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Abstract. The Basket Analysis derives frequent itemsets and associa-
tion rules having support and con�dence levels greater than their thresh-

olds from massive transaction data. Though some recent research tries

to discover wider classes of knowledge on the regularities contained in
the data, the regularities in form of the graph structure has not been ex-

plored in the �eld of the Basket Analysis. The work reported in this paper

proposes a new method to mine frequent graph structure appearing in
the massive amount of transactions. A speci�c procedure to preprocess

graph structured transactions is introduced to enable the application of

the Basket Analysis to extract frequently appearing graph patterns. The

basic performance of our proposing approach has been evaluated by a

set of graph structured transactions generated by an arti�cial simulation.

Moreover, its practicality has been con�rmed through the appliaction to
discover popular browsing patterns of clients in WWW URL network.

1 Introduction

The Basket Analysis derives frequent itemsets and association rules having sup-
port and con�dence levels greater than their thresholds frommassive transaction
data [1],[2]. Some recent research of the Basket Analysis tries to discover wider
classes of knowledge on the regularities contained in the data. One represen-
tative work is to introduce taxonomy of items and Boolean constraints among
items under the taxonomy [3]. The association rules among items satisfying the
speci�ed constraints are e�ciently derived from massive data in their approach.
Another extension of the Basket Analysis on the class of the knowledge discovery
is to derive association rules among continuously ordered items, i.e., sequential
item patterns [4]. The taxonomy and Boolean constraints are one of the most
commonly used constraints in various data analyses. The sequential data of items
are also frequently observed in practical applications.

Another familiar structure and constraint of data which have not been ex-
plored in the �eld of the Basket Analysis are the graph structure, i.e., constraints
on the uni-directional and/or bi-directional relations among nodes. The data
having the graph structure are widely seen in various problem domains such as
the network ow phenomena in information stream of internet, that of car tra�c



stream in urban areas, the parallel process streams in computer operating sys-
tems, the structure of URLs and their links in the WWW service and causality
among physical states. The discovery of frequently observed graph structure from
a set of given data has been researched in the machine learning area, and the
most representative approach is called \GBI (Graph Based Induction)" [5],[6].
Given a set of transactions where each transaction represents a graph consisting
of some nodes and links, GBI searches typical graph structures observed more
than a threshold frequency in the transaction data. Another version of GBI pro-
gram can discover some speci�c graph structures which characterize the features
of nodes and/or links contained in the graph. Though GBI provides a powerful
measure to �gure out important graph structures from a set of given data, its
basic algorithm requires a thorough search in the data to �nd links contained
in the objective structures. Accordingly, the state of the art to mine the graph
structures is not satisfactory for the really massive data.

The work reported in this paper proposes a new method to mine frequent
graph structures appearing in the massive transactions. A speci�c procedure to
preprocess graph structured transactions is introduced to enable the application
of the Basket Analysis to extract frequently appearing graph patterns.

2 Transaction having Graph Structure

The transaction analyzed by the conventional Basket Analysis is a set of items.
For example, the transactions for customers buying items in a grocery store are
represented as follows.

customer1 : fmilk; bread; butter;���g;

�����

customern : fmilk; bread; apple;���g:

On the other hand, a transaction of graph structure contains nodes and links
as depicted in Figure 1. Given the graph structured massive transactions, if a
subgraph pattern of fA ! B ! C ! Ag appeares more than a certain fre-
quency level, then this subgraph can be called a \frequent subgraph" similar to
the \frequent itemset". Furthermore, if the transactions containing the subgraph
of fA ! Bg also contains fA ! B ! C ! Ag more than a certain frac-
tion of the transactions, then an \association rule among subgraph structures"
of fA ! Bg ) fA ! B ! C ! Ag is mined from the transactions. Though
the basic content of this problem is similar to the data mining of association
rules among items, the conventional Basket Analysis can only discover the fre-
quent itemsets and the association rules among the itemsets but not those of
graph structures. To apply the Basket Analysis to the graph structured data, the
data representation of each graph structured transaction is transformed into the
form of the itemset transactions in our approch. Thus, the derivation of associa-
tion rules among graph structured transactions is enable by this transformation
within the framework of the conventional Basket Analysis.
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Fig. 1. Transactions containing graph structures.

The basic principle of the transformation of the graph structured transac-
tions into the itemset transactions is as follows. Given a set of all nodes Vall =
fv1; v2; :::; vpg and a set of all links among them Lall = fvi ! vjjvi; vj 2 Vallg,
then the transaction Tk having a graph structure is represented as a subset of
Lall, i.e., Tk � Lall. As a transaction to be analyzed in the conventional Basket
Analysis is a subset of all items in the data excluding the null set, the transac-
tions having graph structures can also be analyzed in the same framework by
handling each link vi ! vj in Tk as an item.

For example, the two graph structured transactions depicted in Figure 1 can
be represented as the itemset transactions as

fA! B;B ! C;C ! A;A! Dg; (1)

fA! B;B ! C;C ! A;C ! Eg: (2)

By regarding each di�erent link as a corresponding di�erent item, the stan-
dard Basket Analysis is applicable to mine frequent subgraph structures and the
association rules among the structures.

3 Implementation of Basket Analysis

3.1 Preprocessing graph structured transactions

The transactions containing graph structured data are given in various forms
in practical �elds. For example, the data of the network ow phenomena are
usually represented as a collection of the series of nodes and links where the
objects such as information packets and cars go through. In case of parallel
process streams in computer operating systems, the streams of the processes
and the data exchanged among the processes are represented in form of the list
of the names of the processes and data together with the list of the pointers
connecting these processes and the data. However, any graph data contained in
a transaction can be generally transformed without much computational e�ort
into the form of an adjaency matrix which is a very well known representation
of a graph in the mathematical graph theory [7]. Each row and column of the
matrix correspond to a node that appears in the graph respectively, and if a link
from the i-th node to the j-th node appears in the transaction, the value \1"
is assigned to the ij-element of the matrix, otherwise the value \0" is assigned.



For the �rst example in Figgre 1, the adjaency matrix becomes as follows. For
the second, it is similarly represented.

A B C D
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D

2
64
0 1 0 1
0 0 1 0

1 0 0 0

0 0 0 0

3
75 for the transaction (1)

Once the adjaency matrix of each transaction is derived, the transaction in form
of an itemset representing the graph structure is obtained by choosing each pair
of nodes (i; j) having the value \1" in the ij-element and adding the arrow \!"
from the node i to the node j in each pair. When the transaction data contain
only non-directed graph structure where the direction of each link between any
two nodes is not speci�ed, the adjaency matrix of each transaction becomes
diagonally symmetric. In this case, the bar \�" is added between the nodes i
and j, and i� j and j � i become an identical link.

After the data transform of the transactions have been conducted, all links
appearing in all transaction are sorted and numbered in a lexicographical order
for the e�cient item processing similarly to the conventional Basket Analysis.
In the example of Figure 1, all links are numbered as follows.

A! B � 1; B ! C � 2; C ! A � 3; A! D � 4; C ! E � 5:

Then, the expression (1) is rewritten as

f1; 2; 3; 4g; (3)

The frequent subgraphs and the association rules among the subgraph structures
directly obtained by the Basket Analysis are also represented by the number
labels of the links. For the comprehensiveness of the results, their representations
are transformed back to the original links at the �nal stage of the analysis.

3.2 Deriving representative association rules

The standard Basket Analysis derives all frequent itemsets and all association
rules having support and con�dence levels greater than their thresholds, and
�lters out trivial rules by applying statistical heuristics [1],[2]. However, some
researches have pointed out that this standard approach can not get rid of re-
dundant rules and also misses some essential rules because of the incompleteness
of the statistical heuristics used for the rule �ltering [8], [9]. To alleviate this dif-
�culty, the authors have proposed a complete logical rule �lter which can retain
only \representative association rules" [8]. The identical idea has also been pro-
vided by the other researcher [9]. The representative association rule has the
characteristic to derive maximal consequences from minimal facts while main-
taining their support and con�dence greater than or equal to the given threshold
levels. We apply this principle to derive \association rules among subgraph struc-

tures"



The principle to derive the representative association rules is briey explained
in this subsection. An association rule has the following form where "Body": B
stands for an itemset and "Head": H another itemset (a superset of B). 1

B ) H; where B � H:

The "support" values of B and H, i.e., sup(B) and sup(H), are ratios of the
number of transactions including each set to the total number of transactions
respectively. The "con�dence" value, conf(B ) H), stands for the credibility
of the rule, and is de�ned as a ratio of the number of transactions including
H to the number of transactions including B. The Basket Analysis generates
all frequent itemset having its support value greater than a threshold l � sup,
and derives all association rules where its head is a frequent itemset and its
con�dence value is greater than another threshold value s � conf .

The association rules derived by these procedures have many redundancies
that derive identical consequences from identical given facts. These redundancies
reduce the comprehensiveness of the regularities discovered in the data and the
e�ciency of the use of those rules for some speci�c purposes. Instead of using
statistical heuristics to remove the redundancies, we apply the following criteria.

Support threshold: The head of every association rule must have the support
greater than a threshold "lowest support": l � sup.

Uniform con�dence: Every association rule must have a con�dence close to
but not less than a level "speci�ed con�dence": s � conf .

Maximal consequence: Every association rule must derive a maximally spe-

ci�c consequence from a minimal fact.

The following de�nitions are introduced to implement these criteria.

Minimal bodyset: For a speci�ed con�dence s� conf , if a rule B ) H satis-
�es the following condition, B is said to be a "minimal bodyset" of Head : H
under s � conf .

conf(B) H) � s� conf and conf(B0 ) H) < s� conf 8B0 � B

Maximal headset: For a speci�ed con�dence s� conf , if a rule B ) H satis-
�es the following condition,H is said to be a "maximal headset" of Body : B
under s � conf .

conf(B) H) � s� conf and conf(B) H
0) < s� conf 8H 0 � H

Representative association rule: For a speci�ed con�dence s � conf and a
lowest support l � sup, if Body : B and Head : H of a rule B ) H are the
minimal bodyset and the maximal headset respectively, B ) H is said to
be a "representative association rule".

This rule satis�es the aforementioned three criteria.
The representative association rules still contain some redundancy in terms of

the inference ability. We apply a logical "rule-�lter" where the rule AB ) ABR
is removed, when two maximal estimation rules

AB ) ABR and B ) BCR

1 This representation of association rules is di�erent from the standard notion B )
R where R = H �B. We use H instead of R for ease of our explanation.



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Fig. 2. A 4� 4 path array.

are obtained. Here, every intersection among A;B;C;R is empty, and AB =
A+B;ABR = A+ B + R and BCR = B +C +R. This rule-�ltering does not
violate the aforementioned criteria.

4 Performance Evaluation

4.1 Validation through simulation data

The basic performance of our proposed method to discover frequent graph struc-
tures and the association rules among the structures has been validated through
the graph structured transaction data having clear characteristics. The data
have been arti�cially generated through a Monte-Carlo simulation on a path
array shown in Figure 2. This is a 4 � 4 link array, and vehicles starts from
the node 1 to arrive at the node 16 by following directed (one way) links. Each
vehicle chooses one of the links to proceed with an equivalent probability (50%
each) at every binary branch of the links. A run of a vehicle from the start node
1 to the �nal goal node 16 corresponds to a transaction consisting of the inter-
mediate links along the path that the vehicle passes through. The total number

of the links between the adjacent nodes in this path array is 24, and the num-
ber of the items (links) involved in each transaction is 6. Furthermore, the total

number of path sequences from the node 1 to 16 is 20, and the total number
of the possible frequent itemsets in this example are theoretically known to be
847. The probability of each path that vehicles go through can also be theoret-
ically evaluated. Totally, 10000 transactions, i.e., the 10000 history simulations
of vehicle operations, are generated to ensure su�cient statistical accuracy of
the validation. Multiple combinations of support and con�dence thresholds of
the Basket Analysis are applied in the validation analysis. The algorithm of a
priori [1] has been used to derive frequent subgraphs. The e�ect of the support
threshold l � sup has been assessed in the range of [0%; 35%], and that of the
con�dence threshold s� conf has been changed in the range of [30%; 90%].

Three examples of the frequent subgraphs discovered by the analysis are
shown bellow.

f1! 2; 2! 3g (support = 25:3%);



f1! 2; 8! 12; 12! 16g (support = 25:4%);

f1! 5; 5! 9; 9! 10; 10! 11; 11! 15; 15! 16; g (support = 3:1%):

The �rst example is a trivial case that its theoretical support value is easily
known to be 25% because of the twice branching at the nodes 1 and 2. The
second example contains two separated subgraphs of 1 ! 2 and 8 ! 12 ! 16.
This is because many path ways from the node 2 to the node 8 exists, and
the frequencies that each of the intermediate paths between the nodes 2 and 8
appear in the data are less than the support threshold l�sup = 25% in this case.
The expected probability to go from the node 2 to the node 8 is 50%, and thus
the total expected probability to go though these three paths are 25% which is
consistent with the support value obtained in the simulation. The last example
contains a full path ways from node 1 to node 16. The vehicle chooses one of the
binary branching paths at the node 1; 5; 9; 10 and 11 with equivalent probability.
Thus, the expected probability to occur this path way is (1=2)5 = 1=32 which is
also consistent with its support value.

The followings are two examples of the association rules among subgraph
structures.

f1! 2g ) f1! 2; 2! 3g (support = 25:3%; confidence = 50:9%);

f2! 3g ) f1! 2; 2! 3g (support = 25:3%; confidence = 100:0%):

Both of them represent the fact that a vehicle goes through the path way
1 ! 2 ! 3 with the support value of about 25%. However, the di�erence of
their con�dence reects the geometrical con�guration of the paths 1 ! 2 and
2 ! 3. When a vehicle goes to the node 2 from the node 1, there are two
choices to go forward at the node 2. In contrast, in the case that a vehicle goes
through the path 2 ! 3, it always should have passed the path 1 ! 2. More
complex examples reecting the geometry of the paths are shown below where
the con�dence threshold s � conf is set at 30%.

f2! 6; 11! 15g ) f1! 2; 2! 6; 6! 7; 7! 11; 11! 15; 15! 16g

(suppoprt = 2:9%; confidence = 50:6%);

f2! 6; 11! 15g ) f1 ! 2; 2! 6; 6! 10; 10 ! 11; 11! 15; 15! 16g

(suppoprt = 2:9%; confidence = 49:4%):

As easily understood by viewing Figure 2, when a vehicle goes though the paths
2 ! 6 and 11 ! 15, it necessarily goes though 1 ! 2 and 15 ! 16, and there
are only the two choices 6 ! 7 ! 11 and 6 ! 10 ! 11 to go from the node 6
to the node 11. Accordingly, the con�dence of each rule becomes around 50%.
These observations indicate that the Basket Analysis for graph structured trans-
actions in our proposed framework can properly derive the frequent subgraphs
and the association rules among subgraph structures in a quantitative sense. Ta-
ble 1 shows the e�ect of the condition of support and con�dence thresholds on
the computational complexity required. The level of the support threshold has a
signi�cant inuence to the number of the frequent subgraphs. The computation
time of \Apriori" is the time required to derive all frequent subgraphs, and that
of \Rulegen" is the time to derive all representative association rules from the



Table 1. Computational complexity for support and con�dence thresholds.

l-sup s-conf Num. of Max. size of Num. of Comp. time[sec]
freq. subgraphs freq. subgraphs rules Apriori Rulegen

90 0 0.06

35
70

5 2
0

0.07
0.05

50 2 0.05

30 4 0.06

90 4 0.06

25
70

18 3
6

0.13
0.05

50 12 0.05

30 12 0.05

90 12 0.06

15
70

54 4
17

0.24
0.07

50 22 0.07

30 22 0.07

90 68 0.42

5
70

523 6
86

0.55
0.42

50 120 0.44

30 130 0.45

90 134 0.89

0
70

847 6
152

0.58
0.88

50 179 0.89

30 226 0.97

frequent subgraphs. The task to derive all frequent subgraphs faces the combi-
natorial explosion of the items for a low support threshold, while the \Apriori"
maintains its signi�cant e�ciency due to its well organized algorithm. The com-
putation time required by \Rulegen" also does not show very drastic increase.
These observations are consistent with the complexity analysis for the conven-
tional Basket Analysis [1], [8]. The increase of the maximum size of the frequent
subgraphs saturates under the condition of l � sup less than 15%, where the
length of the full path way from the node 1 to the node 16 is 6. This is because
the support of some full path ways such as 1! 2! 3! 4! 8! 12! 16 has
the maximum value of (1=2)3 = 1=8 which is slightly less than 15%.

4.2 Application to WWW browsing histories

The practical performance of the proposed method has been examined through a
real scale application. The data analyzed is the log �le of the commercialWWW
server of Recruit Co., Ltd. in Japan. The URLs on WWW form a huge graph,
where URLs are nodes mutually connected by many links. When a client visits
the commercial WWW site, he or she browses only a small part of the huge
graph at an access session as depicted in Figure 4, and the browsing history of
the session becomes a graph structured transaction. The total number of the
URLs involved in this commercial WWW site is more than 100000, and it is one
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Fig. 3. A subgraph transaction in a huge URL graph.

of the largest site in Japan. Its total number of hit by the nation wide internet
users always remains within the third place from the top in every month in
Japanese internet record, and the typical size of the log �le of the WWW server
for a day is over 400MB.

The basic format of an access record to a URL by a client in the log �le is
indicated in Figure 4. As the log �le consists of the sequence of the access records,
they are initially sorted by the IP addresses, and each subsequence having an
identical IP address corresponding to the browsing access history in a session
of an individual client is extracted. Then, those subsequences are transformed
into adjaency matrix, and each graph structured transaction for a session of the
individual IP client address are generated as explained in the earlier section.

Table 2 summarizes the statistical result of the analysis of this data by our
approach varying the support threshold l � sup and the con�dence threshold
s � conf . This table also shows the similar tendencies on the number of fre-
quent subgraphs and the computation time with Table 1 that their increases
are observed when l � sup is decreased. In contrast, the number of the derived
association rules are decreased, when s� conf is decreased for low l� sup. This
tendency is contradictory to the case of Table 1. This tendency is attributed
to the feature of the WWW accesses that only the limited number of the URL
access patterns are commonly shared among many clients while the access pat-
terns of an individual client are slightly di�erent from those common patterns.
In other words, the transaction data involve many common subgraphs and the
associations among them in the WWW case. For example, if the following two
association rules involving common subgraphs of A! B on the lhs and E ! F
on the rhs are derived under a high con�dence threshold s� confH ,

fA! B;B ! Cg ) fA! B;B ! C;E ! Fg;

fA! B;B ! Dg ) fA! B;B ! D;E ! Fg;

then these two rules are subsumed into the following rule under a lower con-
�dence threshold s � confL, and the above two rules are �ltered out by the

IP address of a client � Time stamp of the access � URL address

�:space character

Fig. 4. Basic format of an access record.



Table 2. Statistics of analysis on WWW access transactions.

l-sup s-conf Num. of Num. of Comp. time[sec]

[%] [%] freq. subgraphs rules Apriori Rulegen

90.0 5 1

0.6
70.0

132
8

151
2

50.0 18 2
30.0 30 2

90.0 251 24

0.4
70.0

625
186

392
25

50.0 216 24

30.0 241 25

90.0 2,292 486

0.3
70.0

4,568
773

629
441

50.0 107 419

30.0 101 420

aforementioned maximal consequence principle.

fA! Bg ) fA! B;E ! Fg:

On the other hand, the transactions generated in the path array example do
not share very much common association patterns among subgraphs, since the
motion of the vehicles along the directed paths are randomly determined. This
feature induces the monotonic increase of the rules under the decease of s�conf .

Finally, we show two examples of the association rules among subgraph struc-
tures obtained in this application. Figure 5 depicts a rule representing that more
than 50% of the clients who pass the link from the URL titled as \Sports" to
another \Ball Game" also pass the link from the \Ball Game" to that of "Base-
ball". Another example shown in Figure 6 says that nearly 60% of the clients
who go though the link from \Travel" to \Restaurant" also go through the path
of \Restaurant"! \Hobby"! \Arts"! \Society and Culture" ! \Entertain-
ment"! \News"! \Sports". Though the lhs and the rhs of these example rules
just represent the node sequences, the association rules among various types of
subgraphs including branching and cyclic structures are derived. Figure 7 shows
such an example including loops in the pattern. This type of knowledge derived
by the proposed approach can be used to investigate the associations among the
interest topics of clients of the WWW site which provides important insights for
marketing on necessary services.

5 Related Work and Discussion

R. Feldman et al. applied the conventional Basket Analysis to mine associations
rules among keyword subsets involved in text �les such as document �les and
HTML �les, and they proposed a method to generate keyword graphs from the
association rules [10]. The graphs are generated by merging the pairwise associa-
tions among keywords involved in the rules. Though this approach can represent
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Fig. 5. Rule example (1) (support = 0:4%; confidence = 52:1%)

Hobby Art
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Sports

Entertainment

Travel Restaurant Travel Restaurant Society and 
Culture

Fig. 6. Rule example (2) (support = 0:4%; confidence = 59:7%)

the associations among multiple nodes in form of graphs, it is to derive associ-
ations among sets of items and not for the applications where the transactions
contain graph structured data. On the other hand, Chen et al. proposed to de-
rive the longest access sequence patterns among URLs. Their work is close to
our approch. However, knowledge representation discoverd by their framwork is
limited to the access sequence patterns, whereas our apporch can discover graph
structured patterns which cover wider classes of knowledge.

As shown in the previous section, the ability of our method to mine frequent
subgraph structures and the associations among them are valid, and it is e�cient
for some practical and large scale applications. However, one weakness of our
current approach is the requirement that all nodes must be mutually distinct
in the object which produces the transactions. For instance, a common graph
structure such as memory cell circuits contained in an LSI chip can not be
discovered from the transactions representing fragments of the chip, because all
nodes (devices) must be labeled by mutually di�erent numbers, and the memory
cells having an identical structure are represented by the transactions containing
di�erent links in this situation. To overcome this limitation, our approach must
be extended to handle the types(colors) or attributes of nodes and links in graphs.

categorysearch categorysearch

Fig. 7. Rule example (3) (support = 0:3%; confidence = 47:7%)



6 Conclusion

The work reported in this paper proposed an approach to mine frequent graph
structures and the association rules among them embedded in massive trans-
action data. The approach consists of a preprocessing stage of the transaction
data and the Basket Analysis. The validity of the principle we proposed has been
con�rmed by adopting to an arti�cially simulated graph structured data, and its
practicality has been also demonstrated through a large scale real world problem
to mine frequent browsing patterns of URLs and the associations among those
patterns.
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