Appendix. A A sample program which calls nauty.

/* This program prints generators for the automorpism group of an
n-vertex polygon, where n is a number supplied by the user.
It needs to be linked with nauty.c and nautil.c.

*/
#include <stdio.h>

#define MAXN 100
#include "nauty.h"

main()

{
graph g[MAXN*MAXM];
nvector lab[MAXN],ptn[MAXN],orbits[MAXN];
static DEFAULTOPTIONS(options);
statsblk(stats);
setword workspace[50*MAXM] ;

int n,m,v;
set *gv;

options.writemarkers = FALSE;

printf("enter n : ");

if (scanf("%d",&n) '= 1 || n <1 || n > MAXN)

{
printf("The input must be an integer in the range 1..%d.\n",MAXN);
exit(1);

m = (n + WORDSIZE - 1) / WORDSIZE;

for (v = 0; v < n; ++v)

gv = GRAPHROW(g,v,m);
EHPTYSET(gv,m);
ADDELEMENT(gv, (v+n-1)%n);
ADDELEHENT(gv,(v+1)%n);

}

printf("Generators for Aut(C[/4dl):\n",n);

nauty(g,lab,ptn,NILSET,orbits,&options,&stats,
workspace,50%MAXM,m,n,NILGRAPH) ;

26

. References.

B. W. Kernighan and D. M. Ritchie, The C programming language (Prentice-Hall,
Englewood Cliffs, 1978).

A. Kirk, Efficiency considerations in the canonical labelling of graphs, Technical report
TR-CS-85-05, Computer Science Department, Australian National University (1985).

K. E. Malysiak, Graph Isomorphism, Canonical Labelling and Invariants, Honours Thesis,
Computer Science Department, Australian National University (1987).

R. Mathon, Sample graphs for isomorphism testing, Congressus Numerantium 21 (1978)
499 517.

B. D. McKay, Practical graph isomorphism, Congressus Numerantium 30 (1981) 45 87.
B. D. McKay, Transitive graphs with fewer than twenty vertices, Math. Computation 33
(1979) 1101 1121.

25

15. Recent changes.

This section lists all the significant changes made to nauty or dreadnaut since Version

1.2. For a complete list of even trivial changes, see the source code.

(A)

0
(m)

Changes to the user view of dreadnaut.

The commands k, K, * and I, which deal with vertex-invariants have been added.

The command @ has had its meaning completely changed. Instead of copying h into g,
it copies it into A'. This is to support the commands # and ##, which are new.

The g and e commands now allow their inputs to begin on the same line. Also, the
input “n:” is now illegal if n is not a legal vertex number.

The T and $$ commands have been added.
The < command now allows the filename extension “.dre” to be omitted.

The ? command no longer writes the current partition. This function is now performed
by the & command. In addition, the && command is new.

Changes affecting programs which call nauty.

The files naututils.h and naututils.c have been renamed to naututil.h and nau-
tutil.c, in order to avoid some pain on MSDOS machines.

The options parameter has grown some extra fields. To ease future changes like this,

use the DEFAULTOPTIONS macro to declare the actual parameter.

The stats parameter has grown some extra fields. Also, the outofspace field has changed
to type int and become errstatus. See Section 4 for a list of its possible values.

nauty will write an error message if certain errors occur in the argument list. This can
be changed: see ERRFILE in nauty.h.

A library of vertex-invariants has been added. The procedure doref () in nautil.c is
a convenient way to use them directly.

The default values of MAXN have been changed a little.

Support for 64-bit machines was added (only tested on Cray.) Support was also added
for Turbo C on IBM PC and THINK C on Apple Macintosh.

The ISELEMENT macro now returns 0 or 1.

The MAKEEMPTY macro is now obsolete; use EMPTYSET instead.

Some support for ANSI C was added, including optional function prototypes (define
ANSIPROT before compiling).

The parameter lists for procedures mathon and putset have changed. Procedures pt-
ncode and equitable have been moved to the new file nautaux.c, as they are not used
by either nauty or dreadnaut. New procedures putmapping and putquotient have been
added to file naututil.c.

There is a new procedure refinel which is automatically used in place of refine if m = 1.
This gains some efficiency without changing the output at all.

A change in the definition of macro MASH in nautil.c has increased efficiency by
about 8%, but means that the canonical labellings may not be the same as those
produced by earlier versions.

Procedure readgraph no longer skips the rest of the current input line.

24

3 orbits; grpsize=480; 6 gens; 34 nodes (2 bad leaves); maxlev=T7
tctotal=80; canupdates=2; cpu time = 0.01 seconds

> ## compare to saved graph

h and h’ are identical.

0-9 1-10 2-11 3-5 4-6 5-7 6-8 7-0 8-1 9-2 10-3 11-4

As a third example, we consider a simple block design. nauty can compute automorphisms
and canonical labellings of block designs by the common method of converting the design to
an equivalent coloured graph. Suppose a design D has varieties z1, g, ..., z, and blocks
By, By, ..., By. Define G(D) to be the the graph with vertex set {z1,...,2,,B1,...,Bp},
with each z-vertex having one colour and each B-vertex having a second colour, and edge set
{z;Bj|z; € B;}. The following theorem is elementary.

Theorem.

(a) The automorphism group of D is isomorphic to the autormorphism group of G(D).

(b) If Dy and Dy are designs, D1 and D, are isomorphic if and only if G(D1) and G(D3)
are isomorphic. 1
Cousider the design D = {{1,2,4},{1,3},{2,3,4} }. Label G(D) so that the varieties of

D correspond to vertices 1 4, while the blocks correspond to vertices 5 7.

> $=1 label vertices starting at 1
>n=7 g

1: 5: go to vertex 5 (block 1)
5: 12 4;

6: 1 3;

7: 2 3 4;

> f=[1:4] fix the varieties setwise

> cx run nauty

[fixing partition]

2 4 group generators
level 2: 6 orbits; 2 fixed; index 2

(137N

level 1: 4 orbits; 1 fixed; index 2
4 orbits; grpsize=4; 2 gens; 6 nodes; maxlev=3
tctotal=6; canupdates=1; cpu time = 0.02 seconds

>0 display the orbits
13; 24; 57; 6;
>b display the canonical labelling
1324657 the vertices in canonical order
1 : 5 6; the relabelled graph
2 : 5 17;
3: 67;
4 : 6 T7;
5 : 1 2;
6 : 13 4;
7 : 23 4;
>q quit

For many families of block designs, it can be proved that the isomorphism class of each
design is uniquely determined by the isomorphism class of its block-intersection graph, where
that graph has the blocks as vertices and pairs of intersecting blocks as edges. For (v, k,1)-
designs, a sufficient condition for this is that v > k(k2 — 2k + 2) On the occasions when this is
true, nauty can usually process the block-intersection graphs more quickly than it can process
the designs directly. Also, the vertex-invariants described in Section 8 are more likely to be
successful with the block-intersection graphs.

23

“>>7_if an existing file of the right name exists, it is written to starting at the current
end-of-file. Use “->” to direct output back to the standard output.

q Quit. dreadnaut will exit irrespective of which level of input nesting it is on.

The canonical labellings produced by dreadnaut can depend on the values of many of the
options. If you are testing two or more graphs for isomorphism, it is important that you use
the same values of these options for all your graphs. In general, h is a function of all these:
(a) option digraph (d command)

) all the vertex-invariant options (*, k and K commands)
) the value of tc level (y command)
(d) the use of usertcellproc or userrefproc (u command)
) the compiler used to compile nauty, and the computer used to run it
) the version of nauty used

Several sample dreadnaut sessions are shown below. The first problem solved is the second
example in Section 6. The underlined characters are those typed by the user.

> n=8 g 8 vertices

0: 1 3 4; enter the graph
1: 2 5;

2: 3 6;

3: 7;

4: 5 17;

5: 6;

6: 7.

> f=2 x fix vertex 2; execute
[fixing partition]

(0 5)(3 6)

level 2: 6 orbits; 3 fixed; index 2

(1 3)6 7D

level 1: 4 orbits; 1 fixed; index 3
4 orbits; grpsize=6; 2 gens; 6 nodes; maxlev=3

tctotal=7; cpu time = 0.00 seconds

> o show the orbits
057;136; 2; 4;
> q quit

The next problem solved is to determine an isomorphism between the graphs of examples 3
and 4 of Section 6. We turn off the writing of automorphisms to save some space.

> c -a-m turn getcanon on, group writing off

> n=12 g enter the first graph

0 1; 2; 0;

3: 4; 5; 6; 3;

7: 8; 9; 10; 11; 7

> x @ execute, save the result

3 orbits; grpsize=480; 6 gens; 40 nodes (2 bad leaves); maxlev=7

tctotal=113; canupdates=3; cpu time = 0.05 seconds

> g enter the second graph
0: 1; 2; 3; 4; 0;

5: 6; 7; 8; 5;

9: 10; 11; 9.

> x execute

22

&& Same as &, except that the quotient of g with respect to = is also written. Say © =
(Vo, V1,..., Vi) and let v; be the least numbered vertex in V; for 0 < ¢ < m. Then, for
each 7, this command writes v;, then |V;| in brackets, then the numbers ko, k1, ..., k.,
where k; is the number of edges from v; to V;. The value 0 is written as “-”, while the

w7

value |V;] is written as “x

(D) Commands which execute nauty or use the results.

X Execute nauty. Depending on the values of the writeautoms and writemarkers options,
the automorphism group will be displayed while nauty is running. See Section 5 for an
explanation of the output. When nauty returns, dreadnaut will display some statistics
about it. See Section 4 for the meanings; the important ones are the order of the
group and the number of orbits. Depending on your system, the execution time is also
displayed.

Copy h, if defined, to h'. See the description of the # command for more.

b Type the canonical label and the canonically labelled graph. The canonical label is
given in the form of a list of the vertices of ¢ in canonical order. Only possible after x
with option getcanon selected.

z Type two 8-digit hex numbers whose value depends only on h. This allows quick com-
parison between graphs. Isomorphic graphs give the same values, but not conversely.
Ouly possible after x with option getcanon selected.

Compare the labelled graphs h and h'. Both must have been already defined (using x
and @). The complete process for testing two graphs ¢, and g for isomorphism is this:
enter g;;

c x @ (select getcanon option, execute nauty, copy h to h');
enter gs;
x # (execute nauty, compare h to h').

This is the same as # except that, if h is identical to hA', you will also be given an
isomorphism from g; to go. This is in the form of a sequence of pairs v;-w;, where v;
is a vertex of g7 and w; is a vertex of g3. The vertex-numbering origin in force when
h' was created is used for g, whilst the origin now in force is used for g,.

o Type the orbits of the group. Ounly possible after x.

(F) Miscellaneous commands.

h Help: type a summary of dreadnaut commands.

Anything between the quotes is simply copied to the output. The ligatures ‘\n’ (new-
line), ‘\t’ (tab), ‘\b’ (backspace), ‘\r’ (carriage return), ‘\f’ (formfeed), ‘\\’ (back-
slash), ‘\?” (single quote) and ‘\"’ (double quote) are recognised. Other occurrences of
‘\” are ignored.

! Ignore anything else on this input line. Note that this is a command, not a comment

character in the usual sense, so you can’t use it in the middle of other commands.

< Begin reading input from another file. The name of the file starts at the first non-white
character after the “<” and ends before the next white character. If such a file cannot
be found, another attempt is made with the string “.dre” appended to the name.
When end-of-file is encountered on that file, continue from the current input file. The
allowed level of nesting is system-dependent.

,>> Close the existing output file unless it is the standard output, then begin writing output

to another file. The name of the file starts at the first non-white character after the

“>” and ends before the next white character. For “>” the file starts off empty. For

21

k=# #

massive speedup for very difficult graphs, but will slow down processing of easy ones.
The default is 0.

Select a vertex-invariant. One user-defined vertex-invariant can be linked with dread-
naut if its name is provided in the preprocessor variable INVARPROC. The argument
to the * command is interpretted thus:

-1 : the user-defined procedure (if any)

: no vertex-invariant (this is the default)

: twopaths

: adjtriang

: triples

: quadruples

: celltrips

: cellquads

: cellquins

: distances

© 0 ~NO Ok WN = O

: indsets

: cliques

11 : cellchq

12 : cellind

These procedures are described in Section 8. In order for them to be used by nauty,
you need to use the k command, and perhaps the K command.

-
o

(Two integer arguments.) Define values for the options mininvarlevel and mazinvar-
level. These tell nauty the minimum and maximum levels of the tree at which it is to
apply the vertex-invariant. The root of the tree is at level 1. See Section 4 for a little
more information about these options. Both options have value 0 by default.

Give a value to the inwvararg option. This number is passed to the vertex-invariant by
the I command and by nauty. See Section 8 for the meaning of this option for each
available vertex-invariant. The default value is 0.

Request calls to user-defined functions. The value is

1 for wusernodeproc,

2 for userautomproc,

4 for userlevelproc,

8 for usertcellproc,

16 for userrefproc.

These can be added together to select more than one procedure. The procedures called
are those named by the compile-time symbols USERNODE, USERAUTOM, USER-
LEVEL, USERTCELL and USERREF defined in dreadnaut.c. The default values are:
USERNODE: For each node, print a number of dots equal to the depth, then
(numecells/ code/tc) where numcells is the number of cells, code is the code produced
by the refinement procedure, and tc is the position in lab where the target cell starts.
For the first path down the tree, the partition is displayed as well.

USERAUTOM: For each automorphism, display the arguments numorbits and stab-
vertex (see Section 7).

USERLEVEL: For each level, display the arguments tv, index, tcellsize, numcells and
childcount, as well as the fields numnodes, numorbits and numgenerators of stats. See
Section 7 for what they mean.

USERTCELL: Do nothing.

USERREF: Do nothing.

Type the current values of m, n, worksize, most of the options, the number of edges
in g, and the number of cells in 7. If output has been directed away from stdout using
the “>” command, some of this information is also written to stdout.

Type the current partition =, unless it is has only one cell.

20

(B)

£

Commands which define the partition =.

Specify an initial partition.

“~£” selects the partition with only one cell, which is the default.

“f=#” selects the partition with one cell containing just the vertex named and one cell
containing every other vertex.

“f=[... 17 selects an arbitrary partition. Replace “...” by a list of cells separated
by “1”7. You can use the abbreviation “z:y” for the range z,x + 1,...,y. Any vertices

13

not named are put in a cell of their own at the end.

Ezample: 1f n =10, then “f=[3:7 | 0,2]” establishes the partition
[3,4,5,6,7|0,2|1,8,9].

Perform a refinement operation, replacing the partition 7 by its refinement. The active
set initially contains every cell.

Perform a refinement operation, an application of the vertex-invariant (if one has been
selected using the * command), and (if any cells were split) another refinement op-
eration. The final partition becomes 7. The behaviour may be modified by the K
command, but not by the k command.

(C) Commands which establish or examine options.

$=#

Establish an origin for vertex numbering. The default is 0. Only non-negative values
are permitted. All the input-output routines used by nauty or dreadnaut respect this
value, even though internally vertices are always numbered from 0. (The value given
is copied into the global int variable labelorg, which is described in Section 4.)

Restore the vertex numbering origin to what it was just before the last $§ command.
Ouly one previous value is remembered.

Set value of option linelength : the length of the longest line permitted for output. The
default value is installation-dependent (typically 78).

Set value of worksize : the amount of space provided for nauty to store automorphism
data. The maximum value is installation-defined, and the default is the same as the
maximum. There’s little reason to ever use this command.

Ignored. Provided for contrast with “-”.

Set option digraph to TRUE or FALSE, respectively. You must set it to TRUE if
you wish to define g to be a digraph or a graph with loops. The default is FALSE.
Changing it from TRUE to FALSE also causes the graph ¢ to become undefined, as a
safety measure.

Set option getcanon to TRUE or FALSE, respectively. This tells nauty whether to find
a canonical labelling or just the automorphism group. The default is FALSE.

Set option writeautomns to TRUE or FALSE, respectively. This tells nauty whether to
display the automorphisms it finds. The default is TRUE.

Set option writemarkers to TRUE or FALSE, respectively. This tells nauty whether
to display the level markers “level ...”. See Section 5 for their meaning. The default
is TRUE.

Set option cartesian to TRUE or FALSE, respectively. This tells nauty to use the
“cartesian” form when writing automorphisms. Precisely, the automorphism = is dis-
played as a list v vy ...0}, where vy, v,...,v, are the vertices of g. The default is
FALSE.

Set the value of option tc_level. A value of k tells nauty to use an advanced, but
expensive, algorithm for choosing target cells in the top & levels of the search tree. See
Section 4 for a more detailed description. A value such as 3 or 4 sometimes leads to

19

TN N
=

[©]

T~
o =5

N N
—

(A)
n=#
g

At any point of time, dreadnaut knows the following information:

The number of vertices, n.

The “current graph” g, if defined.

The “current partition” =, if defined.

The orbits of the (coloured) graph (g,), if defined.

The canonically labelled isomorph of g, called h, if defined. (Also called canong.)
An extra graph called b', if defined. (Also called savedg.)

Values for each of a variety of options.

In the following ‘#’ is an integer and ‘=’ is optional.

Commands which define or examine the graph g¢.

Set value of n. The maximum value is installation-defined.

Read the graph g¢.

There is always a “current vertex” which is initially the first vertex. (Vertices are
numbered from 0 unless you have used the $ command.) The number of the current
vertex is displayed as part of the prompt, if any. Available subcommands:

: add an edge from the current vertex to the specified vertex. (Unless you have
selected the option digraph, edges only need to be entered in one direction.)

-# : delete the edge, if any, from the current vertex to the specified vertex.

; :increment the current vertex. If it becomes too high for a vertex label, stop.
#: : make the specified vertex the current vertex.
? : display the neighbours of the current vertex.
: stop.
! :ignore the rest of this input line.
, tignored.

Edit the graph ¢g. The available subcommands are the same as for the “g” command.

.5 Relabel the graph g, where ‘..." is a permutation of {0,1,...,n — 1}, specifying the

order in which to relabel the vertices, followed by a semicolon. Missing numbers are
filled in at the end in numerical order. For example, for n = 5, “r 4,1;” is equivalent
to “r 4,1,0,2,3;”. The partition 7 is permuted consistently.

Relabel the graph g at random. The partition 7 is permuted consistently.

Perform the doubling operation E(g) defined in [3]. The result in ¢ is a regular graph
with order 2n 4+ 2 and degree n.

Generate graph ¢ at random with independent edge probabilities 1/¢, where ¢ is the
integer specified. The seed for the random number generator is got by reading the
real-time clock, if such a thing is available.

(underscore) Replace the graph ¢ by its complement. If there are any loops, the set of
loops is complemented too; otherwise, no loops are introduced.

Type the graph ¢, in an obvious format. The value of option linelength is taken into
account. The format used is consistent with the input format allowed by the “g”
command. To examine just some of the graph, you can use the “?” subcommand
within the “e” command.

This is exactly like “t” except that a line of the form “n=n $=l g” is written first,
where n is the number of vertices and [is the number of the first vertex, and a line
of the form “$$” is written afterwards. This enables you to save a graph to a file
and easily restore it later: “>newgraph.dre T ->” will save g to the file newgraph.dre,
while “<newgraph.dre” will restore it.

Display the degrees of each vertex of the graph g, if defined. For digraphs, the outde-
grees are displayed.

18

(b) nauty assumes that operations “<”, <=7 “==7_“1="_"%>=" and “>” respect a total order

over the possible values of a setword in a set. It doesn’t matter which total order is respected
(e.g., signed ordering is as good as unsigned ordering). Be particularly careful with machines
using 1s-complement arithmetic and machines without integer compare instructions.

Please send the author copies of the header files appropriate for other systems, plus any
other relevant information.

11. Efficiency. We give some sample execution times for a SUN4/280 computer, using the
SUN C compiler under SUNOS 4.0.3.

For random graphs with edge probability 1/2, experimental execution times for large
n are about 0.14n? microseconds with options.getcanon = FALSE, and 1.2n? microseconds
with options.getcanon = TRUE. The large difference between these times for large n is almost
entirely taken up by the process of permuting the entries of g to get canong. Except for very
small n, nearly all of these graphs have no non-discrete equitable partitions, and thus have
trivial automorphism groups. All nauty does in this case is one refinement operation followed,
if options.getcanon = TRUE, by one relabelling operation.

The 515 transitive graphs of orders 2 through 18 given in [6] require 5 10 milliseconds each
on average, irrespective of the value of options.getcanon. An average of about 4.5 generators
each are found for the automorphism groups.

A list of very difficult graphs is given by Mathon in [3]. Using his notation for them, we
find the following times with options.getcanon = TRUE and options.tc_level = 0:

Ass Bas: 0.02 seconds;

Asp and Bsg: 5.2 seconds (0.55 seconds using vertex-invariant cellguads at level 1);

Alg: 0.08 seconds (0.01 seconds using vertex-invariant adjiriang at level 1);

Bl,: 0.28 seconds (0.01 seconds using vertex-invariant adjiriang at level 1);

Ass Dss: 1.1 seconds (0.02 seconds using vertex-invariant cligues with parameter 4 at level 1);
Asg: 3.9 seconds (0.18 seconds using vertex-invariant cliqgues with parameter 5 at level 1);
Bsa: 8.7 seconds (0.16 seconds using vertex-invariant cligues with parameter 5 at level 1);
A7y Drg: 75 85 seconds (14.5 seconds using vertex-invariant quadruples applied at level 1).
The execution time for these graphs varies somewhat with the initial labelling. With
options.tc_level = 3, the times for A79 D79 without vertex-invariants average about 20% less.

Amongst the most difficult known graphs for this algorithm, and probably for most other
similar algorithms, are certain bipartite graphs derived from Hadamard matrices. For example,
some of these graphs on 96 vertices require more than 15 minutes to process. However, with
the vertex-invariant cellquads applied at level two, this time is reduced to just 1 10 seconds.

A family of strongly-regular graphs with 155 vertices and trivial automorphism group
require 156 seconds with no vertex-invariant and 1.1 seconds with the vertex-invariant adj-
triang (or cliqgues with parameter 4) applied at level 1. Another family of strongly-regular
graphs, with 9477 vertices and vertex-regular automorphism group, require about 14 hours
with no vertex-invariant, but only 240 seconds with the vertex-invariant cellcliq applied at
level 2 with parameter 3. A certain graph of order 12005 with a transitive group of of order
120050 required about 3 hours with no vertex-invariant.

As examples of how nauty performs for very rich automorphism groups, we mention
L(K3p) (435-vertex linegraph of complete graph; group size 30!; execution time 39 seconds;
29 generators) and the 1-skeleton of the 9-cube (512-vertex graph; group size 185794560;
execution time 17 seconds; 9 generators).

12. dreadnaut. dreadnaut is a simple program which can read graphs and execute nauty.
Input is taken from the standard input and output is sent to the standard output, but this can
be changed by using the “<” and “>” commands. Commands may appear any number per line
separated by white space, commas, semicolons or nothing. They counsist of single characters,
sometimes followed by parameters.

17

while ((i = nextelement(setvar,m,i)) >= 0)
Process element 1.
permset : apply a permutation to a set.
wsautom : test if a permutation is an automorphism.
orbjoin : update the orbits of a group according to a new generator.
writeperm : write a permutation to a file.
updatecan : (for samerows = () relabel a graph.
refine : find coarsest equitable partition not coarser than given partition.
refinel : produces exactly the same results as refine, but assumes m = 1 for greater speed.
The file naututil.c contains procedures which are used by the dreadnaut program (see
Section 12). Many of these are also useful to programs which call nauty. If your programn uses
them, include naututil.h instead of nauty.h.
Some of the more useful procedures are:
setsize : find cardinality of set.
setinter : find cardinality of intersection of two sets.
putset : write a set to a file.
putgraph : write a graph to a file.
putorbits : write a set of orbits to a file.
putptn : write a partition to a file.
readgraph : read a graph from a file.
readptn : read a partition from a file.
ranperm : generate a random permutation.
rangraph : generate a random graph.
mathon : perform a doubling operation, as defined in [3].
complement : take the complement of a graph.

In addition, the file nautaux.c contains a few procedures which manipulate graphs or
partitions, but which are not currently used by nauty or dreadnaut.

10. Installing nauty and dreadnaut. There are nine source files provided. nauty by
itself requires the files nauty.h, nauty.c and nautil.c. The dreadnaut program requires, in
addition, files naututil.h, naututil.c, nautinv.c and dreadnaut.c. The files nautaux.h
and nautaux.c are not used by either nauty nor dreadnaut.

The first step in installation is to edit nauty.h. Exactly one of the symbols beginning
with “SYS_” must have the value 1 and all the others must have the value 0. (If none of the
existing symbols fits your system, see the notes below.) The values of WORDSIZE and MAXN
can also be changed. WORDSIZE must be 16, 32 or 64. Only true 16-bit machines are likely
to go faster with WORDSIZE=16; this does not include 680xx processors. WORDSIZE=64
can only be used if the type setword has at least that many bits. MAXN is the largest order
of graph that can be accepted. You may need to reduce it if you are short of memory.

The dreadnaut program uses a number of features whose availability varies between sys-
tems. Where possible, these have been isolated in naututil.h, and that file should be con-
sulted for details.

On a new system: 1If your system is not one of those currently supported, create a new
SYS_* symbol for your system. Check all the places in nauty.h and naututil.h where these
symbols are used and edit them appropriately. This should cover most problems unless your
compiler is brain-damaged. Some things to watch for:

(a) nauty assumes that a short int has at least 16 bits.

16

of invararg is limited to 7. This can often split the vertex sets of strongly-regular graphs
and bipartite design graphs, though it becomes expensive if invararg is large. A value of 4 is
sometimes sufficient.

cliques. Each vertex v is given a code depending on the number of cliques of size invararg
which include v, and the cells containing the other vertices of those cliques. The value of
wnwararg is limited to 7. This can often split the vertex sets of strougly-regular graphs, though
it becomes expensive if tnvararg is large. A value of 4 is sometimes sufficient.

cellclig. FEach vertex v is given a code depending on the number of cliques of size invararg
which include v and lie within the cell containing v. The value of invararg is limited to 7.
The cells are tried in increasing order of size, and the process stops as soon as a cell splits.
This invariant applied at level 2 can be very successful on difficult vertex-transitive graphs.
A value of 3 can sometimes work even on strongly-regular graphs.

cellind. Each vertex v is given a code depending on the number of independent sets of size
wnvararg which include v and lie within the cell containing v. The value of invararg is limited
to 7. The cells are tried in increasing order of size, and the process stops as soon as a cell
splits. This invariant applied at level 2 can be very successful on difficult vertex-transitive
graphs.

9. Writing programs which call nauty. A complete example of a program calling nauty
can be found in Appendix A.

Programs which call nauty should include the file nauty.h. As well as defining the
relevant types and parameters, this file also declares macros and procedures which are of use
in constructing the arguments, and declares some useful tables.

To satisfy some linkers, all files which include nauty.h, except one (the one with the main

programn is recommended) should define the symbol EXTDEFS first, like this:

#define EXTDEFS 1
#include "nauty.h"
Typical data declarations are:
set setvar[10];
graph ¢[10%300];
where the first declares a set of size up to 10 x WORDSIZE, and the second a graph of up to
3000 setwords (suitable for a 300-vertex graph if WORDSIZE=32).

Suppose that m and n have meanings as usual. Some of the more useful macros are as
follows.

ADDELEMENT (setvar,i) : add element i to set setvar.

DELELEMENT (setvar,i) : delete element i from set setvar.

ISELEMENT (setvar,i) : test if ¢ is an element of the set setvar (0 <7 <n—1).
EMPTYSET (setvar,m) : make the set setvar equal to the empty set.

POPCOUNT(z) : the number of 1-bits in the setword z. Use (z ? POPCOUNT(z) : O0) in
circumstances where z is most often zero.

FIRSTBIT(z) : the position (0 to WORDSIZE — 1) of the first (least-numbered) 1-bit in the
setword z, or WORDSIZE if there is none.

ZAPBIT (z,i) : set bit ¢ in setword = to 0.

Some of the procedures in nautil.c may be useful. They are declared in nauty.h. See
the source code for the parameter list and semantics of these:

nextelement : find the position of the next element in a set following a specified position.
The recommended way to do something for each element of the set setvar is like this:
i=-1;

15

the invariant at just one level in the search tree, with levels 1 and 2 being the most likely
candidates.

We now describe the vertex-invariants which are provided with version 1.5 of nauty. Infor-
mation on how to write a new vertex-invariant procedure can be found in the file nautinv.c.
We will assume that ¢ is a graph on V' = {0,1,...,n — 1}, and that = = (Vp, V1,..., V) is a
partition of V. This partition will be equitable unless options.digraph = TRUE. One of the
cells of = will be designated V*. If the procedure is called by nauty at level 1 (i.e. at the
root of the search tree), or directly by dreadnaut (I command), this will be the first cell Vp;
otherwise, V* will be the singleton cell containing the vertex fixed in order to create this node
from its parent.
twopaths. Each vertex v is given a code depending on the cells to which belong the vertices
reachable from v along a path of length 2. invararg is not used. This is a cheap invariant
suitable for graphs which are regular but otherwise have no particular structure (for example).
adjtriang. FEach vertex v is given a code depending on the number of common neighbours
between each pair {vy,v2} of neighbours of v, and which cells vy and vy belong to. vy must
be adjacent to vy if invararg = 0 and not adjacent if invararg = 1. This is a fairly cheap
invariant which can often break up the vertex sets of strongly-regular graphs.
triples. Each vertex v is given a code depending on the set of weights w(v,v1,v;), where
{v1,v,} ranges over the set of all pairs of vertices distinct from v such that at least one of
{v,v1, 02} lies in V*. The weight w(v, v, v9) depends on the number of vertices adjacent to
an odd number of {v,vy,v2} and to the cells that v, v; and vy belong to. invararg is not
used. This invariant often works on strongly-regular graphs that adjtriang fails on, but is
more expensive.
quadruples. Each vertex v is given a code depending on the set of weights w(v,vq,v2,v3),
where {v1,v2,v3} ranges over the set of all pairs of vertices distinct from v such that at least
one of {v,v1,vy,v3} lies in V*. The weight w(v, vy, v2,v3) depends on the number of vertices
adjacent to an odd number of {v,v1,v2,v3} and to the cells that v, vy, vy and v3 belong to.
tnvararg is not used. This is an expensive invariant which can sometimes be of use for graphs
with a particularly regular structure.
celltrips. Each vertex v is given a code depending on the set of weights w(v,v1,v2), where
w(v,v1,ve) depends on the number of vertices adjacent to an odd number of {v, vy, v2}. These
three vertices are constrained to belong to the same cell. The cells of 7 are tried in increasing
order of size until one splits. invararg is not used. This invariant can sometimes split the
bipartite graphs derived from block designs, and other graphs of moderate difficulty.
cellquads. Each vertex v is given a code depending on the set of weights w(v, v, v2, v3), where
w(v, v1,v2,v3) depends on the number of vertices adjacent to an odd number of {v, v, vz, v3}.
These four vertices are constrained to belong to the same cell. The cells of 7 are tried in
increasing order of size until one splits. invararg is not used. This invariant is powerful enough
to split many difficult graphs, such as hadamard-matrix graphs (where it is best applied at
level 2).
cellquins. Each vertex v is given a code depending on the set of weights w(v, vy, v2,v3,v4),
where w(v,v1,v2,v3,v4) depends on the number of vertices adjacent to an odd number of
{v,v1,v9,v3,04}. These five vertices are constrained to belong to the same cell. The cells of
7 are tried in increasing order of size until one splits. invararg is not used. We know of no
good use for this very powerful but very expensive invariant.
distances. FEach vertex v is given a code depending on the number of vertices at each distance
from v, and what cells they belong to. If a cell is found that splits, no further cells are tried.
tnvararg is not used. This is a fairly cheap invariant suitable for things like regular graphs of
high girth.
indsets. Fach vertex v is given a code depending on the number of independent sets of size
invararg which include v, and the cells containing the other vertices of those sets. The value

14

(e) wusertcellproc(g, lab, ptn, level, numncells, tcell, teellsize, cellpos, tc_level, hint, m, n)

This is a replacement for the default procedure called on to choose a target cell. 1t is called
for every node for which nauty has decided children must be generated, after the partition
has been refined.

The parameters are as follows. Only tcell, tcellsize and cellpos may be altered.
g,m,n,lab,ptn level: As above.
int nwumcells: The number of cells in the current partition.
set xfcell: This is the address of a set of m setwords which must be set by the procedure

to contain just those vertices in the target cell.
int xtcellsize: This must be set by the procedure to the size of the target cell.

int xcellpos: This must be set by the procedure to the position in lab where the target cell
starts.

int tc_level: The value of the field of the same name in the options parameter passed to
nauty.

int hint: If this is > 0, it is a suggestion from nauty of a good value for cellpos (and thus
for tcell and tcellsize). There is no compulsion to take the hint, but taking it is almost
always a good idea. However, you must first verify that the hint is valid in the sense
that there is a non-singleton cell which starts at the specified place. If there is not, you
must choose a valid cell.

It is quite central to the validity of the algorithm that a non-singleton cell be chosen (it
will always exist). The choice must be entirely independent of the labelling of the vertices.
It must also be independent of the position of the node in the search tree to the extent that
equivalent nodes are treated equivalently.

8. Vertex-invariants. As described in Section 2, the operation of nauty is driven by
a procedure which accepts partitions and attempts to make them finer without separating
equivalent vertices. For some families of difficult graphs, the built-in refinement procedure is
insufficiently powerful, resulting in excessively large search trees. In many cases, this problem
can be dramatically reduced by using some sort of invariant to assist the refinement procedure.

Formally, let G be the set of labelled graphs (or digraphs) on the vertex set V =
{0,1,...,n— 1}, and let IT be the set of partitions of V. As always, the order of the cells of a
partition is significant, but the order of the elements of the cells is not. Let Z be the integers.
A vertez-invariant is defined to be a mapping

¢ GxI XV —2Z

such that ¢(G7, 77, v7) = ¢(G,7,v) for every G € G, 7 € I, v € V and permutation 7.
Informally, this says that the values of ¢ are independent of the labelling of G.

A great number of vertex-invariants have been proposed in the literature, but very few
of them are suitable for use with nauty. Most of them are either insufficiently powerful or
require excessive amounts of time or space to compute. Even amongst the vertex-invariants
which are known to be useful, their usefulness varies so much with the type of graph they
are applied to, or the levels of the search tree at which they are applied, that intelligent
automatic selection of a vertex-invariant by nauty would seem to be a task beyond our current
capabilities. Consequently, the choice of vertex-invariant (or the choice not to use one) has
been left up to the user.

The options parameter of nauty has four fields relevant to vertex-invariants, namely
wnwarproc, mininvarlevel, mazinvarlevel and invararg. These are fully described in Section 4.
The I command in dreadnaut may be useful in investigating which of the supplied vertex-
invariants are useful for your problem. Experience shows that it is nearly always best to apply

13

It is desirable (but not compulsory) that the partition returned is equitable. If necessary,
this can be done by calling the default refinement procedure refine, which has the same
parameter list. If equitablility cannot be ensured, make sure that options.digraph = TRUE.

The usefulness of userrefproc has declined since vertex-invariants were introduced (see
Section 8).

(b) wusernodeproc (g, lab, ptn, level, numcells, tc, code, m, n)
This is called once for every node of the tree, after the partition has been refined.
The parameters passed are as follows. Treat all of them as Read-only.
g,m,n,lab,ptn,level: As above.
int numcells: The number of cells in the current partition.
int fc: If nauty has determined that children of this node need to be explored, tc is the
index in lab of where the target cell starts. Otherwise, it is —1.

int code: Thisis the code produced by the refinement and vertex-invariant procedures while
refining this partition.

(¢) wserautomproc(count, perm, orbits, numorbits, stabvertex, n)

This is called once for each generator of the automorphism group, in the same order
as they are written (see Section 5). It is provided to facilitate such tasks as storing the
generators for later use, writing them in some unusual manner, or converting them into another
representation (for example, into their actions on the edges).

Suppose the generator is 7 = ’ylu), in the notation of Section 5. Then the parameters
have meanings as below. Treat them all as Read-only.
int count: The ordinal of this generator. The first is number 1.
permutation sperm: The generator v itself. For 0 < ¢ < n, perml[i] = 7.
nvector xorbits; int numorbits: The orbits and number of orbits of the group generated

by all the generators found so far, including this one. See Section 4 for the format of
orbits.
int stabvertex: The value v;, as defined in Section 5.

int n: The number of vertices, as usual.

(d) wuserlevelproc(lab, ptn, level, orbits, stats, tv, index, tcellsize, numcells, childcount, n)
This is called once for each node on the leftmost path downwards from the root, in bottom
to top order. It corresponds to the markers “level ...”, which are described in Section 5,
except that an additional, initial, call is made for the first leaf of the tree. The purpose is to
provide more information than is provided by the markers, in a manner which enables it to be
stored for later use, etc.. The parameters passed are as follows. Treat them all as Read-only.
lab,ptn,level,n: As above. The values of level will decrease by one for each call, reaching one
for the final call.
Suppose that the value of level is (.
nvector xorbits: The orbits of the group generated by all the automorphisms found so far.
See Section 4 for the format. In the notation of Section 5, orbits gives the orbits of the
stabiliser Iy, v, .. v ;-
statsblk xstals: The meaning is as given in Section 4, except that it applies to the group
generated by all the automorphisms found so far, that is to 1%, 4, .. o Ouly the
fields which refer to the group can be assumed correct.

—1-

int tv, index, tcellsize, numcells: In the notation of Section 5, these are the values of v, 7,,
Ji1 and ¢y, respectively. For the first call, their values are 0, 1, 1 and n, respectively.

int childcount: This is the number of children of the node at level level on the first path
down the tree which were actually generated.

The condition numcells = n can be used to identify the first call.

12

of the same name passed to nauty, but nauty has modified their contents as described
below.

Suppose that we are currently at level [of the search tree. Let v1,vs,...,v; be the path
in the tree from the root v; to the current node v;. The “partition at level 77 is a partition
7; associated with node v;. The partition originally passed to nauty, implicitly or explicitly,
is the “partition at level 0”7, denoted by 7. The complete partition nest 7o, 7y, ..., is held
in lab and ptn thus:

(a) lab holds a permutation of {0,1,...,n — 1}.

(b) For 0 <t < [, the partition m; has as cells all the sets of the form {lab[z], lab[i + 1],
..., lab[j]}, where [¢, j] is @ maximal subinterval of [0, n — 1] such that ptn[k] > tfori < k < j
and pitn[j] < t.

(¢c) Every entry of ptn which is not less than or equal to [is equal to INFINITY.

For example, say n = 10, = 3, 79 = [0,2,4,5,6,7,8,9|1,3], 71 = [0,2,4,6|5,7,8,9|1, 3],
g = [0,2,4,6(8]5,7,9|3|1], and 73 = [4,6]0,2|8|5,7,9]3|1]. Then the contents of lab and pin
may be

lab: 4 6 2 o 8 7 5 9 3 1
ptn: oo 3 1 2 o 00 0o 2 O

The order of the vertices within the cells of 7, is arbitrary.

We will refer to the partition at level [as “the current partition”.

(a) userrefproc (g, lab, ptn, level, numcells, count, active, code, m, n)

This is a procedure to replace the default partition-refinement procedure, and is called
for each node of the tree. The partition associated with the node is the “partition at level
level”, which is defined above.

The parameters passed are as follows.
g,m,n,lab,ptn,level: As above. The parameters lab and ptn may be altered by this procedure

to the extent of making the current partition finer. The partitions at higher levels must
not be altered.

int snwumcells: The number of cells in the current partition. This must be updated if the
number of cells is increased.

permutation kcount: Thisis the address of an array of n short ints which can be used as
scratch space.

set x*active: The set of active cells. This is not the same as the parameter of the same name
passed to nauty, but has the same meaning and purpose. See Section 4.

int xcode: This must be set to a labelling-independent value which is an invariant of the
partition at this level before or after refinement. (Example: the number of cells.) It is
essential that equivalent nodes have the same code. The value assigned must be less
than INFINITY.

The operation of refining the current partition involves permuting the vertices (i.e., entries
of lab) within a cell, and then breaking it into subcells by changing the appropriate entries of
pitn to level.

The validity of nauty requires that the operation performed be entirely independent of the
labelling of the graph. Thus, if userrefproc is called with ¢ and lab relabelled consistently and
the same values of ptn and active, then the final values of ptn and active should be the same,
and the final value of lab should be the same but relabelled in the same way (remembering
always that the order of vertices within the cells doesn’t matter). It is also necessary that
nodes of the tree which may be equivalent must be treated equivalently. To be safe, regard
any nodes on the same level as possibly equivalent.

11

(0 1)
level 1: 1 cell; 3 orbits; O fixed; index 3/12

orbits = (0,0,0,3,3,3,3,7,7,7,7,7), stats[grpsizel = 480.0, grpsize2 = 0, numorbits = 3, numgen-
erators = 6, numnodes = 40, numbadleaves = 2, mazlevel = 7|, lab = (3,4,6,5,7,8,11,9,10,0,1,2).

4
10 0 2
5 6
9 11 4 3 7 8

Example 4:
3
11 6 7
4 2
g =
9 10 8 0 1
options|getcanon = TRUE, digraph = FALSE, writeautoms = FALSE, writemarkers = FALSE,
defaultptn = TRUE, tc_level = 0].
No output written.
orbits = (0,0,0,0,0,5,5,5,5,9,9,9), stats|grpsizel = 480.0, grpsize2 = 0, numorbits = 3,

numgenerators = 6, numnodes = 41, numbadleaves = 3, mazlevel = 7],

lab = (5,6,8,7,0,1,4,2,3,9,10,11).

11 1 3

6 7
canong = ,

9 10 9

which is identical to the resulting canong in Example 3.

The output for examples 3 and 4 may vary a little between implementations.

7. User-defined procedures. Provision is made for five procedures defined by the user
to be called at various times during the processing. This will be done if pointers to them
are passed in the userrefproc, userautomproc, usernodeproc, userlevelproc and /or usertcellproc
fields of options (see Section 4). In all cases, a value of NILFUNCTION will result in sensible
default action.

These procedures have many parameters in common; we will describe the most important
of these here. Unless the individual procedure descriptions specify otherwise, they should be
treated as Read-Only.
graph *g; int m, n: These are the arguments of the same name passed to nauty. nauty has

not changed them. See Section 4 for their meanings.
int level: The level of the current node. The root of the search tree has level one.
nvector xlab, *ptn: Arrays of length n giving partitions associated with each of the nodes
along the path from the root of the tree to the current node. These are the parameters

10

written. Let I' be the automorphism group. Then

Toas=A{(1)}
I'v 1 = (71) with 6 orbits and order 2
I'o = (71,72) with 4 orbits and order 2 x 3 = 6
I' = (71,72,73) with 1 orbit and order 6 x 8 = 48.

Example 2:

lab = (2,0,1,3,4,5,6,7), ptn = (0,1,1,1,1,1,1,0), active = NILSE'T,
options|getcanon = FALSE, digraph = FALSE, writeautoms = TRUE, writemarkers = TRUE,
defaultptn = FALSE, cartesian = TRUE, linelength = 78, tc_level = 0].
output:
51264037
level 2: 6 orbits; 3 fixed; index 2
032147675
level 1: 4 orbits; 1 fixed; index 3

orbits = (0,1,2,1,4,0,1,0), stats[grpsizel = 6.0, grpsize2 = 0, numorbits = 4, numgenerators =
2, numnodes = 6, numbadleaves = 0, mazlevel = 3.

In this example we have set lab, ptn and options.defaultptn so that vertex 2 is fixed. The
automorphisms were written in the “cartesian” representation, which would probably only be
useful if they were going to be fed to another program. The value of orbits on return indicates

that the orbits of the group are {0,5,7},{1,3,6}, {2} and {4}.

Example 3:

options|getcanon = TRUE, digraph = FALSE, writeautorns = TRUE, writemarkers = TRUE,
defaultptn = TRUE, linelength = 78, tc_level = 0].
output:
(8 11)(9 10)
level 6: 10 orbits; 8 fixed; index 2
(7 8)(9 11)
level 5: 8 orbits; 7 fixed; index 5
(4 6)
level 4: 7 orbits; 4 fixed; index 2
(3 4)(5 6)
level 3: 4 cells; 5 orbits; 3 fixed; index 4/9
(1 2)
level 2: 3 cells; 4 orbits; 1 fixed; index 2

level k—1: cp_1 cells; rp_ 1 orbits; v, 1 fixed; index i _1/J%_1

level 2: ¢y cells; ry orbits; vy fixed; index ¢3/79
(1)
T
1
e
1
7
level 1: ¢1 cells; 1y orbits; vy fixed; index #1/j1
Here, vy, vy, ..., v, is a sequence of vertices such that I, ,, ., is trivial. The 'yl(j) are

automorphisms. For 1 <1 < k, the following are true.

(a) L'y, vy,...0_, is generated by the automorphisms %'(]) forl<j<kand1<:<{;.

(b) L'y, vy,....,, has r; orbits and order 414y - - - 2.

(¢) ¢ is the number of cells in the equitable partition at the ancestor at level [of the first
leaf of the tree, j; is the number of vertices in the target cell of the same node, v; is the first
vertex in that cell, and 7, is the number of vertices of that cell which are equivalent to v,.
(d) Zleti < n — r;. This follows from the fact that the number of orbits of the group
generated by all the automorphisms found to up to any moment decreases as each new auto-
morphism is found. In particular, this means that the total number of generators found is at
most n — 1. Usually, it is much less.

The markers “level...” are only written if options.writemarkers = TRUE. In the com-
mon circumstance that ¢; = r;, “¢; cells;” is omitted. Similarly, “/7,” is omitted if 5, = 1,.
Note that ¢; = 1 is possible for more difficult graphs. Further information about the generators
can be found in Theorem 2.34 of [5].

6. Examples.
All of the following examples were run without the use of a vertex-invariant.

Example 1:

options|getcanon = FALSE, digraph = FALSE, writeautoms = TRUE, writemarkers = TRUE,
defaultptn = TRUE, cartesian = FALSE, linelength = 78, tc_level = 0].

output:
(2 5)(3 4)
level 3: 6 orbits; 3 fixed; index 2
(13)((6 7N
level 2: 4 orbits; 1 fixed; index 3
(0 1)(23)(4 5)(6T)
level 1: 1 orbit; O fixed; index 8

orbits = (0,0,0,0,0,0,0,0), stats[grpsizel = 48.0, grpsize2 = 0, numorbits = 1, numgenerators
= 3, numnodes = 10, numbadleaves = 0, mazlevel = 4].

Explanation of output: Let 71, 72 and 73 be the three automorphisms found, in the order

8

The various fields of the structure stats are set by nauty. Their meanings are as follows:
double grpsizel, int grpsizeZ: The order of the automorphism group is equal to grpsizel x
1097P$12€2 within rounding error. If the exact size of a very large group is needed, it
can be calculated from the output selected by the writemarkers option. See Section 5.
int numorbits: The number of orbits of the automorphism group.
int numgenerators: The number of generators found.
int errstatus: If this is nonzero, an error was detected by nauty. The possible nonzero
values are:
MTOOBIG: m > MAXM

NTOOBIG: n > MAXN or n > WORDSIZE x m
CANONGNIL: canong = NILGRAPH, but options.getcanon = TRUE.

long numnodes: The total number of tree nodes generated.

long numbadleaves: The number of leaves of the tree which were generated but were useless
in the sense that no automorphism was thereby discovered and the current-best-guess
at the canonical labelling was not updated.

int mazlevel: The maximum level of any generated tree node. The root of the tree is on
level one.

long tctotal: The total size of all the target cells in the search tree. The difference between
this value and numnodes provides an estimate of the efficiency of nauty’s search-tree
pruning.

long canupdates: The number of times the program’s idea of the “best candidate for canon-
ical label” was updated, including the original one.

long inwvapplics: The number of nodes at which the vertex-invariant was applied.

long invsuccesses: The number of nodes at which the vertex-invariant succeeded in refining
the partition more than the refinement procedure did.

int invarsuclevel: The least level of the nodes in the tree at which the vertex-invariant

succeeded in refining the partition more than the refinement procedure did. The value
is zero if the vertex-invariant was never successful.

In addition to their parameters, the output routines of nauty respect the value of the
global int variable labelorg. If the value of labelorg is k, the output routines pretend that the
vertices of the graph are numbered k,k + 1,...,n + k — 1, even though they are internally
numbered 0,1,...,n — 1. By default, £ = 0. Only non-negative values are supported.

5. Output. If options.writeautorns = TRUE or options.writernarkers = TRUE, information
concerning the automorphism group is written to the file options.outfile.

Let I’ be the automorphism group, and let Iy, ,, .. ., be the point-wise stabiliser in I" of
v1,Vg,...,0;. The output has the following general form:

k
b
o

(k)
Vi
level k: ¢, cells; rp orbits; wvr fixed; index x/jk
k-1
S
k-1
75

(k1)
tg 1

int linelength: The value of this variable specifies the maximum number of characters per
line (excluding end-of-line characters) which may be written to the file outfile (see
below). Actually, it is ignored for the output selected by the option writernarkers, but
that never has more than about 65 characters per line anyway.

FILE xoutfile: This is the file to which the output selected by the options writeautoms
and writernarkers is sent. It must be already open and writable. The nil pointer
(FILE+x)NULL is equivalent to stdout.

UPROC (xuserrefproc)(): This is a pointer to a user-defined procedure which is to be called
in place of the default refinement procedure. Section 7 has details. If the value is

NILFUNCTION, the default refinement procedure is used.

UPROC (xuserautomproc)(): This is a pointer to a user-defined procedure which is to be called
for each generator. Section 7 has details. No calls will be made if the value is NIL-

FUNCTION.

UPROC (xuserlevelproc)(): This is a pointer to a user-defined procedure which is to be called
for each node in the leftmost path downwards from the root, in bottom to top order.
Section 7 has details. No calls will be made if the value is NILFUNCTION.

UPROC (xusernodeproc)(): This is a pointer to a user-defined procedure which is to be called
for each node of the tree. Section 7 has details. No calls will be made if the value is

NILFUNCTION.

UPROC (kusertcellproc)(): This is a pointer to a user-defined procedure which is to be called
in place of the default routine which chooses a target cell. Section 7 has details. If the
value is NILFUNCTION, the default routine is used.

UPROC (xinvarproc)(): This is a pointer to a vertex-invariant procedure. See Section 8 for a
discussion of vertex-invariants. No calls will be made if the value is NILFUNCTION.

int tc_level: Two rules are available to choose target cells. On levels up to level tc_level,
inclusive, an expensive but (empirically) highly effective rule is used. (The root of the
search tree is at level one.) At deeper levels, a cheaper rule is used. The cheap rule
is perfectly adequate except for particularly difficult graphs, such as Hadamard-matrix
graphs and projective-plane graphs. For such difficult graphs, a value of about 4 is
recommended. For easier graphs, use 0.

int minenvarlevel: The absolute value gives the minimum level at which invarproc will be
applied. (The root of the search tree is at level one.) If options.getcanon = FALSE, a
negative value indicates that the minimum level will be automatically set by nauty to
the least level in the left-most path in the search tree where invarproc is applied and
refines the partition. If options.getcanon = TRUE, the sign is ignored. A value of 0
indicates no minimum level.

int mazinvarlevel: The absolute value gives the maximum level at which invarproc will be
applied. (The root of the search tree is at level one.) If options.getcanon = FALSE, a
negative value indicates that the maximum level will be automatically set by nauty to
the least level in the left-most path in the search tree where invarproc is applied and
refines the partition. If options.getcanon = TRUE, the sign is ignored. A value of 0
effectively disables invarproc.

int snwvararg: This level is passed by nauty to the vertex-invariant procedure wnvarproc,
which might use it for any purpose it pleases.

groupblk sxgroupopts: This is a place-holder for future enhancements to nauty.

Some of the fields in the options argument may change the canonical labelling produced
by nauty. These are fields digraph, defaultptn, tc_level, userrefproc, usertcellproc, invarproc,
mininvarlevel, mazinvarlevel and invararg. If nauty is used to test two graphs for isomorphism,
it is important that the same values of these options be used for both graphs.

6

graph xcanong: The canonically labelled isomorph of ¢ produced by nauty. This argument
is ignored if options.getcanon = FALSE, in which case the nil pointer NILGRAPH can
be given as the actual parameter. Write-only.

The initial colouring of the graph is determined by the values of the arrays lab, ptn and
the flag options.defaultptn. If options.defaultptn = TRUE, the contents of lab and pin are set
by nauty so that every vertex has the same colour. If not, they are assumed to have been set
by the user. In this case, lab should contain a list of all the vertices in some order such that
vertices with the same colour are contiguous. The ends of the colour-classes are indicated by
zeros in ptn. In super-precise terms, each cell has the form {lab[7], lablt + 1],. .., lab[j]} where
[7,7] is @ maximal subinterval of [0,n — 1] such that ptn[k] > 0 for ¢ < k < j and ptn[j] = 0.
(In the terminology defined in Section 7, this is the “partition at level 0”.) An example is
given in Section 6.

The concept of active cells is used by the procedure which finds the coarsest equitable
partition not coarser than a given partition. The details are given in [5], where the active
cells are in a sequence called «. In this implementation, a set rather than a sequence is used.
If options.defaultptn = TRUE, or active = NILSET, every colour is active. This will always
work, and so is recommended if you don’t want to be a smart-arse. If options.defaultptn =
FALSE and active # NILSE'T, the elements of active indicate the indices (0..n — 1) where the
active cells start in lab and ptn (see above). Theorem 2.7 of [5] gives some sufficient conditions
for active to be valid. If these conditions are not met, anything might happen. The most
cominon places where this feature may save a little time are:

(a) If the initial colouring is known to be already equitable, active can be the empty set.
(Don’t confuse this with NILSET, which is a nil pointer of type setx).

(b) If the graph is regular and the colouring has exactly two cells, active can indicate just
one of them (the smallest for best efficiency).

If nauty is used to test two graphs for isomorphism, it is essential that exactly the same value
of active be used for each of them. You should also not assume that nauty will yield identical
results if run on a different machine or compiled with a different compiler.

The various fields of the structure options are as follows: All of these fields are Read-Only.

boolean getcanon: If this is TRUE, the canonically labelled isomorph canong is produced,
and lab is set to indicate the canonical label, as described above. Otherwise, only the
automorphism group is determined. Sometimes, different generators of the automor-
phism group are found if this option is selected; of course, the group they generate is
the same.

boolean digraph: This must be TRUE if the graph has any directed edges or loops. It has
the effect of turning off some heuristics which are only valid for simple graphs. If no
directed edges or loops are present, selecting is option is legal but may degrade the
performance slightly.

boolean writeautormns: Ifthisis TRUE, generators of the automorphism group will be written
to the file outfile (see below). The format will depend on the settings of options
cartesian and linelength (see below, again). More details on what is written can be
found in Section 5.

boolean writemarkers: If this is TRUE, extra data about the automorphism group genera-
tors will be written to the file outfile (see below). An explanation of what these data
are can be found in Section 5.

boolean defaultptn: This has been fully explained above.

boolean cartesian: If writeautorns = TRUE, the value of this option effects the format in
which automorphisms are written. If cartesian = TRUE, the output for an automor-
phism 7 is the sequence of numbers “17 27 ... (n — 1)?”. If cartesian = FALSE, the
output is the usual cyclic representation of v, for example “(2 5 6)(3 4)”.

5

3. Data Structures. A setwordis a chunk of memory of either 16, 32 or 64 bits, depending
on the compile-time parameter WORDSIZE.

A set (by which we always mean a subset of V = {0,1,...,n — 1}) is represented by an
array of m setwords, where m is some number such that WORDSIZE x m > n. The bits
of a set are numbered 0,1,...,n — 1 left to right, ignoring all but the rightmost (low-order)
WORDSIZE bits of each setword, and any left-over bits at the end. Bits which don’t get
numbers are called “unnumbered” and are assumed permanently zero. A set represents the
subset { ¢ | bit ¢ is non-zero }.

A graph is represented by an array of n sets. The i-th set gives the vertices to which
vertex ¢ is adjacent, for 0 < ¢ < n.

A permutation of V is represented by an array of n short ints, the i-th entry giving
the image of ¢ under the permutation.

An nvector is any array of n ints.

boolean is a synonym for int, but the different name is intended to encourage you to
restrict the values to either TRUE or FALSE.

The structured types optionblk and statsblk, are described below. All these types are
defined in the file nauty.h.

Note that types like set actually refer to the elements of the arrays (in this case setword)
rather than the arrays themselves. This is done because the lengths of the arrays are not known
in advance. We use set rather than setword purely for self-documentation purposes.

4. Parameters. Uppercase names like ‘MAXM?’ are parameters defined in the file nauty.h.
A call to nauty has the form

nauty (g, lab, ptn, active, orbits, options, stats, workspace, worksize, m, n, canong)

where the parameters have meanings as defined below.

graph xg: The input graph. Read-only.

nvector xlab*ptn: Two arrays of n entries. Their use depends on the values of several
options. If options.defaultptn = TRUE, the input values are ignored; otherwise, they
define the initial colouring of the graph (see below). If options.getcanon = TRUE,
the value of lab on return is the canonical labelling of the graph. Precisely, it lists the
vertices of ¢ in the order in which they need to be relabelled to give canong. Irrespective
of options.getcanon, neither lab nor ptn is changed by enough to change the colouring.
(Recall that the order of the vertices within the cells is irrelevant.) Read-Write.

set *active: An array of m setwords specifying the colours which are initially active. A
brief outline of what this means is given below. This argument is rarely used; nauty
will always work correctly if given the nil pointer NILSET. Read-only.

nvector xorbits: An array of n entries to hold the orbits of the automorphism group. When
nauty returns, orbits|i] is the number of the least-numbered vertex in the same orbit
as 4, for 0 <7 < n— 1. Write-only.

optionblk xoptions: A structure giving a list of options to the procedure. See below for
their meanings. Read-only.

statsblk *stats: A structure used by nauty to provide a list of pieces of information about
what it did. See below for their meanings. Write-only.

setword kxworkspace, worksize: The address and length of an integer array used by nauty for
working storage. There is no minimum requirement for correct operation, but the effi-
ciency may suffer if not much is provided. A value of worksize > 50m is recommended.
Write-only and Read-only, respectively.

int m, n: The number of setwords in sets and the number of vertices, respectively. It must
be the case that 1 < m < MAXM, 1 < n < MAXN and 1 < n < m x WORDSIZE.
Read-only.

[345]012]

[3]45]12]0] [4]35]02]1]
[314]5[2]1]0] [3]5[4[1]2]0] [4]3[5]2]0]1]

Figure One

group is trivial and we can obtain C(G,) by labelling the vertices of G in the order that they
appear in the partition. Suppose more generally that equitable partition 7’ is associated with
some node v of the tree. If 7’ is discrete, then v has no children. If 7' is not discrete, let C' be
a non-singleton cell of it. This is called the target cell for this node. For each vertex v € C we
have a child of v associated with the partition got from 7' by replacing the cell C' by the pair
of cells {v} and C — {v}, in that order. The children of v are generated in ascending order of
the labels on the vertices of C'.

Any node of the tree for which the equitable partition is discrete corresponds to a labelling
of (G, as described above. Automorphisms of the graph are found by noticing that two such
labellings give the same labelled graph. The canonical labelling map corresponds to one of
these labellings, chosen according to a complicated scheme for which you will have to consult [5]
or the source code.

Except in particularly simple cases, only some of the tree is actually generated. The other
parts of the tree are either shown to be equivalent to parts already generated, or shown to be
uninteresting. Again, see [5] for details.

Version 1.0 of nauty chose the target cell to be the first non-singleton cell of the smallest
size. Work by Andrew Kirk [2] demonstrated that in practice this scheme is almost always
inferior to choosing the first non-singleton cell regardless of size, so that scheme is now used by
default. However, to accommodate some classes of especially difficult graphs, another scheme
is provided as an option. See the discussion of the fc_level field of the options parameter in
Section 4.

In Figure One, we show an example of the part of the tree which is actually generated.
The nodes are represented by their equitable partitions, assuming that the original colouring
only used one colour. The target cells are underlined and the numbers on the tree edges give
the elements of the target cells which are being fixed. In this example, all the leaves are
equivalent and correspond to the automorphisms (1), (1 2)(4 5), and (0 1)(3 4), respectively.

nauty is written in a highly portable subset of the language C. Currently, the following
implementations are available:
(a) VAX11C and GCC compilers under VMS.
(b) Most C compilers under existing UNIX implementations, including BSD4.2, System V,
Ultrix and AU/X.
(¢) LightSpeed C, THINK C, Aztec C and Workshop (MPW) C compilers on the Apple
Macintosh.
(d) Lattice C compiler on the Commodore Amiga.
(e) Microsoft C and Turbo C compilers on the IBM PC.
(f) The default C compiler on a Cray.

Other systems would be easy to add. In fact, most differences other than word-size varia-
tions for the implementations above occur in minor features of the dreadnaut program (see
Section 12).

2. The Algorithm. Throughout this document, a graph is a simple graph with n vertices
labelled 0,1,...,7 — 1. Digraphs, and graphs with loops, can also be handled correctly (see
Section 4), but we will not mention them much. The vertex set of a graph G is denoted by
V =V(G).

The terms colouring and partition will be used interchangeably to denote a partition of
V into disjoint non-empty colour classes or cells. The order of the cells is significant, but
the order of the vertices within each cell is not. If 7; and 7y are partitions, then m; is not
coarser than wy if every cell of 71 is a subset of some cell of 9. A singleton cell is a cell with
cardinality one, while a discrete partition is one with only singleton cells.

Let G' be a graph, 7 a permutation of V, v € V. W C V and 7 = (Vo, V1,...,Vk) a
partition of V. Then v is the image of v under v, WY = {w”|w € W}, G7 is the graph in
which vertices 27 and y” are adjacent iff © and y are adjacent in GG, and 77 is the partition
(Vo .V, V).

The automorphism group of a coloured graph (G,) is the set of all permutations v such
that G7 = G and ©#7 = 7. Since the order of cells in partitions is significant, the last condition
means that 7 fixes the cells of 7 setwise (i.e., 7 is colour preserving). In the majority of
applications, 7 has only one cell V, so we get the usual automorphism group.

If # = (Vo,Va,...,Vk) is a partition of {0,1,...,n — 1}, then ¢(x) is the partition
({0,1,...,1Vo] — 11, {|Vol,-- s Vol + [Va| — 1}, ..., {n — |Vk|,...,n — 1}). Thus, ¢(7) is in-

dependent of 7 except that it has the same cell sizes in the same order.

A canonical labelling map is a function C such that, for any graph G, partition 7 of V/,
and permutation 7 of V', we have
(a) C(G,)= G? for some permutation § such that 7 = ¢(r), and
(b) C(G",n7) =C(G, 7).

The usefulness of a canonical labelling map is as follows.

Theorem. Suppose the graphs G1 and Gy are coloured using the same number of vertices of
each colour. Then C(Gr,m) = C(Ge,m2) iff GY = G2 for some colour-preserving permutation
7. (Here, 11 and w3 are the colourings, with the colours in the same order in each.)

Let G be a graph and 7 a partition of V with cells Vg, Vq,...,Vx. Then 7 is equitable
(with respect to) if there are numbers d;; such that each vertex in V; is adjacent to precisely
d;; vertices in V;, for 0 < ¢,57 < k. Up to the order of the cells, there is a unique coarsest
equitable partition which is not coarser than any given partition.

The algorithm used by nauty is a backtrack program which can be described in terms of
the usual associated search tree. We will refer to the nodes of the tree to avoid confusion with
the vertices of G. The root of the tree is associated with the initial colouring of G and the
coarsest equitable partition 7’ which is not coarser than it. If 7’ is discrete, the automorphism

2

nauty User’s Guide (Version 1.5)

Brendan D. McKay
Computer Science Department
Australian National University

G. P. O. Boz 4, ACT 2601

Australia

Contents.
0. How to use this Guide.
1. Introduction.
2. Outline of the algorithm.
3. Data structures.
4. Description of the procedure parameters.
5. Interpretation of the output.
6. Examples.
7. User-defined procedures.
8. Vertex-invariants.
9. Writing programs which call nauty.
10. Installing nauty and dreadnaut.
11. Efficiency.
12. The dreadnaut program.
13. Recent changes.
14. References.
A. A sample program which calls nauty.

0. How to use this Guide. The dreadnaut program provides sufficient functionality that
most simple applications can be managed without the need to write any programs. Section 12
is intended to be a fairly self-contained introduction to that level of use. You should start
reading there; it will direct you to any necessary information which appears elsewhere.

If you wish to write C programs which call nauty, you don’t have much choice but to read
this Guide from start to finish. However, it isn’t really as hard as it sounds; see the example
in Appendix A for an existential proof.

1. Introduction. nauty (no automorphisms, yes?) is a set of procedures for determining
the automorphism group of a vertex-coloured graph. It provides this information in the form
of a set of generators, the size of the group, and the orbits of the group. It is also able to
produce a canonically-labelled isomorph of the graph, to assist in isomorphism testing. The
mathematical basis for the algorithm is described in [5]; only a broad outline is given here.
Note, however, that a great number of improvements have been made since the implementation
described in [5].

This Guide describes Version 1.5. The previous Guide, describing Version 1.2, appeared
in 1987. Useful ideas received from Greg Butler, Aaron Grosky, Andrew Kirk, Bill Kocay,
Rudi Mathon, Kevin Malysiak, Mark Henderson, Neil Sloane and Don Taylor are gratefully
acknowledged.

The author would appreciate receiving any comments about the program and/or this
Guide, especially about alleged bugs.

