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Description 

I/ltroLlrrc/io/r. A maximal complete subgraph (clique) is a 

complete subgraph that is not contained in any other complete 

subgraph. 

A recent paper [I ] describes a number of techniques to find 

maximal complete subgraphs of a given undirected graph. In this 

paper, we present two backtracking algorithms, using a branch- 

and-bound technique [4] to cut off branches that cannot lead to a 

clique. 

The first berslon IS a atralghtforward Implementation of the 

basic algorithm. It is mainly presented to illustrate the method used. 

This version generates cliques in alphabetic (lexicographic) order. 

The second version is derived from the first and generates 

cliques in a rather unpredictable order in an attempt to minimize 

the number of branches to be traversed. This version tends to pro- 

duce the larger cliques first and to generate sequentially cliques 

having a large common intersection. The detailed algorithm for 

version 2 is presented here. 

Descripriotl of f/w rrlgorrilm~ Ver.\iotl I. Three sets play an 

important role in the algorithm. (1) The set cor~pslrh is the set 

to be extended by a new point or shrunk by one point on traveling 

along a branch of the backtracking tree. The points that are ehgible 

to extend COIII~SU~, i.e. that are connected to all points in compsub, 

are collected recursively in the remaining two sets. (2) The set 

catzdidutes is the set of all points that will in due time serve as an 

extension to the present configuration of compslrb. (3) The set 

tzot is the set of all points that have at an earlier stage already 

served as an extension of the present configuration of c‘ompsub and 

are now explicitly excluded. The reason for maintaining this set 

not will soon be made clear. 

The core of the algorithm consists of a recursively defined 
extension operator that will be applied to the three sets Just de- 

scribed. It has the duty to generate all extensions of the given 

configuration of contpslrh that it can make with the given set of 
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candidates and that do not contain any of the points in nof. To 

put it differently: all extensions of compslrb containing any point 

in /lot have already been generated. The basic mechanism now 

consists of the following five steps: 

Step 1. Selection of a candidate. 

Step 2. Adding the selected candidate to compsub. 

Step 3. Creating new sets cundidutes and /lot from the old sets by 

removmg all pomts not connected to the selected candidate 

(to remain consistent with the definition), keeping the old sets 

in tact. 

Step 4. Calling the extension operator to operate on the sets just 

formed. 

Step 5. Upon return, removal of the selected candidate from 

compsub and its addition to the old set roof. 

We will now motivate the extra labor involved in maintaining 

the sets /lot. A necessary condition for having created a clique is 

that the set cu~rdidutes be empty; otherwise compsub could still be 

extended. This condition, however, is not sufficient, because if 

now /lot is nonempty, we know from the definition of /lot that the 

present configuration of compslrb has already been contained in 

another configuration and is therefore not maximal. We may now 

state that compsub is a clique as soon as both /lot and cundidutcs are 

empty. 

If at some stage /lot contains a point connected to all points in 

cudidutes, we can predict that further extensions (further selec- 

tion of candidates) will never lead to the removal (in Step 3) of that 

particular point from subsequent configurations of ilot and, there- 

fore, not to a clique. This is the branch and bound method which 

enables us to detect in an early stage branches of the backtracking 

tree that do not lead to successful endpoints. 

A few more remarks about the implementation of the algo- 

rithm seem in place. The set compsrtb behaves like a stack and can 

be maintained and updated in the form of a global array. The sets 

cuwh’dutes and 11ot are handed to the extensions operator as a 

parameter. The operator then declares a local array, in which the 

new sets are built up, that will be handed to the inner call. Both 
sets are stored in a single one-dimensional array with the following 

layout: 

j not 1 cundidufes 

index values: l..... ne . . . . . . . . . . . . . . . ce . . . 

The following properties obviously hold: 

I. /If’ 5 ce 

2. tw = CP: empty (culldidutes) 

3. lie = 0 :empty (MI/) 

4. CP = 0 :empty (~lof) and empty (crr&&rtr.s) 

= clique found 

If the selected candidate is in array posltion HP + I, then the second 

part of Step 5 is implemented as /Ie : = IIe + 1. 

In version 1 we use element /ze + 1 as selected candidate. This 

strategy never gives rise to internal shuffling, and thus all cliques 

are generated in a lexicographic ordering according to the initial 

ordering of the candidates (all points) in the outer call. 

For an implementation of version 1 we refer to [3]. 

Descripliotl of the trlgorithm-Versiotl 2. This version does not 

select the candidate in position IICJ + 1, but a well-chosen candidate 

from position, say s. In order to be able to complete Step 5 as 

simply as described above, elements s and IIP + 1 will be inter- 

changed as soon as selection has taken place. This interchange 

does not affect the set curzdiricrres since there is not implicit ordering. 
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Fig. I. Kandom graphs show the computing time per clique (in 
ms) versus dimension of the graph (in brackets: total number of 
cliques in the test sample). 

Fig. 2. Moon-Moser graphs show the computing time (in ms) vcr- 
slls k. Dimension of the graph = 3k. Plotted on logarithmic scale. 
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The selection does affect, however, the order in which the cliques 

are eventually generated. 

Now what do we mean by “well chosen”? The object we have 

in mind is to minimize the number of repetitions of Steps l-5 in- 

side the extension operator. The repetitions terminate as soon as 

the bound condition is reached. We recall that this condition is 

formulated as: there exists a point in HO/ connected to all points in 

CLIIK&/~LI/E.T. We would like the existence of such a point to come 

about at the earliest possible stage. 

Let us assume that with every point in not is associated a 

counter, counting the number of candidates that this point is not 

connected to (jrumber of disconnections). Moving a selected 

candidate into /rot (this occurs after extension) decreases by one 

all counters of the points in rrot to which it is disconnected and 

introduces a new counter of its own. Note that no counter is ever 

decreased by more than one at any one Instant. Whenever a counter 

goes to zero the bound condition has been reached. 

Now let us fix one particular point in tluf. If we keep selecting 

candidates disconnected to this fixed point, the counter of the 

fixed point will be decreased by one at every repetition. No other 

counter can go down more rapidly. If, to begin with, the fixed point 

has the lowest counter, no other counter can reach zero sooner, 

as long as the counters for points newly added to rtot cannot be 

smaller. We see to this requirement upon entry into the extension 

operator, where the fixed point is taken either from roof or from 

the original c~ordidutes, whichever point yields the lowest counter 

value after the first addition to )zor. From that moment on we only 

keep track of this one counter, decreasing it for every next selec- 

tion, since we will only select disconnected points. 

The Algol 60 implementation of this version is given below. 

Discussiorr of‘ comparuriw tests. Augustson and Minker [ 1 I 

have evaluated a number of clique finding techniques and report 

an algorithm by Bierstone (21 as being the most efficient one. 

l Bierstone’s algorithm as reported in [l J contained an error. 
In our implementation the error was corrected. The error was 
independently found by Mulligan and Corneil at the University 
of Toronto, and reported in [6]. 

In order to evaluate the performance of the new algorithms, 

we implemented the Bierstone algorithm’ and ran the three algo- 

rithms on two rather different testcases under the Algol system 

for the EL-X8. 

For our first testcase we considered random graphs ranging 

in dimension from 10 to 50 nodes. For each dimension we gen- 

erated a collection of graphs where the percentage of edges took 

on the following values: 10, 30, 50, 70, 90, 95. The cpu time per 

clique for each dimension was averaged over such a collection. The 

results are graphically represented in Figure 1. 

The detailed figures (31 showed the Bierstone algorithm to be 

of slight alivantage in the case of small graphs containing a small 

number of relatively large cliques. The most striking feature, how- 

ever, appears to be that the time/clique for version 2 is hardly 

dependent on the size of the graph. 

The dttference between verston 1 and ” Bierstone” is not so 

striking and may be due to the particular Algol implementation. 

It should be borne in mind that the sets of nodes as they appear in 

the Bierstone algorithm were coded as one-word binary vectors, 

and that a sudden increase in processing time will take place when 

the input graph is too large for “one-word representation” of its 

subgraphs. 

The second testcase was suggested by the referee and consisted of 

regular graphs of dimensions 3 X k. These graphs are constructed 

as the complement of k disjoint 3-cliques. Such graphs contain 

3k cliques and are proved by Moon and Moser [5] to contain the 

largest number of cliques per node. 

In Figure 2 a logarithmic plot of computing time versus k is 

presented. We see that both version 1 and version 2 perform sig. 

nificantly better than Bierstone’s algorithm. The processing time 

for version 1 is proportional to 4k, and for version 2 it is propor- 

tional to (3.14)k where 3k is the theoretical limit. 

Another aspect to be taken into account when comparing 

algorithms is their storage requirements. The new algorithms 

presented in this paper will need at most 3M(M+3) storage loca. 

tions to contain arrays of (small) integers where M is the size of 

largest connected component in the input graph. In practice this 

limit will only be approached if the input graph is an almost com- 
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plete graph. The Bierstone algorithm requires a rather unpredict- 

able amount of store, dependent on the number of cliques that 

will be generated. This number may be quite large, even for mod- 

erate dimensions, as the Moon-Moser graphs show. 

Finally it should be pointed out that Bierstone’s algorithm 

does not report isolated points as cliques, whereas the new al- 

gorithm does. Either algorithm can, however, be modified to pro- 

duce results equivalent to the other. Suppression of l-cliques in 

the new algorithm is the simplest adaption. 

Ackt~owledgmet~~s. The authors are indebted to H.J. Schell 
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statistics. Acknowledgments are also due to the referees for their 
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Algorithm 

procedure output muximd complc~e suhgrcrplts 2(c~~1111rc~rcd, N ) ; 

value N; integer N; 
Boolean array cotmecred; 

comment The input graph is expected in the form of a symmetrical 

Boolean matrix connected. N is the number of nodes in the 

graph. The values of the diagonal elements should be true; 
begin 

integer array ALL, compsub[ 1 : NJ; 
integer c; 

procedure extend vcrsiott 2(old, tic, cc) ; 

value tie, ce; integer tic, cc; 
integer array olrl; 

begin 

integer array tteu’I 1 : CO]; 
integer trod, j?xp; 

integer tieu’tie, tieu’ce, i, j, coutit, pas, p, s, sel, mitmod; 

comment The latter set of integers is local in scope but need 

not be declared recursively; 
mittnod : = ce; i : = rood : = 0; 

DETERMINE EACH COUNTER VALUE AND LOOK FOR 

MINIRIUM: 

for i : = i + I while i 2 ce I’\ mittttod # 0 do 
begin 

p : = oldli]; coutit : = 0; ; : = tw; 

COUNT DISCONNECTIONS: 

for j : = j + 1 while j 5 cc A count < mitmod do 
if ’ mttlected~p, oldlj]] then 
begin 

COllflf : = colltlf + I ; 

S-A VE POSITION OF POTENT/AL CANDIDAI‘E: 

pas : = j 

end ; 
TEST NEW MINIMUM: 

if couttt < mitmod then 
begin 

fixp : = p; mitittod : = coutil; 

if i < tre then s : = pos 

else 

begin s : = i; PREINCR: trod : = 1 end 

end NEW MINIMUM; 

end i; 

comment If fixed point initially chosen from cattdidutes then 

number of disconnections will be preincreased by one; 

BACKTRACKCYCLE: 

for nod : = mitmod + nod step - 1 until 1 do 
begin 

INTERCHANGE: 

p : = ofd[sj; old[JJ : = old[tle + 1 I; 

sel : = old[tte + I] : = p; 

FILL NEW SET not: 

newne := i := 0; 

for i : = i + 1 while i 5 ne do 

if cotmec,ed[sel, o/dji]] then 

begin t~~uwe : = tte~w + 1 ; twv[ttewtzeJ : = o/d[i] end; 
FlLL NEW SET cat/d: 

tiewfe : = newtic; i : = tie + 1 ; 

for i : = i + 1 while i < ce do 

if cotutected[se/, okdji]] then 
begin ilewce : = /lewce + I ; /lew[/lc)wce] : = o/d[i] end; 

ADD TO compsuh : 

c := c + 1; cornpslrh [c] : = sel; 

if tteM,ce = 0 then 

begin 
integer lot; 

outsfritlg( 1, ’ clique = ‘) ; 

for lot : = 1 step 1 until c do 

oulititeger( 1, compsuh [lot]) 

end oufpul qf clique 

else 

if tlewtle < tiewce then exlettd versiotr 2(11c~v, t~ew~~e, newce); 

R EM0 VE FROM compsub : 

c:=c- 1; 

ADD TO rtot: 

IlC : = IlC’ + I ) 

if trod > 1 then 

begin 
SELECT A CANDIDATE DlSCONNECTED TO THE FIXED 

POINT: 

s : = r1e; 

LOOK: FOR CANDIDATE: 

s := s + I; 

if cotutected[jixp, old[s]] then go to LOOK 

end selec tiotl 

end BACKTRACKC YCLE 

end extetld version 2; 

for c : = 1 step 1 until N do ALL[c] : = c; 

c : = 0; extetrd versiotl 2(ALL, 0, N) 

end output mcrximul complete suhgruph 2; 


