
Fast Similarity Search in Three-Dimensional Structure Databases

Xiong Wang and Jason T. L. Wang*

Department of Computer and Information Science, New Jersey Institute of Technology,
Newark, New Jersey 07102

Received July 29, 1999

Given a databaseD of three-dimensional (3D) molecular structures and a target moleculeQ, the similarity
search problem is to find the moleculesO in D that matchQ after allowing for an arbitrary number of
whole-structure rotations and translations as well as a certain number of edit operations. The edit operations
include relabeling an atom, deleting an atom, and inserting an atom. This search operation arises in many
biochemical applications. In this paper we study the similarity search problem and a class of related queries.
We present a computer vision based technique, called geometric hashing, for processing these queries.
Experimental results on a database of 3D molecular structures obtained from the National Cancer Institute
indicate the good performance of the presented technique.

1. INTRODUCTION

Given a databaseD of three-dimensional (3D) molecular
structures and a target moleculeQ, the similarity search
problem is to find the moleculesO in D thatapproximately
matchQ; i.e., O matchesQ after allowing for an arbitrary
number of whole-structure rotations and translations as well
as a certain number of edit operations. The edit operations
include relabeling an atom, deleting an atom, and inserting
an atom. These edit operations are an extension of the edit
operations for strings,26 trees,28 and two-dimensional (2D)
graphs.47

Each atom in a molecule has a 3D coordinate. Each atom
also has a name, which is derived from the name of the
underlying atomic element. We assume that each atom is
identified by a unique, user-assigned number in the molecule.
The molecule can be divided into one or morerigid
substructures. For example, a ring is a rigid substructure.
Formally, a rigid substructure is a subgraph in which no
rotation is possible if its component atoms are spatially fixed
with respect to one another. Notice that the rigid substructure
as a whole can be rotated (we refer to this as a “whole-
structure” rotation or simply a rotation when the context is
clear). That is to say, the relative position of an atom in the
substructure and an atom outside the substructure can be
changed under the rotation. Thus if we consider a molecule
as a 3D graph in which each atom is a node and each bond
is an edge, a block21 of the graph could be a rigid
substructure; two rigid substructures may be connected by
an edge and they may be rotatable with respect to each other
around the edge.

As an example, consider the moleculeO in Figure 1
containing two rigid substructures. Atoms in the substructures
are numbered 0, 1, 2, 3, 4, 5 and 6, 7, 8, 9, 10, respectively.
Atom names are enclosed in parentheses; they are hypotheti-
cal ones solely used for illustration purposes. Table 1 shows

the 3D coordinates of the atoms with respect to the global
coordinate frame. We divide the molecule into two rigid
substructures: S0 and S1. S0 consists of atoms numbered 0,
1, 2, 3, 4, and 5 as well as bonds connecting the atoms
(Figure 2a).S1 consists of atoms numbered 6, 7, 8, 9, and
10 as well as bonds connecting them (Figure 2b). The two
substructures are rotatable with respect to each other around
the bond{5, 6} that connectsS0 andS1. We refer to{5, 6}
as acommon bond. In general, a common bond is one that
connects two rigid substructures in a molecule. Note that a
rigid substructure is not necessarily complete. [A complete
graph is one where every node has a direct connection to
every other node; that is, every node is connected to every
other node by an edge.] For example, in Figure 2a, there is
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Figure 1. An example molecule.

Table 1. Identification Numbers, Names, and Global Coordinates
of the Atoms of the Molecule in Figure 1

atom no. atom name global coordinates

0 a (1.0178, 1.0048, 2.5101)
1 b (1.2021, 2.0410, 2.0020)
2 c (1.3960, 2.9864, 2.0006)
3 c (0.7126, 2.0490, 3.1921)
4 b (0.7610, 2.7125, 3.0124)
5 a (1.0097, 3.6478, 2.2660)
6 d (1.1329, 4.5002, 2.2024)
7 e (1.5309, 5.2026, 1.7191)
8 a (1.4529, 6.1015, 1.5712)
9 e (1.0356, 6.0030, 2.2820)

10 b (0.7359, 5.0571, 2.6857)
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no bond connecting the atom numbered 1 and the atom
numbered 3.

We attach a local coordinate frame to each substructure.
For instance, let us focus on the substructureS0 in Figure 2.
We attach a local coordinate frame toS0 whose origin is the
atom numbered 0. This local coordinate frame is represented
by three basis pointsPb1, Pb2, andPb3, with coordinatesPb1-
(x0,y0,z0), Pb2(x0+1,y0,z0), andPb3(x0,y0+1,z0), respectively.
The origin isPb1 and the three basis vectors areVBb1,b2, VBb1,b3,
andVBb1,b2 × VBb1,b3. Here,VBb1,b2 represents the vector starting
at pointPb1 and ending at pointPb2. VBbl,b2 × VBb1,b3 stands for
the cross product of the two corresponding vectors. We refer
to this coordinate frame as substructure frame 0, denoted
SF0. [For space saving reasons, we use the cross product,
rather than an additional basis pointPb4(x0,y0,z0+1), to define
the third basis vector ofSF0. As it will become clear, we
store the coordinates of the basis points ofSF0 in a hash
table. Storing the coordinate of the additional basis point
Pb4 would incur extra storage overhead, and thus is avoided.]
Note that the basis vectors ofSF0 are orthonormal. That is,
the length of each vector is 1 and the angle between any
two basis vectors has 90°. Also note that, for any atom
numberedi in the substructureS0 with global coordinatePi-
(xi,yi,zi), we can find a local coordinate of the atomi with
respect toSF0, denotedPi′, where

1.1. Similarity Search and Related Queries.We use the
edit distance to measure the similarity of two molecules.
There are three types of edit operations: relabeling an atom,
deleting an atom, and inserting an atom. Relabeling an atom
V means to change the name ofV to any valid name that
differs from its original name. Deleting an atomV from a
molecule means to removeV from the 3D Euclidean space
and make the bonds touchingV connect with one of its
neighborsV′. Inserting an atomV into a molecule means to
addV to the 3D Euclidean space and make a nodeV′ and a
subset of its neighbors become the neighbors ofV. Notice
that when an atomV is inserted or deleted, the atoms
surroundingV do not move; i.e., their coordinates remain
the same. Figure 3 illustrates the edit operations, where
moleculeO2 results from the application of an edit operation
to moleculeO1.

Our definition of edit operations is really a shorthand for
the specification. Here is the specification in full detail.
Consider a single edit operation, e.g., one that transforms
O1 to O2 in Figure 3. If it is a relabeling operation, we specify
the atom to be relabeled inO1. If it is an insert operation,

we must specify the atomV′ that is the neighbor of the atom
V to be inserted, and which subset of the neighbors ofV′
will be the neighbors ofV. The same holds for a delete
operation. We say that the edit distance, or simply the
distancewhen the context is clear, between moleculeO and
molecule O′ is n, or O approximately matchesO′ with
distancen, if by applying an arbitrary number of rotations
and translations as well asn nonredundant atom insert, delete,
or relabeling operations one can transformO to O′. [Redun-
dant edit operations refer to edit operations that have a
reverse effect, e.g., inserting an atomV and then deleting
the same atomV.] In practice, there may exist several
different sets ofn nonredundant edit operations for trans-
forming O to O′. Our algorithms find one such set ofn
nonredundant edit operations to transformO to O′ (or
superimposeO on O′).

The queries we are concerned with are categorized as
follows: Given a target moleculeQ and a databaseD of
3D molecules,

(similarity search or good-match retrieval29) find the
molecules inD that approximately matchQ, i.e., those that
are within some distance, sayε, of Q

(k-closest retrieval) find thek molecules, for some user-
specifiedk, in D that are closest toQ

(best-match retrieval29) find the closest (i.e., most similar)
molecule ofQ in D [This query is a special case for the
k-closest retrieval wherek ) 1. The latter retrieves not only
the closest molecule, but theith, i ) 2, ...,k, closest molecule
of Q in D.]

(bad-match retrieval) find the molecules inD that are
sufficiently dissimilar to Q, i.e., those that are beyond
distanceε of Q

(k-farthest retrieval) find thek molecules inD that are
farthest fromQ

(worst-match retrieval22) find the farthest (i.e., most
dissimilar) molecule ofQ in D

Figure 2. The rigid substructures of the molecule in Figure 1.

Pi′ ) VBb1,i
) (xi - x0, yi - y0, zi - z0)

Figure 3. Illustration of the edit operations: (a) relabeling the atom
numbered 3, to change its name “d” to the name “a”; (b) deleting
the atom numbered 0; (c) inserting the atom numbered 4.
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2. PRELIMINARIES

Our approach to processing the above queries is composed
of two phases. In the preprocessing phase, molecules in the
database are divided into rigid substructures. These sub-
structures are hashed into a three-dimensional disk-based
hash table. In the on-line searching phase, we divide the
target molecule into rigid substructures and hash the sub-
structures using the same hash function as used in the
preprocessing phase. We then locate the substructures of the
data molecules that match with the substructures of the target
molecule. The matched substructures are then augmented,
wherever appropriate, to form larger matches. To facilitate
augmentation, we maintain a common bond table, which lists
pairs of substructures that are connected by a common bond
in a molecule in the database.

2.1. The Common Bond Table.When a molecule is large,
processing it in its entirety would be costly in both time and
space. Our strategy is to decompose the molecule into rigid
substructures, where the substructures are rotatable with
respect to each other around a common bond. Specifically,
we break a moleculeO into maximally sized rigid substruc-
tures (recall that a rigid substructure is a subgraph in which
no rotation is possible if its component atoms are spatially
fixed with respect to one another). We use an approach
similar to ref 21 that employs a depth-first search algorithm
to find blocks in molecules. Each block is a rigid substruc-
ture. We then merge two rigid substructuresB1 and B2 if
they are not rotatable with respect to each other; that is, the
relative position of an atomn1 ∈ B1 and an atomn2 ∈ B2 is
fixed. The algorithm runs in time linearly proportional to
the number of bonds in the moleculeO. The result is a
collectionC of rigid substructures where any two substruc-
tures inC are connected by at most one common bond. In
each substructure, one atomor is distinguished and used as
the origin of the local coordinate frame attached to the
substructure (cf. Figure 2). The atomor is chosen randomly,
and designating any atom as the origin will not affect the
result of the proposed approach.

We maintain a table of common bonds for the molecules
in the database. Each tuple in the table has the form

whereO‚id is the identification number for the moleculeO,
Sx, andSy are two rigid substructures inO, Sx‚Pb1 andSy‚Pb1

are the atom numbers of the origins of the local coordinate
frames attached to the two substructures respectively, and
Sx‚EP1 andSy‚EP2 are the identification numbers of the end
atoms of the common bond betweenSx andSy. For example,
consider again the molecule in Figure 1 and its rigid
substructures in Figure 2. Suppose the identification number
of the molecule is 12 and the atoms numbered 0 and 6 are
chosen as the origins of the local coordinate frames attached
to S0 and S1, respectively. Then there is a tuple (12,S0, S1,
0, 6, 5, 6) in the common bond table, indicating the fact that
S0 andS1 are connected via the common bond{5, 6}.

2.2. Encoding Atom and Name Triplets.In processing
a rigid substructure of a 3D molecule, we choose all three-
atom combinations, referred to as atom triplets, in the
substructure and hash the atom triplets. (The names of the
three atoms in an atom triplet form a name triplet.) We hash

three-atom combinations, because to fix a rigid substructure
in the 3D Euclidean space one needs at least three atoms
from the substructure and three atoms are sufficient provided
they are not collinear. Notice that the proper order of
choosing the atomsV1, V2, V3 in a triplet is significant. We
determine the order of the three atoms by considering the
triangle formed by them. The first atom chosen always
opposes the longest bond of the triangle, and the third atom
chosen opposes the shortest bond. Thus, the order is unique
if the triangle is not isosceles or equilateral, which usually
holds when the coordinates are floating point numbers. In
other cases, we store all configurations obeying the longest-
shortest rule described above.

Suppose the three atoms chosen areV1, V2, V3, in that order.
We encode this atom triplet and the corresponding name
triplet as follows. The code for the atom triplet is an unsigned
long integer, defined as ((N1 × 1000+ N2) × 1000)+ N3,
whereN1, N2, andN3 are the identification numbers ofV1,
V2, andV3, respectively. Here 1000 is an adjustable parameter
value. As long as the number of atoms in a molecule is less
than 1000, the code of an atom triplet is unique.

We maintain all atom names in an arrayA. The code for
the corresponding name triplet is also an unsigned long
integer, defined as ((L1 × 1000+ L2) × 1000)+ L3, where
L1, L2, andL3 are the indices for the atom names ofV1, V2,
andV3, respectively, in the arrayA. Thus, if the size of the
atom name alphabet is less than 1000, the code of a name
triplet is unique.

As an example, consider again the moleculeO in Figure
1. Suppose the arrayA has the following entries:

Consider, for example, the atoms with identification numbers
1, 2, and 3 inO. The code for this atom triplet is ((1× 1000
+ 2) × 1000) + 3 ) 1 002 003. The names of the three
atoms are “b”, “c”, and “c”, respectively. Referring to the
arrayA above, the indices for these atom names are 1, 2,
and 2, respectively. Thus, the code for the corresponding
name triplet is ((1× 1000+ 2) × 1000)+ 2 ) 1 002 002.

3. OUR APPROACH

After explaining the basic concepts, we now turn to the
description of the proposed approach. Our approach is
composed of two phases: the preprocessing phase and the
on-line searching phase. We first present the algorithm used
in the preprocessing phase. Then we discuss the on-line
phase, followed by the algorithm used to augment substruc-
ture matches. Finally we describe the algorithms for similar-
ity search and related queries.

3.1. Preprocessing Phase.We choose all atom triplets in
each rigid substructure of the molecules in the database, and
hash them into a 3D disk-based hash table. For example,
consider again the substructureS0 in Figure 2a. We choose
all atom triplets in the substructure and calculate their three-
dimensional hash function values as follows. Suppose the
chosen atoms are numberedi, j, k in that order and have
global coordinatesPi(xi,yi,zi), Pj(xj,yj,zj), and Pk(xk,yk,zk),
respectively. Calculatel l, l2, l3 where

(O‚id, Sx, Sy, Sx‚Pb1
, Sy‚Pb1

, Sx‚EP1, Sy‚EP2)

index 0 1 2 3 4
atom name a b c d e
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Here, we use a multiplier 100; we multiply the numbers
by 100 and round the floating point numbers to integers.
The reason for using the multiplier is that we want some
digits following the decimal point to contribute to the
distribution of the hash function values. We ignore the digits
after the second position because they are inaccurate. The
multiplier is a parameter whose value is determined in
experiments and is adjustable for different data. Let

Prime1, Prime2, andPrime3 are three prime numbers and
Nrow is the cardinality of the hash table in each dimension.
The atom triplet [i, j, k] will be hashed to the three-
dimensional bucketh[d1][d2][d3]. Intuitively we use the
squares of the lengths of the three bonds connecting the three
chosen atoms to determine the bucket address.

We use three different prime numbersPrime1, Prime2,
Prime3 here in the hope that the distribution of the hash
function values is not skewed even if pairs ofl1, l2, l3 are
correlated. In general, these prime numbers have to be chosen
properly based on the range of the coordinates of the atoms
in the molecules. If they are too large relative to the sums
of (l i + l j), they serve no purpose at all since ifM > N, then
(N modM) ) N. On the other hand, if they are too small, a
lot of collisions and overflows would occur in the hash
table.17

We store several items associated with the atom triplet [i,
j, k] in the bucketh[d1][d2][d3]: the identification number
of its molecule, the identification number of its substructure,
the code for the atom triplet, and the code for the name
triplet. In addition, we store the coordinates of the basis
pointsPb1, Pb2, Pb3 of substructure frame 0 (SF0) with respect
to the three chosen atoms. Specifically, suppose the chosen
atomsi, j, k are not collinear. We can construct another local
coordinate frame, denotedLF[i, j, k], usingVBi,j, VBi,k, andVBi,j

× VBi,k as basis vectors. The coordinates ofPb1, Pb2, Pb3 with
respect to the local coordinate frameLF[i, j, k], denotedSF0-
[i, j, k], form a 3× 3 matrix, which is calculated as follows:

where

Thus, for example, the hash table entry for the three chosen
atomsi, j, k from the substructureS0 in Figure 2a is (12, 0,

Ncode, Lcode, SF0[i, j, k]), whereNcodeis the code for the
atom triplet andLcodeis the code for the name triplet. Since
there are six atoms inS0, we have(3

6) ) 20 possible atom
triplets in S0 and therefore 20 entries in the hash table for
this substructure.

To illustrate the hashing process, consider the coordinates
of the atoms ofS0 in Table 1. The basis pointsPb1, Pb2, Pb3

of SF0 have global coordinates

Thus, for example, Figure 4 shows the local coordinates,
with respect toSF0, of the atoms numbered 0, 1, 2, 3, and 4
in the substructureS0. Now let Prime1, Prime2, andPrime3

be 1009, 1033, and 1057, respectively, and letNrow be 31.
Thus, for example, for the atoms numbered 1, 2, and 3 in
S0, the bucket address ish[10][7][7] and

As another example, for the atoms numbered 1, 4, and 2
in S0, the bucket address is h[26][6][6] and

Similarly, for the substructureS1, we attach a local coordinate
frameSF1 to the atom numbered 6 as shown in Figure 2b.
There are 20 hash table entries for the substructureS1, each
having the form (12, 1,Ncode, Lcode, SF1[l,m,n]) where l,
m, n are any three atoms inS1.

3.2. On-Line Phase. To facilitate detecting sub-
structure matches, we associate an atom•match•list and a
relabeling•counter with each rigid substructure of the
molecules in the database. Given a target moleculeQ, we
divide Q into rigid substructures and hash the substructures
using the same hash function as in the preprocessing phase.
Then we update the atom•match•list and relabeling•counter
as illustrated below.

Let us focus on the substructureS0 of the molecule with
identification number 12 shown in Figure 2a. Supposei, j,
k are three atoms in the substructureS0. Then its entry in
the hash table is (12, 0,Ncode, Lcode, SF0[i,j,k]). Let u, V,
w be three atoms in the target moleculeQ that have the same
bucket address asi, j, k (i.e., the atom triplet [u, V, w] hits

l1 ) Round(((xi - xj)
2 + (yi - yj)

2 + (zi - zj)
2) × 100)

l2 ) Round(((xi - xk)
2 + (yi - yk)

2 + (zi - zk)
2) × 100)

l3 ) Round(((xk - xj)
2 + (yk - yj)

2 + (zk - zj)
2) × 100)

d1 ) (l1 + l2) modPrime1 modNrow

d2 ) (l2 + l3) modPrime2 modNrow

d3 ) (l3 + l1) modPrime3 modNrow

SF0[i, j, k] ) (VBi,b1

VBi,b2

VBi,b3

)× A-1

A ) (VBi,j

VBi,k

VBi,j × VBi,k
)

Figure 4. The local coordinates, with respect toSF0, of the atoms
numbered 0, 1, 2, 3, 4 in the substructureS0 in Figure 2a.

Pb1
(1.0178,1.0048,2.5101)

Pb2
(2.0178,1.0048,2.5101)

Pb3
(1.0178,2.0048,2.5101)

SF0[1,2,3] ) (-1.0567 0.3578 0.1739
-0.8758 0.0719 0.9072
-0.0359 0.4175 0.0240)

SF0[1,4,2] ) (0.3694 -1.3082 -0.2429
-0.0435 -0.8571 -1.0067
0.4552 -0.3437 -0.0869)
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the substructureS0). We decodeNcodeto geti, j, k and add
them into the atom•match•list of S0. This records thatu
geometrically matchesi (i.e., they have the same 3D
coordinate),V geometrically matchesj, andw geometrically
matchesk. We also decodeLcodeand determine whether
two geometrically matching atoms have the same name. If
not, the relabeling•counter is updated to reflect the fact that
there is a relabeling between the two geometrically matching
atoms.

In addition, we calculateS0‚SFQ where

The matrixS0‚SFQ contains the coordinates of the three basis
points of the substructure frame 0 (SF0) with respect to the
global coordinate frame in which the target moleculeQ is
given. In general, there may be several atom triplets ofQ
that hit S0. We update the atom•match•list and
relabeling•counter ofS0 for these matching atom triplets
only if they yield the sameS0‚SFQ.

It is likely that an atom triplet [u, V, w] of Q has the same
bucket address as an atom triplet [i, j, k] of the substructure
S0, though they do not match geometrically. This is referred
to as afalse match. Let Pc1, Pc2, andPc3 be the three basis
points formingS0‚SFQ wherePc1 is the origin. It can be shown
thatVBc1,c2, VBc1,c3, andVBc1,c2 × VBc1,c3 are orthonormal vectors if
and only if the atomsu, V, andw geometrically match the
atomsi, j, andk, respectively. This is a theoretical criterion
based on which one can detect and elimninate a false match.
In practice, let thebase matrix S0‚E for S0‚SFQ be

We note that ifVBc1,c2, VBc1,c3, andVBc1,c2 × VBc1,c3 are orthonormal
vectors, then|S0‚E| ) 1. Thus a practically useful criterion
for detecting and eliminating false matches is to check
whether or not|S0‚E| ) 1. If |S0‚E| * 1, thenVBc1,c2, VBc1,c3,
andVBc1,c2 × VBc1,c3 are not orthonormal vectors, and therefore
the atomsu, V, and w do not match the atomsi, j, and k
geometrically.

To illustrate the on-line process, consider the target
moleculeQ in Figure 5.Q contains two rigid substructures

Q0 andQ1. Table 2 lists the identification numbers, names,
and global coordinates of the atoms inQ. In Q0, the atoms
numbered 0, 1, 2, 3, 4 match, after rotation, the atoms
numbered 4, 3, 1, 2, 5 in the substructureS0 in Figure 2a.
The atom numbered 0 inS0 does not appear inQ0 (i.e., it is
to be deleted). Thus, for example, for the atoms numbered
2, 3, and 1 inQ0, the bucket address in the three-dimensional
hash table ish[10][7][7], which is the same as the bucket
address for the atom triplet [1, 2, 3] inS0, and

For the atoms numbered 2, 0, and 3 inQ0, the bucket address
is h[26][6][6], which is the same as the bucket address for
the atom triplet [1, 4, 2] inS0, and

These two matches (hits) have the sameS0‚SFQ, and
therefore the atom•match•list for the substructureS0

includes the atoms numbered 1, 2, 3, and 4. After hashing
all atom triplets ofQ0, the atom•match•list of S0 will
include the atoms numbered 1, 2, 3, 4, and 5. Since the
corresponding names of the matching atoms are the same,
the relabeling•counter ofS0 is 0.

Note that, for any atomi in the substructureQ0 with global
coordinatePi(xi,yi,zi), it has a local coordinate with respect
to S0‚SFQ, denotedPi′, where

HerePc1 is the origin ofS0‚SFQ; S0‚E is the base matrix of
S0‚SFQ. Thus, for example, the local coordinates, with respect
to S0‚SFQ, of the atoms numbered 2, 3, and 1 inQ0 are

They match the local coordinates, with respect toSF0, of
the atoms numbered 1, 2, and 3 in the substructureS0 (cf.
Figure 4). Likewise, the local coordinate, with respect toS0‚
SFQ, of atom 0 inQ0 is

Figure 5. An example target molecule.

S0‚SFQ ) SF0[i,j,k] × (VBu,V
VBu,w

VBu,V × VBu,w
)+ (Pu

Pu

Pu
)

S0‚E ) (VBc1,c2

VBc1,c3

VBc1,c2
× VBc1,c3

)

Table 2. Identification Numbers, Names, and Global Coordinates
of the Atoms of the Molecule in Figure 5

atom no. atom name global coordinates

0 b (-0.269 000, 4.153 153, 2.911 494)
1 c (-0.317 400, 4.749 386, 3.253 592)
2 b (0.172 100, 3.913 515, 4.100 777)
3 c (0.366 000, 3.244 026, 3.433 268)
4 a (-0.020 300, 2.964 012, 2.777 921)
5 d (0.102 900, 2.316 302, 2.220 155)
6 e (0.500 900, 1.477 885, 2.065 228)
7 a (0.422 900, 0.737 686, 1.534 191)
8 c (0.005 600, 1.309 948, 1.101 230)
9 b (-0.294 100, 2.264 259, 1.484 623)

S0‚SFQ ) (-0.012200 5.005500 4.474200
0.987800 5.005500 4.474200
-0.012200 4.298393 3.767093)

S0‚SFQ ) (-0.012200 5.005500 4.474200
0.987800 5.005500 4.474200
-0.012200 4.298393 3.767093)

Pi′ ) VBc1,i
× S0‚E

P2′(0.184300, 1.036200,-0.508100)

P3′(0.378200, 1.981600,-0.509500)

P1′(-0.305200, 1.044200, 0.682000)

P0′(-0.256800, 1.707700, 0.502300)
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which matches the local coordinate, with respect toSF0, of
atom 4 in the substructureS0 (cf. Figure 4).

Similarly, in Q1, the atoms numbered 5, 6, 7, 8, 9 match,
after rotation, the atoms numbered 6, 7, 8, 9, 10 in the
substructureS1 in Figure 2b. The atom•match•list of the
substructureS1 includes atoms 6, 7, 8, 9, and 10 after hashing
all atom triplets inQ1. The relabeling•counter forS1 is 1,
since the name of the atom numbered 8 inQ1 differs from
that of the atom numbered 9 inS1.

3.3. Augmenting Substructure Matches.Substructure
matches with the same molecule identification number may
be augmented by utilizing the common bond table. Suppose
that, in the common bond table, there is a tuple

for two substructuresSx and Sy in a moleculeO in the
database. LetSFx represent the local coordinate frame
attached toSx andSFy represent the local coordinate frame
attached toSy. Suppose that, after hashing all atom triplets
of the target moleculeQ, Sx‚SFQ (Sy‚SFQ, respectively)
contains the coordinates of the three basis points ofSFx (SFy,
respectively) with respect to the global coordinate frame in
which Q is given. The base matrix forSx‚SFQ (Sy‚SFQ,
respectively) isSx‚E (Sy‚E, respectively).Sx‚Pc1 (Sy‚Pc1,
respectively) is the origin ofSx‚SFQ (Sy‚SFQ, respectively).

Let

VBSx‚Pb1,Sx‚EP1 (VBSx‚Pb1,Sy‚EP2, respectively) represents the coordinate
of Sx‚EP1 (Sy‚EP2, respectively) with respect to the local
coordinate frameSFx. VBSy‚Pb1,Sx‚EP1 (VBSy‚Pb1,Sy‚EP2, respectively)
represents the coordinate ofSx‚EP1 (Sy‚EP2, respectively)
with respect to the local coordinate frameSFy. Sx‚EP1′
represents the coordinate of the first end atom of the common
bond betweenSx andSy with respect to the global coordinate
frame in which the target moleculeQ is given when matching
Sx with Q. Sy‚EP1′ represents the coordinate of the first end
atom of the common bond betweenSx andSy with respect
to the global coordinate frame in which the target molecule
Q is given when matchingSy with Q.

Suppose the substructureQ1 of Q matches the substructure
Sx of the moleculeO and the substructureQ2 of Q matches
the substructureSy of O. The two substructure matches are
said to beaugmentableif Q1 (Sx, respectively) is connected
with Q2 (Sy, respectively) via a common bond and the two
substructures are rotatable with respect to the common bond.
In general, it can be shown thatSx‚EP1′ ) Sy‚EP1′ andSx‚
EP2′ ) Sy‚EP2′ if and only if the two substructure matches
are augmentable. To see this, notice that when two substruc-
tures are rotated around the common bond, the relative
positions of all the atoms in one substructure with respect
to the other substructure are changed except the two end
atoms of the common bond. If the two substructure matches
are augmentable, we can fix the two substructures of the
target moleculeQ (the data moleculeO, respectively) to form

a larger substructureK (S, respectively), thus obtaining a
match betweenK andS. The atom•match•list of S is the
union of the atom•match•list of Sx and the atom•match•list
of Sy. The relabeling•counter of S is the sum of the
relabeling•counter ofSx and the relabeling•counter ofSy.

To illustrate this augmentation process, consider again the
example in section 3.2. The atom•match•list of the
substructureS0 includes the atoms numbered 1, 2, 3, 4, and
5 after hashing all atom triplets ofQ0. The relabeling•counter
of S0 is 0. The atom•match•list of the substructureS1

includes the atoms numbered 6, 7, 8, 9, and 10 after hashing
all atom triplets ofQ1. The relabeling•counter ofS1 is 1.
There is a tuple (12,S0, S1, 0, 6, 5, 6) in the common bond
table. Therefore we calculate

Similarly,

Since S0‚EP1′ ) S1‚EP1′ and S0‚EP2′ ) S1‚EP2′, the two
substructure matches are augmentable. We fixQ0 andQ1 to
form Q in Figure 5 and fixS0 andS1 to form O in Figure 1.
The atom•match•list of O now includes atoms 1, 2, 3, 4,
5, 6, 7, 8, 9, and 10, meaning that these atoms match atoms
in Q geometrically. The relabeling•counter of O is 1,
meaning that there is a relabeling operation (i.e., changing
“e” to “c”) when matchingO with Q.

3.4. Query Processing Algorithms.By consulting the
common bond table, one can augment small substructure
matches to form larger substructure matches whenever
appropriate. Then we can obtain the atom•match•list and
relabeling•counter of the data moleculeO. The size of
atom•match•list of O shows the number of atoms inO
that match atoms inQ geometrically. The relabeling•counter
of O shows among those geometrically matching atoms how
many need to be relabeled. Thus, the atom•match•list and
relabeling•counter together show the distance betweenO
andQ.

Formally, let n be the number of atoms in the
atom•match•list, mbe the value of relabeling•counter, and

VBP0,P5
) (1.0097, 3.6478, 2.2660)-

(1.0178, 1.0048, 2.5101)) (-0.0081, 2.6430,-0.2441)

S0‚SFQ ) (-0.012200 5.005500 4.474200
0.987800 5.005500 4.474200
-0.012200 4.298393 3.767093)

S0‚E ) (1.000000 0.000000 0.000000
0.000000 -0.707107 -0.707107
0.000000 0.707107 -0.707107)

S0‚Pc1
) (-0.012200, 5.005500, 4.474200)

S0‚EP1′ ) VBP0,P5
× S0‚E + S0‚Pc1

)

(-0.020300, 2.964012, 2.777921)

S0‚EP2′ ) VBP0,P6
× S0‚E + S0‚Pc1

)

(0.102900, 2.316302, 2.220155)

S1‚EP1′ ) VBP6,P5
× S1‚E + S1‚Pc1

)

(-0.020300, 2.964012, 2.777921)

S1‚EP2′ ) VBP6,P6
× S1‚E + S1‚Pc1

)

(0.102900, 2.316302, 2.220155)

(O‚id, Sx, Sy, Sx‚Pb1
, Sy‚Pbl

, Sx‚EP1, Sy‚EP2)

Sx‚EP1′ ) VBSx‚Pb1,Sx‚EP1
× Sx‚E + Sx‚Pc1

Sx‚EP2′ ) VBSx‚Pb1,Sy‚EP2
× Sx‚E + Sx‚Pc1

Sy‚EP1′ ) VBSy‚Pb1,Sx‚EP1
× Sy‚E + Sy‚Pc1

Sy‚EP2′ ) VBSy‚Pb1,Sy‚EP2
× Sy‚E + Sy‚Pc1
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|Q| (|O|, respectively) be the size of the target moleculeQ
(the data moleculeO, respectively). Observe that in matching
O with Q there are|O| - n atom deletes,|Q| - n atom
inserts, andm atom relabelings. Therefore the distance
betweenO andQ, denoted∆(O,Q), is

Referring to section 1.1,∆(O,Q) represents the number of
nonredundant edit operations needed to transformO to Q
(or superimposeO on Q).

For example, consider again the target moleculeQ in
Figure 5 and the data moleculeO in Figure 1.|Q| ) 10 and
|O| ) 11. After the augmentation as explained in the example
in section 3.3, the number of atoms in the atom•match•list
of O is 10 and the relabeling•counter ofO is 1. Thus the
distance betweenO andQ is ∆(O,Q) ) 1 + 11 + 10 - (2
× 10) ) 2. Referring to Figure 1 and Figure 5, we see that
in matchingO with Q we delete one atom (i.e., delete the
atom numbered 0 inO) and relabel another atom (i.e., change
the name “e” of atom 9 inO to the name “c” of atom 8 in
Q).

Thus, after hashing the target moleculeQ, we check the
atom•match•list and relabeling•counter for each molecule
O in the database and calculate∆(O,Q). Table 3 summarizes
the algorithms for processing the six types of queries
described in section 1.1.

4. EXPERIMENTS

We have implemented the proposed algorithms using the
C programming language on a SunSPARC 20 workstation
running Solaris version 2.4. Two files were maintained: one
recording the bucket addresses and the other containing all
hash table entries. We applied the algorithms to 226 3D
molecular structures obtained from a database maintained
in the National Cancer Institute. The number of atoms in
the molecules ranged from 5 to 51. It took 9 s tohash all
226 molecules in the preprocessing phase. In order to
demonstrate the advantage of the decomposition/augmenta-
tion processes, we studied two cases. In the first case, we
hashed and retrieved a molecule in its entirety. In the second
case, we decomposed the molecules to rigid substructures
and augmented substructure matches during the retrieval as
described in the paper. Figure 6 shows the results. The dashed
line represents the retrieval time without the decomposition/
augmentation processes. The solid line represents the retrieval
time with the processes. It can be seen that the decomposi-
tion/augmentation processes speed up the retrieval by a factor
of 100 when molecules have 30 atoms and 1000 when
molecules have 50 atoms.

We then compared our technique with exhaustive search
using more molecules taken from the NCI database. By

exhaustive search, we mean that in the preprocessing phase
we sort and store the lengths of the three bonds of the triangle
formed by every atom triplet [i, j, k] in a three-dimensional
array. We also store the local coordinate frameLF[i,j,k]. In
the on-line phase, we find atom-triplet matches by searching
the array. Figure 7 shows the results. The dashed line
represents the exhaustive search method, and the solid line
represents our technique. It can be seen that our technique
is 100 times faster than the exhaustive search method when
the database has over 600 molecules while achieving the
same recall.

5. RELATED WORK

The geometric hashing algorithm used in the paper was
originated from the work of Lamdan and Wolfson for model-
based recognition in computer vision.19 Several researchers
attempted to parallelize the algorithm,5,23,24 design delicate
rehash functions to balance the distribution of hash function
values,24 and explore the uncertainty existing in the algo-
rithm.13,27However, none of the work addressed the similarity
search problem in structure databases. The work most closely
related to ours, in the context of geometric hashing, is.25,37

In ref 25, Rigoutsos et al. solved the substructure matching
problem for 3D molecules; in ref 37, Wang et al. presented
techniques for finding frequently occurring substructures in
these molecules. In contrast to refs 25 and 37, we present
here a framework for systematically answering a class of
similarity-based queries. Furthermore, in contrast to ref 25,
which employed “magic vectors” for substructure matching,

Table 3. Algorithms for Processing the Six Types of Queries
Described in Section 1.1

query type data molecules returned

good-match the moleculesO where∆(O,Q) e ε
k-closest thek moleculesO with the smallest∆(O,Q)’s
best-match the moleculeO with the smallest∆(O,Q)
bad-match the moleculesO where∆(O,Q) > ε
k-farthest thek moleculesO with the largest∆(O,Q)’s
worst-match the moleculeO with the largest∆(O,Q)

∆(O,Q) ) m + |O| + |Q| - 2n

Figure 6. Retrieval times as a function of the size of molecules.

Figure 7. Retrieval times as a function of the number of molecules.
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we store a coordinate frame in a hash table entry and adopt
the decomposition/augmentation processes to speed up the
search. There were papers about graph matching.3,6,10,30,32,35,39,40

However, none of them considered the queries presented here
using geometric hashing algorithms.

Similarity searching in 3D molecules has been studied
extensively in the past.1,2,4,7,18,20,33,34,42,43Willett et al.41

presented an excellent survey. Many similarity measures
were defined based on 2D descriptors, 3D descriptors, or
other descriptors of molecules. Filimonov et al.,9 for example,
proposed a descriptor based on multilevel neighborhoods of
atoms to measure the similarity of two compounds. An
atom’s zero level descriptor includes only the atom itself.
An atom’s first level descriptor includes the atom and its
neighbors’ zero level descriptors. An atom’s second level
descriptor includes the atom and its neighbors’ first level
descriptors. This process of representation is repeated
recursively until a desired number of levels is reached. A
compound is then represented by the set of the descriptors
of all its atoms. In calculating the similarity of two
compounds, the occurrences of the descriptors and the
frequencies of their occurrences in the two compounds are
calculated and compared.

In ref 12, Ginn et al. proposed a descriptor derived solely
from the vibrational frequencies of a molecule’s infrared
image. The authors then combined the descriptor with 2D
fingerprints to measure the similarity of two compounds. Xue
et al.46 considered descriptors comprising the number of
aromatic bonds and hydrogen-bonding acceptors, the fraction
of rotatable bonds per molecule, and structural key-type
fragments. The authors encoded the descriptors into binary
bit strings and performed similarity searching by comparing
those strings.

Flower11 studied the effectiveness of bit string based
similarity measures. He found that the performance of
comparing binary bit strings is heavily dependent on the
effectiveness of the features (e.g., descriptors) encoded in a
binary string. Problems may arise if a feature is not a metric.
A metric δ is a function where for any three feature values
A, B, andC (i) δ(A,B) > 0, if A * B; (ii) δ(A,A) ) δ(B,B)
) 0; (iii) δ(A,B) ) δ(B,A); and (iv) (triangular inequality)
δ(A,B) e δ(A,C) + δ(C,B). As a nonexample, the similarity
measure derived from bit strings based on hashed 2D
structural fingerprints does not satisfy the triangular inequal-
ity.

Many molecules have more than one conformation due
to torsional flexibility, which is often caused by rotations
around rotatable single bonds. Given one conformation of a
molecule, the problem of locating those different conforma-
tions is referred to as flexible searching. Some researchers
applied genetic algorithms to approaching this problem. In
refs 31 and 38, Willett and co-authors studied different types
of genetic algorithms. Their algorithms worked by identifying
a set of geometric transformations, including rotations,
translations, and torsional rotations, that results in the
maximal overlap of a database structure’s molecular elec-
trostatic potential with that of the target structure.

Handschuh et al.15 also applied genetic algorithms to the
superposition of 3D chemical structures. A compound can
be superimposed on another compound if the corresponding
atoms can be aligned together. The authors exploited the
power of Pareto optimization and Tournament selection to

improve the performance of their algorithms. In ref 8, Cramer
et al. developed an approach to searching for chemical
structures with similar topomer shapes. The authors con-
cluded that topomer shape similarity searching can enhance
the effectiveness of the overall drug discovery process. To
compute the difference in shape between any two monovalent
fragments, their algorithm first built a single characteristic
“topomeric” conformation for each fragment by using rule-
based adjustments of the appropriate torsion angles in the
fragment and chiralities of its Concord-generated 3D struc-
ture. The algorithm then positioned two resulting conforma-
tions to superimpose the two attachment valences of the
fragments.

In ref 36, Wang and Zhou combined 1D, 2D, and 3D
searching in one toolkit. They first searched the database
for those structures that had the same types and numbers of
atoms as those in the target structure. The authors then used
the generic match algorithm invented by Xu45 to perform
2D screening. The third step conducted a 3D rigid search.
In the rigid search, the relative positions of the atoms were
fixed; i.e., no torsional flexibility was considered in the
search. If the rigid search failed to identify enough qualified
structures matching the target structure, a conformationally
flexible search was activated.

In general, rotatable single bonds can be classified into
two categories: (i) those that connect two rigid substructures8

and (ii) those that are within one flexible substructure.15

Torsion angle changes are caused by rotations around these
rotatable single bonds. We consider in the paper the rotatable
single bonds in the first category and approach the torsion
angle change problem by decomposing a molecule into rigid
substructures. This technique can be incorporated into
previously published methods (see, e.g., Wang and Zhou36)
for 3D rigid searching.

In cases where there are torsion angle changes caused by
rotations around rotatable single bonds in the second
category, using our searching algorithms with edit distance
0 will suffer from a low recall. In these cases, one has to
conduct a similarity search by allowing a certain number of
edit operations to exist when matching two molecules. In
this way, a database molecule can be superimposed on the
target molecule even though they do not agree in a small
number of atoms, which is probably caused by some torsion
angle changes. These atoms may have different names or
may appear in different positions. The edit operations include
relabeling an atom, inserting an atom, and deleting an atom
(relabeling an atom can be considered as replacing the atom
in its position by a different atom). Thus, for example, if a
rotatable bound occurs in a flexible substructure, our
algorithms can detect it in a similarity search with edit
distance 1 or 2 (i.e., one or two atom inserts/deletes are
allowed in the search); cf. the good-match query in section
1.1. This technique may be used to enhance the recall of
previously published methods for flexible searching (see, e.g.,
Willett et al.31,38).

Many earlier techniques for superposition of 3D molecules
attempted to minimize the root-mean-square error of the
distances of corresponding atoms.1,15,34,36,42Clearly, these
approaches do not apply to chemical structures with large
torsion angle changes. The approximate matching technique
proposed here can also be used, in combination with these
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superposition methods, to improve the overall search per-
formance.

6. CONCLUSIONS

In this paper we have presented a geometric hashing
technique for similarity retrieval in three-dimensional struc-
ture databases. We applied the technique to processing a class
of similarity-based queries. Our technique can also be
extended to solve the substructure search problem.14,16,44

Given the target moleculeQ and a databaseD of molecules,
the substructure search problem is to find the moleculesO
in D that approximately containQ; i.e. there exists a
subgraphO′ of O such thatO′ approximately matchesQ.
Refer to section 3. Suppose the number of atoms in the
atom•match•list associated with a data moleculeO is n.
The value of the relabeling•counter ofO is m. The size of
the target moleculeQ is |Q| and the size of the data molecule
O is |O|; |Q| e |O|. Then we know that there exists a
subgraphO′ of O whereO′ matchesQ with distance|Q| -
n + m. Thus if the user is interested in finding molecules
that approximately containQ within distanceε, our programs
return those data moleculesO whose|Q| - n + m is less
than or equal toε. In addition, our programs find and display
the optimal alignment betweenO andQ.

We have made the software for processing the similarity-
based queries and substructure search available on the
Internet; please visit the Web site at http://www.cis.njit.edu/
∼discdb for details. Interested readers may also contact the
authors directly to get the programs.
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