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N THE 45 YEARS SINCE THE DIS THE EXPERT NEURAL NETWORK SYSTEM THE AUTHOR HAS
covery of DNAs helical structure, scientists

have made great strides in exploring hunjan  DEVELOPED FOR USE IN DNA SEQUENCE ANALYSIS COMBINES

DNA's structure and locating human genes. A TRADITIONAL SYMBOLIC EXPERT SYSTEM WITH AN ARTI-
As part of that effort, advanced recombinant
DNA and gene-mapping techniques devel- FICIAL NEURAL NETWORK. THE RESULTING HYBRID SYSTEM

oped over the last two decades have ledto an AN ACCURATELY MODEL UNDERLYING DOMAIN KNOWLEDGE
unprecedented effort to map and sequence the

entire human genome under the auspices of TO IMPROVE ACCURACY, GENERALIZATION PERFORMANCE, AND
the Human Genome Project (see the sidehar). _

The huge amount of data the HGP pro- INFORMATION=-PROCESSING SPEED.
duces will require high-performance co
puting and more intelligent computer algo-
rithms for analysis and inference, needs that
the emerging field of computational molec-
ular biology is addressing. Interest has beea neural network to creaté&aowledge-based bolic expert system. In one implementation
growing in exploring such Al tools as searchheural networkhas quickly become an im- the expert network combines a neural ne
algorithms, machine-learning techniquesportant hybrid-intelligence research areawork’s computational framework with an
and knowledge-based systems for DNAEmpirical observations indicate that suchexpert system’s inference engine. We call
sequence analysis. Recently, the neural-
work model has emerged as a promising/Aind symbolic approaches. This integratetion on the certainty factor model of Mycin-
technique in this regard because this apapproach involves mapping a set of symbolitike systems &F-net® This article describes
proach might well embody important aspectsules that encode available domain knowlmy successful attempt to apply the CF-net
of intelligence not captured by symbolic andedge into the neural computing architecbDNA sequence analysis (see the “Expert ne
statistical methods. turez®and requires innovative methods fowork” sidebar for a description of the exper

An important direction in this work iny extracting symbolic knowledge from |anetwork model, its learning theory, and th
volves integrating multiple, fundamentally trained neural network>-2 neural-network pruning involved). As I'll
different Al approaches into singhg/brid Called expert networksn some cases, show, the CF-net uses as the system input t

intelligent systemsayhich let each compo; these knowledge-based neural networks peDNA nucleotide sequence rather than pre

nent perform the tasks for which it is bestform as well as human experts and oftedefined relative frequency measures as
suited. Integrating symbolic knowledge intoexhibit characteristics of a traditional sym-existing exon-prediction systerh$%11

esystems can outperform both neural-netwprkeural network that bases the activation func

t
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The Human Genome Project

The Human Genome @ject bgan as a joint inititve of the USS
Department of Enegy and Naional Institutes of Health thaow brings °
scientifc resouces fom aound the wrld to bear on the pblem of
mgpping and sequencing the eatiruman gnome—the collection of all  «
100,000 humanenes—Ily the year 2005. icially begun in 1990this
project should be arga boon to human healtior exkample ly improv-

ing genetic-level diagnosis and gne theapy.

Ultimately, this pioject mg help usher in a meera of molecular
medicine in vinich doctos do not so mch trea symptoms as tlyedo
look into the depest causes of diseases. If it caovjate a thoough
molecularlevel undestanding of hev humans deelop fom embyo to
adult,wha males us ti& biologically, and hav things can g wrong,

this pioject ma well lead to

* highly tamgeted phamnaceuticals thzettadk both heitable and com

timely tregment;
deeper undestandin
when coupled with
diseases; and

* the possibility of ac

For more information

hugh_hist.htmland“To
Pubications/TKO.

municdive diseasest ¢heir moleculardundaions;
quick and moe accuate diagnostic pocedues tha provide moe

Medicine:About the Human Genome ResgaPoject:at http://
wwwnhgi. nih.gov/Policy_and_pubc_affairs/Communications/
Pulbications/ Mags_to_medicinekaout.htm] “History of the DOE
Human Genome Bgram” at http://wwwer.doegov/production/ober/

g of gnetic susqatibilities to disease tha
@ventdive theepies will thwart cetain

tuafl correcting cetain genetic deécts.
regarding this poject,see‘From Mas to

Know Ourselves”at http://wwwibl.gov/

The DNA sequence analysis
problem

A crucial poblem in molecular biolgy is
identifying nev genes. Genes deteine a
biological beings developmentappeaance
and behwior, and ae caried by the dro-
mosomes in the celludeus.The rumber of
chromosomes aries with the specieA
chromosomes biochemical composition is
characteized ty a long sting (sequence) o
DNA nudeoctideswhich are hug biohem
ical molecules. Genesabiodhemical units
that are identifed from the DM\ sequence
and cary heeditay chaacterstics from par
ent to ofspring. Genotypeefers to an indi
vidual’s or oganisms genetic constitution,
while phenotypeneans the indidual’s ob
senvable characteistics or taits,as deter
mined ly the genotype and the gmonment.
A genomaes the collection of all an gan
ism’s genes.

Sequencing an enéiigenome is a system
atic approad for uniaveling the seat of life.

However, knowing the DNA sequence doe
not necessdy mean undetanding it. Some
pat of the sequence might cooltthe expres
sion of the gnes of another pafor instance
and some gnes might not bexpressve &
all. The same DN sequence can pduce
very different poteins,depending on Wiere
the piocess bgins.

Undesstanding the humaregomewhich
consists of billions of mdeotides,poses an

s and the synthesis ofgtein on the RN tem-

plate (translaion). In eukayotic cells (cells
with visibly evident rudei and oganelles)a
gene intudes egions peceding anddilow-
ing the potein-coding egion and consists of
altemating sgments of gons and inns.
An exonis a rudeotide sequence thés
expressed or anslded into potein,whereas
anintronis an intevening sequence thés
transcibed (into RM\) but later eliminaed

enomous highly comple task and demands from the tanscipt by splicing its adjacent

a heuistic goproad to information process
ing. Scientists need txploit existing bak-
ground knavledge gethered from sud fields
as moleculargneticshiochemisty, and bie
physics to &cilitate this undestanding po-
cess because this kmledge can ule out
mary incorect intepretaions of the DM
sequence ancegeete plausite hypotheses
for expeiimental \erification. Both heustic
and knavledge-based irdrméetion process
ing lie & the hearof Al

Gene gpression inolves the synthesis 0
RNA on the DM\ templae (transciption)

Exon Intron Exon Intron Exon
Gene
IE junction
—~—— Intron ¢ Exon
0.00000.00m LIl 1]
Position: 4-3-2-1+112+3+4
Pattern: YAGG
El junction
Exon Intron
eeoe 00000000000000 0000000 CK) (11}
Position: —4-3-2-1+1+2+3+4454647
Pattern: MAGGTRAGT

Figure 1. Splicing junctions of a gene.

exons.Therefore, only exons epresent the
maure gene The splice junctionsfer to the
points where splicing taks placeBecause
the DNA sequence is dered, a splice june
tion can be eithen@n-intron (EI) or inton-
exon (IE) (see Fyure 1).

Given a DM\ sequencgthe fundamental
gene-identifcation issue is to deterine the
presence and lotian of genes in the se
guence Seaching for special signalegions
sud as pomotes (the initidion sites of tan

f sciiption) or splice junctions is on@proad.
Measuing the Baures hamacteistic of pro-
tein coding fom s@ment to sgment is
anotherlIn either casexon identifcation is
an essential spetovard eukayotic gene
modeling

Applying CF-Net to DNA
sequence analysis

As we'll see in applying hybrid-intelli-
gent-system proadies to the mblem of
DNA sequence angsis,a reduced newl-
network architectue impioved the netwrk-
genealizaion perbrmance Futhemore,
using the rpett network for splice-junction
recaynition worked well for building a pac
tical system dr identifying exons in DNA
sequences. In cortst to other kneledge-
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based newl-network reseach,24°1 did not
inset the pror domain theor into the neual
network, which means thiathe neual net
work must discoer the thegyr inductively
from empiical daa.

Data desciiptions. The frst dda set usedi
this stug concens pimate splice-junction
gene sequences (skp.ics.uci.edi® The
daa set contains 3,190 instances. licae
stance consists of a sequence of 60AD
nudeotides of bur base typeg: (adenine),
G (guanine)T (thymine),and C (gtosine),
and a ldel indicding one of the thee possi
ble dassesiE (an inton-exon bounday—
called an acqaor),El (an exon-intron boun
dawy[ called a donorgnd N (neither IE nor
El). There ae 768 instances in the IEtea
gory, 767 instances in the El tegory, and
the emaining 1,655 instances in the neit
category.

The position in edtinstance sequence
specifed reldive to the boundsuin the mid
dle. There ae 30 udeotides bedre and 6l-
lowing the bounda;, coresponding to the
positions—1 to—-30 and +1 to +30There is
no position ero. Thus,given a position in
the midile of a windav of 60 DNA elements,
an instance tells thegsence of an |&r El,
or neither boundgrAt ead positiona car
acter denotes theunleotide type So,the
sequence tas the orm of AGCTGTTG
CGG.... In some casethe base type is am
biguousy specifed, imparting some dgree
of missing inbrmation. For example the
character‘R” refers to“A” or“G.”

| sampled the secondtdasetwhich con
tains 50 human enes (DM sequences)
from the N&onal Institute of Healtls gene
bank bttp://wwwncbi.nim.nih.gv). In con
trast to theifst daa set,the second set’
DNA sequences lva \aiiable lengthswith
the rumbes of rucdeotides angng from
hundeds to a éw thousand Thus, one
instance in the second set caengete
numepus instances as dedd in the if st set.

| used theifst dda set to tin the neuwal
network, leam domain knwledge, and eal-
uae the perdrmance of the leaing system,
while | used the second tdaset to ealuae
the perbrmance of the EXON-ENet (ele
scribed laer) versus the Gail system 6r
exon recaynition.

Reduced-e&pert-network performance
The neual network has 241 input units
including the bias unitpne hidlen lg/er of
five hidden unitsand one output. Eadnput

Table 1. Cross-validation experiment results. (CV-error is cross-validation error, MSE is mean-squared

error, and CLE is cl

assification error).

EXPERIMENT A

ExPERIMENT B

TRAIN TesT TRAIN Test CV-ERROR
Network Concerr  MSE CLE MSE  CLE MSE CLE MSE CLE MSE CLE
Original IE 0.028 0.023 0.033 0.029 0.026 0.023 0.034 0.036 0.034 0.033
Original El 0.022 0.021 0.022 0.026 0.018 0.014 0.026 0.033 0.024 0.030
Reduced IE 0.025 0.028 0.028 0.034 0.024 0.026 0.029 0.033 0.029 0.034
Reduced  El 0.023 0.030 0.021 0.024 0.017 0.025 0.023 0.028 0.022 0.026

DNA sequencedr processing consists of 6
nudeotides. In the netark, the rudeotide &
Nead position is encodedytiour input units
design&ed ly A, G, T, and C. kgure 2 shavs
the achitectual view. The oiginal neual
network is fully connected beteen adjacen
layers,while the educed netark is spasely
connected| used the same neimetwork
structure in both leaming tasks (learing IE
and El). | wote the softwre used hex in
Lisp and hae pulblished a C ersion in
eNeural Networks in Computer Intellignce®

| evaludged genenlizaion perbrmance
susing twofold cross-alidation. The twofold
cross-\alidation eror is the aerage test
error, detemined ly randomy dividing the
instances into tev sets and using one as t
training setand the other as the test setd
then vice ersa. In leaning the IE junction,
my evaludion consideed all the d&a sets
non-IE instances as gative instances.
Table 1 shavs the esults of the @ss-
validaion expeiiments in the domain o
splice-junction angkis.This teble lists two
types of erors: the mean-squad eror

between the actual netwk output and the

target output alue and the tassifcation
eror. Because the modslhetwork output
value is corified to the ange of 0 to 1the
network classifes a gven instance as a po
itive instance if the netwk output alue is
greaer than 0.50r else it is a ngative

OinstanceThe MSE eror and the lassiica
tion eror are geneally in agreemental-
though in some cases a smaller MSier
might be assoctad with a slighty larger
classifcation eror. When the netark out
put\alue is intepreted as the poster prob-
ability of the output congat for a gven
instancethe MSE eror indicdes the accu
ragy of sud probability estimaion.

The reduced newl network has a better
MSE eror than the aginal network in both
leaming tasks (leaning IE and El junctions).
For dassifcation error, the leduced netark
performs better in leaning El junctions and
about the same in leing |IE junctionsgom
pared with the aginal network.

he In a pevious stug, the tenbld cross-

validation dassifcation error rates on 1,000

randomy drawn instancesdr leaning El

and |E junctions wre 0.024 and 0.026es
pectiely, with the oiginal expert network.

This result supasses those on the samtada

set eported elsavher®> Kbann (0.076,

0.085),MLP with bakpropagation (0.057,

0.11),Pebls (0.0820.076),perceptron (0.16,

0.17), ID3 (0.11, 0.14), Cobweb (0.15,

0.095),and neagst-neighbor (0.12).091),

where the frst umber in the panthesis is

the El eror rate and the second is the |Ear
rate. Among these tdmiquesKbann elies
on knavledge and dificial neual networks,
the MLP and the peeptron ae atificial

L__1 Output (signal)

Hidden layer
(feature extraction)

O Input sequence

Figure 2. The expert network architecture for learning splic

ing junctions.
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Expert network

We can érmally defne a neual network model using adur-tuple<s,
W, L, F>, where Wis a set of wights (), L is a set of learing opea-
tions (op), F is a set of netark activation functions f,), andSis further
defined ly a pair<N, C>, where N is a set of nodes)) andC a set of
connectionsAssumen nodes in the netark. We hae the dllowing
definitions:

N={n|1<n}

CD{(ni - nJ)|15|,an}
WoO{(n - nj,VVji)llii,j <n}
L ={lops, lopa, -}

Fz{facﬂ.r fac|21 }

Ead leaning opestion transbrms one new network to another &
weight adatation or stuctural change.

Under this 6rmal defnition, the expett network model br our gplica
tion works as bllows. The netvork is a two-layer, feedbrward, fully
connected ahitectue with one hiden lajerL = {l,}, wherl,,is the
standad badpropagation algorithm.! F = {foe} where fr is the actia-
tion function based on the tainty factor model of Mycin-like expett
system&3The weight \alues a& confned to the ange from -1 to 1 and
the weights betveen the hiden and the outputyar ae further lesticted
to nonnegative values:-1<w; <1 for all 1<i, j < n, wherw; is the
weight associed with the connection pointingoim node to nodgj, but
0<w; <1if nodej is an output unit. Unlié hicden unitsall output units
have no,or zero, bias:w;;, = 0 if nodej is an output unit Wwere b desig
naes the bias unifhe actvation levels ae in the ange of-1to 1:-1<
0, <1 for all 1<i <nwher o, denotes the asfition level & nodei. |
have adopted the CF-based aation function because it can ingwe the
neurl network’s genenlization cgability of the neual network.3

Learning theory

TheVapnik-Chewonenkis dimensiorofms an impaeant basisdr
measting the caacity of a makine-leaning or patem-dassifcation
systenf>

Given a set of instanc&sa concet hypothesishin H can patition the
set into tvo groups:the instances in one@up sésfy the typothesish and
those in the otherrgup do notThe patition is called the dieotormy in-
duced ly h. H can be aless of {0,1}-valued function$ in which a di
chotony induced  fis a patition of Sinto two disjoint subsetS" andS
sud tha f(x) = 1 forx 0 S" andf(x) = 0 for x O S". The maxinum rumber
of dichotomies inducedybhypotheses il on ary set ofminstances is the
growth functionof H with respect tan. TheVapnik-Cheronenkis dimen
sion (VCdim) ofH is the lagestm sudh tha the coresponding gwth
function is equal to™2 That is, H can induce all posdidichotomies ofm
instances @wn from the instance space if andifiithe VCdim of H is m.
In this way, theVCdim of H measues the cpacity ofH.

The netvork’s genearlization eror is the diference betwen the gn-
eralization on the taining daa (which forms an estima of the tue gen
eralization) and the gnealization on the actual pblem. Because the
network tends toit the training dda, the genealization with respect to it
will be overly optimistic However, in mary casesthe genealizaion

2 [ONy/2 Od < VCdims 2N,, log(eN,),

whetre [Tis thefloor opertion tha retums the lagest intger less than
its agumentN, is the mmber of hidlen unitsN,, is the mmber of
weights,N, is the mmber of computing nodes in the netl, eis the
base of the rtaral logarithm, andd is the mumber of input unit§:” The
upper bound holds no riter what the umber of lgers and the connec
tivity. As a ule of thumbthe rumber of veights can iye a bugh esti
mate of thevVCdim. TheVCdim of a neual network using the sigmoid
activation function is actuajl larger than thain the had-limiting case

What if the neual network uses the CF-based aetion function?
Expeience with &pert systems shas thd the systens condusion is
insensitve to the bange of CFs up t&:0.28 This obsevation sugyests
tha we can quanti continous CF alues into a smallumber of inter
vals with little dhange in the systers’condusion.Weight quantizhility
gives a diferent pespectve to compute theyipothesis space’cadinak
ity and hence the nealretwork’s leaning cgacity. Elsevhere, | pro-
vide the frst anaysis of this case and demoraerempircally tha the
CF-based neat network can gnealize better fom a limited mmber of
training instances than thautfitional sigmoid-function neat network.3

Given neual network Rwith a single outpuassume thethe connec
tion weight is quantizale intoq levels. Eab weight setting is assoc¢ed
with a mahemadical function thathe netvork uses to lassify objects.
GivenN,, adjustdle weights,the cadinality of the lypothesis spadd of
all possilte distinct weight settings ig\, which bounds fom éove the
number of possile functions computedytthe netverk under the quanti
zdion stheme LetVCdimM(R) =v. Ther «ists a set o¥ distinct in
stancesdr which 2’ distinct functions & required to brm all possile
dichotomiesTherefore,

VCdimR) =v<logH| =N, log g.
In the deined expert network with a single output
Ny = (d + 1Ny + Ny,

whete the frst tem counts the umber of veights between the input and
the hidden lgzer and the second tarthe umber of veights between the
hidden lag/er and the output. Recall trdhis the input dimension arid}, is
the rumber of hidlen units. Combining similar tes yields

Ny = (d+ 2)N,.
The esult bllows:
VCdimR) < (d + 2)N, log g.

We might then ask omary training instances anequired for valid
genenlization. Sample compbeaty refers to the nmber of andom &am-
ples neededdf a leaning system to mduce a fipothesis thiis corect.
UsingValiant's notion? we s tha a dass of taget concets is‘leam-
able” if the following condition is metor every concept in the ¢ass and
with ary probability distribution on the instance spatleere exists a poy-
nomial time algrithm tha can poduce a hipothesis sutthd its proba
bility of error has a small upper bourithe pobability of error is reldive
to the distibution of instances and is d&éd as the mbability of in-

error can be bounded (eovst-case angbis),and this bound can be made stances thzare either in the ypothesis and not in the t@t concet or in

arbitrarily small by increasing the amber of taining instance&/apnik
and Chevonenkis shw tha a useful bound can be dsitahed when the
number of taining instancesxeeeds th&Cdim.# Assume the halrlim-
iting actiation function.TheVCdim of a one-hiden-lgyer peceptron
with full connectvity between the Igers is in the ange

the taget concet and not in theypothesisWhen the aor is smallthe
hypothesis is a@pd gproximation to the taget concet.

Valiant’s model ér leaning is also knan as the RC (Pobéably
Approximately Comrect) modelA hypothesid is said to be gproximately
comect with accuaey U if E(f) < Owhere E is the functionetuming the
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probability of error. We sg a leaning program is pobably approximately
correct with pobability dand accuagy [ if Prob(E(f) > [0) < dwherefis
the typothesis outputybthe pogram andProbis the pobability function.

Given the peceding anaskis on the gowth function and/Cdim, we
can detemine the mmber of taining instancesequired for good gener
alization. Eiic Baum and Deid Haussle? shaw that if m=> O[(Ny/C) log
(Ny/O)] (assuming 0 €I < 1/8) andom &amples a used to &in a per
ceptron with N, computing nodes and,, weights,the netvork will cor-
rectly classify a faction of 1- 0 of future eckamples dawn from the
same disfibution.

Given a eedbrward multilayer neual network Rwith N,, adjustdle
weights,suppose the connectioreight is quantizale intoq levels. |
have shevn® tha the netvork trained on a set ah random instances is
probably approximately corect with ppbability dand accuagy [ if

mz2 (In(1/ ) + NyIn @)/ In (1/1- ).

We can deve the sample complity of the defned epert network from
this result using the equality

Ny = (d+ 2Ny

It follows tha the expert network trained on a set ahrandom instances
is probably approximately comrect with pobability dand accuacy [ if

m= (In(1/9) + (d + 2)NyIn g)/ In (1/1- 00).

Reduced network architecture

One gproad to peventing déa overfitting and impoving neuel net
work genealization is to simplify andegulaize the tained newal net
work. For instancewe can hild in an a piori bias in Bvor of simple
models vihere thee ae not too mayi strong inteactions betwen the
model \ariables.Weight decg implements this ideaybintroducing an
extra tem into the eror function so theweights not einforced in the
error-minimization process & decged to a small alue

Network pruning impioves netwrk genealizaion. The idea is to
prune connections or nodes tlage relaively less impatant to netwrk
performance and tend to cause somgree of werfitting to the taining
daa. Indices & available for measung hav sensitve the bang in the
node actiation or in the veight \alue is to the netark output.This
would reflect the citicality of ead node or wight in the netwrk. The
least citical nodes or wights ae the candidas br pruning?

The cetainty-factorbased neal network takes a simple mcedue for
network pruning After training, this netvork deletes all wights with
magnitude belar 0.2.We can justify this prcedue by the empiical ob-
sewation tha cetainty factors can be péurbed in a smallange up to 0.2
with little effect in the quality of the netwk output.Another ound of
badkpropagation then dllows the puning opestion to ensue thd the
error chiterion is minimizd

Tha a puned neual network can gnealize better than its pant
network is not ony an empiical obsevation but can be shen thee
retically. If a puned netwrk leams the sameumber of andomy
drawn training instances as its et netvork, the former povides
more accuate genealization than the Iter from the RC leaning
perspectve.

Theorem 1.A feedbrward multilayer neual network R hasN,, ac
justable weights. Suppose the connectioeights ae quantizhle intoq
levels.The netverk tha leains a set o random instances isgably
approximately corect with pobability dand accuacy [ then

0>1- (5/ qNW)1/m.

Proof. LetH be the space of all posihweight settingsdr network R.
For a functiorf implemented § a cetain weight setting irH tha is not
correct,E(f) > 00 wher E is the function etuming the pobability of er-
ror. So,the pobability of f being corect on a single instancessl - [
and the pobability of f being corect on alminstances is (1 - )™
Then the pobability that thele eists a function implemenivée by a
weight setting irH that is consistent with theninstances tit is not @-
proximately correct is @ most H|(1— 0)™. Solving the consaint
|H|(1- 0O)™< o, we obtain

0> 1-(8/ Hm.

The esult bllows because under the quantiaa scheme |H| =g\™.
This theoem povides an estinta of the lover bound of theeneal-
ization eror of the neuwal network for a gven pobability dand the om-
ber of taining instancenunder the RC model of leaming. Suppose &

define

0, = 1- (8/ gyt

where [, refers to the laver bound of the enerlization eror from the
PAC leaning pespectve. Then we have the bllowing result.

Corollary 2. A neurl network R; with N; weights educes to a smaller
neurl network R, with N, weights.N, < N;. If both netvorks lean the
samemrandom instancesetwork R, has a betterenerlization accu
ragy than netwrk R, with respect td],. That is, [;(Ry) < O|(Ry).
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neurl networks, ID3 is based on decision
trees,Cobweb is based on pbabilistic the
ory, and the neast-neighbor algrithm and
its weighted \ersion (Rebls) ar relaed to
instance-baseeasoning

The leduced newl network also ofers a
neaty tenfold information-processing speed
up because it habaut one-tenth of theum-
ber of the oiginal network’s connection
weights.

Exon-recaynition-system perbrmance
Once the systenecanizes the splice junc
tions, recaynizing &ons is a simple niter
because arnxen is associad with a pair of
IE and El boders. Havever, as eseath indi
caes,the splice-junctionecaynition pioce
dure often poduces nmepous &lse-positie
results! Fortunaely, content-basedhek-
ing can emove as may as 90% of dlse
exons. Eah hypothetical &on is subject to
the evaludion of its potein-coding potential;
if the potential is lw, it is removed

This stug used the @ined epett network
to infer IE or El boundaes d ead position
in the DNA sequence on the basis of then

leotide composition in its adjacent 60 posi

tions (30 on either side). Baecaynized IE
or El junction eceved a sca based on the
network outputs actvation level tha re-
flected the poster probability of the out
put concet for the input sequence

I then used thedllowing heuistics to
process ecaynized IE and El boundas in
genegting a gven DNA sequences exon
locaions. This gproad recaynized exons
by pairing eat recagnized IE boder with
the most adjacent El bder davn the se
quencelf two IE boders shaed the same El
border, it removed the one with aleer scoe

as well as &ons of length less than 30 bases.

In this way, | built the computer gogram
EXON-ENet br exon recagnition, which |
then waluaged by compaing it with Grail,*
a heaily used gvemment-sponsead Inter
net sever for DNA sequence angsis and
gene modelingUnlike Gnril, the EXON-
ENet uses no sophistieal content-based
knowledge or kaures br rejecting implau
sible exons.

For this stug, the EXON-ENet pedicted

IE and EI junctions and used them as the

basis to pedict xons br the gne sequences
in the second da set.The Gail sewer
processeseaquests andetums results via
electionic mail. The esults pesented her
were geneeted by Grail-2 (version 2).Table

2 shavs the &ons identifed by Grail and the

EXON-ENet coresponding to thesal exons
documented in theeme bankAn exon
counts as coectly identified if & least one
junction (IE or El) is gactly identified or if
the overlapped lengthxceeds half thever-
age length of the candide and the eal
exons. | used this fuzzyiterion because the
problem is typicaly noisy Sud studies typ
ically measue perbrmance lgel by the
recagnition and &lse-positie rates, with
recaynition rate being the amber of eal
exons identifed over the total amber of eal
exons,and flse-positre rate the mmber of
falsel identified exons wer the total om-
ber of identifed exons.

In this stug, the average recanition rate
and the &lse-positie rate for Grail are 0.55

and 0.08; thoseof the EXON-ENet a& 0.85
and 0.15.Thus,the EXON-ENet outper
forms Gail by a lage magin in tems of the
recaynition rate. EXON-Enets higher élse-
positive rate aises because it does not ana
lyze the potein-coding potentialdr exon
candiddes wheras Gail does.Also, the
region of 30 base pasron eah side of the
splice junction does not contain enoug
information for the EXON-ENet to learpro-
tein-coding éaures.

The rumber of &lsel identified junctions
grows as the sequence undesgessing gts
longer, which leads to a combitarial prob-
lem in geneeting potential &ons.This piob-
lem is not so seere in this stugl because the
genes under test all & shot sequences of

Table 2. The exon regions identified by Grail and the EXON-ENet in correspondence with the real exons

DNA LENGTH Exon Exon Exon
SEQUENCE Locus (8r) (ReAL) (GralL) (EneT)
1 HSCD36G8 107 [31, 77] NF [31, 77]
2 HSCD36G15 684 [31, 654] NF NF
3 HSFASX567 1814 [308, 369] [308, 369] [128, 369]
[522, 584] NF [522, 584]
[1768, >1814] [1768, 1813] NF
4 HSZ75172 792 [1, 270] [12, 270] [73, 270]
[517, 792] [5637, 791] [534, 733]
5 HSIGMAAA 1029 [524, 571] NF NF
[675, 21029] [677,1028] [673, 820]
6 HSMUCIN5B1 700 [<1, 526] NF [437, 526]
7 HSMUCIN5B2 3616 [266, 447] [266, 447] [266, 447]
[733, 904] [733, 916] NF
[2021, 2280] [2021, 2280] [2021, 2280]
[2623, 2809] [2623, 2809] [2778, 2809]
[2975, 3200] [2975, 3200] [2975, 3200]
[3315, 3490] NF [3315, 3490]
8 HSMUCIN5B3 1426 [101, 170] NF [101, 170]
[616, 716] [616, 773] [456, 773]
[1186, 1217] NF [1186, 1217]
9 HSSORDO1 249 [£155, 220] [70, 220] [52, 220]
10 HSSORD02 167 [56, 89] NF [56, 89]
11 HSSORD03 276 [48, 212] [62, 212] [48, 181]
12 HSSORD04 278 [67, 226] [67, 239] NF
13 HSSORD05 194 [41, 159] [89, 193] [41, 159]
14 HSSORD06 171 [63, 128] NF [63, 128]
15 HSSORDO7 275 [65, 240] [65, 248] [124, 248]
16 HSSORD08 1377 [105, 226] [105, 226] [105, 226]
[1155, >1377] NF NF
17 AB004057 752 [85, 194] NF [85, 194]
[296, 458] NF [296, 458]
[547, 653] NF NF
18 HSKAMSO01 1086 [736, 814] NF [623, 814]
19 HSKAMS02 261 [136, 217] NF [136, 217]
20 HSKAMSO03 434 [211, 293] [231, 293] [211, 293]
21 HSKAMS04 490 [166, 238] [166, 238] [166, 238]
22 HSKAMSO05 283 [76, 200] [76, 200] [76, 200]
23 HSKAMS06 197 [42, 116] NF [42, 116]
24 HSKAMSO07 413 [114, 215] [114, 253] [114, 215]
25 HSKAMS08 953 [178, 381] [178, 411] [178, 383]
[655, 738] [655, 744] [655, 717]
26 HSPPP1R2E1 476 [20, 439] NF [240, 439]
27 HSPPP1R2E2 198 [35, 142] NF [35, 142]
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no moe than a éw thousand base pair
However, without using potein-coding éa
tures,the EXON-ENet cannotery well pre-
dict exons in long gne sequencewhile
Grail does better on long sequences.

N THE FUTURE ,WE CAN IMPROVE
splice-junction pediction ly exploiting
alread/ detected high-aler stéistical dgpen
dencies or coelaions of the signal se
quences. Explicit epresentdon of sut
information in the input enales the neal
network to explore de@er staistical stuc-
tures on this basisther than fom scetch.

documented (bp: base pair; NF: Not found).

Work is undervay to intggrate sut fegures
into the EXON-ENet. 10118
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