
COLLECTED ALGORITHMS FROM CACM

Algorithm 457

Finding All Cliques of an
Undirected Graph [H]

Coen Bran* and Jeep Kerboscht [Recd. 27 April

1971 and 23 August 197 l]
* Department of Mathematics t Department of In-
dustrial Engineering, Technological University Eind-
hoven, P.O. Box 513, Eindhoven, The Netherlands

Present address of C. Bron: Department of Electrical Engineering,

Twente University of Technolog), P.O. Box 217, Enschade, The

Netherlands.

Key \!ords and Phrases: cliques, maximal complete s&graphs,
clusters, backtracking algorithm, branch and bound technique,

recursion

CR Categories: 3.71, 5.32

Language: Algol

Description

I/ltroLlrrc/io/r. A maximal complete subgraph (clique) is a

complete subgraph that is not contained in any other complete

subgraph.

A recent paper [I] describes a number of techniques to find

maximal complete subgraphs of a given undirected graph. In this

paper, we present two backtracking algorithms, using a branch-

and-bound technique [4] to cut off branches that cannot lead to a

clique.

The first berslon IS a atralghtforward Implementation of the

basic algorithm. It is mainly presented to illustrate the method used.

This version generates cliques in alphabetic (lexicographic) order.

The second version is derived from the first and generates

cliques in a rather unpredictable order in an attempt to minimize

the number of branches to be traversed. This version tends to pro-

duce the larger cliques first and to generate sequentially cliques

having a large common intersection. The detailed algorithm for

version 2 is presented here.

Descripriotl of f/w rrlgorrilm~ Ver.\iotl I. Three sets play an

important role in the algorithm. (1) The set cor~pslrh is the set

to be extended by a new point or shrunk by one point on traveling

along a branch of the backtracking tree. The points that are ehgible

to extend COIII~SU~, i.e. that are connected to all points in compsub,

are collected recursively in the remaining two sets. (2) The set

catzdidutes is the set of all points that will in due time serve as an

extension to the present configuration of compslrb. (3) The set

tzot is the set of all points that have at an earlier stage already

served as an extension of the present configuration of c‘ompsub and

are now explicitly excluded. The reason for maintaining this set

not will soon be made clear.

The core of the algorithm consists of a recursively defined
extension operator that will be applied to the three sets Just de-

scribed. It has the duty to generate all extensions of the given

configuration of contpslrh that it can make with the given set of

457-P lp 0

candidates and that do not contain any of the points in nof. To

put it differently: all extensions of compslrb containing any point

in /lot have already been generated. The basic mechanism now

consists of the following five steps:

Step 1. Selection of a candidate.

Step 2. Adding the selected candidate to compsub.

Step 3. Creating new sets cundidutes and /lot from the old sets by

removmg all pomts not connected to the selected candidate

(to remain consistent with the definition), keeping the old sets

in tact.

Step 4. Calling the extension operator to operate on the sets just

formed.

Step 5. Upon return, removal of the selected candidate from

compsub and its addition to the old set roof.

We will now motivate the extra labor involved in maintaining

the sets /lot. A necessary condition for having created a clique is

that the set cu~rdidutes be empty; otherwise compsub could still be

extended. This condition, however, is not sufficient, because if

now /lot is nonempty, we know from the definition of /lot that the

present configuration of compslrb has already been contained in

another configuration and is therefore not maximal. We may now

state that compsub is a clique as soon as both /lot and cundidutcs are

empty.

If at some stage /lot contains a point connected to all points in

cudidutes, we can predict that further extensions (further selec-

tion of candidates) will never lead to the removal (in Step 3) of that

particular point from subsequent configurations of ilot and, there-

fore, not to a clique. This is the branch and bound method which

enables us to detect in an early stage branches of the backtracking

tree that do not lead to successful endpoints.

A few more remarks about the implementation of the algo-

rithm seem in place. The set compsrtb behaves like a stack and can

be maintained and updated in the form of a global array. The sets

cuwh’dutes and 11ot are handed to the extensions operator as a

parameter. The operator then declares a local array, in which the

new sets are built up, that will be handed to the inner call. Both
sets are stored in a single one-dimensional array with the following

layout:

j not 1 cundidufes

index values: l..... ne ce . . .

The following properties obviously hold:

I. /If’ 5 ce

2. tw = CP: empty (culldidutes)

3. lie = 0 :empty (MI/)

4. CP = 0 :empty (~lof) and empty (crr&&rtr.s)

= clique found

If the selected candidate is in array posltion HP + I, then the second

part of Step 5 is implemented as /Ie : = IIe + 1.

In version 1 we use element /ze + 1 as selected candidate. This

strategy never gives rise to internal shuffling, and thus all cliques

are generated in a lexicographic ordering according to the initial

ordering of the candidates (all points) in the outer call.

For an implementation of version 1 we refer to [3].

Descripliotl of the trlgorithm-Versiotl 2. This version does not

select the candidate in position IICJ + 1, but a well-chosen candidate

from position, say s. In order to be able to complete Step 5 as

simply as described above, elements s and IIP + 1 will be inter-

changed as soon as selection has taken place. This interchange

does not affect the set curzdiricrres since there is not implicit ordering.

COLLECTED ALGORITHMS (cont.) 457-P 2- 0

Fig. I. Kandom graphs show the computing time per clique (in
ms) versus dimension of the graph (in brackets: total number of
cliques in the test sample).

Fig. 2. Moon-Moser graphs show the computing time (in ms) vcr-
slls k. Dimension of the graph = 3k. Plotted on logarithmic scale.

160

I

t

(SO) (127) (330) (579) (2163) (3784) (8816) (43223) (128561

0 I I I I I _I____L___I--J
10 15 70 25 30 35 40 45 50

slope = ,607 (,oLog 4 = ,602)

slope - ,497 (,0109 3 = ,477)

The selection does affect, however, the order in which the cliques

are eventually generated.

Now what do we mean by “well chosen”? The object we have

in mind is to minimize the number of repetitions of Steps l-5 in-

side the extension operator. The repetitions terminate as soon as

the bound condition is reached. We recall that this condition is

formulated as: there exists a point in HO/ connected to all points in

CLIIK&/~LI/E.T. We would like the existence of such a point to come

about at the earliest possible stage.

Let us assume that with every point in not is associated a

counter, counting the number of candidates that this point is not

connected to (jrumber of disconnections). Moving a selected

candidate into /rot (this occurs after extension) decreases by one

all counters of the points in rrot to which it is disconnected and

introduces a new counter of its own. Note that no counter is ever

decreased by more than one at any one Instant. Whenever a counter

goes to zero the bound condition has been reached.

Now let us fix one particular point in tluf. If we keep selecting

candidates disconnected to this fixed point, the counter of the

fixed point will be decreased by one at every repetition. No other

counter can go down more rapidly. If, to begin with, the fixed point

has the lowest counter, no other counter can reach zero sooner,

as long as the counters for points newly added to rtot cannot be

smaller. We see to this requirement upon entry into the extension

operator, where the fixed point is taken either from roof or from

the original c~ordidutes, whichever point yields the lowest counter

value after the first addition to)zor. From that moment on we only

keep track of this one counter, decreasing it for every next selec-

tion, since we will only select disconnected points.

The Algol 60 implementation of this version is given below.

Discussiorr of‘ comparuriw tests. Augustson and Minker [1 I

have evaluated a number of clique finding techniques and report

an algorithm by Bierstone (21 as being the most efficient one.

l Bierstone’s algorithm as reported in [l J contained an error.
In our implementation the error was corrected. The error was
independently found by Mulligan and Corneil at the University
of Toronto, and reported in [6].

In order to evaluate the performance of the new algorithms,

we implemented the Bierstone algorithm’ and ran the three algo-

rithms on two rather different testcases under the Algol system

for the EL-X8.

For our first testcase we considered random graphs ranging

in dimension from 10 to 50 nodes. For each dimension we gen-

erated a collection of graphs where the percentage of edges took

on the following values: 10, 30, 50, 70, 90, 95. The cpu time per

clique for each dimension was averaged over such a collection. The

results are graphically represented in Figure 1.

The detailed figures (31 showed the Bierstone algorithm to be

of slight alivantage in the case of small graphs containing a small

number of relatively large cliques. The most striking feature, how-

ever, appears to be that the time/clique for version 2 is hardly

dependent on the size of the graph.

The dttference between verston 1 and ” Bierstone” is not so

striking and may be due to the particular Algol implementation.

It should be borne in mind that the sets of nodes as they appear in

the Bierstone algorithm were coded as one-word binary vectors,

and that a sudden increase in processing time will take place when

the input graph is too large for “one-word representation” of its

subgraphs.

The second testcase was suggested by the referee and consisted of

regular graphs of dimensions 3 X k. These graphs are constructed

as the complement of k disjoint 3-cliques. Such graphs contain

3k cliques and are proved by Moon and Moser [5] to contain the

largest number of cliques per node.

In Figure 2 a logarithmic plot of computing time versus k is

presented. We see that both version 1 and version 2 perform sig.

nificantly better than Bierstone’s algorithm. The processing time

for version 1 is proportional to 4k, and for version 2 it is propor-

tional to (3.14)k where 3k is the theoretical limit.

Another aspect to be taken into account when comparing

algorithms is their storage requirements. The new algorithms

presented in this paper will need at most 3M(M+3) storage loca.

tions to contain arrays of (small) integers where M is the size of

largest connected component in the input graph. In practice this

limit will only be approached if the input graph is an almost com-

COLLECTED ALGORITHMS (cont.) 457-P 3- 0

plete graph. The Bierstone algorithm requires a rather unpredict-

able amount of store, dependent on the number of cliques that

will be generated. This number may be quite large, even for mod-

erate dimensions, as the Moon-Moser graphs show.

Finally it should be pointed out that Bierstone’s algorithm

does not report isolated points as cliques, whereas the new al-

gorithm does. Either algorithm can, however, be modified to pro-

duce results equivalent to the other. Suppression of l-cliques in

the new algorithm is the simplest adaption.

Ackt~owledgmet~~s. The authors are indebted to H.J. Schell

for preparation of the test programs and collection of performance

statistics. Acknowledgments are also due to the referees for their

valuable suggestions.

References

1. Augustson, J.G., and Minker, J. An analysis of some graph

theoretical cluster techniques, J. ACM 17 (1970), 571-588.

2. Bierstone, E. Unpublished report. U of Toronto.

3. Bron, C., Kerbosch, J.A.G.M., and Schell, H.J. Finding

cliques in an undirected graph. Tech. Rep. Technological U. of

Eindhoven, The Netherlands.

4. Little, John D.C., et al. An algorithm for the traveling sales-

man problem. Oper. Res. II (1963), 972-989.

5. Moon, J.W., and Moser, L. On cliques in graphs. Isrue/ J.

Math. 3 (1965), 23-28.

6. Mulligan, G.D., and Corneil, D.G. Corrections to Bier-

stone’s algorithm for generating cliques. J. ACM 19 (Apr.

1972)) 244-247.

Algorithm

procedure output muximd complc~e suhgrcrplts 2(c~~1111rc~rcd, N) ;

value N; integer N;
Boolean array cotmecred;

comment The input graph is expected in the form of a symmetrical

Boolean matrix connected. N is the number of nodes in the

graph. The values of the diagonal elements should be true;
begin

integer array ALL, compsub[1 : NJ;
integer c;

procedure extend vcrsiott 2(old, tic, cc) ;

value tie, ce; integer tic, cc;
integer array olrl;

begin

integer array tteu’I 1 : CO];
integer trod, j?xp;

integer tieu’tie, tieu’ce, i, j, coutit, pas, p, s, sel, mitmod;

comment The latter set of integers is local in scope but need

not be declared recursively;
mittnod : = ce; i : = rood : = 0;

DETERMINE EACH COUNTER VALUE AND LOOK FOR

MINIRIUM:

for i : = i + I while i 2 ce I’\ mittttod # 0 do
begin

p : = oldli]; coutit : = 0; ; : = tw;

COUNT DISCONNECTIONS:

for j : = j + 1 while j 5 cc A count < mitmod do
if ’ mttlected~p, oldlj]] then
begin

COllflf : = colltlf + I ;

S-A VE POSITION OF POTENT/AL CANDIDAI‘E:

pas : = j

end ;
TEST NEW MINIMUM:

if couttt < mitmod then
begin

fixp : = p; mitittod : = coutil;

if i < tre then s : = pos

else

begin s : = i; PREINCR: trod : = 1 end

end NEW MINIMUM;

end i;

comment If fixed point initially chosen from cattdidutes then

number of disconnections will be preincreased by one;

BACKTRACKCYCLE:

for nod : = mitmod + nod step - 1 until 1 do
begin

INTERCHANGE:

p : = ofd[sj; old[JJ : = old[tle + 1 I;

sel : = old[tte + I] : = p;

FILL NEW SET not:

newne := i := 0;

for i : = i + 1 while i 5 ne do

if cotmec,ed[sel, o/dji]] then

begin t~~uwe : = tte~w + 1 ; twv[ttewtzeJ : = o/d[i] end;
FlLL NEW SET cat/d:

tiewfe : = newtic; i : = tie + 1 ;

for i : = i + 1 while i < ce do

if cotutected[se/, okdji]] then
begin ilewce : = /lewce + I ; /lew[/lc)wce] : = o/d[i] end;

ADD TO compsuh :

c := c + 1; cornpslrh [c] : = sel;

if tteM,ce = 0 then

begin
integer lot;

outsfritlg(1, ’ clique = ‘) ;

for lot : = 1 step 1 until c do

oulititeger(1, compsuh [lot])

end oufpul qf clique

else

if tlewtle < tiewce then exlettd versiotr 2(11c~v, t~ew~~e, newce);

R EM0 VE FROM compsub :

c:=c- 1;

ADD TO rtot:

IlC : = IlC’ + I)

if trod > 1 then

begin
SELECT A CANDIDATE DlSCONNECTED TO THE FIXED

POINT:

s : = r1e;

LOOK: FOR CANDIDATE:

s := s + I;

if cotutected[jixp, old[s]] then go to LOOK

end selec tiotl

end BACKTRACKC YCLE

end extetld version 2;

for c : = 1 step 1 until N do ALL[c] : = c;

c : = 0; extetrd versiotl 2(ALL, 0, N)

end output mcrximul complete suhgruph 2;

