
viewed by Duret and Bucher (1997).

Available Promoter Prediction Tools

In this section we describe publicly available soft-
ware tools for locating promoters in DNA sequence.
To gain some idea of how the tools perform in prac-
tice, we tested them on a small sample of recently
determined sequences in which the transcription
initiation site has been experimentally mapped. We
collected 18 published mammalian sequences con-
taining 24 promoters (Table 1) in a total of 33120
bp. Two of these sequences were not found in Gen-
Bank (as of February 20, 1997); the others were
dated no earlier than May 16, 1996. None of them
matches a sequence in EPD (either at the level of
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identity or at the level of clear homology). Thus, we
believe that these represent an independent test set,
not overlapping in any significant way the se-
quences used in the development of the tools de-
scribed below.

Each tool was used with the default settings and
was tested in early March 1997 (most of the on-line
services do not give version numbers). The com-
puter predictions are given alongside the mapped
TSS in Table 1. It is difficult to summarize the degree
of agreement of the computer predictions with ex-
perimental results, because of ambiguities in the re-
sults on both sides. Experimental accuracy may be
impacted by mRNA degradation, which can lead to
the mapped location of the TSS being 38 to its true
location. Some programs aim to locate the TSS ex-
actly, tolerating a high false-positive rate, with the
idea that the approximate location will already be
known. Some are intended to analyze large genomic
sequences and have as their goal the approximate
localization of promoters or gene starts. We evalu-
ated only the ability to approximately locate the TSS
itself. If a program gave a promoter prediction but
not an explicit TSS, we took the 38 end of any pre-
dicted promoter window as the predicted TSS. The
predicted TSS, explicit or implicit, was counted as
correct if it was within 200 bp 58, or 100 bp 38, of
any experimentally mapped TSS. Given these crite-
ria, accuracy results are summarized in Table 2. Be-
cause of the limited sample size and the possibly
skewed nature of the sample (discussed below), re-
sults should be taken as provisional and perhaps
pessimistic.

Audic/Claverie

Audic and Claverie (1997) construct Markov models
of vertebrate promoter sequences (based on EPD)
and nonpromoter sequences (based on regions ad-

jacent to the promoters used). For an arbitrary test
window a Bayesian choice is then made between the
promoter and nonpromoter hypotheses. This pro-
gram (available at audic@newton.cnrs-mrs.fr) iden-
tified 5 (21%) of the true promoters and reported 33
false positives, or 1/1004 bp (here and below it is
base pairs, not single-strand bases, that are
counted).

Autogene

Autogene (available by ftp from ftp.bionet.nsc.ru;
directory pub/biology/aug) includes a module for
promoter recognition (Kondrakhin et al 1995). The
program utilizes a set of 136 consensus sequences
for transcription factor binding sites collected by
Faisst and Meyer (1992). A training set of 472 pro-
moters was taken from the EMBL Database, based
on annotation in EPD and EMBL. The occurrence
frequencies for each of the consensus sequences in
∼50 fixed length subregions of the promoters was
determined. In a test sequence, an occurrence of
one of the consensus sequences in one of the sub-
regions was weighted according to the frequency
with which it occurred in that subregion in a certain
subset of the training set (determined by a cluster-
ing algorithm based on the consensus site occur-
rences) and the expected frequency of occurrence in
random DNA. In most cases, the program suggested
a range of a few base pairs, of which we took the last
as the prediction. Autogene identified 7 (29%) of
the true promoters and reported 51 false positives,
or 1/649 bp.

GeneID/Promoter1.0

An unpublished promoter-finding algorithm, devel-
oped by S. Knudsen (Technical University of Den-
mark), is included in the GeneID e-mail server (send

Table 2. Program Accuracy

Audic Autogene GeneID NNPP P’Find P’Scan TATA TSSG TSSW

Sensitivity 5/24
24%

7/24
29%

10/24
42%

13/24
54%

7/24
29%

3/24
13%

6/24
25%

7/24
29%

10/24
42%

Specificity 33 fp
1/1004
bp

51 fp
1/649
bp

51 fp
1/649
bp

72 fp
1/460
bp

29 fp
1/1142
bp

6 fp
1/5520
bp

47 fp
1/705
bp

25 fp
1/1325
bp

42 fp
1/789
bp

Overall accuracy of the programs tested. For each program the sensitivity (both as the number and percentage of promotors correctly
detected) and specificity (as number of false positives and number of base pairs per false positive) is given.
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‘‘help’’ to geneid@darwin.bu.edu). According to the
on-line documentation, ‘‘Promoters are predicted
by a program called promoter1.0. It has been devel-
oped as an evolution of simulated transcription fac-
tors that interact with sequences in promoter re-
gions.’’ In our tests promoter1.0 identified 10 (42%)
of the promoters, and reported 51 false positives (1/
649 bp).

NNPP

NNPP (M. Reese, http://www-hgc.lbl.gov/inf/nnpp-
abstract.html) combines recognition of the TATA
box and the Inr, using the time delay neural net
architecture, which allows for variable spacing be-
tween the features. We tested the algorithm using
the on-line service at http://www-hgc.lbl.gov/
projects/promoter.html. When tested on our data
set NNPP identified 13 of the 24 promoters (54%)
and reported 72 false positives (1/460 bp). [At the
optional threshold 0.9, 7 (29%) of the promoters
were identified, and 31 false positives (1/1068 bp)
were reported.]

PromFind

PromFind (Hutchinson 1996) is not based on any
collection of putative transcription factor binding
sites but, rather, on the differences in nucleotide
hexamer frequencies (following Claverie and Bou-
gueleret 1986) between promoters, protein coding
regions, and noncoding regions downstream of the
first coding exon. Training and testing sets were
taken from some of the GenBank sequences with
corresponding entries in EPD. Among all sites in an
input sequence where the promoter versus coding
region discriminant exceeds a certain threshold, the
site where the promoter versus noncoding region
discriminant reaches its maximum (over the input
sequence) is taken as a promoter. PromFind (taken
from the ftp site iubio.bio.indiana.edu, directory
molbio/ibmpc; for future versions, see also ww-
w.rabbithutch.com) identified 7 of the 24 promot-
ers (29%) and reported 29 false positives (1/1142
bp).

PromoterScan

PromoterScan (Prestridge 1995) recognizes primate
promoters by means of (1) the TATA PWM from
Bucher (1990), and (2) the density of specific tran-
scription factor binding sites. In calibration, occur-
rences of each transcription factor binding site

listed in TFD was counted in EPD primate sequences
and in primate nonpromoter sequences from Gen-
Bank. The ratio of the densities of occurrence in
each of these two sets is used as a weighting factor
for that site. Then in application, the weighting fac-
tors for those sites occurring in the test sequence are
combined with a TATA box score. The algorithm
sometimes suggests a TSS and sometimes only gives
a 250-bp window within which a core promoter se-
quence is thought to occur. In the latter case, we
took the end of the window as the predicted TSS. In
our tests (at http://biosci.cbs.umn.edu/software/
proscan/promoterscan.ht) PromoterScan identified
three (13%) of the known promoters and predicted
six apparent false positives, or 1/5520 bp.

TATA

Because many investigators rely heavily on the
TATA box to help locate a possible promoter, we
also tested the TATA PWM from Bucher (1990) as an
independent predictor. Bucher found that most
TATA boxes were centered at a point 20–36 bp up-
stream of the TSS, so we took the point 28 bp down-
stream of the center of the putative TATA box as the
predicted TSS. At the recommended cutoff score
(18.16) the TATA PWM gave 159 predictions in our
test set. We used a more restrictive cutoff, namely
16.5, that gave 54 predictions, more in line with
the other methods. With these parameters the TATA
PWM identified 6 (25%) of the known promoters
and predicted 47 apparent false positives (1/705 bp).

TSSG and TSSW

TSSG and TSSW (Solovyev and Salamov 1997) both
use the same underlying algorithm, which uses a
linear discriminant function combining (1) a TATA
box score, (2) triplet preferences around the TSS, (3)
hexamer preferences in the regions 11 to 1100,
1101 to 1200, and 1201 to 1300 relative to the
TSS, and (4) potential transcription factor binding
sites. TSSG is based on the promoter.dat file derived
from TFD by Prestridge (1995), whereas TSSW is
based on TRANSFAC. TSSG and TSSW were accessed
at the site http://dot.imgen.bcm.tmc.edu:9331/
gene-finder/gf.html. TSSG correctly predicted 7
(29%) of the true promoters and predicted 25 false
positives (1/1325 bp). TSSW correctly predicted 10
(42%) of the true promoters and gave 42 false posi-
tives (1/789 bp).

Algorithms Not Included in the Test Results

GRAIL includes promoter recognition as one com-

EUKARYOTIC PROMOTER RECOGNITION

GENOME RESEARCH 871



ponent of integrated gene structure prediction (Ma-
tis et al. 1996). The promoter recognition module
combines matrix scores for the TATA-, GC- and
CAAT-boxes, the Inr, and the translation start site
with constraints on the distances between these el-
ements, using a neural network. Then several rules
are applied to combine this independent evidence
for a promoter with the expected location of a pro-
moter based on predicted coding exons. The inde-
pendent promoter component is not available sepa-
rately; we tested the integrated algorithm using the
XGRAIL interface (ftp arthur.epm.ornl.gov, direc-
tory pub/xgrail), but these results cannot be com-
pared directly with those for the tools considered
above. In the test set used here, GRAIL was unable to
find the promoters because the coding regions were
not included. In sequences with complete genes,
GRAIL performed better than the other algorithms
(data not shown), but it is difficult to judge how
well this reflects the performance of the promoter
module per se. The program of Chen et al. (1997)
also makes predictions that are not comparable with
the others, being non-strand-specific. The method
of Crowley et al. (1997) was published after the
benchmarking here had been carried out. Descrip-
tions of other possible promoter recognition meth-

ods may be found in Larsen et al. (1995); Hatzigeor-
giou et al. (1996); and Pedersen et al. (1996).

DISCUSSION

The accuracies of the various programs are plotted
in Figure 1, where it may be seen that the true posi-
tive rate is approximately a constant fraction of the
total number of predictions. For comparison we also
show a line on which the accuracy rates of com-
pletely random predictions would fall.

The results presented here should not be used to
compare the various programs among themselves
(except perhaps to note that no technique used to
date is obviously superior to the others), in part be-
cause the test set is small for this purpose. Also, the
programs use somewhat different definitions of the
problem and are not really directly comparable. Our
tests were in some sense unfair for each program,
usually in a unique way for each. For example,
PromFind is intended to locate the promoter when
one already knows the approximate gene location
and the coding strand, and so it makes exactly one
prediction, on the strand presented, in each se-
quence it is given to analyze; but we had multiple

promoters in some sequences, and we
tested both strands of each sequence with
each program. An examination of the test
results in light of each program’s design
goals will still show, however, that our
conclusions about the general state of the
field are not materially affected.

At the default settings, the algorithms
we tested found 13%–54% of the true pro-
moters in our test set. However, in the test
sets used by the developers the correct
prediction rates were higher, and it must
be noted that the test set we used was per-
haps not representative. It is possible that
the way we chose the test set, namely
searching recent issues of journals with a
focus on transcriptional regulation, re-
trieved promoters that are active in very
specialized contexts. Furthermore, in two
cases there are fewer nucleotides upstream
of the experimentally mapped TSS than
are required for the analysis window of
some of the programs. Nevertheless, in-
vestigators do need to analyze sequences
like the ones in our test set, and the test
results do suggest that the challenge of
finding all promoters reliably is far from
being met.

Figure 1 Each point plotted represents the accuracy of one pro-
gram, with the abscissa being the total number of predictions made
by the program, and the ordinate being the number of correct
predictions. For comparison the line y = 0.11x is plotted. 0.11 is the
fraction of all bases in the test set where a prediction would be
counted as correct, so that points on the line would reflect the
accuracy, on average, of random predictions.
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The programs reported on the order of one false
positive per kilobasepair. On the surface, this sug-
gests that if they were applied to a mammalian ge-
nome as a whole (with approximately one gene per
few tens of kilobases), they would give a few tens of
false positives for each real gene. This too may be
misleading, however. Because most of the algo-
rithms make use of transcription factor binding site
density, they may be expected to give a high signal
on enhancers as well as promoters. And although
enhancers may be found anywhere up to tens of
kilobases away from the TSS, they tend to be more
concentrated near the promoter. Thus, it is quite
possible that current tools have simply not devel-
oped far enough to differentiate reliably between
promoters and enhancers and that some of the false
positives are in fact true transcriptional regulatory
regions. On the other hand, it is also possible that
some of the true positives in this set, where the pro-
moter density is high, are attributable to chance and
that the false-positive rate would be higher in gen-
eral genomic DNA.

Although our current knowledge of transcrip-
tion initiation is still far from complete, it is clear
that considerable information is available that has
not yet found its way into current algorithms. Given
the advances in our understanding of promoters
gained from experimental methods in the last few
years, there are grounds for cautious optimism that
better algorithms can, in fact, be developed.

Wherever a consensus sequence, a PWM, or
other recognition module is built to discern the
binding sites of a protein, it is probably worth tak-
ing the time to fully evaluate the experimental data
available, as well as using the latest computational
techniques. To quote Frech et al. (1997b), ‘‘perhaps
more time and effort should be invested in improv-
ing the quality of matrix libraries rather than in de-
veloping new algorithms to calculate matrix
scores.’’

However, it will be many years before the ma-
jority of transcription factors and their DNA-
binding specificities becomes known. One natural
way to try to improve promoter prediction would be
to concentrate on the core promoter elements. For
example, (1) an evaluation of the Bucher TATA ma-
trix on a large number of TATA boxes with proven
function would be valuable. Also, given the depen-
dence of activator function on TATA sequence, it
would be worth attempting nonlinear recognition
methods, such as neural nets or quadratic discrimi-
nant analysis. (2) The very low information content
of the overall Inr consensus (Javahery et al. 1994),
together with the evidence for involvement of mul-

tiple proteins families and the existence of con-
served elements that occur in some but not all se-
quences downstream of promoters, suggests that it
might be worthwhile to attempt either cluster
analysis or nonlinear discrimination of proven,
functional Inr sequences. (3) The CCAAT box pat-
tern most used in current algorithms, namely that
of Bucher (1990), was derived not from a biological
definition, but from a computational one. Bucher’s
algorithm was, very roughly, to find a linearly de-
finable pattern common to many promoters and
with a strong similarity to CCAAT. Now that several
proteins are known to recognize a similar pattern
and to be involved in transcription initiation, it
seems worth investigating whether there are differ-
ent classes of CCAAT boxes corresponding to the
different proteins.
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