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1 Introduction

Data having graph structure are abound in many practical �elds such as molecular structures of chemical
compounds and information 
ow patterns in the internet. We have been investigating the algorithm to
mine frequently occurring subgraph patterns from graph structured data. Our recent study introduced
the algebraic graph theory to the framework of Basket Analysis, and achieved to extend the conventional
approach to the algorithm which can e�ciently mine a complete set of all frequent subgraphs from the
general class of the graph structures. The graph can be either directed or undirected. It can have loops
including self-loops, and the nodes and links can have labels, e.g., C (carbon) and N (nitrogen) or single
bond and aromatic bond in chemical compounds. Furthermore, it can mine subgraph patterns partitioned
into multiple parts. The proposed approach �nds association rules in form of Ga ) Gb which represents
that the occurrence of the union of the subgraphs Ga and Gb is more than a threshold support level, and
the occurrence of the subgraph Ga indicates the co-occurrence of Gb with more than a threshold con�dence
level. Our algorithm has been applied to obtain the rules to predict the mutagenesis activity of 230 aromatic
and heteroaromatic nitro compounds. Many association rules having meaningful con�dence were discovered
which presents the characteristic and complex substructures having either high, medium, low and inactive
mutagenesis activities.

2 Algorithm

2.1 Representation of Graph Structured Data

In the framework of this paper, one graph constitutes one transaction. The graph structured data can
be transformed without much computational e�ort into an adjacency matrix which is a very well known
representation of a graph in mathematical graph theory[2]. A node which corresponds to the i-th row (the
i-th column) is called the i-th node vi and the number of node contained in a graph its \size". Let an
adjacency matrix of a graph whose size is k be Xk, the ij-element of Xk, xij and its graph, G(Xk). The
node labels are de�ned as Np (p = 1; � � � ; �) and the link labels, Lq (q = 1; � � � ; �). Labels of nodes and
links are indexed by natural numbers for the computational e�ciency.

Let the set of nodes of G be V (G) and the set of links of G E(G). An induced subgraph G0 of G is
de�ned as follows.

V (G0) � V (G); E(G0) � E(G); 8u; v 2 V (G0) fu; vg 2 EfGg ) fu; vg 2 EfG0g;

where fu; vg represents a link to connect the nodes u and v. Based on this de�nition, the \support" of an
induced subgraph Ga [Gb of the given transactions and the \con�dence" of an association rule Ga ) Gb

are de�ned as follows where Ga is also an induced subgraph of Ga [Gb.

sup(Ga [Gb) =
the number of transactions which include Ga [Gb as induced subgraph

the number of transactions
;



conf(Ga ) Gb) =
sup(Ga [Gb)

sup(Ga)
:

Our algorithm generates association rules having support and con�dence greater than user speci�ed thresh-
olds \minimum support" and \minimum con�dence". The graph whose frequency exceeds the minimum
support is called \frequent graph".

The code of adjacency matrices is de�ned as follows. In case of an undirected graph, the code code(Xk)
of an adjacency matrix Xk (Eq.(1)) is represented by Eq.(2) scanning the elements in the upper triangular
part of Xk except its diagonal elements.

Xk =

0
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0 x1;2 x1;3 � � � x1;k
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xk;1 xk;2 � � � � � � 0

1
CCCCCA ; (1)

code(Xk) = x1;2x1;3x2;3x1;4 � � �xk�2;kxk�1;k: (2)

The code code(Xk) in the case of directed graph is de�ned as follows.

code(Xk) = x1;2x2;1x1;3x3;1x2;3x3;2x1;4x4;1 � � �xk�2;kxk;k�2xk�1;kxk;k�1

2.2 Candidate Generation of Frequent Graph

Two frequent graphs are joined only when the following three constraints are satis�ed to generate a can-
didate of frequent graph of size k+1. Let Xk and Yk be adjacency matrices of two frequent graphs G(Xk)
and G(Yk) of size k. If both G(Xk) and G(Yk) have equal elements of the matrices except for the elements
of the k-th row and the k-th column, then they are joined to generate Zk+1.
Constraint1

Xk =
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�
; Zk+1 =
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2

0 zk;k+1
y
T
2

zk+1;k 0

1
A ;

where Xk�1 is the adjacency matrix representing the graph whose size is k � 1, xi and yi(i = 1; 2) are
(k � 1) � 1 column vectors. Let the label of the i-th node of the adjacency matrix Xk be N(Xk; i), then
the following relations hold among the adjacency matrices Xk; Yk and Zk+1.
Constraint2

N(Xk; i) = N(Yk; i) = N(Zk+1; i); N(Xk; i) � N(Xk; i+ 1); i = 1; � � � ; k � 1

N(Xk; k) = N(Zk+1; k); N(Yk; k) = N(Zk+1; k + 1); N(Xk; k) � N(Yk; k)

Here, the (k; k+1) and the (k+1; k) elements of the adjacency matrix Zk+1 are not determined by Xk and
Yk. In case of an undirected graph, two possible cases are considered in which 1) there is a link labeled Lq

between the k-th node and the k+1-th node of G(Zk+1) and 2) there is no link between them. Accordingly
� + 1 adjacency matrices whose (k; k + 1)-element and (k + 1; k)-element are "0" and "Lq" are generated.
In case of a directed graph (� + 1)2 di�erent adjacency matrices are generated. We call Xk and Yk the
�rst matrix and the second matrix to generate Zk+1 respectively. Note that when the labels of the k-th
nodes of Xk and Yk are the same, switching Xk and Yk, i.e., taking Yk as the �rst matrix and Xk as the
second matrix, produces redundant adjacency matrices. In order to avoid this redundant, generation the
two adjacency matrices are joined only when constraint 3 is satis�ed.
Constraint3

code(the �rst matrix) � code(the second matrix)

We call the adjacency matrix generated under the three constraints a "normal form". The graph G of size
k+1 is a candidate of frequent graphs only when adjacency matrices of the all induced subgraphs whose



size are k are con�rmed to be frequent graphs. If any of the induced subgraphs of G(Zk+1) are not frequent
graphs, Zk+1 is not a candidate frequent graph, because any induced subgraph of a frequent graph must
be a frequent graph due to the monotonicity of the support value.

As this algorithm generates only adjacency matrices of the normal form in the earlier k-stages, if the
adjacency matrix of the induced subgraph generated by removing the i-th node (1 � i � k + 1) is non-
normal form, the transform of the matrix of normal form to that of a normal form is needed. Figure 1 shows
an example of the transformation of an adjacency matrix X4 which is non-normal form, where all the nodes
and the links have a unique label. The number below each adjacency matrix in this �gure shows each
corresponding code respectively, and vi denotes the i-th node of the adjacency matrix X4 to be normalized.
It starts with the adjacency matrices representing the induced subgraphs of X4 consisting of one node (See
Fig.1 A). As it is necessary to �nd a normal form of G(X4) among many normal forms, the combination
to join should be restricted. In this case, we choose a matrix consisting of v1 as the �rst matrix and the
others the second matrices (See Fig.1 B). The values which can not be determined in the joining procedure
are taken from the original matrix, for example x12 and x21 of X4 are substituted to (1,2)-element and
(2,1)-element of a matrix consisting of v1 and v2 (See Fig.1 C). Next, the matrices whose graphs have two
nodes are joined (See Fig.1 D). Here, the matrix whose code is the least becomes the �rst matrix, and the
others become the second matrices (See Fig.1 E). If there are the adjacency matrices whose codes are for
tie, we simply choose one randomly. These processes continue until a normal form having the same size with
the original X4 is found. By applying the transformation to each induced subgraph obtained by removing
the i-th node (1 � i � k + 1), the check if they are frequent graphs is easily performed.
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Fig. 1. Transformation into the normal form

2.3 Canonical Form

After all candidate graphs are derived, it is necessary to count the support by scanning the database.
However, a unique subgraph is represented by multiple adjacency matrices of normal form. Therefore,
the adjacency matrices should be grouped to the corresponding unique subgraph, and if more than one
occurrence of the same graph is observed in a transaction, it is counted as one in the calculation of the
support value. For this grouping, the adjacency matrices representing the unique graph are indexed to a
unique matrix whose code is the least among the matrices. This unique matrix is called \canonical form".
Figure 2 shows the algorithm to obtain the canonical form of any normal form and the corresponding
transformation matrix.

The matrix Xm
k�1 made by removing the m-th node (1 � m � k) from G(Xk) is �rst transformed into

the normal form by the procedure explained in Fig.1. Because this transformation is a sort procedure of the
rows and columns of Xm

k�1, it is expressed with a transformation matrix Tm
k�1, and the transformed matrix

of normal form is given by (Tm
k�1)

TXm
k�1T

m
k�1. We assume that a transformation matrix Sm

k�1 from a normal
form to the canonical form of each frequent graph of size k-1 is known. The matrix of canonical form of



1) forall Xk in a set of candidate frequent graphs

2) X0

k = Xk

3) for(m = 1;m � k;m++) do begin

4) if(N (Xk; k) = N (Xk;m)) then do begin

5) if(code(X 0

k) > code((Tmk Smk )
TXk(T

m

k Smk )) then do begin

6) X 0

k = (Tmk Smk )
TXk(T

m

k Smk );

7) if(the canonical form of X 0

k is known) then do begin

8) X0

k = S0T

k X 0

kS
0

k; //where S
0

k is the matrix to transform X 0

k in r.h.s. to its canonical form

9) break;

10) end

11) end

12) end

13) end

14) if(Xk = X 0

k)

15) X 0

k=permutation(Xk);

16) if(Xk 6= X 0

k)

17) If there are matrices whose canonical form is Xk,

then the canonical form of these matrices is renewed to X 0

k.;

18) end

19) end

20) Canonical form of Xk is X0

k;

21) end

Fig. 2. An algorithm to transform the canonical form

Xm
k�1 is given by (Tm

k�1S
m
k�1)

TXm
k�1T

m
k�1S

m
k�1. The matrices Sm

k and Tm
k to transform Xk are generated

from Sm
k�1 and Tm

k�1 by Eqs.(3) and (4).

sij =

(
smij 0 � i � k � 1 and 0 � j � k � 1,
1 i = k and j = k,
0 otherwise,

(3)

tij =

8><
>:
tmij i < m and j 6= k,
tmi�1;j i > m and j 6= k,
1 i = m and j = k,
0 otherwise,

(4)

where sij ; s
m
ij ; tij and tmij are the elements of matrix Sm

k ; Sm
k�1; T

m
k and Tm

k�1 respectively. The code of the
canonical form for Xk is given by

min
m=1;���;k

code((Tm
k Sm

k )TXk(T
m
k Sm

k )) (5)

The matrix to transform Xk into the canonical form is Tm
k Sm

k that minimizes Eq.(5).

3 Application

The algorithm explained in the aforementioned section is implemented, and the association rules have been
derived from a set of mutagenesis data given in the web page of PAKDD Workshop. Mutagenesis activity
is discretized into four categories according to the information described in the web page. The percentages
of the transaction having the classes of high, medium, low and inactive are 15.2%, 45.7%, 29.5% and 9.6%
respectively. As our algorithm can not deal with numeric features, LogP and LUMO must be discretized
and labeled by some symbols. They are discretized by the method we proposed in the past [3]. It is based
on AIC(Akaike Information Criterion) technique. The method discretizes the numeric features to minimize
the following equation in greedy manner.

AIC = 2
X
r

n(r)Ent(r) + 2m;



where n(r) is the number of transactions located in a discretized region r of the feature space, Ent(r) is the
information entropy of the data in r, and m is the total number of cut points. We selected two threshold
values from the cut points which are speci�ed by this method. They are LogP=3.3 and LUMO=-1.84.
As shown in Fig.3, these features of each chemical compound are added in form of isolated nodes to the
transaction. Furthermore, the arti�cial links are added to connect each node to the other nodes where the
number of links between the former node and the latter is 2 to 6.
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Fig. 3. Transaction

The number of frequent graphs derived for the minimum support of 20% was 64,973 in this application.
Two examples among them are depicted in Fig.4. The association rules for the frequent graphs are obtained
for each class of high, medium, low and inactive. The �gure shows the rules where the rules for the four
classes having an identical body are combined. The percentage of the transactions including this frequent
graph and having each class is also indicated as suph, supm, supl and supi respectively. sup is the summation
of these partial support values. The con�dence value of the rule for each class is also shown respectively.
The sup of the frequent graph of Fig.4(a) is 33.5%. The con�dence values for the classes of low and inactive
are higher than their percentages in the original distribution, i.e., 29.5% and 9.6%, while the con�dence
values for high and medium are lower than those percentages, i.e., 15.2% and 45.7%. This fact indicates
that the substructure and the features of the chemical compound have low or negligible mutagenesis. The
substructure and the features shown in Fig.4(b) indicate the similar tendency.
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Fig. 4. Extracted association rules(1)

On the other hand, the substructures and the features shown in Fig.5 have higher con�dence values for
high and medium classes while lower values for low and inactive classes. Therefore, the compounds having
these substructures and features show medium or high mutagenesis. The symbols of X and ? represent that
an arbitrary atom and bond must exist at the locations respectively.

4 Related Work

The propositional classi�cation techniques, e.g., C4.5, and the inductive logic programming (ILP) tech-
niques have been applied to the carcinogenesis predictions of chemical compounds [4], [5]. However, these
approaches can discover only limited types of characteristic substructures, because the graph structures
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Fig. 5. Extracted association rules(2)

must be prede�ned by some speci�c features and/or ground instances of predicates such that a benzene
ring is involved in the compound. This data preprocessing is inevitably needed for the propositional clas-
si�cation techniques, since they can handle only feature tables. This preprocessing is also necessary for
ILP techniques to reduce the computation time in the mining process. However, our algorithm can directly
handle the graph structure of general class.

Recently, a technique to mine the frequent substructures characterizing the carcinogenesis of chemi-
cal compounds has been proposed without requiring any conversion of substructures to speci�c features
by Dehaspe et al. [6]. They used the framework of the ILP combining levelwise search to minimize the
access frequency to the database. Since the e�ciency achieved by this approach is better to the former
ILP approaches, some discovery of substructures characterizing carcinogenesis was expected. However, the
full search space was still so large that the search had to be limited to within the 6th level where the
substructures consist of a few atoms at maximum, and they reported that signi�cant substructures have
not been obtained within the search level.

5 Conclusion

By applying the mining method of substructures based on the algebraic graph theory, many association
rules having meaningful con�dence were discovered in the analysis of mutagenesis data. The rule represents
the characteristic and complex substructures having either high, medium, low and inactive mutagenesis
activities.
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