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A complex network of regulatory controls governs the patterns
of gene expression. Enabled by the tools of molecular cloning,
initial experimental queries into the gene regulatory network
elucidated a wide array of transcription factors and their
cognate binding sites from hundreds of genes. The recent
fusion of genome-scale experimental tools, a more
comprehensive gene catalog, and concomitant advances in
computational methodology, has extended the range of
questions being posed. The potential to further our
understanding of the biochemical mechanisms of
transcriptional regulation and to accelerate the delineation of
regulatory control regions in the human genome is enormous. 
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TRR transcriptional regulatory region
TSS transcription start site

Introduction
The sea urchin Endo 16 gene illustrates the complexity of
the gene regulatory network [1••]. The upstream region of
this gene contains at least 33 transcription factor (TF;

DNA-binding proteins controlling the initiation of tran-
scription) binding sites in five modules (Figure 1). 

One may consider the arrangement of TF binding sites to
be a control language encoded in the DNA. The core
motifs of the language are the DNA binding specificities of
individual TFs [2••,3••]. Expression data generated from
microarray studies, in conjunction with a comprehensive
collection of genes from genomic sequence resources,
promises to accelerate the discovery of new motifs. The
underlying principle is that a set of genes should be classi-
fied tentatively as ‘co-regulated’ if they share a similar
pattern of gene expression and common DNA sequence
motifs likely to be bound by TFs [4••]. A second major
accelerating force will be comparison of genomic regions
from related organisms, or phylogenetic footprinting (PF)
[5••]; TF binding sites stand out clearly against a noncon-
served background.

Due to a convenient experimental system [6], sufficient
data has accumulated concerning gene regulation in mus-
cle [7•] that it may be possible to discover, in this context,
the meaning of higher order patterns in the regulatory lan-
guage. Different genes upregulated in muscle have very
different regulatory regions (Figure 2). Nevertheless, it is
possible to discriminate, at a practical level of accuracy,
between muscle and non-muscle control regions [8••].

To describe current advances in deciphering the regulato-
ry control language we establish a vocabulary concerning
the initiation of transcription, describe how PF can be used
to enrich signals for analysis, define a formalism for
describing TF binding sepcificities and its use, along with
PF, in discovering new TFs via genome-scale expression
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Figure 1

Regulatory circuitry of the sea urchin Endo 16
gene (based on [1••]). The basal promoter
(Bp) localizes the point of transcription
initiation. (a) In early development, A alone
provides initial upregulation; later it serves as
a logical integrator to collect and relay signals
from the other modules. (b) B upregulates the
gene at later stages of development. G is a
general enhancer, adding to the effect of A
and B. (c) CDEF repress the gene in all but
the correct tissues. 
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data, and, finally, summarize early progress on describing
the syntax of the language.

Biological background 
Control of transcription initiation is a primary component
of the control of gene expression and the one to which
DNA sequence is most relevant. For recent overviews of
the biochemical mechanisms involved see [9–11]. Here we
will only define a convenient nomenclature (Figure 3) and
mention a few current issues.

By promoter we mean a region of DNA surrounding the
transcription start site (TSS) that is able to direct tran-
scription (perhaps at low levels) from the correct TSS. The
transcription initiation complex (TIC) is a large complex of
proteins, including RNA polymerase II, which assembles
on the promoter and initiates mRNA synthesis.

Although the population of TFs varies greatly across tem-
poral and spatial space, it was thought until recently that
the TIC was essentially invariant. It has become apparent,
however, that some components of the TIC vary in a way
that is probably related to the expression context of the
affected genes [12,13•]. 

When several TF binding sites occur in a cluster, and the
mutation of any one of them seems to affect the up- or
down-regulation of a gene in the same context (as illus-
trated in the Endo 16 example above), the cluster is
termed a regulatory module. If activation of the module
results in higher expression for the gene, it is termed an
enhancer, otherwise a repressor. Enhancers, repressors,
and promoters are together known as transcriptional reg-
ulatory regions (TRRs). 

For a wider review of transcription, emphasizing the
role of chromatin, see the issue of Current Opinion in
Genetics and Development introduced by Kadonaga and
Grunstein [14•]. 

Correlation between mRNA expression levels and the cor-
responding protein levels cannot reliably be determined
given the current amount and precision of data [15–17].
Much of the interest in gene expression levels, however, is
in quantifying a change in expression level between
healthy and diseased tissue, or between the presence and
absence of a signaling molecule. It is a reasonable first
approximation to assume that when transcription increas-
es, the other effects on protein level remain the same, and
the protein level increases as well.

Phylogenetic footprinting to locate
transcriptional regulatory regions
The term PF has been suggested, by analogy with DNAase
footprinting, “to describe the phylogenetic comparisons
that reveal conserved cis-elements in the noncoding regions
of homologous genes” [18]. One might use the term more
generally to cover identification of any functional regions
by comparison of orthologous genomic sequence segments
between species. PF, followed by experimental verification,
is the most efficient method available for the initial identi-
fication of most TRRs (CpG islands, which are
characterized by their base composition rather than by spe-
cific binding sites, may be an exception [19••]). 

The optimal evolutionary distance for comparison varies
widely with the particular gene [20]. Only 16% of ortholo-
gous gene pairs between human and bony fish (separated
by about 450 million years) showed 70% identity over at
least 50 basepairs (bp) in the noncoding regions [21], yet in
some cases the conservation is striking and useful. Large
regions known to contain regulatory elements for the
Hoxb-4 gene in the mouse, for example, were narrowed sig-
nificantly by comparison with pufferfish, and the resulting
putative TRRs were verified by transgenesis [22]. 

Although Caenorhabditis elegans and Caenorhabditis brig-
gsae diverged only 23–40 million years ago, Thacker et al.
[23•] found that: “Conservation of DNA sequences is
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Figure 2

Diversity of modules. Each of the 18 line
segments shows schematically the structure
of one skeletal-muscle-specific module, in
terms of known TF-binding sites, summarized
from [7] and listed on the right. Though all
these modules upregulate expression of
various genes in the same tissue, it is difficult
to discern any syntactic similarity.
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confined largely to protein-coding regions and short
flanking sequences. Comparative studies have demon-
strated that conserved 5′ flanking sequences often
constitute cis-acting elements that are involved in the
regulation of gene expression”.

Most human regulatory regions can probably be discovered
by comparison of human and rodent sequences. In a
dataset of orthologous human and rodent muscle genes, we
found that the footprints in the non-coding sequences
from these genes cover just 19% of the human non-coding
sequence yet contain over 98% of the experimentally-
defined, sequence-specific TF binding sites
(WW Wasserman et al., unpublished data). An alignment
algorithm that finds only 0.14% conserved DNA in ran-
domly paired sequences finds about a third of the
noncoding DNA conserved in transcripts and the kilobase
upstream (a region likely to overlap considerably with reg-
ulatory elements) [24]. New estimates of divergence rates
were calculated from 1880 orthologous human–rodent
gene pairs by Makalowski and Boguski [25]. A number of
examples of human–rodent PF predictions of TRRs have
been verified experimentally [19••]. The usefulness of
mouse in this regard is one motivating force for plans to
sequence the mouse genome [26]. It would appear that PF
is one of the most important sources of information in
large-scale sequence analysis of the human genome [5••]. 

As more sequence accumulates, it will be valuable to compare
the extent of the evolutionary tree showing conservation of,
firstly, a particular sequence element, secondly, the proteins
binding that element, and finally, a possibly correlated phe-
notype [27]. A large collection of homologous sets of
vertebrate genes may be found in the database HOVERGEN
[28]. Methods for selecting conserved blocks from a multiple
alignment are evaluated by Stojanovich et al. [29].

PF requires specialized alignment tools. The probability of
spurious matches between arbitrary portions of long
genomic segments is high; however, biologically meaning-
ful alignment within a syntenic region is constrained by
matches between nearby orthologous elements. Programs
designed for very long alignments of syntenic regions
include a derivation of SIM in PIPmaker (PIP is percent
identity plot) [5••] and MUMmer [30]. Anecdotal evidence
suggests that orthologous control elements normally match
essentially perfectly (Figure 4). PIP selects blocks over 50
bp, gap-free, and with over 60% identity. The Bayes Block
Aligner (BBA) [31••] may be especially well suited to dis-
covery of regulatory elements. It is designed to find
gapless blocks and, because the posterior probability of a
block is obtained by summing over all alignments contain-
ing the block, a diffuse synteny will strongly support a true
orthologous block even if there is no one high-quality
alignment of the region.

Transcription factors and binding sites
Although the binding specificity of a TF is often expressed
by means of a consensus sequence, a position weight
matrix (PWM) is usually more appropriate. The PWM
assigns a weight to each possible nucleotide at each posi-
tion within the site, reflecting the frequency with which
the given nucleotide occurs at the given position. The
score of a particular site is obtained by summing the corre-
sponding weights. This captures more information than a
consensus, and has a sound foundation in both statistics
(representing likelihood ratios) and thermodynamics (rep-
resenting binding energies) [2••,32•,33–36]. 

When an HNF1 (hepatic nuclear factor 1) PWM derived
from 21 known sites was used to search the databases, 95%
of the sites so discovered were bound by HNF1 in vitro
[37], suggesting that a PWM developed from a sufficiently
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Figure 3

Modular structures of promoters. (a) DNA
inaccessible due to chromatin structure.
(b) DNA remodeled to present regulatory
sites. (c) Transcriptional activators bind to
regulatory sites within modules.
(d) Polymerase complex recruited to promoter.
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large set of experimentally defined binding sites can accu-
rately predict the in vitro binding of a transcription factor.
Matches to sites with no in vivo function are common. This
is not a failure of the computational techniques, but rather
reflects biological reality: competition, chromatin structure
and other influences are as important as binding affinity
[38•]. End-user software for locating matches to a consen-
sus or PWM in genomic DNA has been reviewed [39], and
tests for statistical significance developed [40]. 

The binding specificity of only a small fraction of transcrip-
tion factors is known. The TRANSFAC database [3••]
contains a significant fraction of published, verified binding
sites and may include a PWM when multiple sites are
known. The few in-depth studies of a single gene’s regula-
tory apparatus (e.g. [1••,41,42•]) serve in part to highlight
how much of the full genome regulatory network remains a
mystery. It is hoped that the new microarray technology
[43•] (see this issue Epstein and Butow, pp 36–41; Ladunga
pp 13–18) or suppression subtractive hybridization (SSH)
[44] will provide sets of co-regulated genes on a large scale
(see also [45•]). Several groups were able to rediscover sets
of sites representing known transcription factor binding
specificities, and to suggest new ones, by aligning the
upstream regions of genes co-expressed under specific con-
ditions in yeast (see [4••,46] for overviews). The approach
used in yeast may have been successful, in part, because
yeast regulatory elements (unlike those in multicellular
organisms) are almost always within a few hundred bases of
the translation start site. In multicellular organisms, the
large amount of DNA that must be searched for possible
regulatory regions has, in our experience, added enough
noise to the data that current multiple alignment algorithms
(e.g. [47]) were unable to find common patterns. We found,
however, that when PF was used to reduce the sequence
space, it was possible to rediscover mammalian control ele-
ments de novo (WW Wasserman et al., unpublished data). 

Regulatory modules
As the core promoter contains frequently occurring pat-
terns at fairly well defined positions [33,48••], and also
often contains binding sites for specific factors, it was to
be hoped that fairly simple computational methods
might provide reliable promoter recognition. This
turned out not to be the case [49]. The majority of regu-
latory regions, probably including most core promoters,
are to some extent context-specific. It has been known
for some time that highly context-specific regulatory
modules could sometimes be recognized by means of
particular motifs [50,51]. Several groups have developed
formalisms to represent multiple patterns occurring
within certain spacing constraints; in one application, it
was shown that viral long terminal repeats could be locat-
ed within large sequence collections with high
sensitivity and specificity [52].

Recently statistical models have been developed to quan-
titatively model the clustering of sites often seen in
regulatory regions. The first was a Hidden Markov Model
(HMM) in which the hidden state signals whether the cur-
rent nucleotide is or is not within a regulatory region.
Within regulatory regions the model expects shorter aver-
age spacing between sites, so that clusters of sites are more
likely to be modeled as regulatory regions [53]. An advan-
tage of this formalism is that the size of the regulatory
region is estimated from the data. To test the significance
of a given cluster of sites for a single TF (a generalization
to multiple TFs should be possible), one may calculate the
probability of finding k sites within a space of X
nucleotides, making the neutral assumption of a Poisson
distribution and taking sequence heterogeneity into
account [54•]. A practical algorithm to estimate the overall
probability of TRR function in muscle has been given,
using logistic regression to combine PWM scores for a few
key TFs [8••].
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Figure 4

Phylogenetic footprinting for the identification
of regulatory sequences. Blocks of contiguous
identical bases in alignments of non-coding
sequences from distantly related organisms
are more likely to contain TF-binding sites. This
example is from a comparison of mouse and
Fugu rubripes (Fugu) Hoxb4 genes [22].
Similar conservation was observed in exons
(black boxes) and non-coding sequences
(white boxes).

 1 GTCCCCGCTATAAACTCGCCATTGCCAGAGATTTACGGTCTCCTGTTT Mouse

   --|------||-|-----|--|-|----|||||||||.||..||||||
 1 TACAAGTAGATGAGTAGCCTGTGGGTCAAGATTTACGATCGTCTGTTT Fugu

49 TCAGAGC-CACATAATTACATCGCCCATAAATTTTTATGGCCTAGT Mouse
   -||--||--|-|||||||||-|--||||||||||||||--|-----
49 GCAAGGCCAATATAATTACACCCTCCATAAATTTTTATTACACCTC Fugu

Mouse region

Fugu region
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Current models will become more complex as understand-
ing of regulatory region structure grows. To date no
algorithm takes into account the synergistic binding of
adjacent TFs that depends on the order and spacing of the
binding sites [55,56]. Also, current models tend to assume
that all sites of a module are bound, but anecdotal evi-
dence suggests that in many cases a module includes
several alternative sites, any one of which may be bound to
produce activation. To model this situation it will be
important to estimate the overall probability of a transcrip-
tion factor occupying some one of several closely spaced
binding sites [57].

Conclusion
Though individual putative TF binding sites are too abun-
dant to analyze in full, approaches that cluster together
sites with some biologically intuitive connection between
the predicted TF binding sites and the function of the
gene often reduce the output to a manageable size and
bring to the fore reasonable hypotheses for testing.

Expression data coupled with phylogenetic footprinting
will soon elucidate most of the patterns describing TF
binding specificities, increasing the opportunities for
unravelling higher order organization in the regulatory lan-
guage. At the minimum, these advances should result in an
understanding of the regulatory modules directing gene
expression to many contexts. Ideally, the elucidation of the
regulatory language will enable the design of context-spe-
cific expression tools for experimental and therapeutic
(e.g. [58]) endeavors.
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