Approaches to the automatic discovery of patterns in
biosequences.*

Alvis Brazma'
EMBL Outstation — Hinxton, European Bioinformatics Institute
Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK *

Inge Jonassen'$
Department of Informatics, University of Bergen, HIB, N5020 Bergen, Norway
phone: (+47) 55584713, fax: (+47) 55584199, email: inge@ii.uib.no

Ingvar Eidhammer
Department of Informatics, University of Bergen, HIB, N5020 Bergen, Norway

David Gilbert
Department of Computer Science, City University,
Northampton Square, London, EC1V 0HB, UK

November 5, 1997

Running head: The automatic discovery of patterns in biosequences.

Abstract

This paper surveys approaches to the discovery of patterns in biosequences and places
these approaches within a formal framework that systematises the types of patterns and
the discovery algorithms. Patterns with expressive power in the class of regular languages
are considered, and a classification of pattern languages in this class is developed, covering
the patterns that are the most frequently used in molecular bioinformatics. A formulation is
given of the problem of the automatic discovery of such patterns from a set of sequences, and
an analysis is presented of the ways in which an assessment can be made of the significance
of the discovered patterns. It is shown that the problem is related to problems studied in the
field of machine learning. The major part of this paper comprises a review of a number of
existing methods developed to solve the problem and how these relate to each other, focusing
on the algorithms underlying the approaches. A comparison is given of the algorithms, and
examples are given of patterns that have been discovered using the different methods.

*To be published in the Journal of Computational Biology

tThe two first authors have contributed equally to this work

#Work done whilst at the University of Latvia, Riga, Latvia, and the University of Helsinki, Finland
$Corresponding author

Keywords: automatic discovery, bioinformatics, biosequences, machine learning, pat-
terns.

Introduction

Recently it has become relatively cheap and easy to determine nucleotide and protein sequences,
and a considerable number of sequences has been amassed, representing a total length of several
hundreds of millions of symbols. Moreover there are many different databases containing such
sequence data. The emphasis in genome projects has moved from the acquisition of sequence
data towards the analysis of this data. The aim of the analysis is the extraction of all sorts
of biological “meaning” of these sequences, for example concerning the evolutionary history of
the respective macromolecules and their three-dimensional structure and function. One way of
analysing the sequences is to group them into families, each family being a set of sequences
believed to be biologically (i.e., evolutionarily, structurally or functionally) related, and for each
family to try to find common features or patterns. In this paper we survey methods for the
automatic discovery of such patterns.

Different kinds of patterns can be used for characterising sequences and the corresponding
macromolecules. For proteins and protein sequences we should distinguish between sequence
patterns and structure patterns. Structure patterns describe features of the three-dimensional
structures of the macromolecules, and may also include information about the corresponding
sequences. Sequence patterns describe pure sequence (syntactic) properties. In this paper we
consider only sequence patterns, and also regard sequences and strings to be synonymous terms.
For instance, C-x(2,4) - [DE] is a sequence pattern matching any sequence containing a substring
starting with C, followed by between two and four arbitrary symbols, followed by either a D or
an E. This pattern is an example of a deterministic pattern (a deterministic pattern either
matches or does not match a given sequence). Patterns may also be probabilistic, i.e., assigning
a probability to the match between a sequence and the pattern. Examples of probabilistic
patterns are profiles and Hidden Markov Models. Deterministic patterns are simple and pure
mathematical concepts, and are easier to interpret than probabilistic patterns. On the other
hand, probabilistic patterns have more modelling power.

The goal of automatic pattern discovery is, given a set (family) of sequences, to find new, a
priori unknown patterns, that are common to (matches) all, or most of the sequences in the
set. If it is discovered that a certain pattern matches all or most of the sequences in the famliy,
then it is possible that the presence of this particular pattern plays a part in determining the
biological function of the corresponding macromolecules. Also if we detect in a new sequence the
presence of a pattern known to be characteristic for a certain family, then we can hypothesise
that the new sequence belongs to that family, even if we do not know its biological properties
yet. In this way patterns may be used for the classification of biosequences and for predicting
their properties. A pattern is said to be diagnostic for a family if it matches all the known
sequences in the family, and no other known sequences.

Many of the known protein families have been collected in the PROSITE database (Bairoch,
1992). For most of the families a diagnostic pattern is given; for some families, the pattern given

is not perfectly diagnostic — it may fail to match some sequences in the family, and/or it may
match some known sequences outside the family. For example, accession number PS00028 in
PROSITE (release 13, November 1995) gives the zinc finger ¢2h2 family containing 279 proteins
in SWISS-PROT (release 32, November 1995). The pattern C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-
H-x(3,5)-H matches all 279 known member sequences, but also 26 other sequences in SWISS-
PROT.

Powerful automatic pattern discovery algorithms may enable us to look for patterns in a large
variety of potentially related biosequences. For example, such methods may be used to automat-
ically construct patterns for the PROSITE database. These patterns are currently constructed
semi-manually. Apart from the fact that this is a tedious process, this method does not guar-
antee that all the possible patterns are explored and that the best patterns are found. Another
example of the use of pattern discovery algorithms could be the analysis of DNA sequences
believed to be involved in gene regulation. More generally, one could possibly discover new and
unexpected relationships and regularities in biological sequences. Thus pattern discovery meth-
ods may prove to be an important tool for knowledge discovery and data mining in biosequence
databases.

In this paper we consider the problem of the automatic discovery of deterministic patterns
in biosequences. This is a machine learning problem, namely that of extracting general rules
from particular instances. In this context, the pattern is the general rule and sequences are the
instances of the rule. Given a set of positive examples (sequences in some family), and possibly a
set of negative examples (sequences not in this family), the problem is to find patterns matching
the positive examples and not the negative examples (if given). Many nontrivial and interesting
methods have been developed for this problem and it would appear that the field would benefit
from some systematisation. For this reason, we have designed a framework consisting of the
following five dimensions.

The first is based on formulating the problem of pattern discovery in the framework of machine
learning, e.g., the pattern discovery problem is related to learning from only positive examples,
from both positive and negative examples, and to learning from noisy data. Second, we define
a pattern language that effectively includes most of the deterministic pattern languages used in
biocomputing, and by restricting this general language we can obtain pattern languages studied
by particular authors. The third dimension is based on the formulation and study of the concept
of a fitness measure describing how well a discovered pattern fits the training data as well as
rating our a priori belief in the patterns. Fourth, the pattern discovery algorithms can be
rated according to whether they are guaranteed to find the patterns of the highest fitness or
not. Finally, along the fifth dimension, we divide the pattern discovery algorithms themselves
depending on the algorithmic paradigms underlying them. We distinguish between algorithms
that are based on the enumeration of possible patterns and on choosing the fittest ones (pattern-
driven or PD), algorithms based on looking for common parts in sequences (sequence-driven or
SD), and algorithms based on a combination of these paradigms.

The structure of this paper is as follows. In section 2 we describe the first four dimensions
of the framework. We also give a discussion of whether or not the pattern languages used
give sufficient expressive power to describe the crucial biological features of the sequences. In
section 3 we define the PD and SD approaches to pattern discovery, and also describe ways of

*

>

Figure 1: Schematic figure showing the relationships between the set Fl; of sequences in a family, F_ of
sequences outside the family, and the set X* of all possible sequences (strings).

combining these approaches. A survey is given of many of the currently known automatic pattern
discovery methods. We place each of the surveyed methods within the common framework, and
furthermore we identify the main algorithmic ideas of each method and show how these ideas
relate to each other.

In Appendix A we present some basic information about the specific existing algorithms, and in
Appendix B we give examples of the results of computational experiments, and samples of the
patterns which have been discovered, for some of the existing methods. These experimental data
are taken from the papers describing each of the methods. We conclude with a discussion of the
possibility of establishing some benchmarks in the area of pattern discovery in biosequences.

2. Definition and discussion of the problem.

In this section we formulate the problems related to learning from biosequences. After giving
a semi-formal specification of the problems, we sketch a three step approach to solving these
problems, and discuss each step separately.

2.1 The formulation of the problems

Let F be a set of sequences corresponding to a set of proteins sharing definite functional or
structural properties (e.g., containing the same type of protein domain). We say that F is a
family. The set F is a subset of the total set £* of all possible strings over the amino-acid (or
nucleotide) alphabet 3. The sequences in F_ = ¥* — F; constitute the set of sequences outside
the family. This is sketched in figure 1. Note that while all sequences in F correspond to
biological macromolecules, there may be sequences in F_ not corresponding to such molecules.
For example, not all sequences over the amino-acid alphabet correspond to foldable proteins.

Let g be a function g : ¥* — {FALSE, TRUE} assigning boolean values to strings. Such a

Classification problem Conservation problem
Positive and negative examples Only positive examples
Cc2

8

5]

©

[

c

£

8

c

o]

o

© F+

=
N2

g

5]

©

(o))

£

c

3 (S+)

>

@

]

p4

g

Figure 2: Schematic figure showing the training set for the different problems formulated in section 2.1.
The training sets are in dark colour. In the left column, both positive and negative examples are given,
while in the right column only positive examples are given. In the top row, clean training set can be
assumed, while in the bottom row clean training set cannot be assumed.

function will be called a string function. Let g be a string function defined as follows:

(s) = { FALSE ifse F_ (1)

We will call g a characteristic function for the family F, .

The basic problem studied in this paper is that of automatically finding string functions f
approximating the characteristic function g for the family F,. An algorithm for solving this
problem takes as input a training set consisting of positive examples, which are sequences from
F, and optionally negative examples, which are sequences from F_. This is a machine learning
problem, namely that of learning a general rule from a set of examples. When both positive
and negative examples are given, we call it the classification problem, and when only positive
examples are given, we call it the conservation problem. These problems are discussed below,
and several more formal problem definitions are given, each with different assumptions about the
training set. We discriminate between the case when the training set is assumed to be correct
(clean data), and the case when there may be errors in the training set (noisy data). These
different situations and the corresponding problem definitions are illustrated in figure 2.

2.1.1 Classification problem

Suppose we are given a set of sequences S believed to be members of a family F,, and a set
S_ of sequences believed not to be members, i.e., S C Fy and S_ C F_. The goal is to find
a string function approximating the characteristic function for this family. Let us call such a
function a classifier function. Assuming clean data the problem can be stated as follows.

C1: Suppose there exist two disjoint sets of sequences F, and F_ (F, N F_ = () such that
FLUF_ =%* Given two sets S; and S_ such that S, C F, and S_ C F_, find compact
string functions that return TRUE for sequences in S, FALSE for sequences in S_, and
have high likelihood of returning TRUE for sequences in F;, and FALSE for sequences in
F_.

By compact we mean having a short description. We do not define precisely here what we mean
by a ‘short description’ and by ‘high likelihood’, we discuss different ways of defining these
notions later. As stated, C1 consists of two parts:

Cla: find compact “explanations” of known sequences, and

C1b: try to predict the family membership of yet unknown sequences.

In reality sequences come from biological experiments and may contain errors (Kristensen, et
al., 1992), as well as may possibly have been wrongly included in the set of positive or negative
examples. Therefore in general we cannot assume clean input and we should allow for some
noise in the training set. In the noisy case, it is difficult to formulate all the aspects of the
problem precisely. One possible definition is the following.

N1: Suppose there exist two disjoint sets of sequences F and F_ (F, N F_ = () such that
Fy UF_ = %*. Given sets Sy C ¥* and S_ C ¥* such that intersections S; N F_ and
S_ N F, are small, find compact string functions that return TRUE for most sequences
in S, FALSE for most sequences in S_, and have high likelihood of returning TRUE for
sequences in F';, and FALSE for sequences in F_.

Unlike the case C1, we cannot select the classifier functions only from those which return correct
TRUE/FALSE values for the entire training set. We need to find a balance between how well
the classifier function fits the training set (i.e., how much is meant by “most”), and our a priori
belief in how likely it is that different functions are able to correctly classify new sequences. The
ways of assessing the latter are discussed later.

2.1.2 Conservation problem

Sometimes it is useful to find features common to a family of sequences, even if they are not
unique to the family. In this case we do not want to construct a classifier function, but rather
a function showing what is characteristic of the family. We call such a function a conservation
function.

Let us say that a function is conserved in a set of sequences S if it returns TRUE for all sequences
in S. Also, we say that a conservation function is interesting if it has a low probability of
returning TRUE for random sequences!, one function being more interesting than another if it
has a lower probability of returning TRUE for random sequences.

C2: Suppose there exists a set of sequences Fy. Given a set S, such that Sy C Fy, find
interesting string functions (i.e., having low probability of returning TRUE for random
sequences) that return TRUE for all sequences in S and have high likelihood of returning
TRVUE for the sequences in F .

Note that an instance (S;) of the conservation problem is closely related to an instance (S5, S_)
of the classification problem where S_ consists of random sequences outside F;. A method for
solving the classification problem should be used if a classifier function is wanted in cases where
there are sequences outside the family F', that are very similar to sequences in that family.

N2: Suppose there exists a set of sequences F, C X*. Given a set S C ¥* such that S, NF} is
small?, find interesting string functions (i.e., having low probability of returning TRUE for
random sequences) that return TRUE for most sequences in S} and have high likelihood
of returning TRUE for the sequences in F'.

In order to solve the problems C1-N2 we will split them into three subproblems.

1. Find a good class of string functions from which the approximating function f is chosen
for a particular real-world problem. We call this class the solution space, hypothesis space,
or target class.

2. Define a ranking of the solution space, evaluating how good each function is for the given
training set (i.e., how likely it is to approximate g). We call it a fitness measure.

3. Develop an algorithm returning those classifier functions from the given solution space
that rate high enough according to the fitness measure.

The success in solving the prediction part of the problems depends on how successfully we chose
the solution space and fitness measure, even if the algorithm is perfect in the sense of finding all
the fittest patterns. In the next section we discuss possible solution spaces.

2.2 Solution spaces.

We have defined string functions as predicates returning TRUE or FALSE values. However,
it is possible to generalise the definitions of string functions so that they return real values
indicating the likelihood (or probability) that a given sequence belongs to a given family. A
possible classification of different functions ranging from probabilistic to deterministic ones, has

1We assume some distribution for random sequences, for example we assume that the symbols in the sequences
are independent and identically distributed (i.i.d.), i.e., po = ﬁ Alternatively the frequencies of the symbols (in
the training set, or in a database of nucleotide/protein sequences) can be used to define the symbol probabilities,
i.e., pa = fa-

2Fy is the complement of Fy with respect to X*, i.e., Fy = X% — F}.

been given by Douglas Brutlag in a keynote address at the third international conference on
Intelligent Systems for Molecular Biology (ISMB-95) as follows:

Deterministic Consensus patterns
| Alignments
| Blocks or Weight Matrices
| Templates or Profiles
\ Bayesian Networks
Statistical HMMs

The distinction between Hidden Markov Models (HMMs), Bayesian Networks, Templates and
profiles is not strict, and depends on the detailed definitions of the models and the profiles
used. Each of these models have application fields for which it is better suited. More on the
statistical functions can be found in (Krogh et al., 1994; Baldi et al., 1994) (on Hidden Markov
Models), (Gribskov, et al., 1987; Bucher and Bairoch, 1994) (profiles), and (Chan, et al., 1992)
(alignments). Some authors have used maximum likelihood models for finding good blocks?
(Lawrence and Reilly, 1990; Lawrence et al., 1993; Bailey and Elkan, 1995; Bailey, 1995). Here
we focus on the deterministic end, and particularly on patterns with expressive power within
the class of regular languages.

2.2.1 Input alphabets

The ways of defining string functions will depend on the properties of the input alphabets. There
are differences between nucleotide (DNA/RNA) and protein sequences that should be taken into
account. Protein sequences are sequences over a 20-letter alphabet ¥, = { A, C, D, E, F,
G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y }. Nucleotide sequences (DNA/RNA) are
sequences over 4-letter alphabets Ypy4 = {a,t,g,c}, and Xgya = {a,u,g,c}.

The set of amino acids ¥, may be grouped in classes Ki,..., K, in different ways according
to their physio-chemical properties, e.g., in AACC (Amino Acid Class Covering) hierarchical
groups taken from (Smith and Smith, 1990) (K; = {D,E}, K2 = {K,R,H}, K3 = {N,Q},
K, = {s,T}, K5 = {1,L,V}, K¢ = {F,W,Y}, K; = {C}, Kg = {M}, K9 = {A,G}, K1p = {P},
K11 = {D,E,K,R,H,N,Q,S,T}, K12 = {I,L,V,F,W,Y,C,M}, and K13 = Ep), or using Venn-
diagrams (Taylor, 1986), or in some other way. Also, substitution matrices, e.g., PAM (Dayhoff,
1978), and Blosum (Henikoff and Henikoff, 1992), can be defined giving statistics for each pair
of amino acids for how often they are found in equivalent positions in proteins that are within a
certain evolutionary distance. Similar groupings and scoring matrices can be used in analysis of
nucleotide sequences, however this, seems to play a less important role than in protein sequence
analysis.

Both protein sequences and nucleotide sequences can be translated into smaller alphabets. Such
a translation is called an indezing, and is obtained by making a partition* of the basic alphabet
3, and translating symbols in the same partition into the same symbol in the reduced alphabet.
For example, amino acids are either hydrophobic, neutral, or hydrophilic, and can be mapped
onto a three-symbol alphabet 34,40 = {+,0, —} (e.g., (Karlind and Ghandour, 1985; Arikawa et

3A block is defined as a local ungapped alignment, i.e., it is a set of segments of identical length “put on top
of each other” giving an alignment (Posfai et al., 1989).
4A partition of a set A is a set B of disjoint subsets of A such that the union of the sets in B is A.

al., 1992)). Similarly nucleotide sequences can be translated into a purine-pyrimidine alphabet
Enred = {R’ Y}

2.2.2. Generalised regular patterns

Pattern definitions are usually given by examples in the biocomputing literature. Here we give a
more formal definition, and define a class of what we call generalised regular patterns, which will
unify most of the deterministic pattern classes used in biocomputing. Various more restrictive
pattern classes will be obtained as appropriate subclasses.

Let ¥ = {ai,...,a,} be an alphabet called the basic alphabet. For protein sequences ¥ = ¥,
for nucleotide sequences 3 = Xpna, or X = Ygn4; if an indexing is applied, ¥ may be, for
example, Ypy4r, Or 3y _,, Or any other abstract alphabet. Let Ki,..., K, be some subsets of
¥, such that each subset contains more than one element (|K;| > 2). Let II = {b1,...,b,} be
another alphabet disjoint with ¥, and let us define L(b;) = K;. For convenience let us also

assume that L(a;) = {a;}, for a; € X. In practice K1,..., K, are classes of amino-acids (e.g.,
the AACC classes) or nucleic acids, and by, . .., b, are the characters denoting these classes. The
character denoting a class K; = {a;,,...,a; } is usually denoted by [a;, ...a;]. For instance, in

our representation of the AACC hierarchy, b; denoting K; = {D,E}, would be denoted by [DE].
This does not apply, however, to the character b; standing for the whole ¥, which is usually
denoted by z (or sometimes by -), effectively meaning the wildcard (or don’t-care) character.
Here we will use z for the wildcard. Wildcards are sometimes also referred to as spacers.

Let z(p, q), where p and ¢ are non-negative integers and p < ¢, be a wildcard of length from p
to g, and let L(z(p,q)) be defined as a set of all words over ¥ of length between p and g, i.e.,
L(z(p,q)) = {a € ¥|p < |a| < q}. Let X be the set of all objects of the form z(p, q). Finally,
let * be a character such that * ¢ Y UII, and let L(x) = ¥*, i.e., * is the wildcard of an arbitrary
length - z(0, 00).

A generalised regular pattern 7 is a string over an alphabet (X UIIU X U {x}). We define the
language L(r) of pattern 7, where 7 =¢1...¢r, and ¢; € SUITU X U {x}, as

L(m) = L(¢y) ... L(cp),

the concatenation being defined as L(c1)...L(ck) = {7 ---7|m € L(c1),---,v% € L(cy)}. A
string o matches a pattern 7 if & € L(w). The class of languages that can be expressed using
generalised regular patterns is a subset of regular languages. From now on, by ‘pattern’ we will
understand a generalised regular pattern.

We introduce the following pattern classification based on limiting the pattern alphabet to
different combinations of sets ¥, II, X, and {}, and limiting whether the symbol * can appear
in an arbitrary place in a pattern, or only at the beginning and at the end. For patterns where x*
can appear only at the beginning and at the end, i.e., for patterns of the type m = *7'x, m = %7/,
and m = 7'+ we will distinguish between the following cases restricting the alphabet of 7':

10

Class definition example pattern

A e X* t-c-t-t-g-a

B e (BU{z})* D-R-C-C-x(2)-H-D-x-C

C € (S U G-G-G-T-F-D-[ILV]-[STJ-[ILV]

D e (BUllU{z})* V-x-P-x(2)-[RQ]-x(4)-G-x(2)-L-[LM]

E e (ZUX)* G-C-x(1,3)-C-P-x(8,10)-C-C

F e (BUTUX)* C-x(2,4)-C-x(3)-[ILVFYC]-x(8)-H-x(3,5)-H

In the second case when * can appear in an arbitrary place we define classes:

Class definition example pattern

G m€ (B U {x})* D-T-A-G-Q-E-*-L-V-G-N-K

H m e (BUITU{x})* D-T-A-G-[NQJ-*-L-V-G-N-[KEH]

I me (BUITUX U{x})* D-T-A-x(2,5)-G-[NQ]-*-L-V-G-N-[KEH]

Note that these classes can be partially ordered in a lattice, A being the bottom element and
I the top element. The class A corresponds to substring patterns, and the class G to regular
patterns of Shinohara (1983). The class F corresponds to the class of patterns most frequently
used in the PROSITE database. In PROSITE notation, the leading and closing * symbols are
not used, *m* being written simply as w. The notation permits attachment of the pattern to
the beginning or end of a sequence by using a leading < or closing > symbol, thus = becomes
<m>.

Any of the classes containing the alphabet II can be further refined by choosing a particular
alphabet II (i.e., particular subsets Ki,...K,). We can also restrict the solution space by
considering patterns of a specific (or up to a specific) length.

2.2.3 Defining the string functions via patterns

The simplest way to define a classification (conservation) function using a pattern 7 is

[TRUE ifo € L(x)
f(o) _{ FALSE otherwise. (a)

An extension of this approach is to allow for approximate matching between the pattern and the
string. A measure of the distance between two strings can be used (e.g., edit or Levenshteins
distance (Levenshtein, 1966)). If dist(o1, 02) is the distance between two strings o1, and o3, then
the distance between a string and a pattern can be defined as Dist(7, o) = min, ¢ (x) dist(o’, 7).
Hence the definition of classifier/conservation function f can be generalised to include approxi-
mate matching:
| TRUE if Dist(m,0) < const
flo) = { FALSE otherwise, (b)

for some given constant const. More advanced distance measures, involving use of amino
acid substitution matrices (Dayhoff, 1978; Henikoff and Henikoff, 1992) and different ways of
penalising gaps, have also been used, for example in database similarity search programs, e.g.,
(Altschul et al., 1990; Lipman and Pearson, 1985).

11

Patterns can also be used for defining classification/conservation functions in more complicated
ways than just exact (a), or approximate (b) membership of a language. We are aware of two
more ways reported in the literature:

¢ membership to a union of pattern languages, i.e., f(0) = TRUE, if 0 € L(m) U...U L(my,)
where 7q,...,m, are patterns of some class (Arimura et al., 1994; Shoudai et al., 1995;
Brazma et al., 1996b).

d using decision trees over patterns (for the definition of a decision tree see (Arikawa et al.,
1993)).

Method c is useful when a family contains several subfamilies and whilst there is a strong
conserved pattern in each subfamily, the family as a whole share only a weak conserved pattern.
Note that the learning of unions of patterns languages from positive examples is closely related
to unsupervised learning — the task of simultaneously finding a set of patterns, and subfamilies
(i.e., subsets) of the training set, so that each subfamily shares a distinct pattern.

Since most of the information about the function for the considered classes of string functions is
given by the underlying patterns, we will from now on often refer to patterns instead of functions.

2.2.4 Do the solution spaces give sufficient expressive power?

The PROSITE database contains many examples of protein families which have diagnostic con-
sensus patterns of the type defined above. For example, the zinc finger proteins all have cysteine
or histidine amino acids in certain positions. In these cases, the class of generalised regular pat-
terns may be sufficient. In many other families the features conserved between the sequences are
more subtle. Probably there does not exist any consensus pattern diagnostic for the helix-turn-
helix family. Patterns of correlations exist (e.g., pseudo-knots in RNA secondary structures)
that give crossing dependencies taking us even beyond what can be compactly described using
context-free grammars.

The choice of a target class C for our approximation functions f (i.e., the first part of our
approach) is a trade-off between what classes of functions are expressive enough to allow de-
scription of the crucial biological features of sequences, and for what classes of functions we can
develop an efficient algorithm for finding string functions from examples, i.e., what classes can
be learned efficiently. For a particular problem, we want to choose a class C as small as possible
for efficiency reasons, but at the same time C should be expressive enough to contain a function
f approximating g as defined by equation (1) at the beginning of this section.

After we have chosen the solution space C, the problem of finding the function f from positive
and negative examples Sy and S_ has some similarity to PAC-learning (probably approximately
correct learning) (Valiant, 1984; Shinohara and Arikawa, 1995). The difference between our
case and PAC learning is that PAC learning requires approximation within any given precision,
while in our case it may not be possible. Also, a potentially infinite number of examples are
assumed to be available in PAC learning, while in our case we have only a finite number of
examples, and frequently this number is quite small. Moreover, it is possible that the shortest

12

description of any good approximation function f is simply a comprehensive collection of all the
positive examples. In this case, the task of learning from biosequences is not so much that of
approximating a hypothetical function g, but rather just discovering interesting properties of g.

2.3 Ranking discovered patterns and functions

In most of this subsection we assume that a conservation or classification function is defined
directly from a single pattern using method a (exact match) or b (approximate match). In this
way we are able to talk about ranking patterns instead of string functions, thus making it easier
to relate the discussion to papers describing pattern discovery methods.

Our aim is to find a pattern 7 such that the string function f defined by 7 is as close as
possible to the characteristic function of the family (as defined by equation (1)). However, as
the characteristic function is unknown (note that we have only a part of the family known),
we have to find an indirect way of evaluating patterns from the training set and their syntactic
form. In practice, a fitness measure is defined as a function

F(m,8) =R

that takes two arguments and returns a real. The first argument is a pattern from a particular
pattern class. The second argument is the training set. The value of the function should show
how good the pattern is in respect to the training set. Sometimes the values can be normalised
to [0,1].

If we have chosen a very restricted solution space (e.g., based on patterns of class A of a fixed
length), the fitness measure can be very simple, particularly in the case of clean data. It can have
just two values 0 and 1, assigning 1 to the patterns matching all the positive example sequences,
and none of the negative example sequences for the classification problem. In the noisy case,
we can use this simple two value fitness measure by assuming a certain maximum level of noise
(say, 30%), and assigning 1 to the patterns correctly classifying at least the remaining portion
(i.e., 70%) of the training set.

A weakness of using a 0/1-valued function is that the approach then depends heavily on the
choice of the noise threshold. Instead of using 0/1-valued function we can use a function that
increases continuously with the number of sequences matching the pattern. For instance, for
the classifier problem such a fitness measure F; can be based on how many of the respectively
positive and negative examples match the pattern P. For each of the candidate string functions
f1s-- -, fn, we count the number of false positives (FP), i.e., s € S_ and f(s) =TRUE, and false
negatives (FN), i.e., s € Sy, and f(s) = FALSE. We also define the number of true positives
(T'P) as the number of sequences s in S, for which f(s) =TRUE, and the number of true
negatives (T'N) as the number of sequences in S_ for which f(s) =FALSE. The sensitivity of a
function f (Lathrop et al., 1993) can be defined as

TP
= - 2
)= 7p 3 Fp @)
Similarly, the specificity of the function can be defined as
TN
Sp(f) = TN+ FP (3)

13

The proposed functions may be ranked according to their sensitivity, specificity, or to some
combination of both®.

We rely heavily on the choice of the solution space in the case of the described fitness measures,
as they rate equally all the patterns matching the same portion of the given sequences. If we
choose too general a solution space, for instance including the regular expression Useg, s, then,
particularly for the conservation problem, it can lead to overfitting the training set and the
string functions obtained may be not useful at all for prediction. The heavy burden of making
the right choice of the solution space can be relieved by using a more subtle fitness measure
that depends not only on how well the pattern fits the training data, but also includes as a
factor some a priori rating of the patterns. For instance, we can express the fitness measure as
F(m,S) = Fi(m,S) - Fo(m), where Fi(m,S) shows how well the pattern 7 fits the training data
and Fy(m) gives an a priori rating of the pattern.

The a priori rating F5 can be based on Occam’s razor principle (see (Hutchinson, 1994)), which
says that when several theories explain (past) observations equally well, the simplest theory is
better. It is possible to prove formally that under certain assumptions the simplest patterns
are likely “to predict the future better”. In the case of the classification problem the evaluation
can be based on Occam’s Razor rather directly: simpler patterns correctly classifying the same
number of examples should be a priori rated higher. Concretely, we can define Fy(7) as the
reverse to the number of bits needed to describe the pattern 7. The dependence on the training
data, in this case, can still be a 0/1-value function: Fj(w,S) = 1, if the function classifies (is
conserved) the given percentage of sequences in the training set correctly, Fi (7, S) = 0 otherwise.

In the case of the conservation problem we want to rate a priori higher the patterns that
are more “interesting” in the sense of the definition in section 2.1.2, i.e., that have smaller
likelyhood of matching a random sequence. For this we can use the information content of
the pattern (Jonassen, et al., 1995) for a priori rating. Information content means the amount
of information provided by the knowledge that the pattern matches a sequence. Amongst the
patterns that match the same number n of sequences, we give a higher rating to the ones with a
greater information content. This may paradoxically seem to be the opposite of Occam’s Razor
principle, since it will generally rate more complex patterns higher. Nevertheless the Occam’s
Razor is used here: since we are not given any negative examples, we assume that all random
sequences are equally likely to serve as negative examples. A more obvious way of applying
Occam’s Razor principle for conservation problem is through the minimum description length
principle, discussed later.

Another way of defining the fitness measure for the conservation problem is based on the sta-
tistical significance of the patterns (e.g., (Waterman, et al., 1984; Staden, 1989a; Neuwald and
Green, 1994; Sewell and Durbin, 1995)), defined as follows. Suppose p1, ..., p, are patterns such
that each p; matches a subset S; of Sy. Then, for a pattern p;, the pattern probability is the
probability that p; matches at least |S;| out of |S;| random sequences (of the same length and

®One possible combined measure is the correlation coefficient between two sets; (1) the set of sequences in S,
and (2) the set of sequences in the set S; US_ for which the function f returns TRUE. The correlation coefficient
is C = (TP-TN — FP-FN)/\/(TP+FP)-(FP+TN)- (TN + FN) - (FN + TP), which is 1.0 when there
are no false positives or negatives, 0.0 when f is random with respect to Sy, and S_, and —1.0 when there are
only false positives and false negatives.

14

composition as the sequences in S,) purely by chance. In this analysis the sequences and the
sequence positions are assumed to be independent. The pattern significance can be defined as
the reverse of the pattern probability, thus patterns having lower probability should be ranked
higher. Note that statistical significance of the pattern will increase either if the information
content of the pattern increases or if the pattern matches more sequences. In this way both
aspects of the fitness measure are taken into account.

A closely related way is to measure the information content of the block defined by the substrings
in the training set matching a pattern (Lawrence et al., 1993; Staden, 1989b). A problem in
this case is that a relatively small number of very similar sequences can result in a block of a
large size. Therefore the assumption of some minimal number of sequences needed to match the
pattern is still required. A way of avoiding this is considered in (Jonassen, et al., 1996).

A direct way to apply Occam’s Razor principle for the case of conservation problem is based on
the minimum description length (MDL) principle (Rissanen, 1978; Li and Vitanyi, 1993; Brazma,
et al., 1996a), which gives a fitness measure easily applicable to the problem of unsupervised
learning. Considering string functions defined from a pattern (a in our classification) or a set of
patterns (c¢), the MDL principle says that the best pattern (or set of patterns) is the one that
minimises the sum of

e the length (in bits) of the description of the pattern(s); and

e the length (in bits) of the sequences when encoded with the help of the pattern(s).

Such a fitness measure for conservation functions defined by unions of patterns is developed
in (i.e., case ¢) (Brazma et al., 1996b). A coding scheme is introduced using PROSITE type
patterns for compression of sequences. The fitness value of a conservation function is defined
to be proportional to the compression of the training set that can be achieved using the set of
patterns defining the function. It is shown that this fitness measure can be expressed as the
sum of the information contents of each pattern (Jonassen, et al., 1995) times the number of
sequences matching the respective pattern, minus a correction independent of the number of
matched strings.

2.4 Search algorithms and guarantees

The specifications of the problems C1 - N2 are rather informal, leaving a number of notions
undefined, including “high likelihood” and “most sequences”. In practice, any learning algorithm
for solving these problems is effectively designed for a specific target class C and uses a specific
fitness measure F. The input of such an algorithm is the training set S, and the algorithm is
required, given the training set S, to produce a set of patterns P from the class C such that the
fitness value F(m, S), for m € P, is “relatively” high. If it can be proved that the algorithm will
produce the specified portion of the patterns with the highest fitness value F(7,S) among all
the patterns in C (i.e., either the fittest pattern, or a given number or percentage of the fittest
patterns, or all the patterns with a fitness higher than a given constant), then it is said to be
guaranteed to find the best pattern (or best patterns).

15

The success in the prediction of the properties of unknown sequences (i.e., in finding a good
approximation function f) relies on choosing an appropriate pattern class C and a good fitness
measure F'. Evaluating this is outside the scope of a mathematical definition, and should rely
either on experimental evaluation or on the judgement of an expert. A set of sequences excluded
from the training set may be used as a test set in order to evaluate how good the discovered
patterns are at predicting family membership of unknown sequences. This is a standard evalu-
ation method used in experimental machine learning, however, the number of known sequences
is too small for the performance of this kind of experiment for most families known at present.

In order to test a new method for pattern discovery, it can also be applied to well known families
to show that it is able to recover already known conserved patterns. The ultimate test of the
significance of the pattern, however is its correspondance to some region conserved in the family
for structural or functional reasons.

Various algorithms for finding classification or conservation functions having high fitness accord-
ing to the given measure from the given class are discussed in the next section.

3. Algorithms for pattern discovery

In this section we first discuss algorithms for finding classification and conservation functions
defined directly from generalised regular patterns using methods a and b (the exact and ap-
proximate match of a pattern) given in Section 2.2.3. Most of the algorithms described below,
are for the discovery of patterns exactly matching some subset of the positive examples (see also
the table given in appendix A). At the end of the section we briefly describe methods for finding
functions defined using unions and decision trees of patterns (methods ¢ and d).

At the highest level, we can divide the pattern discovery algorithms in two groups. The first,
which we call pattern-driven (PD) approaches, is based on enumerating candidate patterns in
a given solution space and picking out the ones with high fitness. The second, which we call
sequence driven (SD) approaches, comprises algorithms that try to find patterns by comparing
the given strings and looking for local similarities between them. For instance, an SD algorithm
may be based on constructing a local multiple alignment of the given sequences and then ex-
tracting the patterns from the alignment by combining the segments common to most of the
sequences.

The advantage of the PD approaches is that in this way it is possible to guarantee finding the
best patterns up to some limited size (by pattern size or length we understand the minimal
mumber of bits needed to describe the pattern), almost regardless of the total length of the
examples. The reason for this is that it is usually possible to organise the algorithm so that it is
linear-time in this length. On the other hand the size of the pattern-space is exponential in the
length of the patterns. PD algorithms guaranteed to find the pattern with the highest fitness
value, have worst case time complexity exponential in the length of the patterns. Thus, PD
algorithms can be guaranteed to find only patterns of limited size. It is also possible to combine
PD and SD approaches in a single algorithm.

It may be possible to discover patterns of an almost arbitrary size by SD algorithms. A weakness

16

of the SD approach is that in general it is impossible to guarantee optimality of the results
without sacrificing efficiency. The reason for this is that the algorithmic problems on which
precise comparison of multiple sequences can be based (e.g., the problem of constructing the
optimal multiple alignment or finding the longest common subsequence) are NP-hard (Wang
and Jiang, 1994; Garey and Johnson, 1979), and therefore SD approaches have to be based on
heuristics. In general SD algorithms tend to work well if the sequences are sufficiently similar.

In the following subsections we describe in more detail the basic ideas of PD, SD and combined
approaches to pattern discovery. When discussing time-complexity of the algorithms we will use
n for the number of sequences, [for the average length of the sequences, and L for the total
length of the sequences. We will not give precise time-complexity evaluations for all algorithms
systematically, since this would often require to explain the algorithms in more detail than
affordable for the lenght constraints, also detracting the reader from the main algorithmic ideas.
We present the basic information about each algorithm separately in Appendix A, and present
some sample patterns discovered by some of the algorithms in Appendix B.

3.1. Pattern driven approaches

The general framework of pattern driven algorithms can be formulated as follows:

e define the solution space C (i.e., a set of patterns) and the fitness measure,
e enumerate the patterns in the solution space,
e calculate the fitness of each pattern with respect to the given examples,

e report the fittest patterns.

The most straightforward implementation of the PD approach is explicit enumeration of all the
patterns from the pattern space one by one. For instance, if the patterns are subwords (i.e., of
the class A defined in section 2.2.2) of length 3 in the alphabet {a, ¢, g, t}, and if we use
{0,1} as a value of fitness measure, assigning 1 to the patterns that correctly classify the given
portions of the training sequences and 0 to the others, then the algorithm can enumerate all the
words aaa, aac, aag, ..., ttt, calculate their fitness by counting in how many examples each
is present, and output the words that have the fitness value 1.

In the simplest case of substring patterns (class A) this approach was first applied in the early
1980’s (Queen, et al., 1982; Waterman, et al., 1984) and later in (Staden, 1989b). The search
space is limited to fixed length patterns and the algorithms count the number of sequences in
the training set that approximately match the pattern®. For a priori ranking of the patterns,
Waterman et al. (1984) estimate the statistical significance of the discovered patterns, while
Staden (1989b) calculates a measure of the information content of the block consisting of the
segments that approximately match. Recently, Wolferstetter et al. (1996) have used a similar

SFor this, a notion of the set of neighbours of a string, i.e., strings that are similar to the given string, is
introduced, and a count is made of in how many examples each substring or any of its neighbours is present. The
best pattern is selected on the basis of its fitness to the “neighbourhoods”.

17

method (their fitness measure based on information content of the pattern) coupled with a user-
friendly Web-interface for discovering conserved motifs in genome regulatory regions. The time
complexity of these algorithms is linear in the total lenght of the sequences and exponential in
the lenght of the patterns.

The straightforward enumeration approach can be easily extended to more complicated patterns.
Smith et al. have used this approach for discovering patterns containing characters from the
basic alphabet and wildcards (Smith, et al., 1990). The algorithm enumerates all possible
patterns consisting of three conserved positions with constant spacings within a pre-set range,
i.e., patterns in class B from section 2.2.2. The patterns considered can be written in the form
a1-x(dy)-a9-x(dz)-a3, where a1, az, and a3 are characters from the basic alphabet, and d; and do
are the number of wildcard characters z in between them (for instance, H-x(2)-A-x(6)-G is such
a pattern). In this case, only the numbers of sequences that exactly contain the pattern are
counted. The user provides the minimum number of sequences that should contain the pattern
in order for it to be considered. The patterns are evaluated using a heuristic fitness measure, and
the patterns with the highest fitness are reported in the end. The time complexity of this part
of the algorithm is O(d?L), where d is the miximal value of d; and dy. (Smith, et al., 1990) also
uses elements of the SD approach to extend the patterns found by enumeration (see section 3.3
and appendix B). An interesting extension of this method has been reported in (Suyama, et al.,
1995), which in addition permits the discovery of patterns containing flexible length wildcards
(i.e., patterns of the class E).

An obvious problem in this straightforward enumeration is that of efficiency. The size of the
search space for patterns of length I grows as O(|X|'). However, the number of patterns can be
reduced if we impose some restrictions on the pattern class. For instance, in the method of Smith
et al. (1990) there are 20 x 10 x 20 x 10 x 20 = 800000 candidate patterns of the type a;-x(d;)-
ao-x(dy)-ag to be checked if the distance range is 10 (i.e., 0 < d; < 10 and 0 < dy < 10) and
a; € ¥,. However this number becomes impractical for more general pattern classes. Therefore
some method for pruning the solution space, either by a provably accurate method or by using
heuristics should be found if we want to increase the size and complexity of the patterns.

3.1.1. Methods for pruning during the search

A rigorous approach for pruning the search space can be based on representing it as a tree and
pruning the subtrees rooted with patterns having a fitness under some threshold. For instance,
if we are looking for simple patterns (i.e., of the class A) in the alphabet {a,c,g,t}, then a
part of the pattern space can be represented as the tree in figure 3.

This tree can be traversed in either a breadth-first or a depth-first manner; both of these
ways have been explored by Sagot et al. (1995b). The breadth-first approach can be more
time-economic in practice because the pruning of the search tree can be more efficient than
in depth-first search. For instance, for a substring act to be present in a sufficient number
of sequences, both substrings ac and ct should have been found earlier if the search is done
breadth-first. If depth-first search was used, we would only require that the substring ac should
have been found earlier. Unfortunately breadth-first search can realistically only be applied to
very short patterns, because the number of the patterns to be remembered grows very fast using

18

tg

tga tgc tgg tgt /

tgcga tgcge tgcgg tgcgt

AN,

Figure 3: Pruning of the search tree. If, for instance, we have found that a substring tga is not present
in sufficiently many sequences, then there is no need to look for any of tgaa, tgac, tgag, tgat. If,
on the other hand, the substring tgc has been found in a sufficient number of the sequences, then one
can hope that at least some of the substrings tgca, tgcc, tgeg, tget may also be present in these
sequences.

19

this method. Therefore for practical purposes depth-first search is used.

A very efficient implementation of this idea for substring patterns is the Karp-Miller-Rosenberg
(KMR) (Karp, et al., 1972) algorithm 7. The idea is extended by Sagot et al. (1995b) to find
more complicated patterns of class C containing symbols denoting groups of the basic alphabet.
Unfortunately, the efficiency of the algorithm decreases when amino acid symbols are present in
many groups. Also, if some groups are very large (containing many basic symbols) this slows
the search because extending patterns with such symbols often produce conserved patterns, and
hence large parts of the search tree have to be explored. For this reason (Sagot, et al., 1995b)
does not allow wildcard characters.

On the other hand it can be seen that dealing with wildcard characters should be quite easy.
For instance, if we have found that the fitness of the pattern tgc is high enough, then by
using wildcards the patterns can be potentially extended not only to patterns tgca, ..., tgct,
but also to patterns tgcza,...,tgczt, tgerza,. .., tgecret, tgerrza,. .., ... and each of them
should be checked for fitness. Neuwald and Green (1994) presents a method using this approach.
They apply a pruning mechanism based on a measure of statistical significance of the patterns,
avoiding to explore extensions of patterns with low significance thus speeding up the depth-first
search significantly. Also, they introduce a new, so-called block data structure and use this to
very efficiently find the set of substrings matching each pattern. Neuwald and Green allows
group characters in patterns (i.e., the alphabet II) for groups consisting of pairs of amino-acids,
hence giving patterns of class D.

In a later paper, Sagot and Viari (1996) have presented an alternative approach, which uses a
depth-first search to discover patterns containing ambiguous symbols as well as wildcards. In
principle one need not specify beforehand which groups of letters are to be used in ambiguous
pattern positions. In practice this works for nucleotide sequences, however, for protein sequences
(where there are 220 — 1 possible non-empty groups) one needs to define a priori the character
groups to be used. For each possible group one can set an upper limit on the number of
occurrences of this group in a pattern. Together with a constraint on the minimum percentage
of sequences to contain a pattern, this is used to prune the search. Also, if two patterns match
the same sequence segments, and one is a generalisation of the other, only extensions of the least
general pattern is explored further. The time-complexity of this algorithm is O(Lkg*), where g
is the maximal number of character groups containing the same letter.

Jonassen et al. (1995) describes an algorithm where the use of a depth-first search strategy
combined with the block data structure introduced in (Neuwald and Green, 1994), is pushed
even further. This algorithm is able to discover patterns having both ambiguous positions
(groups of amino acids) and flexible spacings (gaps), giving patterns in the class F. The user
defines restrictions on the kind of patterns that can be discovered, effectively defining a subclass
of F. The algorithm sets out to find all patterns in this subclass matching at least some minimum
number N,,;, of the positive sequences. The search tree is pruned so that extensions of patterns
matching less than Np,;, sequences, are not analysed. The algorithm works in two phases, and
normally during the first phase only patterns consisting of single letter positions and wildcards

"The KMR algorithm can be adapted for finding all substrings present in at least k out of the given n sequences
in time O(N log N), where N is the total length of the sequences. Note that the same task can be solved in time
O(N) by generalised suffix trees.

20

are considered. The best patterns found during the first phase are passed on to a second
phase where they are subjected to an either exhaustive or heuristic search where ambiguous
pattern symbols might be added. A fitness measure for patterns is defined, and the algorithm
is guaranteed to find the highest scoring patterns within the subclass of F that match at least
Npin of the positive examples.

In addition to using an SD-element to limit the search space (see section 3.3.2), Jonassen (1997)
also introduces branch-and-bound and heuristics to make the pruning of the search tree more
efficient. This speeds the search significantly, especially for sets of quite similar sequences.
In both (Jonassen, et al., 1995; Jonassen, 1997) an SD element is used to specialise patterns
discovered in the depth-first search.

Experiments clearly show that pruning the search space in combination with efficient data
structures substantially increases efficiency of the algorithms. Nevertheless the algorithms are
still worst-case exponential in the length of the patterns, and no nontrivial speed-up over the
straight-forward algorithms has been proved theoretically.

Note that although all the algorithms reported here are for the conservation problem, the same
algorithms can be used for the classification problem by using an appropriate fitness measure.
This has been used for instance by (Ogiwara et al., 1992).

3.2. Sequence-driven approaches

The common elements of the sequence driven approaches can be summarised as follows:

e For sequences s1,...,5; € Sy, make sets Ppy = {s1}, P,y = {s2},---, P,y = {sx}-

e Iterate: choose ¢ and j in some given way and combine the sets Ps; and Ps; into a new
set Pgiusj such that Pgiusj is a set of patterns with high fitness that matches all (or most
of the) sequences from S; U S;. In general more than two sets may be combined in one
iteration step.

e In the end we obtain a set Ps, of patterns conserved in S (or in most of S+).

For example, suppose we are given three sequences:

$1 = AWCEFGHJKLM (4)

sy = EFGOPAWRJKLS (5)
and

s3 = TAWUVOPHJKL (6)

According to the SD approach, we make three initial sets of patterns Py} = {AWCEFGHJKLM},
Pys,y = {EFGOPAWRJKLS}, and Pj,,) = {TAWUVOPHJKL}. Suppose, for instance, that the chosen
order for joining these sets is that first P, ; and Pp,,, are joined and then the result is joined
with Py,,y. Further, let the method of choosing the common patterns be such that after the
first step we get a set of two patterns Py, ,,3 = {*AW*JKLx, *EFG*JKLx} (note that both these

21

patterns match s; and so, and that both patterns are the longest in the sense that no extension
matches s; and s3). In the next step, joining Pys, 55y With Py, the algorithm may detect
that only the first pattern: *AW+JKL* is shared by the third sequence and hence will obtain
Pris) 50,83 = {*AWxJKL*}. This pattern is the fittest in the sense that it is the longest regular
pattern that matches all three sequences.

Various SD methods differ in

1. the particular pattern space and the representation of patterns (e.g., local alignments may
be used to represent the patterns),

2. the way the sets to be combined are chosen (i.e., in the methods for choosing ¢ and j in
the iteration step),

3. how the combination is done (dynamic programming, heuristics) and how the (fittest)
patterns are chosen,

4. whether one, most, or all patterns/alignments are kept.

Joining the pattern sets can be done, for example, by using dynamic programming (Needleman
and Wunsch, 1970; Smith and Waterman, 1981; Sankoff and Kruskal, 1983). Dynamic program-
ming algorithms usually guarantee finding the fittest patterns common to the given pair of sets
for a given fitness function. If negative examples are given (i.e., the classification problem),
these can be taken into account in the iteration step (e.g., the patterns present in the negative
examples may be excluded from the resulting set). The problems of pattern discovery and lo-
cal multiple sequence alignment are very closely related, and some SD algorithms store local
alignments instead of patterns during the iteration.

Note that SD algorithms that are based on combining pairs of pattern sets in each step, as in
the example above (or, indeed, any limited number of sets) usually cannot be guaranteed to find
the fittest patterns common to S, in the end, even if each iteration step is guaranteed to find
the fittest pattern common to the pair of sets that are combined in the step. (This is similar
to building multiple alignment by pairwise alignments, which also cannot guarantee finding the
optimal alignment in the end.)

The earliest SD algorithms for finding a regular pattern (class G) common to a set of strings
that we are aware of (Shinohara, 1983; Nix, 1983) were developed by the computational learning
community, and do not have a direct relation to biocomputing. These algorithms are based on
finding the longest common subsequence (LCS)® for pairs of sequences. The algorithm starts
by finding the LCS of the two shortest sequences, and in the following steps takes the current
shortest sequence and finds its LCS with the result of the previous steps. Although this algorithm
is not guaranteed to find the LCS of the set of sequences, it has been proved in (Shinohara, 1983;
Nix, 1983) that it learns the right regular pattern in the sense of inductive inference (Gold, 1967)
9 in polynomial time.

8By a subsequence of two sequences a1 . .. an, and b1 . .. bm, we mean a sequence c; . .. cx, such that there exist
11 <...<1g andj1 <...<Jk for which c1...cg = Qiy ... Qi ijl ka

9That is, if the sequences have been obtained from some given pattern by “filling-in” the wild-cards, and if the
there are “many enough” and “wide enough variety” of such sequences given to the algorithm, then the algorithm

22

P1 P2 \
/\ /\ \
/N / \ \
X_1X2X3X4 X5

Figure 4: Example of dendrogram for sequences X7, X», X3, X4, X5. Pairs X, Xo, and X3, X4 are the
most similar among themselves, and the sequence Xj5 is the most different from any of the other sequences.
The algorithm aligns X; to X3, obtaining P;, X3 to X4, obtaining P, then P, to P, obtaining Ps, and
finally, P; to X5 obtaining P;. Patterns Py, P, Ps, and P; match sequences which are below each of
them, thus P4 matches all the sequences.

3.2.1. Best pair comparison based heuristics

An algorithm for finding patterns in biosequences based on pairwise comparison is given in
Smith and Smith (1990). This approach uses the fact that pairs of sequences, as well as pairs
of sequences and patterns, and pairs of patterns, can be aligned by dynamic programming
algorithms. The algorithm also exploits the fact that the characters of the basic alphabet (i.e.,
¥p) can be organised in partially ordered hierarchical groups.

First, an estimated phylogenetic tree (so-called dendrogram) is built using the estimated relative
distances among the sequences. For instance, a possible dendrogram of sequences X1, X2, X3, X4,
X5 where pairs X, Xo, and X3, X, are the sequences most similar among themselves, but the
sequence X is the most different from any of the other, is given in figure 4. The pairs (sequence,
sequence), or in later stages (sequence, pattern) or (pattern, pattern) are aligned at each node
of the dendrogram starting bottom-up, and a common pattern is obtained from each pair via
dynamic programming.

The result of aligning two characters is the character denoting the smallest possible group in the
hierarchy containing both characters, which may already denote a group of basic characters. The
scoring is positive, but decreases with groups higher up in the hierarchy!?. Gaps are penalised
as w = wp + we * k, where wy is the gap opening penalty, w, is the gap extension penalty, and
k is the gap length. If, while aligning a pattern to a pattern, two gaps are aligned, only gap
extensions (if needed) are penalised, but not the gap opening.

Note that pairwise alignments are guaranteed to give an optimal (i.e., the most specific) pattern

correctly restores the given pattern (or a pattern equivalent to the given) in time O(I*n). Note that this in fact
means that the approximation function f that is found by the algorithm is equivalent to the characteristic function

g.
1°Tn the AACC hierarchy, a match to a basic character is scored +3, at the next levels +2 and +1, and a match
to a wildcard is scored 0.

23

/\
/\
/\
/\
\

basic sequence

Figure 5: A dendrogram where one sequence is chosen as a basic sequence and all other sequences are
aligned against it

common to the two sequences/patterns aligned, but this does not give any guarantee about
the optimality of patterns higher up in the dendrogram with respect to all given sequences. In
addition to the pattern that is common to all sequences, the algorithm also obtains patterns
common to subsets of related sequences, therefore the algorithm can be also used for classification
(in fact for unsupervised learning).

A different heuristic is developed by Roytberg (1992). One sequence is selected as the basic
sequence, and all the other sequences (so-called serial sequences) are aligned against it. This
approach corresponds to a dendrogram of the type given in figure 5. The algorithm finds
the substrings in the basic sequence that have approximate matches in all, or in a specified
percentage, of the serial sequences, additionally ensuring that the respective substrings from the
serial sequences are similar to each other'!.

3.2.2. All pair comparison heuristics

A heuristic based on finding pairwise similarities between all pairs of sequences is described by
Schuler et al.(1991). The algorithm begins by comparing all pairs of input sequences. It locates
for each pair the substrings that score high enough, thus obtaining so-called 2-blocks'?. Next,
it attempts to extend such 2-blocks to three sequences. For this, it checks all pairs of 2-blocks
having one sequence in common, and 3-blocks are extracted from those with similar enough parts
in all three sequences. Then the same idea is applied to 3-blocks to extend them to 4-blocks
and so on. Theoretically there may be exponentially many blocks to try, but in practice, if the
threshold for similarity scores has been set high enough, the number of hypothesis is manageable.
A very similar approach is also described in (Brodsky et al., 1992).

A heuristic representing pairwise alignments by so-called dot-matrices is described by Vingron
and Argos (1991). Given a pair of sequences b; ...b; and ¢ ... cp, a dot matrix A = [a;;] is a
matrix of size [X m with elements a; ; defined as follows: a; ; = 1 if b; = ¢;, otherwise a; ; = 0.

"Note that the similarities are not necessarily transitive, i.e., the fact that some substring A from the basic
sequence is similar to a substring B in a serial sequence X, and to a substring C in a serial sequence X., does
not necessarily mean that B is similar to C.

2By an n-block we mean an array of n substrings of equal length.

24

2RI QTMmmEQ=E >
[y

N oo '"UvoOoQTm
[

EFGOPAWRJIKLS 1

TAWUVOPHIJKL

Figure 6: Dot-matrices of strings (4)-(5) and (5)-(6) (0 elements are left blank in the example)

For instance, the dot matrices 4-5 and 5-6 for the sequences (4), (5), and (6) are given in figure
6.

The algorithm calculates dot matrices for all pairs of sequences and filters out similarities (non-
zero entries in the matrices) that are not consistent with the other dot matrices by using Boolean
maultiplication'3. For instance, the result of Boolean multiplication for the matrices in figure 6 is
given in figure 7. Note that the resulting matrix is different from the dot-matrix for the strings
(4)-(6) in that only substrings present in all three sequences, namely AW and JKL have 1 in the
respective positions (and not the matching character H).

In general, if sequences X1,..., X, are given, there exist n(n — 1)/2 dot matrices M; 1, M o,
eoey My, Moo, M3, ...,...,Mpy,. The matrix resulting from the Boolean multiplication
My, = My X M, shows which substrings are common to all three sequences X, X;, and
Xm. By fixing k and m, and taking all possible I’s (not equal to k or m), we can find substrings
common to all strings. It is also possible to find all substrings common to X} and X; and at
least a given number of other sequences by similar algebraic matrix manipulations. The time
complexity of the algorithm is O(I>n?). Vingron and Argos (1991) describe a heuristic based on
such matrix manipulations for finding “significant” (i.e., with relatively high fitness) substrings
common to a majority of the sequences.

More general dot matrices can also be defined using real instead of boolean values representing
the similarity scores between the positions. However, it should be noted that if a non-transitive
similarity relation is used (e.g., defined from PAM or Blosum matrices), the algorithm may
find sets of substrings some of which are not similar to each other (the algorithm guarantees
3-consistencies, but not k-consistencies for £ > 3 (Freuder, 1978)).

After the dot matrices have been filtered, a directed graph is constructed with one node for each

13 A Boolean multiplication of such matrices is defined the same way as ordinary matrix multiplication, except
that the Boolean summation is used (i.e., 0+0=0, 0+1=1, 140=1, and 1+1=1).

25

A 1 A 1

W 1 W 1

C C

E E

F F

G G

H 1 H

J 1 J 1

K 1 K 1
L 1 L 1
M M
TAWUVOPHJKL TAWUVOPHJIKL

Figure 7: The dot-matrix for strings (4)-(6) (left), and the resulting dot-matrix from Boolean multipli-
cation (4)—(5) x (5)—(6) (right)

possible local alignment of similar substrings, and edges between all nodes. Two special nodes
(source and sink) are added, the source node corresponding to all sequence starts being aligned,
and the sink node to all sequence ends being aligned. Each edge u — v in the graph is given
a weight depending on the relative positions of the substrings corresponding to nodes u and v.
Dijkstra’s algorithm (Aho, et al., 1983) is used to find the highest scoring path from the source
to the sink node. This path defines a partial global alignment of the sequences.

It should be noted that an extremely efficient algorithm for finding the longest substrings com-
mon to at least k out of n given sequences can be based on suffiz-trees (McCreight, 1976;
Ukkonen, 1992; Hui, 1992). This gives an algorithm for the substring patterns (i.e., the patterns
of class Aa), which is linear-time in the total length of the examples and independent of the
length of the patterns. However, no very efficient suffix-tree based algorithms are currently
known for finding approximately conserved substrings. A related approach use directed acyclic
word graphs (DAWGS) instead of suffix trees (Clift et al., 1986).

3.2.3. Algorithms for the classification problem

SD algorithms can also be used in the case when both positive and negative sequences are given
(i.e., for the classification problem). This has been done by Kudo et al. (1992). The approach
is primarily designed for finding patterns at gene splice-site 5’ end, and since all such sites have
a fixed position of 100% conserved GT, the sequences can be pre-aligned by aligning GT. The
target language in (Kudo et al., 1992) is a union of subwords, either with wildcards (i.e., Bc and
without), or in the more general case containing arbitrary combinations of basic characters
(i.e., Cc and without *). The algorithm finds the least general set of patterns that covers all
the positive examples, and does not contain any negative examples in iterative steps. Each step
of the iteration introduces wildcard characters in order to unify some positive examples, but
so that none of the negative examples is matched. More precisely, it attempts to unify by the

26

introduction of wildcards in non-matching positions, first pairs of positive examples, then triples
from sequences contained in the successful pairs, then quadruples from successful triples, etc,
until such unification is no longer possible without the inclusion of negative examples.

The problem of finding patterns from positive and negative examples has also recently been
studied by Tateishi and co-workers (Tateishi and Miyano, 1995; Tateishi, et al., 1995). They
use a somewhat different definition of the classification problem. The positive and negative
examples are provided in pairs (posi,neg), (posa,negs), - .., (pos,,neg,), and the aim is to find
a classification function able to distinguish between pos; and neg; for each 7, but not necessarily
between pos; and neg; for ¢ # j. They show that the problem of finding a pattern maximising
correctly classified pairs is still NP-hard. A greedy algorithm for approximating the solution
for a simple pattern class C from pre-aligned sequences having the same length is given. Some
heuristics for more complicated patterns are also proposed.

3.3. Combined approaches

The most obvious way to combine PD and SD approaches is to use SD for refining (expanding
or combining) the patterns found by PD search. It is also possible to limit the search space prior
to the search by using SD elements.

3.3.1. Using SD approach for refining PD found patterns

SD approach for refining PD found patterns can be used in a number of ways. The first way is
to

e use a PD approach for spotting some candidate patterns,
e mark the position of the candidate patterns in the sequences,
e align the sequences so that the positions of candidate patterns are aligned together,

e finally extend the candidate pattern while the fitness of the emerging pattern is increasing.

This method is used in (Smith, et al., 1990; Jonassen, et al., 1995; Jonassen, 1997). A modifica-
tion of this approach is used by Landraud, et al.(1989). In this algorithm first of all a variation
of KMR is used to find all substrings present in at least k out of the given n substrings. In the
next step, the substring having “the best” approximate similarities, in some precisely defined
sense, in the remaining n — k sequences, is picked out from the substrings found in the first
step. The strings are aligned so that the respective substrings are aligned together in all the
sequences. After that, the second step is repeated separately for the parts of the sequences that
are to the left and to the right of the substrings used in the previous stage. This is repeated
while possible, i.e., a divide-and-conquer strategy is used. A similar method has been used by
Martinez (1988).

Another explicit way of combining PD and SD approaches is described by Ogiwara et al. (1992).
The basic idea is to use a PD approach to find relatively short candidate substrings, to transform

27

the original sequences into different data structures consisting of these substrings joined by
“gaps”, and finally to align the data structures obtained and to extract the common patterns.
Let us consider this approach in some more detail.

The algorithm is for the classification problem, i.e., it uses both positive and negative examples.
All words of the given length are enumerated in a PD manner and a count is taken of in how
many positive examples and how many negative examples each is present. In practice tetra-,
penta-, and hexapeptide patterns (i.e., substrings of length 4 to 6) are counted. Only those
strings that are present in at least f percent of positive examples, and in none of the negative
examples are retained; in practice two cases: f = 100% and f = 70% are considered.

Next the positions of these words and their nearest neighbours are marked in the positive
examples. In this case “nearest neighbour” means having no more than one difference (insertion,
deletion or substitution). Thus the examples are transformed to new structures of the type:
P1,j 91,5 P2,j 92,5 - - - Pn,j, Where p; ; are the frequent substrings, and g; ; are integers equal to the
distance between the starting positions of i-th and 7 4+ 1-th substrings in the j-th example. In
the second stage the transformed examples are aligned by using heuristics of pairwise alignment.
The output comprises consensus patterns of the type p; —z(mini, mazx1) —ps — x(ming, mazxs) —
...—Dn, where p; are subwords, and z(min;, maz;) specifies the minimal and maximal distances
(spacers) between the subwords.

Anoter way of refining patterns found by the PD approach is by grouping similar patterns to-
gether, aligning them, and trying to generalise from them. For instance, if substrings...aacaa...
and ...aagaa... are found to be frequently occurring in sequences, then a common pattern
aa[cglaa can be obtained from them. This kind of refinement is used in (Neuwald and Green,
1994; Saqi and Sternberg, 1994)

After having combined patterns, Neuwald and Green (1994) additionally calculate an initial
profile from the (ungapped) alignment defined by the substrings matching a combined pattern
(the simplest form of a profile is a position dependent scoring matrix, giving one score to each
amino acid for each position in a segment to match the profile). The profile is iteratively
refined by realigning the sequences to the profile, throwing away non-significant matches, and
recalculating the profile.

In (Henikoff and Henikoff, 1991), a combined PD and SD algorithm is developed for finding
frequent blocks in protein databases. The first stage simply uses the algorithm of (Smith, et al.,
1990), thus finding patterns and the respective blocks in a PD manner, and then extends them
(see the beginning of this subsection). The positions of the patterns are marked on the initial
examples. Next the “best” set of patterns that occur in the same order without overlapping in a
critical number of sequences is found. Such an ordering is called a path. A graph is constructed
where nodes represent patterns, and an arc extends from node b; to by if pattern b; precedes
pattern by and does not overlap in at least the critical number of sequences. The graph is
searched for the best path according to a defined scoring scheme. Note that this step is similar
to the last step of Vingron and Argos’ algorithm (Vingron and Argos, 1991).

28

3.3.2. Methods for limiting the search space prior to the search

A simple heuristic for limiting the search space can be based on an assumption that the patterns
that are present approximately (within some distance) in many sequences are likely to be present
in an exact form in at least some. This is not strictly true because the most fit pattern may be
a kind of average, e.g., Steiner’s sequence'*, itself not present in a single sequence. However if a
sufficient number of sequences are given, it may be likely that at least one of the sequences will
match the pattern exactly. Therefore a heuristic can be based on the enumeration of only those
substrings that are present in at least one sequence. This reduces the search space drastically,
since there are only O(N?) substrings for a set of strings with total length N. If the length of
the substrings is bounded by [, then there are only O(IN) patterns to be considered, instead of
O(|2]"). This approach has been used by Saqi and Sternberg (1994), where a statistical signif-
icance measure has also been used for sorting out the interesting patterns. Additionally, after
finding the most frequent substrings (Saqi and Sternberg, 1994) cluster the most similar ones,
and generalise them to find more complicated patterns from their alignments, thus introducing
the second SD element in their algorithm. The time complexity of this algorithm is O(L? + t)
where t is the time needed for clustering the similar substrings.

The described heuristic can be taken even further by using a random subset of the training set
instead of the entire training set. If the number of sequences in the subset is large enough, then it
is statistically likely that any substring that occurs approximately in sufficiently many sequences
in the training set will occur in an exact form more than a certain number of times in the random
subset!'®. Therefore it is sufficient to enumerate only those substrings that are present in many
enough copies. Moreover, the strings in the subset can be represented as a generalised suffix
tree (Hui, 1992), and then the potential candidates for the pattern can be selected in linear time
(Wang et al., 1994). Thus the algorithm becomes linear-time in the length of the sequences and
the patterns.

A different way of limiting the search space is proposed by Jonassen (1997). Here a pattern
graph is defined. A path in this graph corresponds to a set of patterns, and a depth-first search
strategy is used to search for the paths corresponding to patterns matching at least Ny, of
the positive examples with the highest fitness. It is possible to derive a pattern graph from an
existing multiple sequence alignment, for instance an alignment of a subset of the sequences in
Sy, so that only patterns consistent with the alignment are considered. This gives a smaller
search space, and can be considered as an SD-element.

3.4 Learning unions of patterns and decision trees

So far we have only considered algorithms for discovering string functions defined by one pattern
from a subclass of generalised regular patterns (i.e., functions of type a and b). However, several
algorithms have been reported that are able to discover more complex string functions based on
unions of regular patterns or decision-trees over regular patterns, i.e., functions of type ¢ and d.

4By Steiner’s sequence for the set sequences Ai,..., A, we understand a sequence B minimising
Zle distance(A;, B). Note that B may not be any from Ay, ..., Ag.
15The necessarily size of the subset can be estimated by using random sampling theory.

29

Algorithms for discovering these classes of functions have been reported in (Arikawa et al., 1993;
1992; Arimura et al., 1994; Shoudai et al., 1995), where the authors prove that the classes of these
concepts can be learned from examples in polynomial time in the sense of inductive inference
or PAC-learning. Unfortunately, the order of the polynomials is too high and therefore various
heuristics have to be used in practical applications.

Arikawa et al. (Arikawa et al., 1993; 1992) consider learning from both positive and negative
examples, i.e., the classification problem. In (Arikawa et al., 1993) the method for learning
decision trees first introduced by Quinlan (Quinlan, 1986) is used. In (Arikawa et al., 1992) an
algorithm for learning so-called elementary formal systems has been developed. In practice only
a special case of elementary formal systems is used, which in fact is the union of a bounded
number of regular patterns. Aditionally a study is also made in (Arikawa et al., 1993) of how
the indexing of the basic alphabet can be performed automatically so that the classification of
the positive and negative examples remains correct. The problem is proved to be NP-hard, and
a heuristic for its approximation is given. Such an automated indexing allows to reduce the
search space by reducing the alphabet.

In (Arimura et al., 1994) a method for learning the union of an a priori bounded number of
regular patterns from positive examples is developed. The algorithm finds the most specific
union of pattern languages containing all positive examples. Note that in this approach the fact
that the number of patterns in a union is bounded by some a priori given constant is essential,
as otherwise the algorithm would simply return the union of all sequences in the training set.
This sets an a priori limit on the number of subfamilies that can be discovered in the sequences.
In the noisy data case this also means an assumption about the level of noise. Shoudai et. al.
(Shoudai et al., 1995) has similar limitations.

An algorithm for grouping the sequences and filtering out noise without an a priori assumption
on the level of noise and the size of the groups has been developed by Wu and Brutlag (1995).
On the other hand, this algorithm requires the sequences to be pre-aligned. The algorithm uses
so-called beam-search method for splitting the training set into subfamilies in alternative ways
and generating the candidate pattern.

An algorithm for discovering unions of an unbounded number of patterns and without any
assumption on the level of noise from non-pre-aligned sequences is developed in (Brazma et al.,
1996b). The patterns are of the PROSITE type (i.e., class F). The algorithm uses a fitness
measure based on the MDL principle (see section 2.3) to balance between how well a set of
patterns covers the given examples, and how compact it is. The algorithm is based on the
pattern discovery algorithm Pratt (Jonassen, 1997) and on a greedy set covering algorithm. The
greedy algorithm guarantees finding the union of patterns within a logarithmic multiplier to
the optimum. Experiments are reported showing that the algorithm correctly splits a family of
biosequences into subfamilies discovering a strong pattern within each of the family, and thus
effectively performs unsupervised learning (see section 2). For instance, the algorithm finds
three subfamilies sharing common patterns in chromo domain family.

30

4. Conclusions

The aim of this work has been to give a survey of methods for the automatic discovery of patterns
in biological sequences and to establish some systematisation of this area. For this reason we
have designed a framework, which contains formalisations of the problems of pattern discovery
and evaluation, and also classifications of pattern languages and algorithmic approaches. We
have looked at algorithms for the discovery of deterministic patterns with expressive power
inside the regular languages, chosing to describe some that we consider to be representative of
the complete set. We have identified the main algorithmic ideas of each of these methods and
shown how these ideas relate to each other. For practical purposes it would be valuable for each
of the algorithms to define precisely what kinds of patterns it can “see” and to compare the
existing algorithms on the basis of this criteria. We think that this survey is a step towards this
goal.

While dealing with these problems we have noticed that different authors employ very different
computational experiments to test their algorithms and to convince the reader of the usefulness
or superiority of their algorithms. The number and lengths of the sequences used, the types
of sequence families and the ways in which the results are presented vary greatly, although
the algorithms are frequently intended to solve the same problem. We believe that it would be
beneficial for the field if an attempt were to be made to establish some systematisation regarding
which experiments could be used for testing the algorithms.

Although this survey shows that many nontrivial and efficient pattern discovery algorithms
have been developed recently, biologists need considerably more powerful algorithms for efficient
knowledge discovery in view of the growing volume of biosequence data. Algorithms are required
which are able to discover more complicated or subtle patterns in larger training sets containing
unknown levels of noise. We hope that this survey will help to move the field forward towards
these aims.

Acknowledgements

The authors wish to thank Richard Lathrop, Darrel Conklin, Rein Aasland, and anonymous
referees for helpful comments. Alvis Brazma has been supported by the Finnish Centre for
International Mobility (CIMO), the Latvian Council of Sciences (Grant Number 93.593), the
Royal Society, and the Human Capital and Mobility programme of the European Union. Inge
Jonassen and Ingvar Eidhammer have been supported by grants from the Norwegian Research
Council. David Gilbert was supported by a grant from the British Council.

31

Appendix A: Algorithms and software

Key

Algorithms

Pattern Pattern type (see section 2.2.4)

Pre Prealigned [Y/N]

G Guaranteed [Y/N] (see section 2.4)

+/- Uses positive and/or negative example training sets
Domain DNA /protein/Not Applicable

Software

Name Name of the software

Src/Ex Source or executable

Platform Runs on what platform

Obtain Obtain from: a/ftp=anonymous ftp; A=authors;

n/a=not available; WWW=program can be run on the
World-Wide-Web

32

Authors Algorithms Software
Pattern Pre G +/- Domain | Name Src/Ex Platform Obtain
(Nix, 1983) Ga N N + N/A
(Shinohara, 1983) Ga N Y + N/A
(Waterman, et al., 1984) | Ab N Yt o+ protein,
DNA
(Martinez, 1988) Gb N N + protein, | GENALIGN
DNA
(Landraud, et al. 1989) Gb N N + protein,
DNA
(Staden, 1989b) Ab N Y + DNA Src Vax n/a
(Fortran) VMS
(Smith and Smith, 1990) | Fa N N + protein
(Smith, et al., 1990) Ba N Y + protein MOTIF Src IBMPC WWW*
(Turbo-
)
(Vingron and Argos, | Ga [FIL- N N + protein unkown A
1991) LOG/SUMJ;
Gb [FIL-
MAXAV]
(Kudo et al., 1992) Ba,Ca Y Y +/- DNA
(Ogiwara et al., 1992) Ga N Y/N +/- protein
(Roytberg, 1992) Ab N N + protein, MuSCo IBMPC, n/a
DNA IBM/370 avail
(Arikawa et al., 1993) Gd N N +/- protein
(Neuwald and Green, | Da N N + protein ASSET Src SPARC2 a/ftp
1994)
(Sagi and Sternberg, | Ca N N + protein
1994)
(Wang et al., 1994) Gb N N + protein DISC- Ex DOS, A
OVER, DEC Ul-
CLASSIFY tra,
SunSPARC
(Jonassen, et al., 1995) Fa N Y/N + protein Pratt Src (C) dec- a/ftp
alpha,
sparcl0
(Jonassen, 1997) Fa N N + protein Pratt2 Src (C) UNIX, a/ftp,
Linux, WWW**
0S/2
(Brazma et al., 1996b) Fc N N + protein MDLPratt Src UNIX, a/ftp
(Perl/C) Linux
(Sagot, et al., 1995b) Ca N Y + protein
(Sagot, et al., 1995a) Ab N Y + protein
(Sagot and Viari, 1996) Da N Y + protein,
DNA
(Shoudai et al., 1995) Fc, Fd N N +/- protein BONSAI n/a
(Suyama, et al., 1995) Ea N Y + protein GAPE Src Sun A
(Fortran)
(Wu and Brutlag, 1995) | Ca Y N + protein SEQCLASSx, Com- Sun n/a
mon Lisp SPARC
(Wolferstetter et al., | Ab N Y + DNA CoreSearch Src (C) UNIX a/ftp,
1996) WWW*

33

Notes:

+ Waterman et al.(1984) use a sliding window, and patterns are not only required to match
a minimum number of sequences, but the matches are also required to be within this sliding
window.

* URL: http://www.blocks.thcre.org/blockmkr /make_blocks.html

#* URL: http://www.ii.uib.no/inge/Pratt.html

* x + URL: http://www.gsf.de/biodv/consinspector.html

Appendix B: Input sequences (positive examples) of patterns dis-
covered by some of the reported algorithms

Note: We base our notation on that of PROSITE, augmented with some additional symbols.
1. (Staden, 1989b)

Examples: 88 E.coli promoter sequences, varying in length from 47 to 64, having a total length
of 5238 characters.
The patterns found most frequently to be approximately present in the sequences are:

t-t-t-t-t-t
t-t-a-t-a-a
t-t-g-a-c-a
t-c-t-t-g-a
t-a-t-a-a-t
a-c-t-t-t-a
a-a-a-a-a-a
a-g-t-a-t-a

2. (Smith and Smith, 1990)

Examples: 128 sequences of length between 141 and 147 from hemoglobin delta epsilon gamma
beta major-chain sequences.
Pattern:

I-1-x(2)-a-x(3)-b-x(2)-c-x(5)-G-x-I-x-a-x-I-c-c-a-a-c-P-W-I-I-R-b- F-x(2)-F-G-x-c-x-I-x(3)-a-x(2)-I-x(2)-
a-x(3)-G-x-i-a-x(3)-c-x(3)-c- x-lI-c-I-x-a-x(3)-c-x(2)-L-S-1-x-H-x(3)-c-x(2)-1-x(2)-I-F-I-x-c-G- x(2)-c-a-
x(2)-c-x(7)-F-x(4)-1-x(2)-c-1-i-c-x(3)-a-x(2)-p-L-x(3)-Y

Examples: 12 sequences from Trypsinogen/Venom serine proteases.
Pattern:

I-1--h-x-a-2-G- G-x(2)-C-x(2)-1-x(2)-P-b-x(3)-c-x(4)-i-x(0,1)-F-C- G-x-k-L-1-x(3)-W-V-a-k-A-p-H-C-x-

I-x(2)-c-1-a-i-L-G-I-x(6)-1-x(2)- E-x-c-x(6)-c-x(2)-P-I-x--x(3)-c-I-1-x(0,1)-T-I-c-L-I-i-L-x(4)-I-x- I-a-x(2)-
a-x-L-P-1-x(5)-G-I-x(3)-a-x-G-W-G-x(3)-I-g-x(5)-1-x(2)-1-C- x-I-x(2)-a-c-x-I-x(2)-C-1-x(2)-Y-x-G-x(0,1)-
a-x(2)-l-x-c-C-x-G-c-¢c- I-G-G-x-D-k-C-x-G-D-S5-G-G-P-a-a-x-I-G-x-c-Q-G-a-a-S-W-G-x(2,3)-C-A- x(4)-

34

P-p-c-x(2)-|-V-c-I-b-a-x-W-l-I-|-x-a-A

The lower case letters denote classes from the AACC hierarchy as follows: a=[ILV], b=[FWY],
c=[ILVFWYCM], h=[DE], i=[HKR], j=[NQ], k=[ST], I=[DEHKRNQSTBZ], p=[AG].

3. (Smith, et al., 1990)

Examples: 15 sequences from DNA integrases.
Pattern:

x(15)-H-x-L-R-H-x(2)-A-x(6)-G-x(6)-Q-x(2)-L-G-H-x(2)-I-x(2)-T-x(2)-Y-x(5)
4. (Kudo et al., 1992)

Positive examples: 496 pre-aligned DNA segments of length 9 from around the 5 splice site
(three in the exon and six in the intron).

Negative examples: 1123 DNA segments of length 9 (all containing gt in position 4-5).

Some of the best patterns discovered are (in class B):

<x-a-g-g-t-a-a-x-x>
<a-a-g-g-t-x-a-g-x>
<C-x-X-g-t-a-a-g-x>

and (in class C)

<x-[agc]-[agc]-g-t-a-a-g-x>
<[agc]-x-[agc]-g-t-a-a-g-x>
<x-[agc]-x-g-t-a-a-g-[tgc]>

5. (Ogiwara et al., 1992)

Examples: sequences from cytochrome b5 family
A partially conserved pattern found:

H-P-G-G-E-E-V-L

Examples: sequences from a family of L-lactate dehydrogenase
A partially conserved pattern found:

P-V-D-[IV]-L-x(47)-G-[EQ]-H-G-D

Examples: sequences in a family of glyceraldehyde-3-phosphate dehydrogenases
A completely conserved pattern found:

G-F-G-R-1(0,1)-G-R-x(129,134)-S-N-A-S-C-T-T-N-[CS]-L-A-P- x(14)-[LM]-M-T-T-V-H-x(30,31)-T-
G-A-A-[KR]-A-[VT]-x(92,95)- [SA]-W-Y-D-N-E

6. (Saqi and Sternberg, 1994)

35

Examples: a set of heat shock proteins
Some of the patterns found:

x-G-G-G-T-F-D-[ILV]-[ST]-[ILV]
x-[ILV]-[FWY]-D-L-G-G-G-T-F-D-[ILV]
D-[LF]-G-G-G-T-F-D

Examples: a set of toxin proteins
Some of the patterns found:

x(2)-C-C-x(4)-C-x
D-R-C-C-x(2)-H-D-x-C

7. (Neuwald and Green, 1994)

Examples: a set of 56 sequences of acyltransferases with an average length of 471.
Some of the patterns found:

V-x-P-x(2)-[RQ]-x(4)-G-x(2)-L-[LM]
N-x(2)-A-x(3)-Y-x(3)-G-F

8. (Wang et al., 1994)

Examples: 47 sequences of length 190-780 in a group of cyclic proteins
Some of the patterns found:

L-Q-L
I-A-S-K-Y-E-E
D-T-A-G-Q-E-*-L-V-G-N-K

9. (Sagot, et al., 1995a)

Examples: 80 proteins belonging to the elongation family
46 patterns found

10. (Shoudai et al., 1995)

Examples: 3796 signal peptides indexed to the three-letter alphabet ¥;y4r, of maximum length
32.
Classified in three groups of sizes 2205, 640, and 603, by patterns:

2-%.0*_(-0-*.1-%.0-2
1-0-*-0-*-0-*.2-1-*-0
2-2-2-%.1.2-%.1-2

where 0,1,2 stands for different amino acid groups in different patterns (see (Shoudai et al.,
1995) for details).

11. (Jonassen, et al., 1995)

Examples: 241 protein sequences from the zinc finger c2h2 family, average length 393

36

Pattern:
C-x(2,4)-C-x(3)-[ILVFYC]-x(8)-H-x(3,5)-H

Examples: 164 protein sequences from the snake toxin family, average length 64
Pattern:

G-C-x(1,3)-C-P-x(8,10)-C-C-x(2)-[EPDN]

Examples: 27 protein sequences containing PHD finger, average length 874
Pattern:

C-x(2,4)-C-[YCEPGSDNQR]-x-[VMFWHTAPGSN]-x-H-x(2)-C-[ILVMFYHTCAJ-x(11)- [YWCEPGSDNQJ-
x(2)-[IFHCAPGSDN]

12. (Brazma et al., 1996b)

Examples: 31 chromo domain sequence segments

Union of patterns:
E-x(0,1)-E-E-[FY]-x-V-E-K-[IV]-[IL]-D-[KR]-R-x(3,4)-G-x-V-x-Y-x-L-K-W-K-G-[FY]-x-[ED]-x-[HED]-
N-T-W-E-P-x(2)-N-x-[ED]-C-x-[ED]-L-[IL] U
L-x(2,3)-E-[KR]-I-[IL]-G-A-[TS]-D-[TSN]-x-G-[EDR]-L-x-F-L-x(2)-[FW]- [KE]-x(2)-D-x-A-[ED]-x-V-
x-[AS]-x(2)-A-x(2)-K-x-P-x(2)-[IV]--x-F-Y-E U

Y-x(0,2)-L-[IV]-K-W-x(6)-[HE]-x-[TS]-W-E-x(4)-[IL]

References

Aho, A. V.; Hopcroft, J. E.; and Ullman, J. D. 1983. Data Structures and Algorithms. Addison-
Wesley.

Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; and Lipman, D. J. 1990. Basic local
alignment search tool. J. Mol. Biol. 215:403-410.

Arikawa, S.; Kuhara, S.; Miyano, S.; Shinohara, A.; and Shinohara, T. 1992. A learning algo-
rithm for elementary formal systems and its experiments on identification of transmembrane
domains. In Proc. 25th Hawaii Int. Conf. on System Sci., 675—684.

Arikawa, S.; Miyano, S.; Shinohara, A.; Kuhara, S.; Mukouchi, Y.; and Shinohara, T. 1993.
A machine discovery from amino acid sequences by decision trees over regular patterns. New
Generation Computing 11:361-375.

Arimura, H.; Fujino, R.; Shinohara, T.; and Arikawa, S. 1994. Protein motif discovery from
positive examples by minimal multiple generalization over regular patterns. In Proc. of the 5th
Genome Informatics Workshop, 39-48.

Bailey, T. L., and Elkan, C. 1995. The value of prior knowledge in discovering motifs with
MEME. In Proceedings of the Third International Conference on Intelligent Systems for Molec-
ular Biology, 21-29. AAAI Press.

Bailey, T. L. 1995. Discovering motifs in DNA and protein sequences: the approzimate common
substring problem. Ph.D. Dissertation, University of California, San Diego, USA.

37

Bairoch, A. 1992. PROSITE: a dictionary of sites and patterns in proteins. Nucl. Acids Res.
20:2013-2018.

Baldi, P.; Chauvin, Y.; Hunkapiller, T.; and McClure, M. M. 1994. Hidden Markov Models of
Biological Primary Sequence Information. Proc. Natl. Acad. Sci USA 91:1059-1063.

Brazma, A.; Ukkonen, E.; and Vilo, J. 1996a. Discovering unbounded unions of regular pattern
languages from positive examples. In Proceedings of 7th Annual International Symposium on
Algorithms and Computation (ISAAC-96), Lecture Notes in Computer Science 1178, 95-104.

Brazma, A.; Jonassen, I.; Ukkonen, E.; and Vilo, J. 1996b. Discovering patterns and subfam-
ilies in biosequences. In Proc. of Fourth International Conference on Intelligent Systems for
Molecular Biology, 34-43. AAAIT Press.

Brodsky, L. I.; Vassilyev, A. V.; Kalaydzidis, Y. L.; Osipov, Y. S.; Tatuzov, R. L.; and Fer-
anchuk, S. I. 1992. Genebee: the program package for biopolymer structure analysis. In
Gindikin, S., ed., Mathematical methods of analysis of biopolymer sequences, DIMACS series
in discrete mathematics and theoretical computer science, volume 8. American Mathematical
Society.

Bucher, P., and Bairoch, A. 1994. A generalized profile syntax for biomolecular sequence
motifs and its function in automatic sequence interpretation. In Proc. of Second International
Conference on Intelligent Systems for Molecular Biology, 53—61.

Chan, S. C.; Wong, A. K. C.; and Chiu, D. K. Y. 1992. A survey of multiple sequence
comparison methods. Bull. Math. Biol. 54(4):563-598.

Clift, B.; Haussler, D.; McConnell, R.; Schneider, T. D.; and Stormo, G. D. 1986. Sequence
landscapes. Nucl. Acids Res. 14(1):141-158.

Dayhoff, M. O. 1978. Atlas of Protein Sequence and Structure, volume 5. National Biomedical
Research Foundation.

Freuder, E. C. 1978. Synthesizing constraint expressions. Comm. ACM 21(11):958-966.

Garey, M. R., and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory
of NP-Completeness. New York, NY: W. H. Freeman.

Gold, E. M. 1967. Language identification in the limit. Information and Control 10:447-474.

Gribskov, M.; McLachlan, M.; and Eisenberg, D. 1987. Profile analysis: detection of distantly
related proteins. Proc. Natl. Acad. Sci. U.S.A 84:4355-4358.

Henikoff, S., and Henikoff, J. G. 1991. Automated assembly of protein blocks for database
searching. Nucl. Acids Res. 19(23):6565-6572.

Henikoff, S., and Henikoff, J. G. 1992. Amino acid substitution matrices from protein blocks.
Proc. Natl. Acad. Sci. USA 89:100915-100919.

Hui, L. C. K. 1992. Color set size problem with application to string matching. In A.Apostolico,
M. Chrochemore, Z., and U.Manber., eds., Proc. of Combinatorial Pattern Matching, 230-243.
Springer-Verlag.

Hutchinson, A. 1994. Algorithmic Learning. Clarendon Press.

Jonassen, 1.; Collins, J. F.; and Higgins, D. G. 1995. Finding flexible patterns in unaligned
protein sequences. Protein Sci. 4(8):1587-1595.

38

Jonassen, I.; Helgesen, C.; and Higgins, D. G. 1996. Scoring function for pattern discovery pro-
grams taking into account sequence diversity. Reports in Informatics 116, Dept. of Informatics,
University of Bergen.

Jonassen, 1. 1997. Efficient discovery of conserved patterns using a pattern graph. Comput.
Applic. Biosci. in the press.

Karlind, S., and Ghandour, G. 1985. The use of multiple alphabets in kappa-gene immunoglob-
ulin DNA sequence comparison. The EMBO Journal 4:1217-1223.

Karp, R. M.; Miller, R. E.; and Rosenberg, A. .. 1972. Rapid identification of repeated patterns
in strings, trees and arrays. In 4th ACM Symposium on Theory of Computing, 125-136.

Kristensen, T.; Lopez, R. S.; and Prydz, H. 1992. An estimate of the sequencing error frequency
in the DNA sequence databases. DNA Seq. 2:343-346.

Krogh, A.; Brown, M.; Mian, I. S.; Sjoelander, K.; and Haussler, D. 1994. Hidden Markov
model in computational biology. Applications to protein modelling. J. Mol. Biol. 235:1501—
1531.

Kudo, M.; Kitamura-Abe, S.; Shimbo, M.; and Iida, Y. 1992. Analysis of context of 5'-splice
site sequences in mammalian mRNA precursors by subclass method. Comput. Applic. Biosci.
8(4):367-376.

Landraud, A. M.; Avril, J.-F.; and Chretienne, P. 1989. An algorithm for finding a common
structure shared by a family of strings. IEEE Transactions on Pattern Analysis and Machine
Intelligence 11(8):890-895.

Lathrop, R.; Webster, T.; Smith, R.; Winston, P.; and Smith, T. 1993. Integrating Al with
sequence analysis. In Hunter, L., ed., Artificial Intelligence and Molecular Biology. AAAI
Press/The MIT Press. 211-258.

Lawrence, C. E., and Reilly, A. A. 1990. An expectation maximization (EM) algorithm for
the identification and characterization of common sites in unaligned biopolymer sequences.
Proteins: Struct. Funct. Genet. T:41-51.

Lawrence, C. E.; Altschul, S. F.; Boguski, M. S.; Liu, J. S.; Neuwald, A. F.; and Wootton, J. C.
1993. Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment.
Science 262:208-214.

Levenshtein, V. I. 1966. Binary codes capable of correcting deletion, insertions, and reversals.
Cybernetics and Control Theory 10:707-710.

Li, M., and Vitanyi, P. 1993. An Introduction to Kolmogorov Complezity and its Applications.
New York: Springer-Verlag.

Lipman, D. J., and Pearson, W. R. 1985. Rapid and sensitive protein similarity searches.
Science 227:1435-1441.

Martinez, H. M. 1988. A flexible multiple sequence alignment program. Nucl. Acids Res.
16(5):1683-1691.

McCreight, E. M. 1976. A space—economical suffix tree construction algorithm. J. ACM
23:262-272.

39

Needleman, S., and Wunsch, C. 1970. A general method applicable to the search for similarities
in the amino acid sequence of two proteins. J. Mol. Biol. 48:443-454.

Neuwald, A. F., and Green, P. 1994. Detecting patterns in protein sequences. J. Mol. Biol.
239:689-712.

Nix, R. P. 1983. Editing by Example. Ph.D. Dissertation, Yale University, Xerox Palo Alto
Research Center, California, USA.

Ogiwara, A.; Uchiyama, I.; Seto, Y.; and Kanehisa, M. 1992. Construction of a dictionary of
sequence motifs that characterize groups of related proteins. Protein Engng. 5(6):479-488.

Posfai, J.; Bhagwat, A. S.; Posfai, G.; and Roberts, R. J. 1989. Prediction motifs derived from
cytosine methyltransferases. Nucl. Acids Res. 17(7):2421-2435.

Queen, C.; Wegman, M. N_; and Korn, L. J. 1982. Improvements to a program for DNA
analysis: a procedure to find homologies among many sequences. Nucl. Acids Res. 10:449-456.

Quinlan, J. R. 1986. Induction of decision trees. Machine Learning 1:81-106.

Rissanen, J. 1978. Modeling by the shortest data description. Automatica-J.IFAC 14:465-471.
Roytberg, M. A. 1992. A search for common patterns in many sequences. Comput. Applic.
Biosci. 8(1):57-64.

Sagot, M. F., and Viari, A. 1996. A double combinatorial approach to discovering patterns in
biological sequences. In Hirschberg, D., and Myers, G., eds., Combinatorial Pattern Matching,
186-208. Springer-Verlag.

Sagot, M.-F.; Viari, A.; and Soldano, H. 1995a. A distance-based block searching algorithm. In
et al, C. R., ed., Proc. of Third International Conference on Intelligent Systems for Molecular
Biology, 322-331. Menlo Park, California: AAAI Press.

Sagot, M.-F.; Viari, A.; and Soldano, H. 1995b. Multiple sequence comparison: a peptide
matching approach. In Galil, Z., and Ukkonen, E., eds., Proc. of 6th Annual Symposium on
Combinatorial Pattern Matching, 366—-385. Springer-verlag.

Sankoff, D., and Kruskal, J. B. 1983. Time Warps: String Edits, and Macromolecules: the
Theory and Practice of Sequence Comparison. Addison-Wesley.

Saqi, M. A. S., and Sternberg, M. J. E. 1994. Identification of sequence motifs from a set of
proteins with related function. Protein Engng. 7(2):165-171.

Schuler, G. D.; Altschul, S. F.; and Lipman, D. J. 1991. A workbench for multiple alignment
construction and analysis. Proteins: Struct. Funct. Genet. 9:180-190.

Sewell, R. F., and Durbin, R. 1995. Method for calculation of probability of matching a
bounded regular expression in a random data string. J. Comp. Biol. 2:25-31.

Shinohara, T., and Arikawa, S. 1995. Pattern inference. In Jantke, K. P., and Lange, S.,
eds., Algorithmic learning for knowledge-based systems, GOSLER final report. Springer-Verlag.
259-291.

Shinohara, T. 1983. Polynomial time inference of extended regular pattern languages. Lecture
Notes in Computer Science 147:115-127.

Smith, R. F., and Smith, T. F. 1990. Automatic generation of primary sequence patterns from
sets of related protein sequences. In Proc. Natl. Acad. Sci. USA, 118-122.

40

Smith, T., and Waterman, M. 1981. Identification of common molecular subsequences. J. Mol.
Biol. 147:195-197.

Smith, H. O.; Annau, T. M.; and Chandrasegaran, S. 1990. Finding sequence motifs in groups
of functionally related proteins. In Proc. Natl. Acad. Sci. USA, volume 87, 826—830.

Staden, R. 1989a. Methods for calculating the probabilities of finding patterns in sequences.
Comput. Applic. Biosci. 5:89-96.

Staden, R. 1989b. Methods for discovering novel motifs in nucleic acid sequences. Comput.
Applic. Biosci. 5(4):293-298.

Suyama, M.; Nishioka, T.; and Oda, J. 1995. Searching for common sequence patterns among
distantly related proteins. Protein Engng. 8(11):1075-1080.

Shoudai, T.; Lappe, M.; Miyano, S.; Shinohara, A.; Okazaki, T.; Arikava, S.; Uchida, T.;
Shimozono, S.; Shinohara, T.; and Kuhara, S. 1995. BONSAI Garden: parallel knowledge
discovery system for amino acid sequences. In et al, C. R., ed., Proc. of Third International

Conference on Intelligent Systems for Molecular Biology, 359-366. Melno Park, California:
AAAT Press.

Tateishi, E., and Miyano, S. 1995. A greedy strategy for finding motifs from positive and
negative examples. Technical Report RIFIS-TR-CS-118, Research Institute of Fundamental
Information Science, Kyushu University, Japan.

Tateishi, E.; Maruyama, O.; and Miyano, S. 1995. Extracting best consensus motifs from
positive and negative examples. Technical Report RIFIS-TR-CS-115, Research Institute of
Fundamental Information Science, Kyushu University, Japan.

Taylor, W. R. 1986. The classification of amino-acid conservation. J. Theoret. Biol. 119(2):205-
218.

Ukkonen, E. 1992. Constructing suffix trees on-line in linear time. Information Processing

1:484-492.
Valiant, G. L. 1984. A Theory of the Learnable. Comm. ACM 27(11):1134-1142.

Vingron, M., and Argos, P. 1991. Motif recognition and alignment for many sequences by
comparison of dot—-matrices. J. Mol. Biol. 218:33-43.

Wang, L., and Jiang, T. 1994. One the complexity of multiple sequence alignment. J. Comp.
Biol. 1(4):337-348.

Wang, J. T. L.; Marr, T. G.; Shasha, D.; Shapiro, B. A.; and Chirn, G.-W. 1994. Discovering
active motifs in sets of related protein sequences and using them for classification. Nucl. Acids
Res. 22(14):2769-2775.

Waterman, M. S.; Arratia, R.; and Galas, D. J. 1984. Pattern recognition in several sequences:
Consensus and alignment. Bull. Math. Biol. 46(4):515-527.

Wolferstetter, F.; French, K.; Herrmann, G.; and Werner, T. 1996. Identification of functional
elements in unaligned nucleic acid sequences by a novel tuple search algorithm. Comput. Applic.
Biosci. 12(1):71-80.

Wu, T. D., and Brutlag, D. L. 1995. Identification of protein motifs using conserved amino
acid properties and partitioning techniques. In et al, C. R., ed., Proc. of Third International

41

Conference on Intelligent Systems for Molecular Biology, 402-410. Melno Park, California:
AAAT Press.

42

