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Abstract

We have examined methods and developed a general

software tool for �nding and analyzing combinations of

transcription factor binding sites that occur relatively

often in gene upstream regions (putative promoter re-

gions) in the yeast genome. Such frequently occurring

combinations may be essential parts of possible pro-

moter classes. The regions upstream to all genes were

�rst isolated from the yeast genome database MIPS us-

ing the information in the annotation �les of the data-

base. The ones that do not overlap with coding regions

were chosen for further studies. Next, all occurrences

of the yeast transcription factor binding sites, as given

in the IMD database, were located in the genome and

in the selected regions in particular. Finally, by using

a general purpose data mining software in combina-

tion with our own software, which parametrizes the

search, we can �nd the combinations of binding sites

that occur in the upstream regions more frequently

than would be expected on the basis of the frequency

of individual sites. The procedure also �nds so-called

association rules present in such combinations. The

developed tool is available for use through the WWW.

Keywords: data mining, promoters, yeast, transcrip-

tion factors, complete genome, MIPS, IMD, TRANS-

FAC.

Introduction

The �rst complete genomes have recently been se-

quenced and published, including the �rst eukaryotic

�
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genome of yeast Saccharomyces Cerevisiae (Go�eau et
al. 1996) with length of more than 12 million base-pairs

(Mb). This gives enormous amount of information for

the studies of how the genome as the whole is organized

and how it functions. However, extracting knowledge

from this information may be even more challenging

task than the genome sequencing. The data mining

and machine learning techniques will probably play an

essential role in this knowledge extraction by �nding

interesting, statistically unexpected patterns and thus,

generating hypotheses for further investigation by bio-

logists.

The genes in an eukaryotic genome have each a

particular combination of binding sites for sequence-

speci�c transcription factors that activate or repress

their transcription (for survey see for instance (Good-

bourn & King 1996; Mellor 1993; Mitchell & Tijan

1989)). Usually these sites are speci�c DNA sequences

of length from about 5 to 25 nucleic acids, and they are

arrayed within several hundreds base pairs predomin-

antly upstream from the transcription initiation site in

the promoter region, though some elements can exert

control over much greater distance. We will call the

genome regions that control the gene transcription the

transcription regulation units (TRUs). We will be par-

ticularly interested in TRUs for protein coding genes,

which are transcribed by polymerase II.

The spacers between the sites in TRUs may be much

longer than the sites themselves, may have highly vari-

able length, and usually they have no obvious sequence

similarity. It is believed that only few genes in the or-

ganism are regulated by individual pathways and that

the number of TRUs with a very similar organization of

sites is small - probably between 10 to 50. Therefore,

it seems that the detection of similarity between dif-



ferent TRUs based solely on the traditional alignment

methods may be di�cult.

Many transcription factor binding sites have been

collected in databases (Chen, Hertz, & Stormo 1995;

Ghosh 1990; Wingender et al. 1996). Individual bind-
ing sites can be generalized and described by con-

sensus patterns or so-called position weight or nucle-

otide distribution matrices. The matrix representation

is generally considered as the best available means for

representing the consensus, however, at present most

consensus descriptions are unreliable in the sense that

they tend to give many false positives when compared

against the genome sequences of even modest length.

It is yet an open question how reliable in principle

the prediction of individual binding sites can be made,

since in reality the transcription factors usually operate

in combinations and even perfect binding sites might

have no e�ect if they are isolated. The e�orts to look

for rules of how combinations of individual binding sites

are distributed in a genome have been very rudiment-

ary so far (e.g., (Kel et al. 1995b; Prestridge 1995;

Quandt, Grote, & Werner 1996)). Understanding of

such combinations and their association rules would

help in identifying gene classes regulated by similar

mechanisms, as well as in prediction of regulatory ele-

ments. Our work is aimed towards this goal.

We have developed a tool for the analysis of the up-

stream regions (of di�erent length) of putative genes of

the complete yeast genome taken from MIPS database

(Go�eau et al. 1996) for all occurring combinations of

transcription factor binding sites as given in Informa-

tion Matrix Database (Chen, Hertz, & Stormo 1995).

We are interested in �nding combinations that occur

relatively frequently in upstream regions and whose oc-

currence pattern in the genome is di�erent from what

might be statistically expected by chance. Such com-

binations may be parts of promoter classes. A combin-

ation of binding sites is characterized by the following

parameters:

1. the number of its occurrences in upstream regions;

2. the ratio of the number of its occurrences in upstream

regions vs. the number of occurrences in random re-

gions (of the same length and number); and

3. the ratio of the number of its occurrences vs. the

expected number of its occurrences based on the in-

dividual sites.

The combinations with high values for all these para-

meters can possibly de�ne promoter classes. The su�-

cient value of parameter (1) ensures that the combina-

tion is present in at least a given number of upstream

regions, parameter (2) ensures that the rate of the oc-

currences of the combination in upstream regions are

not just a consequence of high rate of their occurrences

in the genome as the whole, and parameter (3) that the

rate of the occurrences of the combination is not only a

consequence of the high rate of individual occurrencies

of the participating binding sites.

For �nding these combinations we use general pur-

pose data mining tools in combination with our own

software. We also analyze the association rules present

in these combinations. As a side-e�ect we have demon-

strated the applicability of a general purpose data min-

ing software to attacking problems in molecular bioin-

formatics.

The paper is organized as follows. In the next sec-

tion we give some essential information regarding the

available data on which we are relying. In section 3

we de�ne the basic de�nitions and notions that we use.

In section 4 we describe our methods and the informa-

tion gathering and preprocessing phase, and in section

5 we describe the data mining tool TFCD (Transcrip-

tion Factor Combination Discoverer) that we have de-

veloped and some sample data mining results in the

yeast genome. Finally, we will discuss the results and

the possible future research directions.

Background

The information about the 16 chromosomes of

S.Cerevisiae are publicly available in MIPS database

(Go�eau et al. 1996). MIPS database essentially con-

tains two types of objects: the chromosome sequences,

and their annotations providing the information, for

instance, about the positions of the predicted genes.

Totally 6275 open reading frames (ORFs) have been

annotated. The annotations usually give \con�dence

levels" describing the con�dence with which the given

ORF has been predicted - from known protein to ques-
tionable ORF. The last category contains 390 ORFs,

leaving 5885 ORFs as likely candidates for protein

genes.

It is widely assumed that in yeast TRUs rarely ex-

tend more than 1500 bp upstream from the coding re-

gion of a gene and is often contained within 500 bp

(Mellor 1993). By creating an appropriate software for

parsing the annotations it is possible to extract all the

sequences of a speci�ed length upstream to all putative

ORFs of a given level of con�dence. Unfortunately this

is not a completely trivial problem as there is no pub-

lished formal grammar describing the MIPS annota-

tions.

So far most of the bioinformatics research regard-

ing TRU regions has been aimed towards describ-

ing individual factor binding sites (e.g., (Berg & von

Hippel 1988; Bucher 1990; Cardon & Stormo 1992;



Penotti 1990; Schneider, Stormo, & Gold 1986)). For

instance, algorithms for constructing consensus de-

scription of binding sites from a set of sequences known

to contain the site are given in (Frech, Herrmann, &

Werner 1993; Quandt et al. 1995; Wolfertstetter et
al. 1996). Several algorithms have been presented

for searching the given consensus sites in sequences

(Frech, Herrmann, & Werner 1993; Prestridge 1991;

Quandt et al. 1995), but an acknowledged problem in

using these search algorithms is the high rate of false

positives. As noted in (Chen, Hertz, & Stormo 1995)

- some of the site sequences in the databases may be

longer than the actual binding sites, while some others

may be shorter.

A list of known yeast proteins, which include

the transcription factors, is given in MIPS data-

base. A compilation of S.Cerevisiae transcription

factors has recently been published also in (Svetlov

& Cooper 1995). However, an easier electronic ac-

cess to yeast transcription factor binding sites can

be obtained through specialized transcription factor

databases. Two transcription factor databases: TFD

(Ghosh 1990) and TRANSFAC (Wingender 1994; Win-

gender et al. 1996), and the transcription site inform-

ation matrix database IMD (Chen, Hertz, & Stormo

1995) are widely known. TFD database (release 7.5)

contains 45 transcription factors and 179 site sequences

of S.Cerevisiae. TRANSFAC database (release 3.0)

contains 116 factor entries and 308 site entries with

279 site sequences for this organism. Most of the site

sequences are obtained by in vitro experiments, though
there are also consensus patterns included.

The Information Matrix Database IMD (Chen,

Hertz, & Stormo 1995) is a database containing the

position weight matrices constructed from TFD and

TRANSFAC as well as from the original references in

the following way. The union of all factors from TFD

and TRANSFAC that have at least two binding site

sequences has been taken, and a position weight mat-

rix has been constructed for each such factor from the

given binding sites by maximization of the informa-

tion content (Hertz & Stormo 1994). Totally there are

39 matrices for yeast factors. A program MATRIX

SEARCH 1.0 for searching IMD matrices in a given

sequence is also provided with the database.

The research aimed towards the analysis of the

\second order" features of TRUs has been started only

very recently. Several databases containing informa-

tion about TRUs basically collected from the literature

have been published: EPD (Bucher 1996), COMPEL

(Kel et al. 1995b), and TRRD (Kel et al. 1995a),

but none of these databases contain a class of entries

speci�cally for yeast. Analysis of the distance correl-

ation between ORF start positions and sites in sev-

eral yeast chromosomes by GenomeInspector (Quandt,

Grote, & Werner 1996) has been reported in (Werner

1996). Attempts to predict the promoter regions are

reported in (Cai & Chen 1995; Pedersen et al. 1996;

Prestridge 1995). However, no systematic analysis of

frequent combinations of transcription sites and their

distributions in the genome sequences has been repor-

ted. In this paper we are trying to close this gap by

using data mining techniques.

Data mining is the most nontrivial step of an auto-

mated knowledge discovery process in databases. The

task of data mining (see (Fayyad, Piatetsky-Shapiro,

& Smyth 1996)) is to extract potentially interesting,

statistically unexpected phenomena from the data, and

in this way to generate hypotheses for exploration by

domain experts. One of the approaches is �nding so-

called association rules (Imielinski & Mannila 1996;

Toivonen 1996) (a typical example of an association

rule is that in supermarkets almost everybody who

buys beer and mustard, buys also sausages). The tools

for automatic discovery of interesting facts in databases

have been rapidly developing lately, and one of the goals

of this paper is to study the applicability of some data

mining tools to knowledge discovery in biodatabases.

De�nitions

Given a genomic sequence (i.e., a string over the alpha-
bet � = fA,C,G,Tg), and a set of ORF positions (i.e.,
pairs of integers) and strands (i.e., W or C), we can

select the set of all ORF upstream sequences of some
given length l. From this set we can select the subset

of upstream sequences that do not overlap with genes.

We will call them strictly upstream sequences. For more

precise de�nitions of these notions see Appendix A.

Given such a set of upstream sequences we can use it

for machine learning or data mining algorithms search-

ing for interesting rules of some given type. We are

interested in rules that are related to occurrences of

yeast transcription factor binding sites. Although, we

will mainly use position weight matrices (for de�ni-

tion see Appendix B) for describing binding sites, our

method does not depend on the particular represent-

ation. What matters is only that given a genomic se-

quence � and a binding site � we can tell whether the

site � is present (or matches) at a given position of �

or not. When the sequence � is short, in some cases

it is su�cient to know simply whether the given site

� is present at any position of � or not - in this case

we will say that � is present or matches �, or that the
sequence � contains the site �.

If we are given a set of n sequences A = f�1; : : : ; �ng
and a site �, we de�ne the coverage c(�;A) of � in A as



the number of sequences in A containing �. We de�ned

the support s(�;A) as the ratio of the coverage of � to

the total number of sequences in A, i.e.,

s(�;A) =
c(�;A)

jAj

If we are given two sets of sequences, a \good" set

A and a \bad" set B, and a site �, then we can de�ne

the goodness ratio g(�;A;B) of � in A vs. B as follows

g(�;A;B) =
s(�;A)

s(�;B)

In our case we will use the set of all strictly upstream

sequences of a �xed length as the \good" set { we de-

note it by U { and a set of the same number of se-

quences of the same length taken from random posi-

tions as the \bad" set. We will call the \bad" set the

counterset and denote it by R.

If we are given a combination (i.e., a set) of k di�er-

ent sites C = f�1; : : : ; �kg and a sequence �, then we

will say that � contains the combination C if it con-

tains all the sites of C. Given a combination C and a

set of \good" sequences A and (possibly) a set of \bad"

sequences B, we can de�ne coverage c(C;A), support
s(C;A) and goodness ratio g(C;A;B) of this combina-
tion in the same way as for an individual site. In our

practical applications the fact that g(C;U;R) > 1 will

mean that the combination C occur more frequently in

upstream regions than in random regions. If such a

combination is discovered, then it is possible (but is

not guaranteed), that there is an evolutionary pressure

to conserve this combination in upstream regions.

Note that given a site and a set of sequences A,

the support s(�;A) of the site can be regarded as the

probability that an arbitrarily chosen sequence from A

will contain this site. Similarly, given a combination

C = f�1; : : : ; �lg of sites, s(C;A) is the probability

that an arbitrarily chosen sequence will contain C. We

can use this fact for testing the statistical independence

of occurrences of the sites in a set A, since if the sites

are independent then we should expect that for suf-

�ciently large jAj, the support s(C;A) approximately

equals s(�1; A) � : : : �s(�l; A). Let us de�ne the expected
support e(C;A) of a combination C as

e(f�1; : : : ; �lg; A) = s(�1; A) � : : : � s(�l; A)

and the unexpectedness ratio as

u(C;A) =
s(C;A)

e(C;A)

In our applications u(C;U ) > 1 means that the com-

bination C occurs more frequently than expected if the

sites were statistically independent.

Thus g(C;U;R) and u(C;U ) are two di�erent means

of evaluating the deviation of the occurrences of the

site combination C in the genome from what should be

expected if these occurrences were random. We will be

interested in �nding combinations with high support,

goodness and unexpectedness.

By an association rule we understand an implication

of the type

C1 ) C2[conf,cov] (1)

where C1 and C2 are combinations such that C1\C2 =

;, 0 < conf � 1 is a real number called con�dence; and
cov is a positive natural number called the coverage as
de�ned earlier. The presence of rule (1) in a set A

means that the coverage of the combination C1 [ C2 is

cov, and in every sequence of A where C1 is present,

with the \probability" conf the combination C2 is also

present.

Information Gathering and

Preprocessing Phase

Our aim was to develop a tool for �nding the tran-

scription factor binding site combinations that have

high support, goodness and unexpectedness ratios in

the yeast genome.

We retrieved the sequences and annotations from

MIPS (Go�eau et al. 1996) database (the latest update
was done on January 29, 1997). From inspecting the

annotations and by a trial and error method we found

a regular grammar by which in the majority of cases

the annotation �les can be parsed (we do not describe

the grammar here as in itself it does not present a sci-

enti�c novelty). After having the grammar we created

a simple software for retrieving all ORF positions (and

strands) that are annotated in the classi�cation �eld as

at least \similar to unknown protein" (thus excluding

the classes corresponding to \no similarity" and \ques-

tionable ORF") and the positions of all strictly up-

stream sequences (i.e., these upstream sequences that

do not overlap with other ORFs, see Appendix A) of

the lengths 50, 100, 150, ..., 1000. For instance, for

length 600, there are 2391 strictly upstream sequences.

In fact, we do not store the sequences themselves, but

only the positions of these sequences in the chromo-

somes. For each of these sets of upstream sequences

we also constructed a random counterset.

Next, we retrieved all the binding sites associ-

ated with the organism yeast in TFD (release 7.5)

and TRANSFAC (release 3.0) databases, and matched

these sites (together with their reverse complements)

against the yeast genome. We found, for instance, that

in TRANSFAC 3.0 from the given 279 yeast transcrip-

tion factor binding sites, 130 sites have exactly 1 match,

56 sites have from 2 to 100 matches, 23 sites from 101



IMD sites in yeast genome

site matches support goodness goodness site matches support goodness goodness

in total l = 300 ratio ratio in total l = 300 ratio ratio

genome l = 300 l = 600 genome l = 300 l = 600

ADR1 235 0.0061 0.75 0.62 MCM1 432 0.0157 1.64 1.7

AP-1 52 0.0014 0.71 2.75 MIG1 1676 0.0527 1.27 1.82

ARGRII 6 0.0009 1 1 MSN4 4209 0.071 0.72 0.81

BAF1 2125 0.1169 2.16 1.65 NBF 1936 0.0547 1.12 1.2

BAS1 1 - - - PHO2 34752 0.5477 0.96 0.97

BUF 882 0.0134 0.55 0.81 PHO4 919 0.0247 0.9 1.13

CBF1 347 0.0207 2.29 2.54 PUT3 3813 0.0748 0.86 0.91

CCBF 1371 0.0477 1.21 1.16 RAP1 4850 0.1146 1.13 1.17

CUP2 2845 0.0809 1.25 1.19 RC2 45985 0.6271 0.92 0.96

CYP1 8910 0.2103 1.02 1.05 REB1 4891 0.1705 1.62 1.39

DAL82 2 0.0003 1 0.67 SKO1 908 0.0268 1.46 1.53

DBFA 424 0.0119 0.91 1.23 SRF 300 0.0093 1.1 1.36

GAL4 50 0.0009 0.6 1.33 STE12 10246 0.1914 0.85 0.9

GAL80 7 0.0006 1 1 SWI5 56 0.0012 4 0.75

GCN4 15971 0.3229 0.99 0.98 TAF 728 0.0477 2.83 2.01

HSTF 1437 0.03 1.01 0.83 TFIID 22827 0.6501 1.69 1.32

MAL63 4 - - 3.98 URSF 59 0.0026 2.26 1.86

MATa1 648 0.0145 0.86 0.91 galR 0 - - -

MATa2 7570 0.1911 1.08 1.05 CAR1 1335 0.0332 0.91 1.34

MCBF 692 0.0337 1.81 2.05

Table 1: Table characterizing matches of IMD sites in yeast genome. Factor names are given as in IMD database, except

CCBF standing for CCBF/SW4+SW6, CYP1 standing for CYP1.HAP1, MCM1 standing for MCM1.PRTF, RAP1 standing

for RAP1/SBF-E/TUF, and CAR1 standing for CAR1represor in IMD denotations. The 1 symbol is used in cases when

there were no detected matches in the chosen random regions. The lengths l = 300 and l = 600 are of the upstream and

random regions.

to 1000 matches, 20 sites from 1001 to 10000, and 10

sites have more than 10000 matches (40 sites did not

have any matches, but this is possible, because they

can belong to a di�erent yeast strand or can be from

the mitochondrial genome). The matches by TFD sites

gave similarly wide spectrum. This statistics supports

the observations discussed in (Chen, Hertz, & Stormo

1995) that these site entries have rather varying prop-

erties. Therefore for further research we decided to use

the matrix representation of IMD database (release 1.0)

and the related software MATRIX SEARCH 1.0 (Chen,

Hertz, & Stormo 1995). We run MATRIX SEARCH

against the complete yeast genome and marked the po-

sitions of matches of each of the given 39 yeast tran-

scription factor matrices.

The spectrum of the numbers of matches of IMD sites

is still wide (see Table 1), nevertheless it is more even

than that for TRANSFAC or TFD site matches, and

therefore more appropriate for studies of site combin-

ations. Some properties of the individual sites can be

noticed from these matches. For instance, the two of

the sites with the highest occurrence rates in the gen-

ome - RC2 and PHO2, both have goodness ratio slightly

less than 1 for most region lengths, meaning that these

sites occur slightly less frequently within upstream re-

gions than in random regions. The reason for this may

be the unreliability of the descriptions of these sites,

therefore, we excluded them from some of the further

experiments. Note that for the region length 300 (600)

only 11 (resp. 12) sites have goodness ratio more than

1.5, most of which have low support. In general, for

almost all lengths there is a slight preference of 5% to

10% of total occurrences of sites in upstream regions

vs. random regions.

Next we transformed the output of MATRIX

SEARCH into the format that can be used by the data

mining program of (Toivonen 1996) to �nd frequent

combinations of sites present in upstream regions, and

the association rules between these sites. (In principle a

relatively straightforward enumeration of combinations

is also possible, but it would be much less e�cient and

technically more di�cult as using e�cient general pur-

pose software for this aim. Also, the straightforward

enumeration would become infeasible after the number



of known binding sites will increase).

We ran the data mining program on these sets and

found all combinations of sites that are present in at

least one upstream or random region, and their sup-

ports. Based on these outputs we additionally calcu-

lated the goodness and the unexpectedness ratio of each

combination. All this information was compiled into

separate �les for each length of the region (with the

total size of more than 100 MB). Note that implement-

ing of data mining via storing precomputed information

in a specially created database, and thus, e�ectively

reducing later data mining to mere querying the new

database has been proposed for instance in (Imielinski

& Mannila 1996).

Knowledge Discovery Phase

We developed a program Transcription Factor Com-

bination Discoverer (TFCD) for extracting the com-

binations with speci�ed parameters from the created

�les. The TFCD is implemented as a WWW site

(http://www.cs.Helsinki.FI/~vilo/Yeast/) allow-

ing queries via simple user interface on the Web. The

user can choose the upstream region length (from 50

to 1000), the minimal support, goodness and unexpec-

tedness ratios and some other parameters, and (option-

ally) a factor which he wants to be included in the

combinations. The system returns all the combinations

satisfying the given parameters. For instance, for the

regions of length 600, if the minimal unexpectedness

ratio is set to 3 (meaning that the combinations should

occur in upstream regions at least three times more

frequently than expected if the sites were statistically

independent), the minimal goodness ratio is set to 5

(meaning that the combinations should be at least �ve

times more frequent in upstream regions than in the

random regions), the minimal coverage of the combin-

ation to 10 (meaning that at least 10 of the upstream

regions should contain this combination), and the num-

ber of sites in the combinations from 1 to 4, and if it

is required that the factor TFIID should participate in

the combination, then we get the result that is given in

Figure 1.

Clicking on \Show occurrences in full genome" re-

turns all positions in the total genome where this com-

bination has occurred within the window of the given

length. For instance, one of the occurrences for the

combination 2 in the Figure 1 is shown on Figure 2.

The closest ORFs are reported. The integers

between the factors are the distances between their oc-

currences. By clicking on the ORF we obtain the an-

notation for this ORF in MIPS database. Links are

provided also to IMD and TRANSFAC databases for

the information about the factors.

Clicking on \Show : : :association rules" the user can

�nd all the association rules that can be combined from

occurrences of this particular combination. For in-

stance, the rules found for the combination 2 of Figure

1 with con�dence 0.75 are given in Figure 3.

The �rst rule means that if in a window of size 600

the sites for BAF1 CBF1 RAP1/SBF-E/TUF are present,

then always also the site for TFIID is present, and this

happens totally in 12 upstream regions.

In this way the user can generate hypotheses (con-

taining the factor of his interests) for combinations that

might be a part of promoter classes and obtain addi-

tional information of di�erent kinds about them.

Discussion and Future Research

The task of data mining is to generate potentially in-

teresting, statistically unexpected hypotheses. We pro-

pose a tool for extracting the combinations of transcrip-

tion factor binding sites that are frequent in upstream

regions and have unexpected occurrence pattern. Our

tool is guaranteed to �nd all the combinations satisfy-

ing the given parameters in respect to the given set of

upstream regions, its counterset, and the chosen set of

sites. Therefore, the \guarantees" are only as good as

the chosen upstream regions and chosen sites.

The reliability of the chosen upstream regions basic-

ally depends on the reliability of the predicted ORFs,

and on the way of determining the relative position of

the TRU in respect to the ORF. Regarding the ORF

positions we entirely rely on the annotations given in

MIPS. Regarding the TRU positions relative to ORFs,

there are basically three problems: can we assume that

the transcriptions start point is close to the ORF, how

long is the upstream region with functional importance

for the transcription regulation, and how to deal with

the upstream regions that overlap with the coding re-

gions of other genes? As far as the transcription start

point is concerned, in yeast it is assumed usually to

be relatively close to ORF (there are no known long

transcribed untranslated regions in yeast). It is partic-

ularly unclear how to deal with the upstream regions

overlapping with other genes. We are following a na-

ive approach here - we simply discard such regions. To

minimize the overlapping, and to maximize the reliabil-

ity of the predicted genes, we also use only these ORFs

that are annotated as at least as coding a protein sim-

ilar to some other protein.

Note that, the longer the upstream regions, the more

overlapping with the coding regions they have. This

creates a certain dilemma - either to have di�erent sets

of upstream regions for regions of di�erent length, or to

discard many nonoverlapping upstream regions when

taking the regions of smaller length. As we are in-



Transcription Factor Combination Discoverer (TFCD)

region lenght = 600

minimal unexpectedness ratio = 3

minimal goodness ratio = 5

minimal coverage of the combination = 10 : (0.41%)

minimal coverage of individuals = 20 : (0.83%)

minimal combination lenght = 1

maximal combination lenght = 4

contains patterns: TFIID

combination: MCM1.PRTF SRF TFIID

goodness ratio = 5.02

upstream coverage: expected = 0.89 in fact = 15 ratio = 16.89

random coverage: expected = 0.29 in fact = 3 ratio = 10.26

unexpectedness ratios upstream vs random = 1.65 +

Show occurrences in full genome and association rules containing this combination

combination: BAF1 CBF1 RAP1/SBF-E/TUF TFIID

goodness ratio = 1000.00

upstream coverage: expected = 3.41 in fact = 12 ratio = 3.52

random coverage: expected = 0.52 in fact = 0 ratio = 0.00

unexpectedness ratios upstream vs random = 0.00 +

Show occurrences in full genome and association rules containing this combination

combination: BAF1 CCBF/SW4+SW6 TAF TFIID

goodness ratio = 10.95

upstream coverage: expected = 2.40 in fact = 11 ratio = 4.57

random coverage: expected = 0.47 in fact = 1 ratio = 2.13

unexpectedness ratios upstream vs random = 2.14 +

Show occurrences in full genome and association rules containing this combination

combination: BAF1 CYP1.HAP1 TAF TFIID

goodness ratio = 5.12

upstream coverage: expected = 10.29 in fact = 41 ratio = 3.99

random coverage: expected = 2.24 in fact = 8 ratio = 3.58

unexpectedness ratios upstream vs random = 1.11 +

Show occurrences in full genome and association rules containing this combination

total nr. of combinations satisfying the conditions = 4

Figure 1: A sample output of a TFCD query. By clicking on \show occurrences" the user can obtain the information where

in the genome this combination is present and which gene is downstream from it. Similarly user can view the association

rules where the factors of the combination are present.

terested not so much in creating completely unbiased

statistics, as in creating as many interesting hypotheses

as possible from the complete genome data, we have

chosen the �rst approach.

It seems that the bottle-neck regarding the quality

of our hypotheses is the reliability of the identi�cation

of the individual sites, which is known not to be very

high. Also, the sites are not available for all factors.

We are entirely relying on the identi�cation of sites by

MATRIX SEARCH and IMD. Although our method

may actually help in �ltering out some false positives,

still improvement in the reliability of site identi�cation

is probably necessary for raising the quality of hypo-

theses generated by our method.

So far our approach has been naive in the sense that

we are looking for the combination of sites disregarding

their occurrence order and structure. To some degree

we overcome this when we match the identi�ed com-

binations against the whole genome - these matches

each return the order and the structure of the com-

bination in the particular match. However a di�er-

ent approach would be to look for frequent combin-

ations of sites in a particular order from the very be-

ginning. A data mining software that can be adjusted

for ordered combination discovery is so-called episode

analysis tool (Mannila, Toivonen, & Verkamo 1995;

H�at�onen et al. 1996). We are currently implementing

a transcription site combination analysis tool based on



Find the occurrences of the factors within close range (600)

Factors considered: BAF1 CBF1 RAP1/SBF-E/TUF TFIID

...

Chromosome: VII

...

RAP1/SBF-E/TUF-28-BAF1-74-CBF1-95-TFIID-35-TFIID-103-ORF:(905927-908764 W YGR204w)

...

Figure 2: The information about where in the genome this combination (BAF1 CBF1 RAP1/SBF-E/TUF TFIID) is present and

which gene is downstream from it. It is further possible to look for all possible factors in addition to the selected ones.

Find all rules that contain the factors: RAP1/SBF-E/TUF TFIID BAF1 CBF1

with confidence at least 0.75

Rules are computed from 2391 strictly upstream regions of length 600.

FACTORS => FACTORS [Confidence,coverage]

BAF1 CBF1 RAP1/SBF-E/TUF ==> TFIID [1.00000,12]

BAF1 CBF1 RAP1/SBF-E/TUF ==> GCN4 TFIID [0.83267,10]

BAF1 CBF1 RAP1/SBF-E/TUF TFIID ==> GCN4 [0.83267,10]

BAF1 CBF1 GCN4 RAP1/SBF-E/TUF ==> TFIID [1.00000,10]

BAF1 CBF1 MSN4 RAP1/SBF-E/TUF ==> TFIID [1.00000,6]

BAF1 CBF1 RAP1/SBF-E/TUF REB1 ==> TFIID [1.00000,6]

Figure 3: The association rules that involve the preselcted factors and have support higher than the treshold.

this.

Finally, although our method is currently aimed at

yeast and tied to MIPS database, its principles are very

general and applicable to any genome or parts of a gen-

ome. The implementation of such general data mining

tool will be more e�cient after the speci�cation of the

representations of complete genomes in general data-

bases EMBL or GenBank is published.
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Appendix A: Strictly upstream regions

We de�ne an annotated chromosome as a pair C =

(�;A), where � is a genomic sequence and A is a set

of annotations. An ORF annotation is a quintuple

� = (I; b; e; d; c), where I is a character string called the

identi�er, b and e are integers such that b < e, called

the beginning and end positions, d is the strand and

its value is either \W" (meaning so-called \Watson"

strand), or \C" (meaning the \Crick" or complement-

ary strand), and c is an integer 1 � c � 6 called the

con�dence level. In practice the ORF annotations are

obtained from annotation �les given in MIPS database.

The con�dence level correspond to di�erent values of

the classi�cation �eld in MIPS annotations. The level

1 means \known protein", the level 6 means \ques-

tionable ORF". We also assume that each next lower

con�dence level includes all the higher ones. Thus, the

level 6, in fact is, either \questionable ORF", or any of

the levels from 1 to 5. In the experiments we basically

use genes of the con�dence level 4 or 5, meaning at least

\similarity to unknown protein" and, respectively, \no

similarity".

Given a chromosome C = (�;A) and an identi-

�er I0 such that � = (I0; b; e; d; c) is in A, and an

integer l, we de�ne the gene upstream sequence of
length l as the substring �[b � l::b � 1], if d =\W";

and reverse(complement(�[e + 1::e + l])), if d =\C",

where reverse means the reverse string and complement

means the string obtained by mutually substituting A

for T and C for G. Given an annotated chromosome (or

set of such chromosomes), a length l, and a con�dence

level c0, we can de�ne the set of all upstream regions
of length l with at least the con�dence level c0. From

this set we can choose the subset of all upstream re-

gions that are not overlapping with any coding regions

(i.e., with substrings at the positions b::e given in some

annotations). We call this subset the set of all strictly



upstream regions.

Appendix B: Position weight matrix

A position weight matrix is a matrix (array) M of n

columns and 4 rows of nonnegative integers such that

the sum over each column is the same number d for

all columns. We assume that the rows are indexed by

A,C,G,T, and write M [A..T; 1::n], by M [x; i] meaning

the element in the i-th column in the row indexed by x.

The central notion in using position weight matrices is

the similarity score s of a matrixM [A..T; 1::n] against

the string � (over �) of length n, describing the sim-

ilarity between the matrix and the string. This notion

can be de�ned in various ways - we use the de�nition

from (Chen, Hertz, & Stormo 1995):

t =

nX

i=1

log
2

M (�[i]; i) + 0:01

p(�[i]) � (d+ 0:01)

where p(a) is the probability (the relative frequency) of

the character a in the total sequence (or in the data-

base). If we are given a real number, called cut-o�
score or threshold, then for each position in a sequence

we can determine whether it is matched by the matrix

or not, i.e., if the matching score at this position is at

least the cut-o� score.
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