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ABSTRACT
Recent advances in computer vision, information retrieval,

and molecular biology amply demonstrate the value and
importance of graph matching.  However, graph matching
algorithms developed to date are either application domain-
specific or severely limited by the problem size.  This paper
presents a unified solution for the broad range of major graph
matching problems.  Particularly, the new algorithm goes
beyond matching given pattern graphs and effectively tackles
two very difficult graph matching problems -- Maximal
Common Subgraph and Maximal Overlap Sets.  By
mathematical proofs, these graph matching problems can be
shown to be transformable into the maximum clique problem.
This new algorithm actually alternates between clique-finding
and graph coloring by utilizing the information generated from
the counterpart to either solve the maximum clique problem
or, alternatively, the graph coloring problem as well.  The
effectiveness of this algorithm to solve all these graph
matching problems is then evaluated with an extensive set of
benchmark graphs for clique finding.  The solutions show
consistent superior solution quality.

Keywords: Graph Matching, Maximum Clique,
Maximal Common Subgraph, Maximal Overlap, Coloring.

1. INTRODUCTION
Graph matching is one of the most important techniques in

pattern recognition.  It has been studied in the simpler (but
already computationally difficult) forms of Graph
Isomorphism (GI), Subgraph Isomorphism (SGI) [1, 2], and in
the most complex forms of Maximal Common Subgraph
(MCS) Isomorphism and Maximal Overlap Set (MOS) [3, 4],
for both theoretical and practical interests.

Though recent advance in the SGI research has led to
efficient solutions for certain practical applications [2], MCS
and MOS problems have largely remained intractable due to
the added complexity from combinatorial possibilities of
patterns.  All published MCS/MOS algorithms are still limited
to solving small graphs.  Nevertheless, the need for an
effective MCS algorithm is clearly called for by many real-
world problems [3, 4, 5, 6].

Levi [7] used a more restrictive definition of MCS that
requires isomorphism between vertex-induced sub-graphs.
McGregor [3], later, pointed out that Levi’s definition is not
appropriate as a measure of the similarity of graphs, and
adopted Velduts’s Maximal Overlap Set definition by relaxing
edge correspondence.  To our knowledge, McGregor’s
algorithm is the only one existing that solves MOS problems.
However, our experiments show that it can hardly handle
graph sizes beyond 30 nodes due to its branch-and-bound
search scheme and its lack of good heuristics.

In search of the solution for MCS, Barrow et al. [8] first
introduced a transform to convert MCS into the Maximum
Clique problem.  We recently showed [9], independent from
Kann's recent work [10], that the MOS problem can also be

transformed into an MC problem.  Consequently, devising a
good maximum clique algorithm may provide solutions to
several related graph matching problems.

This paper proposes a unified solution to these graph
matching problems by first providing the corresponding
transformation to MC, in Section 2 after a brief introduction.
Then in Section 3, a constructive algorithm CRP-MC that
couples MC and Graph Coloring (GC) in an iterative loop will
be presented.  A series of benchmark testing that evaluates the
effectiveness of the proposed algorithm is shown in Section 4.
Finally, Section 5 asserts some conclusions.

2. GRAPH MATCHING

2.1 Problem Definitions:
Graph Matching often utilizes the concept of

isomorphism, which simply means that two graphs are
topologically identical.  (Sub)graph Isomorphism, then, means
that one graph contains an isomorphic copy of another.   

To define the MCS and MOS problems, the concept of
induced graph need to be introduced,
Definition 1: Given a graph G(v,e), and a subset vv ∈' (or

ee ∈' ), the vertex (or edge) induced subgraph G|v’ (or G|e’)
is the subgraph formed by v' (or e') and all of their adjacent
edges (nodes).
Definition 2: The MCS problem [7] is defined as finding a
common vertex-induced subgraph of two graphs with the
maximal number of nodes.
Definition 3: Maximal Overlap Set (MOS) [3] is defined as
finding a common edge-induced subgraph of two graphs with
the maximal number of edges.

2.2 Transform to Maximum Clique Problem:
The graph matching problems mentioned above can all be

transformed to Maximum Clique (MC):
Definition 4:  A clique is a complete graph. The Maximum
Clique Problem is to find the clique with the maximum
number of nodes in a given graph.

[Transform from SGI (or GI) to MC] The transform from
SGI into k-clique problem (i.e. maximum clique size is know
to be k) was first introduced by Cook [11].  However, it's
never been applied to the SGI problem probably due to the
lack of efficient MC algorithm.

[Transform from MCS to MC]  Barrow et al. [8] proposed a
transform to convert MCS into the MC problem by the
following procedures:

 Given a pair of labeled graphs G1 and G2, create a
correspondence graph C by,
 1)  Create the set of all pairs of same labeled nodes, one from

each of the two graphs.



2

2)  Form the graph C whose nodes are the pairs from (1).
Connect any two node pairs N1(Ai, Bx), N2(Aj,By) in C if
the labels of the edges from Ai to Aj in G1 and Bx to By in
G2 are the same.

3) Maximal common subgraphs then correspond to the
maximum cliques of  C

[Transform from MOS to MC]  Recently, Kann [10] showed
in his dissertation work that the MOS problem can also be
transformed into the MC problem.  However, this theoretical
result is less practical since it generates a large
correspondence graph.  Independent from his work, we [9]
devised a similar transform with a two-stage reduction process
that results in much smaller correspondence graphs in
practical cases:
1)  An Edge Unit (EU) [2] is defined as an edge and its two
end nodes, together with their labels.
2)  Remove all edge in G1 and G2 whose corresponding EUs
do not have any match on the counterpart  è  G1

' and G2
'

(First Reduction Process)
3)  Examine each EU pair (u1, u2) from G1

' and G2
', if u1, u2

have the same label, and,
[Ambiguity Condition]
If (a) u1, and u2 are in a triangle-fork dual subgraph  pair (see

Figure 1(f) ), where the two edges other than u1 in one
subgraph match with the edges other than u2  in the
other, and,

  (b) all the end nodes of the edges in the subgraph pair have
the same label,

Then generate two corresponding directional nodes N(u1
+,

u2
+), N(u1

-, u2
+) in the correspondence graph C. (where

direction is treated as an extra label to be matched)
Else generate one undirectional correspondence nodes

N(u1,u2).  (Second Reduction Process)
4)  In the correspondence graph, connect any two node pairs
N1(u11, u21) , and N1(u12, u22) if either,
(a) u11 connects to u12 , u21 connects to u22 , and they both

connect at nodes of the same labels, or,
(b) u11 does not connect to u12 and u21 does not connect to u22
5)  The maximal overlap sets then correspond to the maximum
cliques of  C

In other words, this transform process is basically similar
to the MCS-to-MC transform except that the edge (or edge
unit) is considered instead of node.  The other major
difference is that the Ambiguity Condition used in Step 3
requires establishing two correspondence nodes in certain
cases.
Theorem 1:  In the above MOS to MC transform, the
necessary and sufficient condition to cause ambiguity is u1,
and u2 are contained in a triangle-fork dual subgraph pair
(where the edge labels matched). In addition, all the end nodes
of the six edges in the subgraph pair have the same label
(Details in [9]).

Proof: (1)  It's trivial to show that there is no ambiguity if
there are less than 3 connected EU pairs.

(2)  When given 3 connected EU pairs, there are 6
possible combinations as in Figure 1. In case (a)-(c), the two
subgraph match can be reflected in the correspondence graph.
Whereas in case (d)-(e), the connection counts of the two
subgraphs differ, so it is detectable in the transform.  The only
exception in case (f), where G1 and G2 might be mistaken to
be matched since the inter-connections among the edge in
both graphs are identical.  [Condition 1]

(3)  Case (f) is considered as a 3-edge match only
when a1, a2, b1, and b2 have the same label so that the
connections among u1, A1, A2 are consistent with u2, B1, B2.
In addition,  a3 has to be the same as b2 so that A1, A2 connect
to the same label as B1 and B2.  Consequently, b3 and b4 need
to have the same label as b2.  Therefore, all seven end nodes in
the subgraph pair need to have the same label.    [Condition 2]

(4)  By mathematical induction, it's easy to see that
the conditions sustain for cases with more than three nodes.

Therefore, with the appropriate transform, these graph
matching problems can then be solved by developing an
efficient maximum clique algorithm.

2.3 Previous Work:
The research on graph matching began in the 70’s.  Early

work focused mainly on the graph isomorphism [12], and sub-
graph isomorphism problems [1], and the graph sizes reported
were usually about 20 nodes.  Recently, Ling and Yun [2]
have presented a new SGI algorithm that showed to be able to
handle large graph sizes in reasonable time given that the
graphs have bounded-degree and their labels are locally
distinguishable in some sense.  Nevertheless, these conditions
and the ‘center’ concept employed in that algorithm can
hardly apply to the MCS/MOS cases.  There have been several
MCS and MOS algorithms [13] devised in the past decade due
to the increasing interest in the chemical and molecular
biology fields.  However, most of them used certain domain-
specific knowledge, such as the particular conditions for atom
bonds, and the bounded-degree characteristics observed in the
chemical molecules.  These features are usually not available
in the other cases.

Few algorithms have been designed to tackle the general
MCS and MOS problems.  One exception is the one proposed
by McGreger [3], which is a branch-and-bound, pair-wise
comparison type of algorithm.  Although his algorithm is
intended for MOS problem (and it’s the only one up to now),
it can be easily modified for the MCS problem.  However, as
noted by the other researchers’ and our own experiments, this
algorithm can hardly handle graphs with more than 30 nodes.
There have been several attempts on applying the maximum
clique algorithms to solve the MCS problem [4, 14].  All these
algorithms use the same maximum clique algorithm,
Algorithm 457 [15], which is basically a branch-and-bound

(a) (b) (c ) (d) (e) (f)

b2

Figure 1  All six possible connected graph pairs with three edges
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search algorithm.  It is observed in [4] that using Algorithm
457 usually solves the MCS problem in the transformed
domain faster the pair-wise comparison algorithms such as
McGreger’s.  In our own experiments, we also experienced a
hundred fold of speed-up for large test graphs.  Based on these
advantages and the universal properties as discussed above,
we propose to tackle these graph matching problems with the
following maximum clique algorithm with appropriate
transform as discussed earlier.

3 MAXIMUM CLIQUE ALGORITHM (CRP-MC)
Most MC algorithms employ heuristics based on node

degrees [16,17]. The idea is that a node with large degree has
a higher probability of belonging to a large clique.  It is easy
to see how this heuristic tends to fail.  As show in Figure 2,
although node a has the highest degree (6), it does not belong
to the largest clique, namely, {b,c,d}.  Instead of using
heuristics on node degrees, we found that graph coloring
provides more accurate information for finding large cliques.
(node a is adjacent to only one color, while b,c,d to two colors
each).
3.2 Algorithm CRP-MC:
Definition 5: Given a graph G, a (vertex) Graph Coloring
(GC) is an assignment of k colors, 1, 2, … , k, to the vertices of
G such that no two adjacent vertices use the same color.  The
Minimum Coloring of G is an assignment using the minimum
number of colors (k).  This minimum number, )(Gλ , is called
the chromatic number of G.  For example, a valid graph
coloring is given in Figure 2, which is also a minimum
coloring with a chromatic number of 3.
Lemma 1: Given a graph G, the relation between the size of
the maximum clique, )(Gω , and the chromatic number,

)(Gλ , is )()( GG λω ≤ .
Definition 6: Given a graph G(v, e) and a coloring, the color-

degree of vertex vi, cdeg(vi), is defined as the number of
different colors of the adjacent nodes.
Lemma 2: Given a graph G(v, e), for any vertex vi , let the
size of the maximum clique that includes vi be )|( ivGω .

Then, )1 )cdeg(()|( +≤ ii vvGω .  (The proof follows
immediately from Lemma 2.)

By utilizing the concepts of Lemma 1 & 2, we developed
a maximum clique algorithm (Figure 3) called CRP-MC that
couples two sub-algorithms, COLORING (Figure 4) and
CLIQUING (Figure 5).  The two algorithms are executed
alternatingly in an iterative loop, as shown in Figure 3, and
controlled by a tested, efficient resource management
technique, Constraint Resource Planning (CRP) [18].  (1)
COLORING takes the cliques found by CLIQUING as
input, and minimizes the number of colors needed for the
correspondence graph.  (2) CLIQUING initializes with the
nodes partitioned according to the colors from the previous
COLORING and operates on the fact that no two nodes of
the same color partition can belong to the same clique.

At the COLORING stage, described in Figure 4, the node
that has the least number of valid colors is chosen for
processing first because of its lack of flexibility.  The color
that has the least influence (chance to restrict the color set of
others) on the other uncolored nodes is then assigned to the
chosen node to maximize the available color sets to the nodes
still to be colored.

On the other hand, the CLIQUING stage (see Figure 5)
uses the dual concept.  Since for any clique in the graph, each
color partition provides at most one node, the least flexible yet
important color partition should be considered first.  Then a
node from that color partition with the highest potential (based
on the color degrees) of being in a large clique is chosen.

In general, the iterative process of CRP-MC terminates
when (1) the clique size equals the number of colors used,
since no larger clique can be possible (Lemma 1), or (2) the

Coloring CliquingCorrespondence
Graph G

G1 , G2

Maximum
Clique cl

Maximal Common
Subgraph  (or Maximal
Overlap Sets) H1 , H2

Figure 3:  Framework of MCS/MOS Algorithm
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distribution of colors in COLORING is not changed anymore,
since no more improvement is possible from this iterative
refinement process.

However, for the case of Graph (or Subgrah)
Isomorphism, if the to-be-matched graph pattern is of size k,
then there has to be a k-clique in the correspondence graph if
there is an isomorphism.  Therefore, the CRP-MC can be
modified to terminate when (1) A k-clique is found, (è
isomorphic) or, (2) A coloring uses less than k colors is
obtained (è not isomorphic).  The advantage of using
maximum clique for solving SGI (or GI) problem is that when
the chromatic number is detected to be less than the to-be-
matched graph pattern size, then there is no graph or subgraph
isomorphism and the process can be terminated much earlier,
rather than having to exhustively search the whole search
space.

4 EXPERIMENTS

4.1  Validation of Color-degree Concept:
A major feature that is first proposed in this paper is the

use of color-degree.  In order to verify the effectiveness of
this concept, the first experiment is designed to compare it
with the one that only uses  node-degree, as employed by the
other existing maximum clique algorithms.  In order to
maintain the other factors unchanged, the two compared
algorithms are constructed as follows, (1) With Node-degree
Only :  using the implemened CRP-MC algorithm as
backbone, while forcing the COLORING module to generate
distinct color for each node.  Thus removing the information
of color degree.  (2)  With Color-degree :  using the CRP-MC
without any modification.  The test is done by only using one
iteration since the node-degree only one will not benefit from
the iterative scheme.

The results are shown in Figure 6, where each vertical bar
represents the difference between the maximal clique sizes
found by using color-degree, and node-degree only.  Out of 66
standard benchmark test graphs, the algorithm using color-
degree achieves large cliques that the other in 47 cases, and
only loses in one case.  Note that the solution quality can be
better by up to several tens of nodes.

4.2  Comparison with the other algorithms:
As discussed earlier, the only maximum clique algorithm

that has been used for graph matching (MCS) is the

Algorithm 457, therefore, an improved version of this
algorithm, dfmax, is chosen for our first comparison.  In
addition, a neural network based maximum clique algorithm,
gsd0, recently developed by Jagota [19], reportedly to yield
good approximate solution quality, is also used for
comparison.

The experiment is done on the same benchmark graphs,
and the same chart representation as previous experiment is
used.  Due to that the gsd0 algorithm tends to saturate on its
solution quality after certain iterations, and the dfmax
algorithm requires much longer time than the others to
complete its search, we decide to compare the performance by
terminating all programs when the gsd0 stops to improve its
solution.  Figure 7(a) shows the comparison result between
CRP-MC and the dfmax algorithm.  The CRP-MC algorithm
consistently finds better (31 out of 66 cases) or equal (35 out
of 66 cases) quality than the ones by dfmax.  Similarly, in
Figure 7(b), the CRP-MC algorithm finds 36 better solutions
than the ones by gsd0, 29 equal quality solutions, and only
one that is worse.  Also note that the solution quality in the
winning cases can often be better by more than five nodes,
while the only losing case is differed by merely one node.

The practical use of this CRP-MC algorithm has also been
demonstrated with a computer vision problem, the
Automation of 3D Object Model Reconstruction from
Multiple Line-drawing Views.  The details are shown in [20].

Experiment on the use of Color Degree
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5.  CONCLUSIONS
This paper presents a unified solution to the graph

matching problems by providing algorithmic transformations
from MCS and MOS problems to the MC problem.  Rigorous
mathematical derivations are also provided to show the
correctness of these transforms.  The result is an extension and
completion of previous works on the transformation of various
graph isomorphism problems to MC.

In the effort of designing a practical maximum clique
algorithm as the core process for the unified solution, a novel
algorithm, CRP-MC, which tightly couples with the minimum
coloring and effectively exploits this duality relationship, has
been developed.  As pointed out already in this paper, the
CRP-MC algorithm has a much better chance of tackling large
graph matching problems, while conventional MC algorithms
based on node-degree tend to fail.

The efficiency of the CRP-MC algorithm and the use of
proposed color-degree are demonstrated with a set of standard
benchmark graphs.  The experiments show consistently
superior solution quality to the other two maximum clique
algorithms commonly used for MCS problem.  Finally, in
order to devise a more robust and universal algorithm, current
efforts are focusing on the algorithm effectiveness on different
type of graphs, as well as on the relationships and
characteristics between the matching graphs and their
correspondence graphs.
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CRP-MC  vs. dfmax (Improved Algorithm 457)
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Figure 5  (a)  Comparison between CRP-MC and dfmax          (b)  Comparison between CRP-MC and gsd0


