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An Expert Network for DNA
Sequence Analysis
LiMin Fu, University of Florida, Gainesville

IN THE 45 YEARS SINCE THE DIS-
covery of DNA’s helical structure, scientists
have made great strides in exploring human
DNA’s structure and locating human genes.
As part of that effort, advanced recombinant
DNA and gene-mapping techniques devel-
oped over the last two decades have led to an
unprecedented effort to map and sequence the
entire human genome under the auspices of
the Human Genome Project (see the sidebar).

The huge amount of data the HGP pro-
duces will require high-performance com-
puting and more intelligent computer algo-
rithms for analysis and inference, needs that
the emerging field of computational molec-
ular biology is addressing. Interest has been
growing in exploring such AI tools as search
algorithms, machine-learning techniques,
and knowledge-based systems for DNA
sequence analysis. Recently, the neural-net-
work model has emerged as a promising AI
technique in this regard because this ap-
proach might well embody important aspects
of intelligence not captured by symbolic and
statistical methods.1

An important direction in this work in-
volves integrating multiple, fundamentally
different AI approaches into single hybrid
intelligent systems,which let each compo-
nent perform the tasks for which it is best
suited. Integrating symbolic knowledge into

THE EXPERT NEURAL NETWORK SYSTEM THE AUTHOR HAS

DEVELOPED FOR USE IN DNA SEQUENCE ANALYSIS COMBINES

A TRADITIONAL SYMBOLIC EXPERT SYSTEM WITH AN ARTI-
FICIAL NEURAL NETWORK. THE RESULTING HYBRID SYSTEM

CAN ACCURATELY MODEL UNDERLYING DOMAIN KNOWLEDGE

TO IMPROVE ACCURACY, GENERALIZATION PERFORMANCE, AND

INFORMATION-PROCESSING SPEED.
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a neural network to create a knowledge-based
neural networkhas quickly become an im-
portant hybrid-intelligence research area.
Empirical observations indicate that such
systems can outperform both neural-network
and symbolic approaches. This integrated
approach involves mapping a set of symbolic
rules that encode available domain knowl-
edge into the neural computing architec-
ture2–5 and requires innovative methods for
extracting symbolic knowledge from a
trained neural network.3,5–8

Called expert networksin some cases,
these knowledge-based neural networks per-
form as well as human experts and often
exhibit characteristics of a traditional sym-

bolic expert system. In one implementation,
the expert network combines a neural net-
work’s computational framework with an
expert system’s inference engine. We call a
neural network that bases the activation func-
tion on the certainty factor model of Mycin-
like systems a CF-net.9 This article describes
my successful attempt to apply the CF-net to
DNA sequence analysis (see the “Expert net-
work” sidebar for a description of the expert
network model, its learning theory, and the
neural-network pruning involved). As I’ll
show, the CF-net uses as the system input the
DNA nucleotide sequence rather than pre-
defined relative frequency measures as in
existing exon-prediction systems.1,10,11

.



The DNA sequence analysis
problem 

A crucial problem in molecular biology is
identifying new genes. Genes determine a
biological being’s development,appearance,
and behavior, and are carried by the chro-
mosomes in the cell nucleus. The number of
chromosomes varies with the species. A
chromosome’s biochemical composition is
characterized by a long string (sequence) of
DNA nucleotides,which are huge biochem-
ical molecules. Genes are biochemical units
that are identified from the DNA sequence
and carry hereditary characteristics from par-
ent to offspring. Genotyperefers to an indi-
vidual’s or organism’s genetic constitution,
while phenotypemeans the individual’s ob-
servable characteristics or traits,as deter-
mined by the genotype and the environment.
A genomeis the collection of all an organ-
ism’s genes. 

Sequencing an entire genome is a system-
atic approach for unraveling the secret of life.

However, knowing the DNA sequence does
not necessarily mean understanding it. Some
part of the sequence might control the expres-
sion of the genes of another part, for instance,
and some genes might not be expressive at
all. The same DNA sequence can produce
very different proteins,depending on where
the process begins. 

Understanding the human genome, which
consists of billions of nucleotides,poses an
enormous,highly complex task and demands
a heuristic approach to information process-
ing. Scientists need to exploit existing back-
ground knowledge gathered from such fields
as molecular genetics,biochemistry, and bio-
physics to facilitate this understanding pro-
cess because this knowledge can rule out
many incorrect interpretations of the DNA
sequence and generate plausible hypotheses
for experimental verif ication. Both heuristic
and knowledge-based information process-
ing lie at the heart of AI.

Gene expression involves the synthesis of
RNA on the DNA template (transcription)

and the synthesis of protein on the RNA tem-
plate (translation). In eukaryotic cells (cells
with visibly evident nuclei and organelles),a
gene includes regions preceding and follow-
ing the protein-coding region and consists of
alternating segments of exons and introns.
An exon is a nucleotide sequence that is
expressed or translated into protein,whereas
an intron is an intervening sequence that is
transcribed (into RNA) but later eliminated
from the transcript by splicing its adjacent
exons. Therefore, only exons represent the
mature gene. The splice junctions refer to the
points where splicing takes place. Because
the DNA sequence is ordered, a splice junc-
tion can be either exon-intron (EI) or intron-
exon (IE) (see Figure 1). 

Given a DNA sequence, the fundamental
gene-identification issue is to determine the
presence and location of genes in the se-
quence. Searching for special signal regions
such as promoters (the initiation sites of tran-
scription) or splice junctions is one approach.
Measuring the features characteristic of pro-
tein coding from segment to segment is
another. In either case, exon identification is
an essential step toward eukaryotic gene
modeling.

Applying CF-Net to DNA
sequence analysis

As we’ll see, in applying hybrid-intelli-
gent-system approaches to the problem of
DNA sequence analysis,a reduced neural-
network architecture improved the network-
generalization performance. Furthermore,
using the expert network for splice-junction
recognition worked well for building a prac-
tical system for identifying exons in DNA
sequences. In contrast to other knowledge-
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The Human Genome Project
The Human Genome Project began as a joint initiative of the US’s

Department of Energy and National Institutes of Health that now brings
scientific resources from around the world to bear on the problem of
mapping and sequencing the entire human genome—the collection of all
100,000 human genes—by the year 2005. Officially begun in 1990,this
project should be a great boon to human health,for example by improv-
ing genetic-level diagnosis and gene therapy.

Ultimately, this project may help usher in a new era of molecular
medicine in which doctors do not so much treat symptoms as they do
look into the deepest causes of diseases. If it can provide a thorough
molecular-level understanding of how humans develop from embryo to
adult,what makes us tick biologically, and how things can go wrong,
this project may well lead to

• highly targeted pharmaceuticals that attack both heritable and com-

municative diseases at their molecular foundations;
• quick and more accurate diagnostic procedures that provide more

timely treatment;
• deeper understanding of genetic susceptibilities to disease that

when coupled with preventative therapies will thwart certain
diseases; and

• the possibility of actually correcting certain genetic defects.

For more information regarding this project,see “From Maps to
Medicine:About the Human Genome Research Project:at http://
www.nhgri. nih.gov/Policy_and_public_affairs/Communications/ 
Publications/ Maps_to_medicine/about.html; “History of the DOE
Human Genome Program” at http://www.er.doe.gov/production/ober/
hugh_hist.html; and “To Know Ourselves”at http://www.lbl.gov/
Publications/TKO.
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Figure 1. Splicing junctions of a gene.
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based neural-network research,2,4,5I did not
insert the prior domain theory into the neural
network, which means that the neural net-
work must discover the theory inductively
from empirical data.

Data descriptions. The first data set used for
this study concerns primate splice-junction
gene sequences (see ftp.ics.uci.edu).5 The
data set contains 3,190 instances. Each in-
stance consists of a sequence of 60 DNA
nucleotides of four base types:A (adenine),
G (guanine),T (thymine),and C (cytosine),
and a label indicating one of the three possi-
ble classes:IE (an intron-exon boundary—
called an acceptor),EI (an exon-intron boun-
dary called a donor),and N (neither IE nor
EI). There are 768 instances in the IE cate-
gory, 767 instances in the EI category, and
the remaining 1,655 instances in the neither
category.

The position in each instance sequence is
specified relative to the boundary in the mid-
dle. There are 30 nucleotides before and fol-
lowing the boundary, corresponding to the
positions −1 to −30 and +1 to +30. There is
no position zero. Thus,given a position in
the middle of a window of 60 DNA elements,
an instance tells the presence of an IE,or EI,
or neither boundary. At each position,a char-
acter denotes the nucleotide type. So,the
sequence takes the form of AGCTGTTC-
CGG.... In some cases,the base type is am-
biguously specified, imparting some degree
of missing information. For example, the
character “R” refers to “A” or “G.”

I sampled the second data set,which con-
tains 50 human genes (DNA sequences),
from the National Institute of Health’s gene
bank (http://www.ncbi.nlm.nih.gov). In con-
trast to the first data set,the second set’s
DNA sequences have variable lengths,with
the numbers of nucleotides ranging from
hundreds to a few thousand. Thus, one
instance in the second set can generate
numerous instances as defined in the first set.

I used the first data set to train the neural
network, learn domain knowledge, and eval-
uate the performance of the learning system,
while I used the second data set to evaluate
the performance of the EXON-ENet (de-
scribed later) versus the Grail system for
exon recognition.

Reduced-expert-network performance.
The neural network has 241 input units,
including the bias unit,one hidden layer of
five hidden units,and one output. Each input

DNA sequence for processing consists of 60
nucleotides. In the network, the nucleotide at
each position is encoded by four input units
designated by A, G,T, and C. Figure 2 shows
the architectural view. The original neural
network is fully connected between adjacent
layers,while the reduced network is sparsely
connected. I used the same neural network
structure in both learning tasks (learning IE
and EI). I wrote the software used here in
Lisp and have published a C version in
Neural Networks in Computer Intelligence.3

I evaluated generalization performance
using twofold cross-validation. The twofold
cross-validation error is the average test
error, determined by randomly dividing the
instances into two sets and using one as the
training set,and the other as the test set,and
then vice versa. In learning the IE junction,
my evaluation considered all the data set’s
non-IE instances as negative instances.

Table 1 shows the results of the cross-
validation experiments in the domain of
splice-junction analysis. This table lists two
types of errors: the mean-squared error
between the actual network output and the
target output value, and the classification
error. Because the model’s network output
value is confined to the range of 0 to 1,the
network classifies a given instance as a pos-
itive instance if the network output value is
greater than 0.5,or else it is a negative

instance. The MSE error and the classifica-
tion error are generally in agreement,al-
though in some cases a smaller MSE error
might be associated with a slightly larger
classification error. When the network out-
put value is interpreted as the posterior prob-
ability of the output concept for a given
instance, the MSE error indicates the accu-
racy of such probability estimation.

The reduced neural network has a better
MSE error than the original network in both
learning tasks (learning IE and EI junctions).
For classification error, the reduced network
performs better in learning EI junctions and
about the same in learning IE junctions,com-
pared with the original network.

In a previous study, the tenfold cross-
validation classification error rates on 1,000
randomly drawn instances for learning EI
and IE junctions were 0.024 and 0.026,res-
pectively, with the original expert network.
This result surpasses those on the same data
set reported elsewhere:5 Kbann (0.076,
0.085),MLP with backpropagation (0.057,
0.11),Pebls (0.082,0.076),perceptron (0.16,
0.17), ID3 (0.11, 0.14), Cobweb (0.15,
0.095),and nearest-neighbor (0.12,0.091),
where the first number in the parenthesis is
the EI error rate and the second is the IE error
rate. Among these techniques,Kbann relies
on knowledge and artif icial neural networks,
the MLP and the perceptron are artif icial
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Table 1. Cross-validation experiment results. (CV-error is cross-validation error, MSE is mean-squared 
error, and CLE is classification error).

EXPERIMENT A EXPERIMENT B
TRAIN TEST TRAIN TEST CV-ERROR

NETWORK CONCEPT MSE CLE MSE CLE MSE CLE MSE CLE MSE CLE

Original IE 0.028 0.023 0.033 0.029 0.026 0.023 0.034 0.036 0.034 0.033
Original EI 0.022 0.021 0.022 0.026 0.018 0.014 0.026 0.033 0.024 0.030
Reduced IE 0.025 0.028 0.028 0.034 0.024 0.026 0.029 0.033 0.029 0.034
Reduced EI 0.023 0.030 0.021 0.024 0.017 0.025 0.023 0.028 0.022 0.026

Hidden layer
(feature extraction)

Output (signal)

Input sequence
Bias

A G T C

Figure 2. The expert network architecture for learning splicing junctions.
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Expert network 
We can formally define a neural network model using a four-tuple <S,

W, L, F> , where W is a set of weights (ωji), L is a set of learning opera-
tions (lop), F is a set of network activation functions (fact), and S is further
defined by a pair <N, C>, where N is a set of nodes (ni) and C a set of
connections. Assume n nodes in the network. We have the following
definitions:

N = {ni|1 ≤ n}
C ⊆ {( ni → nj)|1 ≤ i, j ≤ n}
W ⊆ {( ni → nj, wji)|1 ≤ i, j ≤ n}
L = { lop1, lop2, ...}
F = { fact1, fact2, ...}.

Each learning operation transforms one neural network to another by
weight adaptation or structural change.

Under this formal definition, the expert network model for our applica-
tion works as follows. The network is a two-layer, feedforward, fully
connected architecture with one hidden layer L = { lbp}, where lbp is the
standard backpropagation algorithm.1 F = { fCF} where fCF is the activa-
tion function based on the certainty factor model of Mycin-like expert
systems.2,3The weight values are confined to the range from −1 to 1 and
the weights between the hidden and the output layer are further restricted
to nonnegative values:−1 ≤ wji ≤ 1 for all 1 ≤ i, j ≤ n, where wji is the
weight associated with the connection pointing from node i to node j, but
0 ≤ wji ≤ 1 if node j is an output unit. Unlike hidden units,all output units
have no,or zero, bias:wj,b = 0 if node j is an output unit where b desig-
nates the bias unit. The activation levels are in the range of −1 to 1:−1 ≤
oi ≤ 1 for all 1 ≤ i ≤ n where oi denotes the activation level at node i. I
have adopted the CF-based activation function because it can improve the
neural network’s generalization capability of the neural network.3

Learning theory 

The Vapnik-Chervonenkis dimension forms an important basis for
measuring the capacity of a machine-learning or pattern-classification
system.4,5

Given a set of instances S, a concept hypothesis h in H can partition the
set into two groups:the instances in one group satisfy the hypothesis h and
those in the other group do not. The partition is called the dichotomy in-
duced by h. H can be a class of {0,1}-valued functions F in which a di-
chotomy induced by f is a partition of Sinto two disjoint subsets S+ and S−

such that f(x) = 1 for x ∈ S+ and f(x) = 0 for x ∈ S−. The maximum number
of dichotomies induced by hypotheses in H on any set of m instances is the
growth functionof H with respect to m. The Vapnik-Chervonenkis dimen-
sion (VCdim) of H is the largest msuch that the corresponding growth
function is equal to 2m. That is,H can induce all possible dichotomies of m
instances drawn from the instance space if and only if the VCdim of H is m.
In this way, the VCdim of H measures the capacity of H.

The network’s generalization error is the difference between the gen-
eralization on the training data (which forms an estimate of the true gen-
eralization) and the generalization on the actual problem. Because the
network tends to fit the training data,the generalization with respect to it
will be overly optimistic. However, in many cases,the generalization
error can be bounded (a worst-case analysis),and this bound can be made
arbitrarily small by increasing the number of training instances. Vapnik
and Chervonenkis show that a useful bound can be established when the
number of training instances exceeds the VCdim.4 Assume the hard-lim-
iting activation function. The VCdim of a one-hidden-layer perceptron
with full connectivity between the layers is in the range

2  Nh/2  d ≤ VCdim≤ 2Nw log(eNn),

where  ⋅  is the floor operation that returns the largest integer less than
its argument,Nh is the number of hidden units,Nw is the number of
weights,Nn is the number of computing nodes in the network, e is the
base of the natural logarithm, and d is the number of input units.6,7The
upper bound holds no matter what the number of layers and the connec-
tivity. As a rule of thumb, the number of weights can give a rough esti-
mate of the VCdim. The VCdim of a neural network using the sigmoid
activation function is actually larger than that in the hard-limiting case.

What if the neural network uses the CF-based activation function?
Experience with expert systems shows that the system’s conclusion is
insensitive to the change of CFs up to ±0.2.8 This observation suggests
that we can quantize continuous CF values into a small number of inter-
vals with little change in the system’s conclusion. Weight quantizability
gives a different perspective to compute the hypothesis space’s cardinal-
ity and hence the neural network’s learning capacity. Elsewhere, I pro-
vide the first analysis of this case and demonstrate empirically that the
CF-based neural network can generalize better from a limited number of
training instances than the traditional sigmoid-function neural network.3

Given neural network Rwith a single output,assume that the connec-
tion weight is quantizable into q levels. Each weight setting is associated
with a mathematical function that the network uses to classify objects.
Given Nw adjustable weights,the cardinality of the hypothesis space H of
all possible distinct weight settings is qNw, which bounds from above the
number of possible functions computed by the network under the quanti-
zation scheme. Let VCdim(R) = v. There exists a set of v distinct in-
stances for which 2v distinct functions are required to form all possible
dichotomies. Therefore,

VCdim(R) = v ≤ log|H| = Nw log q.

In the defined expert network with a single output

Nw = (d + 1)Nh + Nh,

where the first term counts the number of weights between the input and
the hidden layer and the second term the number of weights between the
hidden layer and the output. Recall that d is the input dimension and Nh is
the number of hidden units. Combining similar terms yields

Nw = (d + 2)Nh .

The result follows:

VCdim(R) ≤ (d + 2)Nh log q.

We might then ask how many training instances are required for valid
generalization. Sample complexity refers to the number of random exam-
ples needed for a learning system to produce a hypothesis that is correct.
Using Valiant’s notion,9 we say that a class of target concepts is “learn-
able” if the following condition is met:For every concept in the class and
with any probability distribution on the instance space, there exists a poly-
nomial time algorithm that can produce a hypothesis such that its proba-
bility of error has a small upper bound. The probability of error is relative
to the distribution of instances and is defined as the probability of in-
stances that are either in the hypothesis and not in the target concept or in
the target concept and not in the hypothesis. When the error is small,the
hypothesis is a good approximation to the target concept. 

Valiant’s model for learning is also known as the PAC (Probably
Approximately Correct) model. A hypothesis f is said to be approximately
correct with accuracy ∈ if E(f) ≤ ∈ where E is the function returning the

.
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probability of error. We say a learning program is probably approximately
correct with probability δ and accuracy ∈ if Prob(E(f) > ∈ ) < δ where f is
the hypothesis output by the program and Prob is the probability function.

Given the preceding analysis on the growth function and VCdim, we
can determine the number of training instances required for good gener-
alization. Eric Baum and David Haussler6 show that if m≥ O[(NW/∈ ) log
(Nn/∈ )] (assuming 0 < ∈ ≤ 1/8) random examples are used to train a per-
ceptron with Nn computing nodes and Nw weights,the network will cor-
rectly classify a fraction of 1 − ∈ of future examples drawn from the
same distribution.

Given a feedforward multilayer neural network Rwith Nw adjustable
weights,suppose the connection weight is quantizable into q levels. I
have shown3 that the network trained on a set of m random instances is
probably approximately correct with probability δ and accuracy ∈ if

m≥ (ln(1/ δ) + Nwln q)/ ln (1/1 − ∈ ).

We can derive the sample complexity of the defined expert network from
this result using the equality

Nw = (d + 2)Nh .

It follows that the expert network trained on a set of m random instances
is probably approximately correct with probability δ and accuracy ∈ if

m≥ (ln(1/ δ) + (d + 2)Nhln q)/ ln (1/1 − ∈ ).

Reduced network architecture 

One approach to preventing data overfitting and improving neural net-
work generalization is to simplify and regularize the trained neural net-
work. For instance, we can build in an a priori bias in favor of simple
models where there are not too many strong interactions between the
model variables. Weight decay implements this idea by introducing an
extra term into the error function so that weights not reinforced in the
error-minimization process are decayed to a small value.

Network pruning improves network generalization. The idea is to
prune connections or nodes that are relatively less important to network
performance and tend to cause some degree of overfitting to the training
data. Indices are available for measuring how sensitive the change in the
node activation or in the weight value is to the network output. This
would reflect the criticality of each node or weight in the network. The
least critical nodes or weights are the candidates for pruning.2

The certainty-factor-based neural network takes a simple procedure for
network pruning. After training, this network deletes all weights with
magnitude below 0.2. We can justify this procedure by the empirical ob-
servation that certainty factors can be perturbed in a small range up to 0.2
with little effect in the quality of the network output. Another round of
backpropagation then follows the pruning operation to ensure that the
error criterion is minimized.

That a pruned neural network can generalize better than its parent
network is not only an empirical observation but can be shown theo-
retically. If a pruned network learns the same number of randomly
drawn training instances as its parent network, the former provides
more accurate generalization than the latter from the PAC learning
perspective.

Theorem 1. A feedforward multilayer neural network Rhas Nw ad-
justable weights. Suppose the connection weights are quantizable into q
levels. The network that learns a set of m random instances is probably
approximately correct with probability δ and accuracy ∈ then

∈ > 1 − (δ / qNw)1/m 
.

Proof. Let H be the space of all possible weight settings for network R.
For a function f implemented by a certain weight setting in H that is not
correct,E(f) > ∈ where E is the function returning the probability of er-
ror. So,the probability of f being correct on a single instance is ≤ 1 − ∈
and the probability of f being correct on all m instances is ≤ (1 − ∈ )m.
Then the probability that there exists a function implementable by a
weight setting in H that is consistent with the m instances but is not ap-
proximately correct is at most |H|(1 − ∈ )m. Solving the constraint 
|H|(1 − ∈ )m < δ, we obtain

∈ > 1 − (δ / |H|)1/m .

The result follows because under the quantization scheme, |H| = qNw.
This theorem provides an estimate of the lower bound of the general-

ization error of the neural network for a given probability δ and the num-
ber of training instance munder the PAC model of learning. Suppose we
define

∈ l = 1 − (δ / qNw)1/m ,

where ∈ l refers to the lower bound of the generalization error from the
PAC learning perspective. Then we have the following result.

Corollary 2. A neural network R1 with N1 weights reduces to a smaller
neural network R2 with N2 weights. N2 < N1. If both networks learn the
same m random instances,network R2 has a better generalization accu-
racy than network R1 with respect to ∈ l. That is, ∈ l(R2) < ∈ l(R1).
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neural networks, ID3 is based on decision
trees,Cobweb is based on probabilistic the-
ory, and the nearest-neighbor algorithm and
its weighted version (Pebls) are related to
instance-based reasoning.

The reduced neural network also offers a
nearly tenfold information-processing speed-
up because it has about one-tenth of the num-
ber of the original network’s connection
weights.

Exon-recognition-system performance.
Once the system recognizes the splice junc-
tions,recognizing exons is a simple matter
because an exon is associated with a pair of
IE and EI borders. However, as research indi-
cates,the splice-junction recognition proce-
dure often produces numerous false-positive
results.1 Fortunately, content-based check-
ing can remove as many as 90% of false
exons. Each hypothetical exon is subject to
the evaluation of its protein-coding potential;
if the potential is low, it is removed.

This study used the trained expert network
to infer IE or EI boundaries at each position
in the DNA sequence on the basis of the nuc-
leotide composition in its adjacent 60 posi-
tions (30 on either side). Each recognized IE
or EI junction received a score based on the
network output’s activation level that re-
flected the posterior probability of the out-
put concept for the input sequence.

I then used the following heuristics to
process recognized IE and EI boundaries in
generating a given DNA sequence’s exon
locations. This approach recognized exons
by pairing each recognized IE border with
the most adjacent EI border down the se-
quence. If two IE borders shared the same EI
border, it removed the one with a lower score
as well as exons of length less than 30 bases.
In this way, I built the computer program
EXON-ENet for exon recognition,which I
then evaluated by comparing it with Grail,1

a heavily used government-sponsored Inter-
net server for DNA sequence analysis and
gene modeling. Unlike Grail, the EXON-
ENet uses no sophisticated content-based
knowledge or features for rejecting implau-
sible exons.

For this study, the EXON-ENet predicted
IE and EI junctions and used them as the
basis to predict exons for the gene sequences
in the second data set. The Grail server
processes requests and returns results via
electronic mail. The results presented here
were generated by Grail-2 (version 2). Table
2 shows the exons identified by Grail and the

EXON-ENet corresponding to the real exons
documented in the gene bank. An exon
counts as correctly identified if at least one
junction (IE or EI) is exactly identified or if
the overlapped length exceeds half the aver-
age length of the candidate and the real
exons. I used this fuzzy criterion because the
problem is typically noisy. Such studies typ-
ically measure performance level by the
recognition and false-positive rates, with
recognition rate being the number of real
exons identified over the total number of real
exons,and false-positive rate the number of
falsely identified exons over the total num-
ber of identified exons. 

In this study, the average recognition rate
and the false-positive rate for Grail are 0.55

and 0.08; those for the EXON-ENet are 0.85
and 0.15. Thus, the EXON-ENet outper-
forms Grail by a large margin in terms of the
recognition rate. EXON-Enet’s higher false-
positive rate arises because it does not ana-
lyze the protein-coding potential for exon
candidates whereas Grail does. Also, the
region of 30 base pairs on each side of the
splice junction does not contain enough
information for the EXON-ENet to learn pro-
tein-coding features.

The number of falsely identified junctions
grows as the sequence under processing gets
longer, which leads to a combinatorial prob-
lem in generating potential exons. This prob-
lem is not so severe in this study because the
genes under test all have short sequences of
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Table 2. The exon regions identified by Grail and the EXON-ENet in correspondence with the real exons 

DNA LENGTH EXON EXON EXON

SEQUENCE LOCUS (BP) (REAL) (GRAIL) (ENET)

1 HSCD36G8 107 [31, 77] NF [31, 77]
2 HSCD36G15 684 [31, 654] NF NF
3 HSFASX567 1814 [308, 369] [308, 369] [128, 369]

[522, 584] NF [522, 584]
[1768, ≥1814] [1768, 1813] NF

4 HSZ75172 792 [1, 270] [12, 270] [73, 270]
[517, 792] [537, 791] [534, 733]

5 HSIGMAAA 1029 [524, 571] NF NF
[675, ≥1029] [677, 1028] [673, 820]

6 HSMUCIN5B1 700 [≤1, 526] NF [437, 526]
7 HSMUCIN5B2 3616 [266, 447] [266, 447] [266, 447]

[733, 904] [733, 916] NF
[2021, 2280] [2021, 2280] [2021, 2280]
[2623, 2809] [2623, 2809] [2778, 2809]
[2975, 3200] [2975, 3200] [2975, 3200]
[3315, 3490] NF [3315, 3490]

8 HSMUCIN5B3 1426 [101, 170] NF [101, 170]
[616, 716] [616, 773] [456, 773]
[1186, 1217] NF [1186, 1217]

9 HSSORD01 249 [≤155, 220] [70, 220] [52, 220]
10 HSSORD02 167 [56, 89] NF [56, 89]
11 HSSORD03 276 [48, 212] [62, 212] [48, 181]
12 HSSORD04 278 [67, 226] [67, 239] NF
13 HSSORD05 194 [41, 159] [89, 193] [41, 159]
14 HSSORD06 171 [63, 128] NF [63, 128]
15 HSSORD07 275 [65, 240] [65, 248] [124, 248]
16 HSSORD08 1377 [105, 226] [105, 226] [105, 226] 

[1155, ≥1377] NF NF
17 AB004057 752 [85, 194] NF [85, 194]

[296, 458] NF [296, 458]
[547, 653] NF NF

18 HSKAMS01 1086 [736, 814] NF [623, 814]
19 HSKAMS02 261 [136, 217] NF [136, 217]
20 HSKAMS03 434 [211, 293] [231, 293] [211, 293]
21 HSKAMS04 490 [166, 238] [166, 238] [166, 238]
22 HSKAMS05 283 [76, 200] [76, 200] [76, 200]
23 HSKAMS06 197 [42, 116] NF [42, 116]
24 HSKAMS07 413 [114, 215] [114, 253] [114, 215]
25 HSKAMS08 953 [178, 381] [178, 411] [178, 383]

[655, 738] [655, 744] [655, 717]
26 HSPPP1R2E1 476 [20, 439] NF [240, 439]
27 HSPPP1R2E2 198 [35, 142] NF [35, 142]

.



no more than a few thousand base pairs.
However, without using protein-coding fea-
tures,the EXON-ENet cannot very well pre-
dict exons in long gene sequences,while
Grail does better on long sequences.

IN THE FUTURE,WE CAN IMPROVE
splice-junction prediction by exploiting
already detected high-order statistical depen-
dencies or correlations of the signal se-
quences. Explicit representation of such
information in the input enables the neural
network to explore deeper statistical struc-
tures on this basis rather than from scratch.

Work is underway to integrate such features
into the EXON-ENet.1,10,11
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documented (bp: base pair; NF: Not found).

DNA LENGTH EXON EXON EXON

SEQUENCE LOCUS (BP) (REAL) (GRAIL) (ENET)

28 HSPPP1R2E3 160 [25, 102] NF [?, 102]
29 HSPPP1R2E4 130 [16, 110] NF [?, 110]
30 HSGNBPB39 376 [36, 237] [100, 237] [17, 174]
31 HSGNBPB38 165 [56, 122] NF [26, 122]
32 HSGNBPB37 290 [77, 239] [77, 211] [77, 239]
33 HSGNBPB36 150 [38, 101] NF [38, 76]
34 HSGNBPB35 741 [575, 681] NF [575, 713]
35 HSGNBPB34 975 [166, 204] NF [166, 204]
36 HSGNBPB32 440 [69, 233] NF [69, 174]
37 HSGNBPB31 779 [191, 400] NF [254, 399]
38 HSGNBPB11 1085 [928, ≥1034] [928, 1034] NF
39 HSTCRHJC 650 [21, 63] NF NF

[178, 488] NF [178, 292]
40 HSTCRHJA 517 [38, 349] NF [38, 415]
41 HSFGF8S1 265 [≤96, 127] [96, 127] [34, 127]

[220, 256] NF [220, 256]
42 HSFGF8S2 256 [46, 226] [79, 226] [150, 226]
43 HSFGF8S3 167 [16, 122] NF [16, 122]
44 HSFGF8S4 402 [29, ≥319] NF NF
45 HSLICAM 418 [82, 197] [90, 197] [90, 256]

[401, ≥418] NF NF
46 D83261S1 870 [669, 760] [650, 760] [16, 760]
47 D83261S2 1192 [56, 140] [65, 140] [56, 140]

[234, 333] [234, 333] NF
[837, 982] [837, 982] [837, 982]

48 D83261S3 2471 [338, 414] [338, 414] [338, 409]
[544, 610] [544, 610] [544, 610]
[747, 808] NF [672, 808]
[1075, 1151] [1033, 1151] [1033, 1153]
[1535, 1589] [1535, 1589] [1420, 1589]
[1737, 1785] [1737, 1785] [1737, 1785]
[1883, 1953] [1883, 1960] [1883, 1960]
[2063, 2173] [2073, 2173] [2063, 2094]
[2278, 2471] NF NF

49 HSIGG1CP 2802 [212, 505] [212, 318] [212, 505]
[897, 941] NF [692, 941]
[1060, 1389] [1113, 1389] [1060, 1198]
[1487, 1809] [1487, 1793] NF

50 HSAPOA2G 2928 [912, 945] NF [905, 945]
[1115, 1190] [1115, 1190] [1115, 1382]
[1484, 1616] [1504, 1616] [1540, 1616]
[2012, 2241] [2012, 2129] [1829, 2277]

.


