
Discovery of Schema Information from a Forest of
Selectively Labeled Ordered Trees *

Dong-Yal Seo, Dong-Ha Lee, Kyung-Mee Lee, and Jeon-Young Lee

Dept. of Computer Science and Engineering
Pohang University of Science and Technology

Nam-Gu, Pohang, Kyongbuk, 790-784, KOREA
{dyseo, dongha, kyungmee, jeon}@white.postech.ac.kr

* This paper was supported by ’95 SPECIAL FUND for UNIVERSITY RESEARCH INSTITUTE, Korea Research
Foundation.

Abstract
The main focus of our work is to discover an object-oriented schema information from a set of
semistructured data. We develop schema extraction algorithms and a data model for
semistructured data . Our data model is an improved version of the data forest model. We
modify the ordered labeled trees of the data forest model to allow selectively unlabeled vertices.
The unlabeled vertices represent set structures which are syntactically incomplete in the data
forest model. The efforts on schema discovery give a major distinction between our study and
former ones. Schema extraction algorithms discover structural schema information from a set of
semistructured data represented in our modified data forest model. We can extract identifiable
classes, their attributes, and a composition hierarchy with the proposed algorithms.

1. Introduction
In conventional database systems, data objects are created as instances of predefined schema which reflects
the structure of the real-world. But we should consider semistructured data in networked information world,
where there is no absolute schema fixed in advance and whose structure may be irregular or incomplete. To
manage such semistructured data efficiently, we need a new data model for the representation of schemaless
data instances. And because such semistructured data have no absolute schema information and their
structures are irregular, we should extract useful structural information and construct schema hierarchies to
provide structured views and manipulation methods.
The WWW is a typical example of networked information environment. Many users creates their own
documents and submit them through the WWW environment. We access various information resources with
their URL addresses every day. But the structure of each HTML document is so semistructured, or almost
unstructured, it is not easy to manage lots of information acquired from the WWW. If we could represent the
information embedded in HTML documents and could define a well-structured schema on the set of
documents, not only we have a better understanding of the collected information but also we can apply
conventional database technologies which are mainly dependent on schema.
The importance and the motivation of semistructured data processing are introduced in earlier studies
[1,2,3,4,5,6]. General introduction and survey on semistructured data processing are presented in [5]. All the
earlier models for semistructured data [2,4,6] are similar to each other and their expressive powers are almost
same. Earlier studies are focused on representation models and query languages. Although not developed as a
semistructured data model, O2’s complex value model [7] provides a good example of syntactic
representation and type system.
The OEM model[4] tried to represent semistructured data with attribute-value pairs. The values in the OEM
model include sets and nested substructures as well as atomic values like integers and strings. The labeled-
tree model[2,3], has the same expressive power as the OEM, represents semistructured data as trees, i.e., the
trees with a labeling of edges. Our model is similar to the data forest model introduced in [6] by Abiteboul, et
al. The data forest model supports list type which is unable to be described in the OEM and the labeled-tree.
The former studies mainly focus on modeling and querying with incomplete schema information or without it.

Although semistructured data have irregular structures and schemaless manipulation is convenient for users,
schema itself is very important when we retrieve and manipulate the stored data. Schema provides a well-
defined structural view of stored data, and enables us to use structured query languages, like SQL.
We are going to provide a way of schema-based management for semistructured data using object-oriented
schema hierarchies. We suggest a schema extraction method and a suitable representation model of
semistructured data to support schema-based manipulation. Our representation model is based on the data
forest model.
The efforts on schema discovery give a distinction between our study and previous ones in semistructured
data processing. Schema extraction will be much easier in a semistructured data set than from a set of wholly
unstructured data because it has some structural information.
The remaining part of this paper is composed as follows. Section 2 introduces our model for semistructured
data using the data forest model with selective labeling. Section 3 addresses schema extraction methodologies
from a set of semistructured data represented in our data model. And finally, conclusion and directions for
future work are discussed in Section 4.

2. The Data Model
We propose a new model for semistructured data, based on the data forest model. A data forest is composed
of ordered labeled trees. An ordered labeled tree is a tree with a labeling of vertices and for each vertex, an
ordering of its children. By the ordering property, the model supports lists which are not supported in the
OEM and the labeled-tree. We modified the syntactic notation of ordered labeled tree to make it convenient
to extract an object-oriented schema. We call the syntactically modified ordered labeled tree as selectively
labeled ordered tree(SLOT).

2.1 Modified Data Forest Model with Selective Labeling
We define a modified version of the data forest model using the terms used in the original model. In our
modified data forest model, we also assume the existence of some infinite sets introduced to define the data
forest model: i) name of names; ii) vertex of vertices; iii) dom of data values. And we assume an additional
finite set iv) e-name of a null string.
A modified data forest is composed of SLOTs. SLOT is an ordered labeled tree which allows an empty
labeling of inner vertices. Without labeling, it represents an instance of its parent. And the parent vertex
represents a set of unlabeled vertices. Empty labeling is not allowed for root and terminal vertices.
The internal vertices of the SLOTs have labels from name ∪ e-name, whereas the internal vertices of the
ordered labeled trees have labels from name in the data forest model. All other properties of the SLOTs obey
the constraints of ordered labeled trees. The semantic expressive power of SLOT is the same as that of
ordered labeled tree. But SLOT distinguishes a singleton data element and a collection of elements
syntactically.

CS101

Name

“Introduction...”

Section

StudentProf. TA

.

CS232

Name

“Programming...”
Prereq.

&CS101
Prof.

IDName Dept.Salary

Student TA

......

“Lee” IDName Dept.IDName Dept. Salary“CSE”

......

......

Figure 1 SLOT Representation Examples

Definition 1. A modified data forest F is a triple (V,E,L), where (V,E) is a finite ordered forest (the left-to-
right ordering is implicit); V is the set of vertices; E the set of edges; L (the labeling function) maps some
leaves in V to V ∪ dom; some internal vertex to e-name; and all other vertices to name.

Figure 1 shows SLOT representation of two courses in computer science. CS101 is “Introduction to Computer
Systems” and CS232 is “Programming Language Exercise”. CS101 is a prerequisite for CS232. There can be
more than one TAs and many students in a course. So the TA and Student vertices should be described as sets
or list. Some courses are composed of two or more sections.

2.2 Management of Schema
If we managed the data set of Figure 1 in an object-oriented database, we may have an object-oriented schema
like Figure 2. (The schema graph in Figure 2 is from [10].) There are 6 classes and corresponding
relationships among the classes. The arrow lines show a class composition hierarchy and the thick gray
arrows show a class inheritance hierarchy. For an example in class composition hierarchy, the class Course is
composed of Section and itself. The class Section is composed of Professor, TA, and Student. The SLOTs in
Figure 1 show the same kind of composition hierarchy. But the hierarchy in Figure 1 just reflects the structure
of a single semistructured data item, not a common structure of a set of data items. For example, the two
SLOTs in Figure 1 have different structures although they represent the same kind of data.
There are two important class hierarchies in an object-oriented database, the composition hierarchy and the
inheritance hierarchy. The two hierarchies represent IS-PART-OF and IS-A relationships among classes
respectively. In Figure 2, all the lines except for gray arrows can be simplified as IS-PART-OF relationships
in an object-oriented database.
We are going to propose a schema extraction methodology to discover schema information as shown in
Figure 2 from a set of semistructured data in Figure 1. Because a SLOT already shows an object composition
structure, we may find a class composition hierarchy from a forest of SLOTs. Object composition structures
are embedded in all other semistructured data models, not only in our SLOT representations.

3. Extraction of Schema Information
3.1 Class Composition Hierarchy
Because SLOT representations provide some structural information of data objects, the extraction of
composition hierarchy and class structure can be performed by examining the forest of SLOTs1.
At first we should identify possible vertices which will contribute as classes in an object-oriented database.
Then we will find the attributes of the identified classes. Finally a possible class composition hierarchy will

1 We assume that a forest of SLOTs represent a set of the same sort of data, e.g., course descriptions like Figure 1.

Figure 2 Class Hierarchies for Figure 1

Course

Student

Section

Employee

TA Professor

is_prerequisite_for

has_prerequisites

has_sections

is_section_of

takes

is_taken_by
is_taught_by

has_TA
assists teaches

one-to-one
one-to-many

many-to-many
is-subtype-of

be discovered.

Step 1. Class Identification
The grand parents of the leaves represent identifiable classes or types. And the parents of leaves will
contribute as the attributes of the grand parents of leaves. For example, the vertex CS232 will be identified as
a class which has attributes “Name” and “Prereq.”. To decide identifiable classes and their attributes,
eliminate the leaves and make their parents be the attributes of a class. CS232 is just an instance of a class and
not a class. The vertex CS232 will be promoted as a class when we consider other object hierarchies and
integrate them in further steps.

Step 2. Attribute Finding
The unlabeled vertices are the instances of their parent if we accept the parent as a class. Because there is no
definition about any class, we should decide the structure of a class by examining the set of possible instances.
The structure of a class must include the structures of all the children. To get a universally applicable
structure of a class, eliminate unlabeled vertices and merge their children using the algorithm U-Merge.

U-Merge(Vertex V)
for each unlabeled child Ui of vertex V

 if there exists a right-most sibling Ui+1 of Ui

 merge Ui and Ui+1 using the Merge Rule
 else
 eliminate Ui and make the children of Ui the
 children of V, the parent of Ui

Merge Rule If U0, U1 are unlabeled vertices to be merged and C0, C1 are the sets of their children,
then the merged unlabeled vertex Um has its set of children Cm where Cm = C0 ∪ C1.

Step 3. Class Composition Hierarchy Construction
Applying Step 1 and 2 to the SLOTs in Figure 1, we have the composition hierarchies for individual data
objects like the graphs in the left side of Figure 3. Now we should examine each object hierarchies and get the
total class composition hierarchy from a set of those individual hierarchies. The class composition hierarchy
should include all the object composition hierarchies. We can get a universal composition hierarchy by
merging individual object hierarchies one by one.
Before we develop an algorithm to merge object hierarchies, we introduce the super-concept to decide merge
condition.

Definition 2. Each vertex v has its nth super-concept vertex supk(v), e.g., sup1(CS232)=Course. sup1() is
specially called immediate super-concept. And we define a function of two vertices lcsup(v0,v1) to get the
lowest common super-concept of the two vertices. For example., lcsup(CS232, CS101)=Course. If
lcsup(v0,v1)=NULL, it means that the two vertices are totally different concept and cannot be merged. The
functions lcsup() and sup() have the following properties:
�� lcsup(v0,v1)=v ∧ ∃v’(supi(v0)=v’ ∧ supj(v1)=v’) → ∃k(supk(v)=v’)
�� lcsup(v, supk(v)) = supk(v) for all k > 0.

We can manage the terms and functions for the super-concept using a concept hierarchy[8]. A concept
hierarchy provides partially ordered relationships among concept terms according to a general-to-specific
ordering. For example, in order to generalize CS101 and CS232 as Course, we need a concept hierarchy
which contains the information like “{CS101, CS232} � Course”. We can determine that Course is a
common super-concept of CS101 and CS232 easily. But to find the lowest super-concept, we should examine
all the relationships which contain CS101 and CS232.
A concept hierarchy may be provided by users or domain-specific experts. Or we may use any kind of domain
knowledge which represents the orders of relationships among concept terms. Some conceptual hierarchies
can also be discovered automatically using some machine learning techniques[9].

Now we will get a merged hierarchy hm from two object hierarchies h0 and h1 where h0:(V0, E0, R0) , h1:(V1,
E1, R1), and hm:(Vm, Em, Rm) using the following H-Merge algorithm. V, E, and R denote vertices, edges,
and root, respectively. By applying the following H-Merge algorithm for all the object composition
hierarchies until there left only one hierarchy, we will get a large hierarchy graph which includes all the
composition structure of individual data items. The hierarchy in the right side of Figure 3 is constructed from
the hierarchies in the left side.

Hierarchy H-Merge (Hierarchy h0, h1)
/* � is 0 or 1, and � is the complement of �. The function subh() returns a sub-hierarchy of the given
hierarchy
 rooted at the specified vertex. */
if h� is an empty hierarchy
 return h�

else if lcsup(R� , R�) ≠ NULL
 Rm ← lcsup(R� , R�)
 for each child vi of R�

 for each child vj of R�

 children of Rm ← H-Merge(subh(h� , vi),subh(h� , vj))
else if there exists any R s.t. lcsup(Rm,R)≠NULL and R is in the forest of (h� - R�)

 Rm ← R�

 R in h� ← lcsup(Rm,R)
 for each child vi of R�

 for each child vj of R�

 children of lcsup(Rm,R) in h� ← H-Merge(subh(h� , vi),subh(h� , vj))
else

 Rm ← new vertex
 children of Rm ← R� , R�

return the new hierarchy rooted at Rm

The algorithm terminates when either of the input hierarchies is an empty one. If the roots of the two input
hierarchies share a common super-concept, the algorithm builds a new root vertex which represents the lowest
common super-concept of the two roots. Then merge their children and corresponding subhierarchies using
the same algorithm recursively. For example, CS232 and CS101 in Figure 3 are generalized as Course, the
lowest common super-concept.
When there is no common super-concept for two vertices, the two vertices are totally different concepts. But
even the two vertices are totally different to each other, their subhierarchies may share a common concept. If
lcsup(R� , R�) = NULL but the root of one input hierarchy shares a common super-concept with the descents
of the other one, the former root vertex is merged into the subhierarchy of the later one using the same
algorithm recursively. For example, when we try to merge Prof. and Section, the children of CS232 and
CS101 respectively, Prof. should be compared with the children of Section because it appears as a child of
Section.

Figure 3 Possible Composition Hierarchy

CS101

Student

Section

Prof. TA

CourseCS232

StudentProf. TA Section

StudentProf. TA

If lcsup(R� , R�) = NULL and the two roots never share a common super-concept in the opposite-side sub-
hierarchies, the two hierarchies are totally different concepts. The algorithm introduces a new vertex and
attach the two input hierarchies as its substructures.

3.2 Problems and Discussions
Our algorithm is totally dependent on syntactic transformation of SLOT representations. But to construct a
class inheritance hierarchy, we need more intelligent data processing like knowledge discovery and data
mining[8] than simple graph restructuring methods. For example, if we want to find the gray arrows in Figure
3, we should be able to determine that TA is a specialized class of Student, and that TA and Professor can be
generalized as the class Employee.
Cycle is a very sensitive property in an object-oriented class hierarchy. Our algorithm does not consider the
cycling problem. For example, the cycle to/from the class Course in Figure 3 is omitted in Figure 3.

4. Conclusion and Future Work
The main focus of our work is to discover schema information for an object-oriented database from a set of
semistructured data. We developed a schema extraction algorithm for semistructured data represented in our
data model using SLOTs. Our model is based on the data forest model and modified to overcome its syntactic
limitations. The algorithm will be refined and improved in the near future.
Integrating data mining techniques with semistructured data processing is a good issue as our next attack
point. We expect that the solutions in that area will provide a nice clue for the construction of inheritance
hierarchy. And it looks very useful when we want to refine the composition hierarchy discovered through the
syntactic restructuring of SLOTs.
As an application example, we are developing a management system for the WWW resources. WWW is one
of the largest data storage in the world but almost unstructured. To manage valuable information in the
WWW more efficiently, we need a well-structured view of data and our schema extraction method will
provide a way of management with object-oriented views.

References
[1] Dallan Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom, “Querying Semistructured

Heterogeneous Information,” Proceedings of 4th International Conference on Deductive and Object-
Oriented Databases, Singapore, Dec. 1995, pp.319-344.

[2] Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu, “A Query Language and
Optimization Techniques for Unstructured Data,” Proceedings of the ’96 ACM SIGMOD, Montreal,
Canada, 1996, pp.505-516.

[3] Peter Buneman, Susan Davison, Mary Fernandez, and Dan Suciu, “Adding Structure to Unstructured
Data,” Proceedings of the ’97 ICDT, Delphi, Greece, Jan. 1997, pp.336-350.

[4] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom, “Object Exchange Across
Heterogeneous Information Sources,” Proceedings of the 11th IEEE International Conference on Data
Engineering, Taipei, Taiwan, March 1995, pp.251-260.

[5] Serge Abiteboul, “Querying Semi-Structured Data,” Proceedings of the ’97 ICDT, Delphi, Greece, Jan.
1997, pp.1-18.

[6] Serge Abiteboul, Sophie Cluet, and Tova Milo, “Correspondence and Translation for Heterogeneous
Data,” Proceedings of the ’97 ICDT, Delphi, Greece, Jan. 1997, pp.352-363.

[7] Paris Kanellakis, Christophe Lecluse, and Philippe Richard, “Chapter 3: Introduction to the Data
Model,” Building an Object-Oriented Database System: The Story of O2, Francois Bancilhon, Claude
Delobel, and Paris Kanellakis, eds., Morgan Kaufmann, San Mateo, CA, 1992, pp.61-76.

[8] Ming-Syan Chen, Jiawei Han, and Philip S. Yu, “Data Mining: An Overview from Database
Perspective,” IEEE Transactions on Knowledge and Data Engineering, 1997.

[9] R.S. Michalski, “A Theory and Methodology of Inductive Learning,” Machine Learning: An Artificial
Intelligence Approach, vol.1, R.S. Michalski, G.C. Carbonell, and T.M. Mitchel, eds., Morgan
Kaufmann, San Mateo, CA, 1983, pp.83-134.

[10] R.G.G. Cattell, ed., The Object Database Standard: ODMG-93 Release 1.2, Morgan Kaufmann
Publishers, San Francisco, CA, 1996, pp.43-45.

