
Intelligent Retrieval of Solid Models

A Thesis

Submitted to the Faculty

of

Drexel University

by

Vincent A. Cicirello

in partial fulfillment of the

requirements for the degree

of

Master of Science

in

Computer Science

June 1999

c
 Copyright 1999

Vincent A. Cicirello. All Rights Reserved

ii

Dedication

“What is now proved was once only imagin’d.” — William Blake

–

To my parents Vincent J. and Loretta Cicirello, my sisters Deborah Cicirello and Donna

Fitzstephens, my grandmother Regina Mingarino Sr., and my entire family for all of your

guidance and encouragement throughout the years. The future grows from what we

imagine in the present. Thank you for encouraging me to strive to reach my goals and

dreams.

–

Also to my grandfather Eugene Mingarino. You are remembered with love.

iii

Acknowledgements

Thanks are extended to Dr. William Regli, director of the Geometric and Intelligent

Computing Laboratory (GICL) in Drexel University’s Department of Mathematics and

Computer Science, for his advisory role over this work for without which this work would

not be possible. Thanks also to the other members of my thesis committee, Dr. Lloyd

Greenwald, Dr. Spiros Mancoridis, and Dr. Ljubomir Perkovic for their time, knowledge,

and opinions.

Thanks are extended to Dr. Steve Brooks of Allied Signal Corporation, Federal Manu-

facturing Technologies Program, in Kansas City for providing the National Design Repos-

itory with the ACIS models for the TEAM parts. Thanks also to Alexei Elinson for provid-

ing the code to generate random TEAM-like solid models.

This work was supported in part by National Science Foundation (NSF) CAREER

Award CISE/IIS-9733545 and Grant ENG/DMI-9713718. Additional support was pro-

vided by the National Institute of Standards and Technology (NIST) under Grant

60NANB7D0092.

Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the author and do not necessarily reflect the views of the National Science

Foundation or the other supporting government and corporate organizations.

iv

Table of Contents

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . ix

1 INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Overview of Approach . 4

1.3 Outline of Thesis . .. 5

2 BACKGROUND . 6

2.1 Graph Matching . 6

2.1.1 Definitions and Background . .. 8

2.1.2 Common Approaches . 9

2.1.3 Invariants . 11

2.1.4 Conventional Approaches . 13

2.1.5 Other Approaches . 17

2.2 Solid Modeling and Feature Based Design 22

2.2.1 Constructive Solid Geometry (CSG) 22

2.2.2 Boundary Representation (B-rep) 22

2.2.3 Feature-based Modeling 23

2.2.4 Feature Recognition From Solid Models 24

2.3 Search Techniques .. 27

2.3.1 Depth-first Search. 27

v

2.3.2 A* Search 28

2.3.3 Constraint Satisfaction 28

2.3.4 Hill-climbing Search 29

3 PROBLEM AND APPROACH . 30

3.1 Problem Formalization . 30

3.2 Design Histories . 31

3.3 Model Dependency Graph . 33

3.4 Comparison and Retrieval . 39

3.4.1 Gradient Descent . 40

3.4.2 Ullmann’s Algorithm . 43

3.4.3 A* Subgraph Isomorphism Checker (ASIC) 47

4 EXPERIMENTS 53

4.1 Isomorphism Experiments . 54

4.2 Subgraph Isomorphism Experiments . 60

4.3 MDG Experiments . 63

5 CONCLUSIONS . 74

5.1 Contributions . 74

5.2 Limitations . 76

5.3 Future Work . 78

BIBLIOGRAPHY . 81

vi

List of Tables

4.1 Accuracy of the Gradient Descent Algorithm using 1000 random restarts. . . . 68

4.2 Accuracy of the Gradient Descent Algorithm using 100 random restarts. 69

4.3 Accuracy of the Gradient Descent Algorithm using 10 random restarts.. 69

4.4 Accuracy of the Gradient Descent Algorithm using 0 random restarts.. 69

4.5 CPU performance of various algorithms on query 1 in seconds. 70

4.6 CPU performance of various algorithms on query 2 in seconds. 71

vii

List of Figures

1.1 Overview of the problem of solid model retrieval. 3

2.1 Examples of CSG trees: two different trees that create the same solid model. . . 23

3.1 An illustration of a model of a torpedo motor housing and a snapshot of the
design feature history tree for the torpedo motor (each box is a feature or
operation on the model). This history tree was generated when the motor
was modeled using Bentley Systems’ MicroStation Modeler. The over one
hundred features and operations make the history tree difficult to present
in detail—for requiring more detail, this model is available through the
National Design Repository at http://repos.mcs.drexel.edu/. 32

3.2 Pictured is a single solid model and several alternative design feature histories,
and one possible CSG tree, that can produce it. On the right are the MDGs
for each of these alternatives—note that they are all D-morphic to one another. 34

4.1 Surface plots of timing results of (a) ASIC; (b) ASIC with relaxed initializa-
tion; (c) Ullmann’s with ASIC’s initialization; (d) Ullmann’s for pairs of
isomorphic graphs.. 55

4.2 Surface plots of timing results of (a) ASIC; (b) ASIC with relaxed initializa-
tion; (c) Ullmann’s with ASIC’s initialization; (d) Ullmann’s for pairs of
non-isomorphic graphs. 56

4.3 Timing results for pairs of isomorphic graphs of edge densities (a) 0.8; (b) 0.5;
(c) 0.2. 58

4.4 Timing results for pairs of non-isomorphic graphs of edge densities (a) 0.8; (b)
0.5; (c) 0.2. 59

4.5 Surface plots of timing results of (a) ASIC; (b) ASIC with relaxed initializa-
tion; (c) Ullmann’s with ASIC’s initialization; (d) Ullmann’s for pairs of
random subgraph isomorphic graphs of different sizes. 61

4.6 Surface plots of timing results of (a) ASIC; (b) ASIC with relaxed initializa-
tion; (c) Ullmann’s with ASIC’s initialization; (d) Ullmann’s for pairs of
random non-isomorphic graphs of different sizes. 62

viii

4.7 Two of the test parts from the DOE TEAM Project. Both of these parts are
available from the National Design Repository at http://repos.mcs.drexel.edu. 63

4.8 The MDGs for the randomly generated Query Models. 64

4.9 Two randomly generated query models with their design feature histories. . . . 65

4.10 Example output data from examining subgraph isomorphism over the database
of 10,002 solid models for the two query models in Figure 4.9. The his-
togram shows the number of models (from the 10,002 in the database) that
fall into distance categories based on the subgraph isomorphism test. Read
from left-to-right, the returned models are in order of decreasing similarity
to the query model. 73

ix

Abstract
Intelligent Retrieval of Solid Models

Vincent A. Cicirello
Advisor: William C. Regli

Nearly all major commercial computer-aided design systems have adopted a feature-

based design approach to solid modeling. Models are created via a sequence of operations

that apply design features to incremental versions of a design model. Even surfacing, free-

form surface shaping, and deformation operations are internally represented in modeling

systems as features in a “history tree” that generates the final design. Much in the same

manner that Constructive Solid Geometry (CSG) trees for an individual model can be non-

unique, these design feature histories for solid models might be ordered in a number of

ways and still result in the same final geometry and topology. Manufacturing features,

easily obtained from the use of a feature recognition system, often map simply to manufac-

turing operations such as milling operations for some machine tool.

This problem is formulated symbolically and geometric reasoning techniques are pre-

sented to generate a representation of features and feature dependencies that deals with

the non-uniqueness problem encountered in design feature histories. It is shown that this

representation is not limited to design features and can be used with manufacturing fea-

tures as well. The representation defined is termed the Model Dependency Graph (MDG)

and alternatively the Undirected Model Dependency Graph (UMDG) and is used as a ba-

sis for developing techniques for managing databases of solid models. Using the MDG,

algorithms are introduced that can assess the similarity of solid models based on design or

manufacturing features and can be used in the retrieval of these models. One of these algo-

rithms computes an approximation to the subgraph isomorphism and graph isomorphism

x

problems using a random restart gradient descent approach. Another of these algorithms

uses the search method known as A* to detect subgraph isomorphism. It is believed that

these techniques can be used to build intelligent CAD knowledge bases and to identify

meaningful part families from large sets of designs. Lastly, experimental results and per-

formance metrics for these approaches are described. It is shown empirically that although

the worst case complexity of solutions to the subgraph isomorphism problem is exponential

the described algorithms’ performance on random graphs and on the UMDG is tractable in

practice.

1

Chapter 1

Introduction

1.1 Problem Statement

CAD databases and knowledge-bases are at the core of the modern engineering enterprise.

These emerging digital libraries store all information relevant over a product’s life-cycle

(geometry, topology, features, revisions, etc.). An overview of the problem can be seen in

Figure 1.1 which shows a database of solid models. Given this database, a designer may

need to determine if a given design is contained in this database. Or a design engineer might

encounter a problem of case-based design: how can this designer find previous design cases

based on how similar they are to some new solid model? Given the solid model of some

new part, an engineer might need to design a plan for the manufacture of this new part.

There might be other parts similar to this new part in design and structure stored in the

CAD repository. How can the engineer find the manufacturing plans for these similar parts

efficiently? Or how can a case-based planning system find similar parts from which plans

for some new part can be derived? These are all important questions.

The goal of this research is to develop algorithmic techniques to manage databases of

CAD and Solid Models. To accomplish this goal, techniques for the intelligent retrieval

of solid models will be described. Data structures for the representation of features are

developed. Afeatureis a structural property or a volumetric property of the solid model.

2

The lack of standard representation schemes for CAD data and features data has been under

significant study. A representation of features data and feature interactions that allows

for the efficient retrieval of CAD and Solid Models from knowledge-bases is important.

The representation developed in the present work is a graph based representation of the

dependencies between features of the CAD model.

Why is a representation of features and feature interactions relevant to solid model

retrieval? Features, whether they are design features or manufacturing features, represent

structural properties of the solid model. So in this way, a representation of features data is

a representation of the structure of the model. If two solid models have similar features and

feature interactions, then in some way the two solid models are similar.

Given this representation scheme, efficient algorithms for performing this retrieval and

for comparing solid models based on this representation becomes key to solving this prob-

lem. Algorithms for the comparison of solid models are described. These algorithms apply

the search techniques of A* and gradient descent to the problems of graph isomorphism and

subgraph isomorphism. These algorithms are used to compare the graph representation of

features and feature interactions that is developed in this work.

In stating that I will incorporate a representation of features and feature interactions in

my approach, you may ask “what is meant by features?” I already stated that a feature

is some structural property of the solid model. But this is a very general definition of a

feature. Many people have many different views of what a feature is. This work attempts

to abstract itself from these varying definitions and to be independent on the class of feature

in question. That is, the representation discussed may be applied to design features obtained

from the design feature history for a given model and alternatively the representation may

be applied to manufacturing features that may be obtained by running a feature recognizer

over a collection of CAD models. It may also be desirable to represent both the design

features and the manufacturing features and have multiple views of the data in the given

3

Are there any
designs like
this one?

Machine plans
for similar
parts?

Figure 1.1: Overview of the problem of solid model retrieval.

CAD knowledge-base.

Nearly all major commercial computer-aided design systems have adopted a feature-

based design approach to solid modeling. Thus design feature data is easily obtained from

the CAD system in use. Models are created via a sequence of operations that apply design

features to incremental versions of a design model. Surfacing, free-form surface shaping,

and deformation operations are internally represented in modeling systems as features in

a “history tree” that generate the final design. However, much in the same manner that

Constructive Solid Geometry (CSG) trees for an individual model can be non-unique, these

design feature histories for CAD models might be ordered in a number of ways and result

in the same final geometry and topology.

In order to efficiently store and retrieve solid models from a CAD knowledge-base, one

requires a more uniform representation for the feature information used to describe the ar-

tifact. Following, techniques are presented for dealing with ambiguity and variation that

are independent of feature definition. Given that, with a fixed feature library, one might

4

be able to design an artifact in several alternative ways, techniques are presented to con-

vert these orderings into a representation that removes the ambiguity that results from the

ordering inherent in the feature history. This representation may also be constructed from

manufacturing features obtained from a feature recognition stage along with an interaction

analysis. Once reduced to this form, solid models can be more efficiently hashed or indexed

for storage.

1.2 Overview of Approach

I present geometric reasoning techniques to generate an abstraction of a CAD model’s

design feature history that deals with the ambiguity and non-uniqueness inherent in the

ordering of the design feature history. These same techniques may also be applied to

manufacturing features to result in an alternative view of the CAD knowledge-base. The

representation described is called theModel Dependency Graph(MDG) and alternatively

theUndirected Model Dependency Graph(UMDG). These schemes represent features as

nodes and feature interactions as edges between the nodes representing the features of the

interaction. Based on the MDG and UMDG, I introduce algorithms that can assess the

similarity of solid models based on features; index models for database storage; and iden-

tify meaningful part families from large sets of designs, such as are stored in engineering

databases. The algorithms described include an inexact solution to the subgraph isomor-

phism and graph isomorphism problems using a gradient descent approach that allows for a

measure of similarity. Also described is a fast A* algorithm for the subgraph isomorphism

problem that I call theA* Subgraph Isomorphism Checker(ASIC).

5

1.3 Outline of Thesis

This paper is organized as follows: Chapter 2 provides an overview of related work and

background in graph matching algorithms, solid modeling and feature-based modeling, and

search algorithms. Chapter 3 presents the formulation of the problem of ambiguous design

history trees and introduces an approach to addressing it based on constraint and graph

algorithms, including defining the MDG and UMDG and describing the gradient descent

approach to the problem and the ASIC algorithm. Chapter 4 describes experimental results

on both randomly generated graphs and on UMDGs of randomly generated CAD models.

Chapter 5 presents conclusions and plans for future work.

6

Chapter 2

Background

This chapter presents a summary of previous research work in the areas related to the work

of this thesis. In this thesis, I reduce the problem of retrieving solid models based on simi-

larity to various graph matching problems including graph isomorphism, subgraph isomor-

phism, and directed graph D-morphism. This chapter begins with a history and overview of

previous algorithmic solutions to the graph isomorphism and subgraph isomorphism prob-

lems. Next, I present relevant research and background of solid modeling and feature-based

design, including the topics of solid model representations and feature recognition. Finally,

I present various search techniques that I will later use in presenting my solutions to the

problem. These include A* search and hill-climbing or gradient descent search.

2.1 Graph Matching

A graph matching problem is a problem involving some form of comparison between

graphs. Graph matching problems of varying types are important in a wide array of ap-

plication areas. Some of the many application areas of such problems include information

retrieval, sub-circuit identification, chemical structure classification, and networks. Prob-

lems of efficient graph matching arise in any field that may be modeled with graphs. For

example, any problem that can be modeled with binary relations between entities in the

7

domain is such a problem. The individual entities in the problem domain become nodes in

the graph. And each binary relation becomes an edge between the appropriate nodes.

Graph matching is a very difficult problem. Thegraph isomorphismproblem is to

determine if there exists a one-to-one mapping from the nodes of one graph to the nodes of a

second graph that preserves adjacency. Similarly, thesubgraph isomorphismproblem is to

determine if there exists a one-to-one mapping from the nodes of a given graph to the nodes

of a subgraph of a second graph that preserves adjacency. Thelargest common subgraph

problem is to find the largest subgraphs of two given graphs such that the subgraphs are

isomorphic. Thedigraph D-morphismproblem is to determine if there exists a one-to-one

mapping from the nodes of one directed graph to the nodes of a second directed graph

that preserves adjacency if you disregard the directions of the arcs. The closely related

problems ofsubgraph isomorphism, largest common subgraph, anddigraph D-morphism

are known to be NP-complete [13]. Whether or not thegraph isomorphismproblem is in

the class of NP-complete problems is an open question [13]. Although there do exist special

cases of each of these problems that can be solved in polynomial time, there do not exist

known algorithms of polynomial complexity to solve these problems in the general case.

Therefore, the search for more efficient solutions to these problems is of great importance.

The best known algorithm for the graph isomorphism problem runs in2O(n�log n) time in

the worst case [4, 42]. One class of graphs that poses particular problems for graph isomor-

phism algorithms is the class of strongly regular graphs. A special case that is solvable in

polynomial time is planar graph isomorphism. AnO(n � logn) algorithm for planar graph

isomorphism can be found in [21] and a linear time solution in [22]. There are other special

cases that are solvable in polynomial time that involve a bound on some nodal property of

the graphs. However, the degree of the polynomial time complexity of these algorithms

is typically dependent on the value of the bound on the given nodal property. So there-

fore unless the bound on the given nodal property is small, these approaches do not seem

8

very practical. A few examples of such cases include graphs of bounded valence [26],

k-contractible graphs [33], and graphs that are pairwisek-separable [32].

2.1.1 Definitions and Background

Graph Isomorphism. The graphsG = (V1; E1) andH = (V2; E2) are isomorphicif

there exists a one-to-one mapping between their node setsV1 andV2 that preserves adja-

cency. Thegraph isomorphism problemasks whether or not there exists such a mapping

between a given pair of graphs. Thegraph isomorphism problemcan be formally defined

as in [13]: “is there a one-to-one onto functionf : V1 ! V2 such thatfu; vg 2 E1 if and

only if ff(u); f(v)g 2 E2?” Isomorphism is an equivalence relation on graphs.

Subgraph Isomorphism. Thesubgraph isomorphism problem, given graphsG = (V1; E1)

andH = (V2; E2), asks whetherG contains a subgraph isomorphic toH. It is formally

defined in [13] by the question of the existence of a subsetV � V1 and a subsetE � E1

such thatjV j = jV2j, jEj = jE2j, and there exists a one-to-one functionf : V2 ! V

satisfyingfu; vg 2 E2 if and only if ff(u); f(v)g 2 E.

Largest Common Subgraph. The largest common subgraph problemasks if there exist

subsetsE 0
1 � E1 andE 0

2 � E2 with jE 0
1j = jE 0

2j � K for some positive integerK such

that the two subgraphsG0 = (V1; E
0
1) andH 0 = (V2; E

0
2) are isomorphic [13].

Digraph D-morphism. A related problem relevant to directed graphs is that ofdigraph

D-morphism. For a given pair of directed graphsG1 = (V1; E1) andG2 = (V2; E2) a D-

morphismis formally defined in [13] as a functionf : V1 ! V2 such that for all(u; v) 2 E1

either(f(u); f(v)) 2 E2 or (f(v); f(u)) 2 E2 and such that for allu 2 V1 andv0 2 V2 if

(f(u); v0) 2 E2 then there exists av 2 f�1(v0) for which (u; v) 2 E1.

9

Adjacency Lists. One of the more common ways of representing graphs makes use of

what are termedadjacency lists[9, 1]. An adjacency listis a list of the nodes that are

adjacent to a given node.Adjacency listsare commonly implemented as an array of linked

lists. Each element of the array represents a node of the graph and each linked list is the

adjacency listfor the given node. Theadjacency listrepresentation of a graph is often

advantageous for representing sparse graphs as it only requiresO(jV j+ jEj) storage space.

Adjacency Matrix. Another common representation of a graph is theadjacency ma-

trix [19, 9, 1, 25]. Theadjacency matrixof a graph withn nodes is ann � n matrix

A = [aij] in which aij = 1 if nodevi is adjacent tovj andaij = 0 otherwise. A major

drawback to usingadjacency matricesis that they requireO(jV j2) space. Theadjacency

matrixof a directed graph is defined similarly withaij = 1 if the directed edge(vi; vj) 2 E.

Theadjacency matrixfor undirected graphs is symmetric with a 0 diagonal.

Strongly Regular Graph. A strongly regular graphis defined in [42] as a graph having

parameters(n; k; �; �) wheren is the number of nodes,k is the degree of each node,�

is the number of common neighbors of each pair of neighbors in the graph, and� is the

number of common neighbors of each pair of non-neighbors of the graph.

2.1.2 Common Approaches

Due to its applicability to such a diverse set of problem domains, the problem of finding

more efficient solutions to the graph isomorphism and subgraph isomorphism problems

have occupied researchers for over 30 years. The simplest complete solution to the problem

of graph isomorphism is a brute force search of the space of all possible orderings over the

nodes of the graphs. For example, arbitrarily order theN nodes of one graph. Next, iterate

over theN ! possible orderings of the nodes of the second graph. The orderings of the nodes

10

of the two graphs represent a one-to-one mapping. On each iteration check this mapping

and determine if it represents an isomorphism between the graphs.

Over the history of the graph isomorphism problem, many approaches have been tried.

One such approach is the search for a graph-theoretical property or some set of properties

that form a sufficient condition to classify graphs through isomorphism [44, 18]. Although

this research direction has yet to arrive at its goal, it has turned up some useful condi-

tions that must necessarily exist for an isomorphism to exist. These conditions, known as

graph invariants, are often incorporated into solutions to the graph isomorphism problem

to reduce the search space immensely.

A second common approach to solving the graph isomorphism problem involves parti-

tioning the nodes of the given graphs based on various graph invariants. A handful of such

approaches to the problem are described in [46, 10, 45, 8, 15, 5, 38, 48]. Upon arriving

at this partition, the simple brute force search is then applied to the reduced search space.

This search can be a depth-first search or a breadth-first search and in some cases is a com-

bination of the two. Some of these methods also incorporate heuristics to either guide the

search or to trim away branches of the search space. An example of such a heuristic that

will be discussed later is Ullmann’s neighborhood consistency check [45].

There have been other approaches to the problem over the years. Some of these include

reductions to other problems. For example, in [2] Almohamad and Duffuaa describe a

linear programming approach. And in [49], Yang shows how a state machine may be

generated from a graph and the resulting state machines then compared for isomorphism.

In [39], an attempt at finding a canonical representation of the adjacency matrix of a graph

is described. Other approaches include the massively parallel structure matcher described

in [3], the decision tree technique described in [30], and the graph decomposition approach

described in [29].

11

2.1.3 Invariants

A graphinvariant is a number or a property of a graph that has the same value for any graph

to which it is isomorphic. Another type of graph invariant is a property on the individual

nodes of a graph that must have the same value for the node in the second graph to which

it is mapped in an isomorphism. This type of invariant is sometimes referred to as a nodal

function. A complete set of invariantsdetermines a graph through isomorphism [19]. No

complete set of invariants for a graph that can be computed in polynomial time is known to

exist. Two simple examples of graph invariants are the number of nodes and the number of

edges. A list of graph invariants and a list of nodal functions follow.

Graph Invariants.

� Number of nodes of a graph.

� Number of edges of a graph.

� The determinant of the adjacency matrix of a graph equals the determinant of any

graph to which it is isomorphic [18]. The proof is trivial. Any graph isomorphic to a

graphA can be represented asP �A �P�1 for some permutation matrixP . Note that

det(P �A � P�1) = det(P) � det(A) � det(P�1) = det(A).

� The characteristic polynomial of the adjacency matrix of a graph is equal to that

of any graph to which it is isomorphic [44]. The characteristic polynomial of an

adjacency matrixA is defined asdet(A � � � I). A proof similar to that above may

be found in [44].

12

Nodal Functions.

� Attribute consistency. Anattributed graphis a graph for which there is a function

mapping each of the nodes of the graph to a subset of a set of possible attributes

or labels. A node of one graph is attribute consistent with the node to which it is

mapped in the second graph if these nodes have the same set of attributes or labels

associated with them.

� The degree of the nodes of the graph [45]. If the graphs are directed this would

include both the in-degree and the out-degree of the nodes [46].

� The number ofnth generation descendentsof the nodes [46]. An nth generation

descendent of a nodei is a node reachable fromi along a path of lengthn. And sim-

ilarly, the number ofnth generation ancestorsof the nodes [46]. An nth generation

ancestor of a nodei is a node from whichi can be reached along a path of length

n. Given an algorithm for finding the nth generation descendents, the nth generation

ancestors of a directed graph can be found by finding the nth generation descendents

of the complement of the graph [46].

� The number of nodes in then-shell of descendentsof the nodes [46, 38]. A node is

in then-shell of descendents of a nodei if it can be reached along a directed path

of lengthn from nodei but not by any other path shorter than lengthn. In other

words, the length of the shortest path from a nodei to any node in itsn-shell isn.

And similarly, the number of nodes in then-shell of ancestors[46, 38]. A nodej is

in then-shell of ancestors of a nodei if nodei can be reached along a directed path

of lengthn from nodej but not by any other shorter path. Given an algorithm for

finding then-shell of descendents, then-shell of ancestors of a directed graph can be

found by finding then-shell of descendents of the complement of the graph [46].

13

� A function equal to 1 on nodes included inn-lengthunrestricted circuitsand 0 oth-

erwise [46]. Similarly, A function equal to 1 on nodes included inn-lengthsimple

circuitsand 0 otherwise [46]. An unrestricted circuit may include an edge more than

once whereas a simple circuit may not include any edge more than once.

2.1.4 Conventional Approaches

The conventional approach to the graph isomorphism algorithm is a modified brute force

algorithm. These approaches make use of one or more invariants or nodal functions to

partition the nodes of the given graphs into sets. Only nodes in corresponding sets may be

mapped to each other. Upon partitioning the nodes of the graphs, either a depth-first search

or breadth-first search can be used. Each search technique has its advantages. If there is no

isomorphism between the graphs then a breadth-first search may determine that the graphs

are not isomorphic more quickly. But breadth-first search requires more space as it keeps

around all of the states of the search space. If there are many isomorphisms between the

graphs, then a depth-first search may find one relatively quickly compared to a breadth-first

search.

GIT: Graph Isomorphism Tester. In [46], Unger attempts to partition the nodes of the

given graphs to as fine a partition as possible. The algorithm he describes begins by gen-

erating a PNPL (possible node pairing list) composed of one partition containing all of the

nodes and then iteratively refines the PNPL into groups of smaller and smaller partitions

representing the nodes that may be paired to each other. On each iteration the algorithm

checks the current ordering to see if it represents an isomorphism. The nodes are first par-

titioned by in-degree and further partitioned by out-degree. The partitions are then refined

by computing the nth generation descendents, nth generation ancestors, the n-shell of de-

scendents, the n-shell of ancestors, a function equal to 1 on nodes included in n-length

14

unrestricted circuits and 0 otherwise, and a function equal to 1 on nodes included in n-

length simple circuits and 0 otherwise.

Unger next describes an EXTEND method of generating additional nodal functions.

Assign each partition a unique number. Then for each node assign it the value that is

the sum of the set values to which each of its descendents belong. And use these values

to further refine the partition. Any symmetric function of the set numbers can be used

and is not limited to sum. The EXTEND method can be used also on the ancestors, n-th

generation descendents, and n-th generation ancestors.

The GIT algorithm works better with graphs with a smaller numbers of edges. There-

fore, if the graphs have more thann(n+1)
2

arcs, GIT first takes their complements. It can do

this because two graphs are isomorphic if and only if their complements are isomorphic.

Using K-formulas. The algorithm described by Berztiss in [5] uses K-formulas. The

K-operator� is a binary prefix operator. A K-formula represents an arc in the digraph

and consists of the K-operator followed by the node names of the originating node and the

terminal node. A K-formula can represent all of then arcs originating from a given node

by beginning the K-formula withn K-operators followed by the originating node name and

then terminal node names. K-formulas can also be used in place of a single node name. A

K-formula can be defined recursively as 1) a node symbol, or 2) ifa andb are K-formulas

then�ab is a K-formula. Berztiss describes a procedure for generating a set of K-formulas

that represent a given digraph. The isomorphism algorithm works by generating a minimal

set of K-formulas for one graph and fixing it. It then attempts to generate a K-formula

for the second graph corresponding to this K-formula (having the same pattern) using a

backtracking procedure.

15

Ullmann’s Algorithm. Ullmann’s algorithm for subgraph isomorphism is perhaps still

one of the most widely used algorithms for graph and subgraph isomorphism. Even today,

researchers often compare the performance of their algorithms to that of Ullmann’s. The

complete description of Ullmann’s algorithm can be found in [45].

Ullmann first describes a simple enumeration algorithm for subgraph isomorphism us-

ing a depth first tree search. He then presents a refinement procedure to reduce the search

space and incorporates it into the algorithm. The simple enumeration algorithm works as

follows. Let the adjacency matrices of graphsG� andG� beA = [aij] andB = [bij].

G� hasp� nodes andq� edges (and similarlyG�). M 0 = [m0
ij] is a matrix withp� rows

and p� columns. Each row has exactly one 1. No column has more than one 1. Let

C = [cij] = M 0(M 0B)T whereT is transpose. If8i; j(aij = 1)) (cij = 1) thenM 0

specifies an isomorphism betweenG� and a subgraph ofG� (labeled condition 1 in [45]).

If m0
ij = 1 then the jth point ofG� is mapped to the ith point ofG�. At the start of the

algorithmM0 = [m0
ij] is constructed.m0

ij = 1 if the degree of the jth point ofG� is� the

ith point ofG� and is 0 otherwise. For isomorphism testing change the� condition to=.

The simple enumeration algorithm generates all possible matricesM 0 such that for allm0
ij

of M 0, (m0
ij = 1)) (m0

ij = 1). For each such matrix, condition 1 is applied to determine

if it is an isomorphism. TheM 0 are generated by systematically changing all but one 1 in

each row ofM0 to a 0 subject to the constraint.

Ullmann’s refinement procedure is then described. It is referred to in [8] as Ullmann’s

neighborhood consistency check. The idea is to eliminate some of the 1’s from the matrices

M thus eliminating some successor nodes from the tree search. It tests each 1 inM to find

whether,8x((aix)) 9y(mxy�byj = 1)). That is for every neighborx of nodei, there must

exist a nodey of G� such thaty is a neighbor of vertexj andx is allowed to be mapped

to y. It changes the 1 to a 0 if this condition is not satisfied. It iterates until there is an

iteration in which none of the 1’s are changed to 0. IfM satisfies the condition for being an

16

M 0 matrix (that is, each row ofM contains exactly one 1 and each column ofM contains

no more than one 1), then if the refinement procedure does not alterM , M specifies an

isomorphism between the graphs. This refinement procedure is then incorporated into the

simple depth-first enumeration algorithm.

Using Distance Matrices. In [38], Schmidt and Druffel propose using distance matrices

as an improvement over using the degree sequence of the nodes of the graphs to reduce the

search space of the traditional backtracking approach. The distance matrixD is ann by n

matrix in which elementdij represents the length of the shortest path between nodesvi and

vj. If i = j, thendij = 0. If there is no path betweeni andj thendij = 1. By using

the distance matrix of a graph, it is possible to obtain an initial partition of the nodes of the

graph that is finer than simply using the degree of the nodes as a partition.

The authors in [38] describe a characteristic matrix. The row characteristic matrixXR

is anN by (N � 1) matrix. xrim is the number of vertices a distancem away fromvi.

The column characteristic matrixXC is anN by (N � 1) matrix. xcim is the number of

vertices from whichvi is a distancem. A characteristic matrixX is formed by composing

the corresponding rows ofXR andXC. An initial partition may be obtained fromX. v1i

will map to v2r in an isomorphism if and only ifx1im = x2rm for all m. An initial partition

based on the distance matrix may be more refined than that based on the adjacency matrix,

and can never be less refined.

The algorithm is a backtracking algorithm that selects possible vertex mappings. It

checks each mapping for consistency using the distance matrix. The mappingv1i to v2r

is consistent if every elementd1ij = d2rs andd1ji = d2sr for all j, s such thatv1j has been

mapped tov2s and if every elementd1ik (wherev1k has not been previously mapped) has a

correspondingd2rp (wherev2p has not been previously mapped) such thatc1k = c2p (that is

they are in the same partition). If the partition does not consist of consistent mappings

17

then the mapping is not an isomorphism and it’s necessary to backtrack and try another

mapping.

There are some classes of graphs for which the distance matrix does not refine the

initial partition any more than the degree sequences. For example, if there was a single

node attached to all other nodes of the graph the shortest path between any two nodes of

the graph will be 2. But the authors offer a possible solution for some cases. If the two

graphs have an equal number of such nodes they may be removed from the graphs. In the

same way if the graphs have an equal number of 0 degree nodes they may also be removed.

2.1.5 Other Approaches

Canonical Adjacency Matrix. In [39], an attempt at finding a canonical representation

of the adjacency matrix of a graph is described. The algorithm described is for undirected

linear graphs. The idea is to generate what it terms an“optimum code” from an adjacency

matrix as a sort of canonical representation of the set of graphs isomorphic to the graph

represented by the adjacency matrix. The graphs are undirected so the upper triangle of the

adjacency matrix represents the entire graph. The algorithm attempts to“relabel” a graph

uniquely so that upon this relabeling the binary number obtained by concatenating the rows

of the upper triangle of the adjacency matrix of the relabeled graph is of greatest possible

magnitude. The worst case complexity of this approach was exponential.

Reduction to Isomorphism of Finite State Machines. In [49], Yang shows how a state

machine may be generated from a graph and the resulting state machines then compared

for isomorphism. Algorithms for determining the transition preserving morphisms (en-

domorphism, homomorphism, isomorphism, and automorphism) of state machines using

nontrivial closed partitions over their state sets are described. These algorithms are then

extended to determine the structural preserving morphisms of finite automata by adding a

18

constraint of output-consistency to the partitions of their state sets. It is then shown that a

Moore-type sequential machine may be constructed from a directed graph by performing

3 steps: constructing a non-deterministic state machine corresponding to the graph, trans-

forming this to an equivalent deterministic state machine, and defining the outputs of the

states. The isomorphism algorithm for finite state machines is then used on the resulting

Moore-type sequential machines.

Linear Programming. In [2] Almohamad and Duffuaa describe a linear programming

approach to the weighted graph matching problem. The problem of matching two weighted

graphs can be formulated as finding an optimum permutation matrix that minimizes a dis-

tance measure between the two graphs. The weighted graph matching problem includes the

graph isomorphism problem as a special case. This paper formulates the problem as a lin-

ear programming problem and uses a simplex-based algorithm to solve it. The idea behind

the weighted graph matching problem is to find the permutation matrixP as to minimize

k Ag � P � Ah � P T k. k A k is the sum of all of the elements of the matrixA. This

is also equivalent to minimizingk Ag � P � P � Ah k. They formulate a linear program-

ming problem, solve the linear programming problem using the simplex method and then

obtain approximate 0-1 integer solutions from the real solution of the linear program. The

simplex method is exponential but in practice will find the solution quickly. Approximate

0-1 integer solutions can be found in polynomial time. There is no known algorithm for

finding the exact 0-1 integer solutions in polynomial time. All known methods for exact

0-1 integer solutions such as branch and bound have exponential time complexity.

Graph Decomposition Approach. In [29], an approach to the graph isomorphism prob-

lem based upon decomposing the graphs into common subgraphs is proposed. The idea of

the algorithm is to search for a graph among a collection of model graphs for one that is

19

isomorphic to some given query graph. The algorithm described builds a network from the

set of model graphs. It decomposes the model graphs into subgraphs, then subgraphs of

the subgraphs, etc. Thus common subgraphs of the larger graphs can be represented once

in the network. The network algorithm (NA) will then take the input graph and propagate

it through the network to determine a subgraph isomorphism. The authors also describe an

inexact network based algorithm (INA). It is based on their exact algorithm. The authors

compare NA to Ullmann’s. Ullmann’s algorithm improves with more diversity among the

labels. But too many different labels is actually harmful to NA when it breaks the model

graphs down into subgraphs. The network will not be as compact as it would be with less

diversity among the labels.

Decision Tree Approach. In [30], the authors attempt to solve the problem of given a

database of model graphs known a priori and an input graph known only at run-time, find

any of the model graphs for which the input graph is either isomorphic to or isomorphic

to a subgraph of. Their algorithm runs inO(M2) time if you neglect preprocessing of the

model graphs and does not depend on the number of model graphs.M is the maximum

number of nodes in any given model graph. They arrive at this polynomial time by building

a decision tree from all permutations of the adjacency matrices of the model graphs. This

decision tree in the worst case is exponential in size.

The authors propose techniques for pruning the decision tree. The first is a breadth-

pruned decision tree. It will no longer support subgraph-isomorphism but the runtime is

still polynomial although nowO(M3). One type of breadth-pruning involves transforming

the input graph by ordering the vertices so that each vertex is connected to at least one

other vertex that appears earlier in the ordering. For connected graphs this is equivalent

to finding the spanning tree of the graph (quadratic time). Now any permutations of the

adjacency matrices of the model graphs for which this condition does not hold may be

20

removed from the decision tree. The algorithm is still quadratic and still works for both

graph and subgraph isomorphism but the decision tree is greatly reduced in size. If the

graph is completely connected this pruning will not save any space. A second breadth-

pruning technique increases the runtime toO(M3) but no longer guarantees that subgraph

isomorphism may be detected as some of the subgraphs of a given model graph may no

longer be present in the decision tree. But graph isomorphism can still be detected in

polynomial time.

The authors next present depth-pruning the decision tree to use the decision tree as an

index into the collection of model graphs for further testing by a conventional algorithm

such as Ullmann’s. The idea is instead of representing all subgraphs and permutations of

the model graphs in the decision tree, only represent all subgraphs and permutations of size

k < n in the decision tree. When an input graph is now classified against the decision tree,

all graphs associated with the result decision tree node must now be further tested with a

conventional algorithm such as Ullmann’s but Ullmann’s may be initialized based on the

decision tree greatly reducing the search space. Polynomial time is no longer guaranteed

but this technique will reduce the size of the decision tree and make it of practical use for

larger sized graphs.

A technique based on the decision tree approach to the graph and subgraph isomor-

phism problem to find what is termed error-correcting graph isomorphism is described

in [31]. The authors begin by defining error-correcting graph isomorphism. The idea is to

develop a measure of distance between graphs by the cost of making a sequence of edit

operations to transform one graph to the other. The possible edit operations are chang-

ing a nodes label, changing an edge’s label, adding an edge, and removing an edge. The

definition can be extended to include adding and removing nodes. Costs are assigned to

each type of operation and the distance between two graphs is taken to be the minimum

cost to transform one graph into the other. There may be more than one error-correcting

21

isomorphism but the problem is to find the one of minimum cost.

To compute the error-correcting isomorphisms the authors make use of the decision

tree approach described in [30]. They compute all of the error-correcting isomorphisms

of the model graphs and classify them by the decision tree. Then at run-time they use the

decision tree algorithm to find an exact match in the tree. Alternatively, they generate all

of the error-correcting isomorphisms of the input graph some distance away and use the

decision tree attempting to match each in order of distance.

Parallel Methods. The PARKA structure matching algorithm is described in [3, 37]. The

authors describe an algorithm for efficient associative matching of relational structures in

large semantic networks. The goal is to allow for efficient and flexible access to large

knowledge bases for case-based reasoning systems. The algorithm uses PARKA, a mas-

sively parallel knowledge representation system which runs on the Connection Machine.

The algorithm uses parallel search for knowledge structures. Both the retrieval probe and

the stored cases are represented as graph structures in a semantic network. The algorithm

relies on massively parallel hardware (the CM-2) to match knowledge structures in memory

against the retrieval probe.

A knowledge base (KB) defines a set of unary and binary relations. Given a conjunctive

expression of a subset of these relations, the task is to retrieve all structures from memory

that match this expression. This problem of matching knowledge structures can be viewed

in two ways: a subgraph isomorphism problem or a problem of unification or constraint

satisfaction. The authors take the subgraph matching view. Seen this way, case memory is

represented as a graph structure, where cases consist of a set of concepts (nodes) connected

by relations on the concepts (edges). The problem of finding similar cases is reduced to a

problem of structural matching, or of identifying subgraphs in the semantic network that are

isomorphic to the query graph. The structure matching algorithm operates by comparing

22

the query case against a KB to find all structures in the KB which are consistent with the

query. This match process occurs in parallel across the entire KB.

2.2 Solid Modeling and Feature Based Design

2.2.1 Constructive Solid Geometry (CSG)

Constructive Solid Geometry (CSG) is a volumetric representation scheme for three-dimensional

solid geometric models. Solids are represented as a set-theoretic boolean expression of

primitive solid objects, of a simpler structure [20]. Regularized set boolean operations and

motion operations are used to represent a composition of primitive geometric shapes. The

standard primitives that are used in the CSG representation scheme are the parallelepiped

or block, the triangular prism, the sphere, the cone, the cylinder, and the torus [20]. The set

boolean operations that may be used are regularized union, regularized difference, and reg-

ularized intersection. The regularized boolean set operations are extensions of the typical

boolean operations that prevent dangling edges and faces from resulting. A CSG represen-

tation of a solid model can be viewed as a tree. The primitive shapes used in representing

the solid are the leaves of the tree; the boolean set operations and motion operations are the

interior nodes, as shown in Figure 2.1 (a). A CSG representation of a three-dimensional

solid model lacks uniqueness. There may be several ways to represent a single solid model

with multiple CSG representations. One solid may be representable by several valid CSG

representations, as shown in Figure 2.1 (b).

2.2.2 Boundary Representation (B-rep)

A solid can unambiguously be represented by describing its surface and its topological ori-

entation. The boundary representation (B-Rep) consists of a topological description of the

23

U*

-*

U*

-*

-*

U*

(a) (b)

Figure 2.1: Examples of CSG trees: two different trees that create the same solid model.

connectivity and orientation of the faces, edges, and vertices and a geometric description

for embedding these surface elements in space. The vertices, edges, and faces are specified

abstractly with their incidences and adjacencies indicated in the topological description.

And in the geometric description, the equations of the surfaces of which the faces are a

subset are specified [20].

The boundary representation (B-Rep) scheme represents three-dimensional solid ob-

jects by a hierarchical description of the faces, edges, and vertices that form the boundary

of the model. A face is specified by the edges that it is bounded by. An edge is specified

by the curve it lies on and its vertices. Vertices are points in three-dimensional coordinate

space. The B-Rep representation scheme is unique unlike that of the CSG representa-

tion [23].

2.2.3 Feature-based Modeling

A feature can be defined differently depending on the context in which it is to be used. Ma-

chining features may differ from forging features [24]. Features of a solid geometric model

are dependent on the use of the model. In the application of machining, some example

24

features are holes, slots, pockets. Each such feature of the solid model may correspond to

some manufacturing procedure or step of the design process.

Modeling and design are typically performed by the addition and subtraction of prim-

itive shape components from the solid model. Using this approach, features would be

extracted later using a feature recognition process. However, this is not the only approach

that may be used. Modeling by using design features is an alternate approach. This is

known as feature-based modeling [36, 14].

In [36], it is pointed out that feature-based design has the advantage of keeping relevant

information for applications during the design process. It is also pointed out that manufac-

turing concerns can be considered early in the design process. Using feature recognition,

this may not have been possible. A model may have been designed with “features” that

would be difficult to actually manufacture. In feature-based design, functional meaning is

assigned to the parts of an object during the design phase rather than during the feature

recognition [6].

[11] discusses a combined approach of feature-based design and design recognition.

The feature-based design part of the described approach incorporates a feature library, con-

sisting of predefined design features and user defined design features. The predefined fea-

tures consist of features such as cylindrical holes, rectangular pockets, and slots. User-

defined features can be created by the designer to make up for a deficiency in the features

in the library. These user-defined features can be created with either the feature modeler or

a solid modeler.

2.2.4 Feature Recognition From Solid Models

Much research has been done in the area of automatic feature recognition from three-

dimensional solid models [17, 34, 27, 28, 47]. Although there are other representation

25

schemes, the most commonly used representations in systems that perform automatic fea-

ture recognition are the B-Rep and the CSG. This is in part due to the fact that a majority

of solid modeling and CAD systems make use of either the B-Rep or the CSG in their

representations. Some systems may incorporate both into the representation of the solid

models. Boundary representations are often used for rendering and display purposes, while

CSG-like structures supply the history of the operations performed in designing an artifact.

One technique used for feature recognition makes use of the attributed adjacency graph

(AAG) that is generated from the B-Rep of the solid model and is described in detail in [24].

In an AAG, each node represents a face of the solid model. Each edge in the solid model

becomes an arc in the AAG where the endpoints are the nodes that represent the faces that

share the edge. Each arc in the AAG is attributed with an attribute that specifies if the faces

corresponding to the edge are concave or convex. The technique for feature recognition

described in [24] uses graph-based techniques to search the AAG of the solid model in

question for subgraphs which correspond to the AAG representations of primitive elements,

and incorporates some special techniques for detecting interacting features. The use of

AAGs for feature recognition is limited to polyhedral parts with polyhedral features [24].

Another technique for feature recognition similar to the use of AAG is presented in [27].

The approach presented incorporates what is termed a cavity graph. A cavity graph consists

of nodes representing the faces of the solid. Links between two nodes represent noncon-

vexity of the corresponding faces. And each node is labeled to show the relative orientation

of the faces in space. The method proposed uses a hypothesis generation and elimination

approach. The hypotheses are generated by decomposing the cavity graph of the object into

maximal subgraphs and searching searching these subgraphs for the known cavity graphs

of primitive components. Rule-based methods are used to eliminate incorrect hypotheses

and generate new hypotheses. The methods described also incorporate the idea of using

“virtual links” to aid in finding interacting features (i.e., additional links are added to the

26

cavity graph) [27].

Convex-hull techniques use volumetric properties of solid models rather than surface

features to extract features. The convex-hull technique relies on finding the materials that

must be removed from a solid to form the model of the part. The feature extraction process

uses convex decompositions. An object is represented as a set of convex components with

alternating addition and subtraction of volumes. The convex decompositions are sometimes

known as alternating sum of volumes (ASV) [23]. This decomposition represents an object

by a series of convex volumes with alternating additions and subtractions. The technique

first finds the convex hull of the object and then finds the set difference between the object

and its convex hull. The technique is applied recursively to find the full decomposition

of the object. The domain of geometric objects that ASV can handle is limited as ASV

will not always terminate. The removed volumes also do not always represent features.

Volumes that may be shared by two or more interacting features will only be applied to

one, for example [23].

In addition to techniques for feature recognition that use B-rep as input, there exist

techniques that use the CSG representation of the solid model. These techniques must first

overcome the problem that the CSG representation is not unique. A single solid model may

be represented by several different CSG trees. Another problem is that nearby nodes in the

CSG tree do not necessarily correspond to features. The set difference operation also does

not necessarily correspond to the removal of manufacturing material; and some removal

operations may be implicit without the use of a set difference operation. Most methods of

performing feature recognition from the CSG representation begin by converting it to some

other representation. Although the potential exists for the CSG representation to more

closely resemble machining operations, in practice there appears to be a lack of a general

relationship between the primitives of a CSG and the features of the design [23].

27

2.3 Search Techniques

Many problems can be solved by the application of a search strategy. These search strate-

gies begin at some initial problem state and search through the state space for the given

problem looking for a goal state. This search of the state space can be visualized as a tree

search. Nodes of this search tree represent various states of the problem. The root node of

this tree represents the initial state. The children of a search tree node, or the successors of

the node, represent the states that result from performing successor operations to transform

the problem from one state to the next. Making such a transformation is termed expanding

a search node. The number of new search tree nodes that result from applying the successor

functions to a search node is referred to as thebranching factor. Not all search strategies

involve searching the state space in a type of tree search. There are other algorithms known

as iterative improvement algorithms. These algorithms simply maintain the current state

and iteratively make changes to the state that improve some evaluation of the state. These

algorithms tend to halt in polynomial time whereas tree search strategies are often exponen-

tial in the worst case. But they are not complete and suffer from an inability to guarantee an

exact solution. There are several techniques for searching a search space. Each technique

has its advantages and disadvantages. Here I describe a few search strategies.

2.3.1 Depth-first Search

Depth-first searchproceeds through the search tree by always expanding one of the search

nodes at the deepest level of the tree. It continues in this way until it either reaches a goal

node or until it reaches a goal node with no expansion (i.e. a node for which the successor

functions produce no new search nodes). When the search reaches a dead end such as this

it backs up to a shallower level and continues thedepth-first searchdown another branch

of the search tree. The space requirements ofdepth first searchis onlyO(b� d) whereb is

28

the branching factor and is the maximum depth of the search tree. The time complexity in

the worst case isO(bd). But for problems with many solutionsdepth-first searchmay take

much less time than this. For problems that have very deep or infinite search treesdepth-

first searchmay get stuck going down a wrong path, and thus for such problems another

search strategy should be used [35].

2.3.2 A* Search

A* searchis a form of informed search [35, 43]. Informed search methods make use of

problem-specific information to guide the search and to help obtain more efficient solutions.

The idea behindA* searchis to minimize the total path costf(n) = g(n) + h(n) where

g(n) is the cost of the path so far andh(n) is the estimated cost to the goal. The function

f(n) can be looked at as the estimated cost of the cheapest solution throughn. If h(n) never

overestimates the cost to the goal, then it is said to beadmissible. If h(n) is admissiblethen

A* searchis both optimal and complete [35].A* searchchooses the successor node as to

minimizef(n).

2.3.3 Constraint Satisfaction

The states of aconstraint satisfaction problemare represented by a set of values for a set of

variables. A goal state for such a problem must satisfy a set of constraints on the variables.

These problems may be solved using search techniques such as those described. There are

some other techniques that may be applied in such situations.Arc consistency checking

verifies that every variable has a value in its domain that is consistent with the constraint

set [35]. Values that are inconsistent with any constraint are removed from the domain of

the given variable.Arc consistency checkingmay in some cases result in a solution to the

problem if the domain of each variable is reduced to a single value.

29

One form ofarc consistency checkingis known asforward checking[35]. Whenfor-

ward checkingis used, whenever a variable is instantiated, any value in the domain of a

variable that has not yet been instantiated that is inconsistent with the variables that have

been assigned values is removed from the domain of that variable. If the domain of a

variable becomes empty the search backtracks immediately.

2.3.4 Hill-climbing Search

Hill-climbing or gradient descentis an example of an iterative improvement algorithm [35,

43]. These algorithms work by making iterative changes that always improve the current

state. The value of the current state is determined by an evaluation function. Thehill-

climbing algorithmdoes not maintain a search tree and only stores the current state of the

problem. There are two variations.Best ascentwill always choose the best successor of

the current state.Next ascentchooses the first successor it finds that is an improvement on

the current state.

There are problems withhill-climbing algorithms. The first is the problem oflocal

maxima. The algorithm may reach a peak in the state space that is lower than the highest

peak and halt with a far from accurate answer. Another problem is that ofplateaux. A

plateau is a flat area of the search space. The search will wander around randomly on such

a plateau. Random restart hill-climbingattempts to combat these problems by starting at

a randomly chosen new initial state when the search reaches a point where it can make no

further progress. It can use a fixed number of restarts or can continue until the best result

found so far has not been improved for a specified number of iterations [35].

30

Chapter 3

Problem and Approach

3.1 Problem Formalization

A design,D, is defined as a tupleD = hF; P; T i where:F is a finite setF = ff0; : : : ; fng

of features (these may be design features or manufacturing features);P is the geometric

and topological model of the artifact (including the boundary representation of the compo-

nent);T is a possibly empty set of dependencies or orderings imposed on the features (for

example,T can be the design history of the artifact). If the features inF are design features

thenT can be thought of as a type of CSG tree and design features are local or global op-

erations on part geometry. In general, the features inF are volumetric representations and

are themselves CAD models, although more primitive then the CAD model as a whole.

The boundary representation (B-rep) of a component (or part),P , is a representation

of the geometric and topological model of the artifact.T is another representation of the

geometric model—related in some way to the steps that were involved in the design. Most

CAD and three-dimensional geometric/solid modeling packages use either B-rep or CSG

representations, and in some cases both. There also exist techniques for converting (1)

CSG to B-Rep; (2) certain classes of solids from B-Rep and CSG; and (3) feature identifi-

cation from solid models. Hence, history information is either readily available or can be

produced, to a degree, via automated feature identification techniques [41, 16, 40].

31

The setF of features is a finite set defined asF = ff0; : : : ; fng. These features can in-

clude any volumetric or surface operation typically used in a commercial CAD environment

(i.e., holes, pockets, slots, bosses, etc.) and alternatively they can include any manufactur-

ing features typically extracted using a feature recognizer (i.e., holes, pockets, slots, etc.).

A feature orderingT , can be either a tree structured representation of the design phase of

an engineering artifact or it can simply be a linear ordering of the steps taken to design the

artifact. The nodes of this tree represent the primitive elements added to or removed from

the component during the design phase, such as blocks, cones, and cylinders, operations on

those primitives, and operations on the component as a whole entity. Some of the possible

operations include blends, chamfers, fillets, extrusions, contouring, and free-form surface

modeling.T can also represent alternatively some ordering on the manufacturing features,

perhaps associated with some sequence of manufacturing operations.T can also be an

empty set.

3.2 Design Histories

The same artifact may be designed in several different ways. One designer may do things in

one order, and another designer in a different order. These different orderings of operations

will result in history trees that can be drastically different and yet represent the same thing.

For example, Figure 3.1 shows a solid model for a torpedo motor housing consisting of

about one hundred design feature instances. Figure 3.1 also shows one possible design

feature history tree for this model that can be used to define this part in a commercial CAD

environment (there may be many other ways of designing this part). The non-uniqueness

of the history tree poses a problem as to how to effectively index and retrieve CAD and

solid model data based on feature information.

This problem is similar to that of the non-uniqueness of CSG models. In the feature

32

Torpedo
Motor

Feature History Tree

Figure 3.1: An illustration of a model of a torpedo motor housing and a snapshot of the
design feature history tree for the torpedo motor (each box is a feature or operation on
the model). This history tree was generated when the motor was modeled using Bentley
Systems’ MicroStation Modeler. The over one hundred features and operations make the
history tree difficult to present in detail—for requiring more detail, this model is available
through the National Design Repository at http://repos.mcs.drexel.edu/.

recognition techniques that use CSG models rather than the B-reps, methods of converting

the CSG to another representation or an ordered representation are usually incorporated to

get around this disadvantage [40]. I will incorporate similar techniques in the use of history

trees for similarity comparisons.

Some operations performed on the design are dependent on other previous operations

and must be performed in a specific order. For example, it is not possible to create a hole in

a block that does not yet exist. But there may be other operations that may be independent

of all other operations that have been performed on a design. For example, if you had a

block and wanted to remove a hole in one side and create a slot in the other side with no

interaction occurring between this slot and hole, then it would make no difference to the

33

final product which of these two operations occurred first.

The history tree is initially sorted in the relative order of when each operation was

performed in time relation to each other. This ordering has no bearing on the order of

operations performed during the manufacturing of the component. For example, a designer

may take a block and remove a hole in one side and then a hole in the other side. The

designer may then remove a second hole in the first side. When the manufacturing plan is

later devised by a machinist, he or she may decide that the two holes on the first side can

be drilled at the same time, rather than following the exact steps taken in the design phase.

Hence, to retrieve engineering data from knowledge-bases using the design history as

part of the retrieval probe, it becomes necessary to transform the design history tree in such

a way that it is now ordered solely on the basis of dependencies rather than on an order

based on temporal position.

3.3 Model Dependency Graph

Let’s begin by developing a representation to handle design features. Upon doing so, I

will discuss how this same representation may be used for manufacturing features. As

discussed earlier, design history trees, like CSG trees, are non-unique. That is, for a given

solid model, there may be several ways to design it and result in the same final product,

and thus there may be different design history trees that represent the same design.

TheModel Dependency Graph(MDG) attempts to deal with this problem. This graph

is a directed acyclic graph which has some unique characteristics. The model history,

M , is defined asM = fm0; : : : ; mng. Themi is the complete model at stagei of the

design. That is,mi represents the solid model after featurefi is applied to the model.

There is an ordering inherent in the design history graph. In the case where it is not clear

which operation or feature came before the other, simply impose an arbitrary order on

34

Figure 3.2: Pictured is a single solid model and several alternative design feature histories,
and one possible CSG tree, that can produce it. On the right are the MDGs for each of these
alternatives—note that they are all D-morphic to one another.

these operations. Themi may be generated and stored at design time. Or they may be

easily generated from the design history. Letvol(fi) represent the “solid” volume that is

either added or removed from the complete model by the application of featurefi.

Definition 1: Model Dependency Graph- basic definition

A Model Dependency Graph(MDG) is defined asG = (V;E). The vertex set is

defined asV = ff0; : : : ; fng. The indices on thefi represent the order that the features

were applied during the design process. The edge set can be defined asE = f(fi; fj) such

thati > j; vol(fi) \ vol(fj) 6= ;g. Note that\ is not a regularized intersection.

One limitation with the MDG as it has been defined in Definition 1 is that it assumes an

35

explicit ordering on the features or design operations. In many cases this may be captured

in the solid modeling application in the form of a design history. But can the MDG be used

when dealing with CSG trees? The answer is yes and can be obtained by extending the

definition of the MDG to work recursively down the CSG tree.

Definition 2: Model Dependency Graph- non-linear definition

Let T = (op left right) be a CSG tree or some non-linear design history whereop is an

operation andleft andright are CSG subtrees or primitives shapes. LetG1 = (V1; E1) be

the MDG of left that results from either the basic definition or the non-linear definition.

Let G2 = (V2; E2) be the MDG ofright that results from either the basic definition or

the non-linear definition. Then the MDG ofT can be defined asG = (V;E) such that

V = V1 [V2 andE = E1 [E2 [E3 whereE3 = f(v2; v1); v1 2 V1; v2 2 V2 such that

vol(v1) \ vol(v2) 6= ;g. Note that\ is not a regularized intersection.

An example of a solid model with different possible design feature histories is shown in

Figure 3.2. There is a property of the MDG that I will exploit in our similarity assessment

of solid models:digraph D-morphism. For a given pair of graphsG1 = (V1; E1) and

G2 = (V2; E2) a D-morphismis formally defined in [13] as a functionf : V1 ! V2 such

that for all(u; v) 2 E1 either(f(u); f(v)) 2 E2 or (f(v); f(u)) 2 E2 and such that for all

u 2 V1 andv0 2 V2 if (f(u); v0) 2 E2 then there exists av 2 f�1(v0) for which(u; v) 2 E1.

Theorem 1: D-morphisms of Model Dependency Graphs.LetG1 andG2 be two MDGs

for the same solid model resulting from different orderings of a feature setF = ff0; : : : ; fng

(such as shown in Figure 3.2).G1 andG2 are D-morphic.

Proof: Pick any two orderings of the setF = ff0; : : : ; fng arbitrarily. Let these orderings

beL = fl0; : : : ; lng andH = fh0; : : : ; hng where8fi 2 F; 9lj 2 L; hk 2 H such that

36

fi = lj = hk and9i; 0 <= i <= n such thatli 6= hi. Let G1 = (V1; E1) be the MDG

that results fromL and letG2 = (V2; E2) be the MDG that results fromH. It is clear

that V1 = V2. By the definition of the MDG, these vertex sets must be equal to the set

F . Now take any two verticesvk; vl 2 V1. Pick out the verticesvm; vp 2 V2 such that

vk = vm = fi andvl = vp = fj. Note thatvol(vk) = vol(vm) andvol(vl) = vol(vp).

Therefore,vol(vk)\ vol(vl) = vol(vm)\ vol(vp). Hence, from the definition of the MDG,

if there is an edge(vk; vl) 2 E1 wherek > l then either(vm; vp) 2 E2 wherem > p or

(vp; vm) 2 E2 wherep > m. Therefore,G1 andG2 are D-morphic.

Some questions may arise given the definition of MDG and the proof of D-morphism.

One such question is how to generate the MDG of a given model. A possibility is to

generate the MDG at design time. Upon the addition of a feature to the design, a node must

be added to the MDG. Along with this new node, edges must be added from the newly

added node to any previously added node corresponding to any features for which there is

a non-empty intersection with the newly added feature or some interaction with the newly

added feature.

Another question that will arise is how to handle the possibility of the same model being

designed two different ways or with different feature sets. The same model designed with

different feature sets will have MDGs that are not necessarily D-morphic. And related to

this question is the question of what to do if a design history is not available for a given

model. The answer to these questions is to use the manufacturing features rather than the

design features. Use a feature extraction system such as F-Rex [34] or Allied Signal’s

FBMach [7] to extract the features. In this way you can use one common set of features

across the entire collection of models. Performing this feature extraction will result in a

unique set of features for the given model. This set of features will become the node set of

the MDG. You can then “order” this set arbitrarily and generate the edge set of the MDG

37

by making use of feature interactions detected during the feature extraction phase.

The MDG as defined is a directed graph. What exactly is the significance of the di-

rection of the edges? Well, the direction is an indication of the order the features were

performed. In the case of using design features, the direction represents which design fea-

tures were added to the design earlier in the design phase. If manufacturing features have

been used in the construction of the MDG, then the direction possibly will represent which

operations were performed before which others (for example, if the features are related to

some manufacturing plan). But what meaning does the direction on the edges have to fea-

tures obtained through feature extraction? In the grand scheme of things, there is no clear

meaning. In fact, as stated above the extracted features are “ordered” arbitrarily. There-

fore these directions may result in unintended ambiguity. So instead, define anUndirected

Model Dependency Graph(UMDG). The UMDG is defined similarly to the MDG. The

node set consists of the set of features, either design or manufacturing features, and the

edge set consists of edges between any two features between which there is an interaction.

Definition 3: Undirected Model Dependency Graph

An Undirected Model Dependency Graph(UMDG) is defined as an undirected graph

G = (V;E). The vertex set is defined asV = ff0; : : : ; fng. The edge set can be defined as

E = fffi; fjg such thatvol(fi)\vol(fj) 6= ;g. Note that\ is not a regularized intersection.

Theorem 2: Isomorphisms of Undirected Model Dependency Graphs.LetG1 andG2 be

two UMDGs for the same solid model resulting from the use of the features resulting from

two executions of a consistent and unambiguous feature extraction system.G1 andG2 are

Isomorphic.

38

Proof: Let F = ff0; : : : ; fng be the feature set resulting from the first execution of the

feature extraction system. LetL = fl0; : : : ; lng be the feature set resulting from the second

execution. The feature extraction system in question is assumed to be consistent and there-

fore, F = L. Therefore,8fi 2 F; 9lj 2 L such thatfi = lj and8li 2 L; 9fj 2 F

such thatli = fj. Therefore, the node setsV1 and V2 of G1 andG2 are the same.

Now take any two verticesfk; fl 2 V1. Pick out the verticesfm; fp 2 V2 such that

fk = fm andfl = fp. Note thatvol(fk) = vol(fm) andvol(fl) = vol(fp). Therefore,

vol(fk) \ vol(fl) = vol(fm) \ vol(fp). Hence, from the definition of the UMDG,9 an

undirected edgeffk; flg 2 E1 , 9 an undirected edgeffm; fpg 2 E2. Therefore, the

edge setsE1 andE2 of G1 andG2 are the same and thereforeG1 andG2 are Isomorphic.

Theorem 3: Subgraph Isomorphisms of Undirected Model Dependency Graphs.Let G1

be the UMDG for a solid modelM . Let G2 be the UMDG for the solid modelM 0 that

results from adding a featuref 0 to solid modelM . G1 is isomorphic to a subgraph ofG2.

Proof: Let F = ff0; : : : ; fng be the feature set forM . The feature set forM 0 is F 0 =

ff0; : : : ; fng [ff
0g. The node set ofG1 is V1 = F = ff0; : : : ; fng and the node set ofG2

isV2 = F 0 = ff0; : : : ; fng[ff 0g. The edge set ofG2 is thereforeE2 = E1[fff 0; fig such

thatvol(fi) \ vol(f 0) 6= ;g. Note thatV1 � V2. To put this strongerV1 = V2 � ff 0g. Also

note thatE1 � E2 and to say this strongerE1 = E2�fff 0; fig such thatvol(fi)\vol(f 0) 6=

;g. Remove the nodef 0 from V2 and remove all edges that havef 0 as an endpoint fromE2.

You have now obtainedG1. Therefore,G1 is isomorphic to a subgraph ofG2.

39

3.4 Comparison and Retrieval

To compare the similarity of 2 solid models, test the MDGs of the models for a D-morphism

or for a subgraph D-morphism. Accomplish this by testing the corresponding UMDGs for

isomorphism or subgraph isomorphism. The general problem of determining if there exists

a subgraph isomorphism for a given pair of graphs is NP-complete and the graph isomor-

phism problem is an open question. Therefore, there is currently no known polynomial time

solution for these problems [13]. However, there are two aspects of this problem domain

that can be exploited to significantly reduce this complexity:

� First, it is not necessary to completely solve the isomorphism and subgraph iso-

morphism problems: Since we are only concerned with similarity, knowing if two

UMDG’s are “almost” isomorphic is sufficient. Hence, we can use a heuristic method

for the Isomorphism test. Specifically, an algorithm that is a variant of gradient de-

scent (or hill-climbing) that exploits the feature information we have in the design

feature history will be described.

� Second, there is a great deal of domain knowledge present in the CAD model and

in the feature history that can reduce the search space. For example, we will only

consider mappings that compare similar feature types (i.e., holes map to holes, not to

pockets). Additional constraints about vertex degree and size, location, and orienta-

tion can also be considered.

In the following subsections, two graph isomorphism algorithms will be described.

First, I will describe a gradient descent approach to the problem. This approach is not

guaranteed to find an isomorphism if one exists, but allows for a measure of similarity based

on the best result obtained from executing some number of restarts of the algorithm. Next,

I describe Ullmann’s algorithm for subgraph isomorphism [45]. And finally I describe a

40

variation of Ullmann’s algorithm that employs an A* search and incorporates more nodal

invariants in the initialization. I call this variation of Ullmann’s algorithm theA* Subgraph

Isomorphism Checkeror ASIC.

3.4.1 Gradient Descent

In testing for an isomorphism, first, arbitrarily choose an initial mapping between the nodes

of the two graphs (i.e., for each node ofG1 choose at random a node ofG2 such that no

two nodes ofG1 are mapped to the same node ofG2). Next, swap the mappings of the

two nodes that reduce the value of the evaluation function the most. If there is no swap

that reduces the value of the evaluation function, but there are swaps that result in the same

value (i.e., a plateau has been reached), choose one of those at random. The algorithm ends

when either every possible swap increases the value of the evaluation function or it makes

P random moves on the plateau. Values ofP ranging from constant values toP = jV1j
2

(whereV1 is the vertex set in the smaller graph) have been experimented with.

The evaluation function is the count of the number of mismatched edges. That is, the

evaluation function,H = jEj such thatG1 = (V1; E1) is the smaller of the two graphs

being compared,G2 = (V2; E2) is the larger of the two graphs, andE = f(u; v) 2 E1

such that(((paired(u); paired(v)) 62 E2 ^ (paired(v); paired(u)) 62 E2)) _ label(u) 6=

label(paired(u)) _ label(v) 6= label(paired(v)g. As a measure of similarity employ

the valueH� = minfH1;:::;Hng
jE1j

whereH1; : : : ; Hn are the values ofH from up ton ran-

dom restarts of the algorithm andE1 is the edge set of the smaller graph. The function

“paired(x)” above returns the nodey 2 V2 that is currently mapped to the nodex 2 V1.

This value may be null in the case of subgraph isomorphism testing as not all nodes in the

larger graph may be mapped to a node if the number of nodes of the graphs differs. The

function “label(x)” used above returns the label, or attributes, of the nodex.

41

Algorithm 3.1: Subgraph Isomorphism Approximation (Gradient Descent)
Input: G1 = (V1; E1); G2 = (V2; E2), the two graphs being tested.P is the
number of moves to make on a plateau before giving up.
Output: H = 0 if the graphs are found to be isomorphic or if one is found
to be subgraph isomorphic to the other. Otherwise,H is returned whereH
is the number of mismatched edges when the algorithm halts.
ISOMORPHISMAPPROXIMATIONGRADIENTDESCENT(G1 ; G2; P)
(1) Pairings = GETRANDOMPAIRINGS(G1 ; G2)
(2) i = 0
(3) BestResult = H(G1; G2;Pairings)
(4) while (BestResult > 0) ^ (i < P)
(5) if H(G1; G2,APPLYSWAP(Pairings ,BestSwap)) < BestRe-

sult
(6) Pairings = APPLYSWAP(Pairings ,BestSwap)
(7) i = 0
(8) BestResult = H(G1; G2, Pairings)
(9) else
(10) if H(G1; G2, APPLYSWAP(Pairings ,BestSwap)) = BestRe-

sult
(11) Pairings = APPLYSWAP(Pairings,BestSwap)
(12) i = i+ 1
(13) else
(14) i = P

(15) return BestResult

The node labels may contain as little or as much information as you choose. For the

experiments that are described later, the node labels were simply the type of feature, such

as “hole” or “pocket”. However, by incorporating more information into the node labels

such as dimensions or orientation, you may restrict allowable mappings which will increase

the algorithm’s performance by reducing the search space. Incorporating more information

in the node labels will also obtain a more meaningful similarity measure. For example, if

some notion of dimension was incorporated into the labels then a really large block with a

tiny hole will not be found similar to a little block with a larger hole.

Algorithm 3.1 is the algorithm developed and described for the Subgraph Isomorphism

Test using gradient descent. In the algorithm,Pairings refers to the mapping between

42

Algorithm 3.2: Similarity
Input: G1 = (V1; E1); G2 = (V2; E2), the two graphs being compared.R
is the number of restarts.
Output: S = 0 if the smaller of the two graphs is the largest common sub-
graph. Otherwise,S is returned whereS is the smallest result ofR restarts
of IsomorphismApproximationGradientDescent divided by the number of
edges in the smaller of the two input graphs.
SIMILARITY (G1 ; G2; R)
(1) i = 1
(2) BestResultThusFar = ISOMORPHISMAPPROXIMATIONGRADIENT-

DESCENT(G1 ; G2; P)
(3) while (BestResultThusFar > 0) ^ (i < R)
(4) BestResultThusFar = min f BestResultThusFar , ISOMOR-

PHISMAPPROXIMATIONGRADIENTDESCENT(G1 ; G2; P) g
(5) i = i+ 1
(6) return BestResultThusFar

minfjE1j;jE2jg

the nodes of the two graphs. And GETRANDOMPAIRINGS returns a random mapping as

described above.H is the evaluation function that counts the number of mismatched edges

given two graphs and a mapping between the nodes in these two graphs.BestSwap is

the swap from the set of all possible swaps between pairings that results in a mapping with

the smallest value forH. APPLYSWAP returns the mapping that results from applying the

given swap to the given mapping. The algorithm is of polynomial time complexity. It takes

O(N2) time to choose the best swap. In the worst possible case, by choosing the best swap

at each step the evaluation function is simply reduced by one and therefore can look for the

best swap as many asjEj times. It takes time inO(jEj) to compute the evaluation function.

Also in this worst case, the algorithm reaches a plateau as often as possible and takesP

random moves on each of these plateaux before finding the swap that reduces the evaluation

function. So therefore the worst case complexity of the algorithm isO(P � E2 � N2). If

P is a constant then the complexity is simplyO(E2 �N2). To obtain a similarity measure,

the smallest result ofr executions of this algorithm is divided by the number of edges

43

Algorithm 3.3: Ullmann Subgraph Isomorphism
Input: G1 = (V1; E1); G2 = (V2; E2), the two graphs being tested.
Output: true if the graphs are found to be isomorphic or false otherwise.
ULLMANN (G1 ; G2)
(1) M= INITULLMANN (G1 ; G2)
(2) if REFINE(M;G1; G2) = 0
(3) return false
(4) else
(5) N = SORT(V1)
(6) return ULLMANN DFS(M;G1; G2; N; LENGTH(N)�1)

in the smaller of the graphs. Algorithm 3.2 is the random restart algorithm for similarity

assessment. The similarity algorithm simply calls the gradient descent algorithmr times.

Sincer is constant the complexity isO(E2 �N2).

3.4.2 Ullmann’s Algorithm

Ullmann’s algorithm for subgraph isomorphism is perhaps still one of the most widely used

algorithms for graph and subgraph isomorphism. Even today, researchers often compare

the performance of their algorithms to that of Ullmann’s. The complete description of

Ullmann’s algorithm can be found in [45].

Ullmann’s algorithm for subgraph isomorphism is a depth first tree search. Each state

in the search space is represented by a matrixM . This matrix isn �m where there aren

nodes in the smaller graph andm nodes in the larger. The matrix elementsmij are 0 if the

corresponding nodes may not be mapped to each other in any isomorphism and 1 otherwise.

The initial state is generated based on the degrees of the nodes. And although not discussed

in [45], it is clear that to handle attributed graphs simply incorporate the attributes into the

initialization stage. Ullmann’s algorithm proceeds depth-first. Each successor state binds a

node mapping by setting all but one 1 in a row of the matrixM to 0. After this binding is

performed, an arc consistency check is made iteratively to each remaining 1 in the matrix

44

Algorithm 3.4: DFS for Ullmann Subgraph Isomorphism
Input: G1 = (V1; E1); G2 = (V2; E2), the two graphs being tested.M is
the mapping matrixM previously described.N is a sorted list of the nodes
of the smaller graphG1. Level is the current level of the DFS.
Output: true if the graphs are found to be isomorphic or false otherwise.
ULLMANN DFS(M;G1 ; G2; N; Level)
(1) forall v2 in V2 do
(2) if M [N [Level]; v2] = 1
(3) Mnew= BIND(N [Level];M; v2)
(4) if REFINE(Mnew;G1 ; G2) = 0
(5) DO NOTHING
(6) else
(7) if Level = 0
(8) return true
(9) else
(10) if ULLMANN DFS(Mnew;G1 ; G2; N; Level � 1) = true
(11) return true
(12) return false

M . This check is referred to as Ullmann’s neighborhood consistency check. Basically, for

eachmij = 1 in M it checks to ensure that for all neighborsx of i in graphG1 there must

exist a neighbory of j in graphG2 such thatmxy = 1. If this condition does not hold,

thenmij is changed to 0. If all rows ofM have exactly one 1 and all columns ofM have

no more than one 1, and if the neighborhood consistency check does not alterM thenM

represents an isomorphism. Ullmann’s algorithm is described in algorithms 3.3, 3.4, 3.5,

3.6, and 3.7.

The worst case complexity of Ullmann’s algorithm is exponential. This occurs if all or

a large number of the elements of theM matrix are 1 and if the refinement procedure fails

to reduce the search space. In practice, this worst case is far from typical as can be seen

later in chapter 4. The initialization stage takesO(jV1j � jV2j) to initialize theM matrix.

45

Algorithm 3.5: Initialization Ullmann Subgraph Isomorphism
Input: G1 = (V1; E1); G2 = (V2; E2), the two graphs being tested.
Output: The matrixM of allowable mappings between the nodes of the
graphs.
INITULLMANN (G1 ; G2)
(1) forall vi in V1 do
(2) forall vj in V2 do
(3) if jV1j = jV2j andjE1j = jE2j
(4) if DEGREE(vi) = DEGREE(vj) and ATTRIBUTES(vi) = AT-

TRIBUTES(vj)
(5) M [vi; vj] = 1
(6) else
(7) M [vi; vj] = 0
(8) else
(9) if DEGREE(vi) � DEGREE(vj) and ATTRIBUTES(vi) = AT-

TRIBUTES(vj)
(10) M [vi; vj] = 1
(11) else
(12) M [vi; vj] = 0

Algorithm 3.6: Bind for Ullmann Subgraph Isomorphism
Input: Node is the node being bound to a mapping.M is the mapping
matrix.Node2 is the node ofG2 to whichNode is being bound.
Output: Returns the newM
BIND(Node;M;Node2)
(1) forall vj in V2 do
(2) if vj! = Node2
(3) M [Node; vj] = 0
(4) forall vj in V1 do
(5) if vj! = Node

(6) M [vj ; Node2] = 0
(7) return M

46

Algorithm 3.7: Neighborhood Consistency
Input: G1 = (V1; E1); G2 = (V2; E2), the two graphs being tested. The
matrixM of allowable mappings between the nodes of the graphs.
Output: false if there is an all zero row and true otherwise
REFINE(M;G1; G2)
(1) do
(2) Changed = false
(3) forall vi in V1 do
(4) ZeroRow = true
(5) forall vj in V2 do
(6) if M [vi; vj] = 1
(7) forall x adjacent tovi do
(8) GoodOne= false
(9) forall y adjacent tovj do
(10) if M [x; y] = 1
(11) GoodOne= true
(12) break
(13) if GoodOne= false
(14) M [vi; vj] = 0
(15) Changed = true
(16) else
(17) ZeroRow = false
(18) if ZeroRow = true
(19) return false
(20) while Changed
(21) return true

47

Algorithm 3.8: A* for ASIC
Input: G1 = (V1; E1); G2 = (V2; E2), the two graphs being tested.M is
the mapping matrixM previously described.H is a sorted list of the not yet
bound nodes of the smaller graphG1.
Output: true if the graphs are found to be isomorphic or false otherwise.
ASTAR(M;G1 ; G2; H)
(1) S = CREATESTATE(M;H)
(2) h(S) = LENGTH(H)
(3) g(S) = 0
(4) INITPQUEUE(Q)
(5) ADDTOPQUEUE(Q;S; h(S) + g(S))
(6) while NOTEMPTY(Q)
(7) S = REMOVEMIN(Q)
(8) M = GETM(S)
(9) H = GETH(S)
(10) forall v2 in V2 do
(11) if M [H[h(S) � 1]; v2] = 1
(12) Mnew= BIND(H[h(S) � 1];M; v2)
(13) if REFINE2(Mnew;G1 ; G2;Hnew) = 0
(14) DO NOTHING
(15) else
(16) if LENGTH(Hnew) = 0
(17) return true
(18) else
(19) Snew = CREATESTATE(Mnew;Hnew)
(20) h(Snew) = LENGTH(Hnew)
(21) g(Snew) = g(S) + 1
(22) ADDTOPQUEUE(Q;Snew; h(Snew) + g(Snew))
(23) return false

3.4.3 A* Subgraph Isomorphism Checker (ASIC)

As stated previously, Ullmann’s algorithm for subgraph isomorphism is still widely used

today. In the worse case, it requires exponential time. But in practice on graphs encountered

in everyday applications, the time complexity is tractable. However, can we do better?

In an attempt to do better than Ullmann’s algorithm for subgraph isomorphism, I de-

scribe theA* Subgraph Isomorphism Checker(ASIC). ASIC is a variation of Ullmann’s

algorithm that incorporates an A* search rather than a depth-first search. It includes some

48

Algorithm 3.9: A* Subgraph Isomorphism Checker (ASIC)
Input: G1 = (V1; E1); G2 = (V2; E2), the two graphs being tested.
Output: true if the graphs are found to be isomorphic or false otherwise.
ASIC(G1 ; G2)
(1) M= INITASIC(G1 ; G2)
(2) if REFINE2(M;G1 ; G2;H) = 0
(3) return false
(4) else
(5) if LENGTH(H) = 0
(6) return true
(7) else
(8) H = SORT(H)
(9) return ASTAR(M;G1; G2;H)

other modifications as well. ASIC is described in algorithms 3.8, 3.9, 3.10, 3.11, 3.12,

and 3.13.

The first of these modifications is in the initialization of the matrixM . Ullmann’s

algorithm initializes this matrix solely on the basis of the degrees of the nodes and the

attributes of the nodes. ASIC will instead initializeM based onn-Region Density. The

n-region density of a nodev is the number of nodes reachable fromv along a path no

longer thann. If the graphs are of the same size and isomorphism is being tested then for

all n = 1; 2; : : : ; N � 1 then-region density must be the same for any two nodes that are

mapped to each other. And for subgraph isomorphism testing, a node in the larger graph

must have at least as many nodes in itsn-region density as does the node in the smaller

graph to which it is to be mapped for alln = 1; 2; : : : ; N � 1. Then-region density for all

n and for all nodes of a graph is easily calculated inO(N3) time whereN is the number of

nodes in the graph. Also incorporated into the initialization stage is the sum of the degrees

of the adjacent nodes of a node. For isomorphism testing this value must be equal and for

subgraph isomorphism testing this value for a node in the smaller graph must be no larger

than that of a node in the larger graph to which it is mapped. This new initialization stage

is described in algorithm 3.11.

49

The next modification is the use of A* search rather than depth-first. Algorithm 3.8

shows this modification. Rather than choosing a successor state at the deepest level of

the search space, ASIC chooses a successor states as to minimize the functionf(s) =

g(s)+h(s) whereg(s) is the depth the states is in the search space andh(s) is the number

of yet unbound nodes in the graph. This heuristich(s) is not admissible as the refinement

procedure will remove some 1s from the matrixM and possibly result in nodes being

bound as a side effect, but this is not important. We do not care particularly whether or not

we took the optimal path to find the isomorphism as we are only interested in finding an

isomorphism. To calculateh(s), the refinement procedure of Ullmann’s algorithm has been

modified and both refinement and this calculation ofh(s) are computed simultaneously.

The modified refinement algorithm is described in algorithm 3.10.

The complexity of ASIC in the worst case is still exponential and occurs under the

same conditions as the worst case of Ullmann’s algorithm. I will explore in chapter 4

experimentally how ASIC performs compared to Ullmann’s algorithm. ASIC does however

suffer from a higher complexity initialization stage. To calculate the neighbor degree sums,

if the graph was completely connected, would takeO(N) time. To compute then-region

density, you must first compute all pairs shortest paths inO(N3) time. The initialization

stage is thereforeO(N3).

50

Algorithm 3.10: Neighborhood Consistency with Heuristic Calculation
Input: G1 = (V1; E1); G2 = (V2; E2), the two graphs being tested. The
matrixM of allowable mappings between the nodes of the graphs.H is an
output variable and will upon completion contain a list of the not yet bound
nodes of graphG1.
Output: false if there is an all zero row and true otherwise
REFINE2(M;G1 ; G2; H)
(1) do
(2) Changed = false
(3) CLEAR(H)
(4) forall vi in V1 do
(5) ZeroRow = true
(6) NumberOfOnes = 0
(7) forall vj in V2 do
(8) if M [vi; vj] = 1
(9) forall x adjacent tovi do
(10) GoodOne= false
(11) forall y adjacent tovj do
(12) if M [x; y] = 1
(13) GoodOne= true
(14) break
(15) if GoodOne= false
(16) M [vi; vj] = 0
(17) Changed = true
(18) else
(19) ZeroRow = false
(20) NumberOfOnes = NumberOfOnes + 1
(21) if NumberOfOnes = 2
(22) APPEND(H; vi)
(23) if ZeroRow = true
(24) return false
(25) while Changed
(26) return true

51

Algorithm 3.11: Initialization for ASIC
Input: G1 = (V1; E1); G2 = (V2; E2), the two graphs being tested.
Output: The matrixM of allowable mappings between the nodes of the
graphs.
INITASIC(G1 ; G2)
(1) RegionDensity1 = COMPUTEREGIONDENSITY(G1)
(2) RegionDensity2 = COMPUTEREGIONDENSITY(G2)
(3) DegreeSums1 = CALCNEIGHBORDEGREESUMS(G1)
(4) DegreeSums2 = CALCNEIGHBORDEGREESUMS(G2)
(5) forall vi in V1 do
(6) forall vj in V2 do
(7) if jV1j = jV2j andjE1j = jE2j
(8) if DegreeSums1[vi] = DegreeSums2[vj] and ATTRIBUTES(vi) =

ATTRIBUTES(vj)
(9) M [vi; vj] = 1
(10) else
(11) M [vi; vj] = 0
(12) break
(13) else
(14) if DegreeSums1[vi] � DegreeSums2[vj] and ATTRIBUTES(vi) =

ATTRIBUTES(vj)
(15) M [vi; vj] = 1
(16) else
(17) M [vi; vj] = 0
(18) break
(19) for k from 1 to jV1j � 1 do
(20) if jV1j = jV2j andjE1j = jE2j
(21) if RegionDensity1[vi , k] = RegionDensity2[vj , k]
(22) DO NOTHING
(23) else
(24) M [vi; vj] = 0
(25) break
(26) else
(27) if RegionDensity1[vi , k] � RegionDensity2[vj , k]
(28) DO NOTHING
(29) else
(30) M [vi; vj] = 0
(31) break

52

Algorithm 3.12: Neighbor Degree Sum Calculation
Input: G1 = (V1; E1) a graph.
Output: an array DegreeSums containing the sum of the degrees of the
adjacent nodes for each node.
CALCNEIGHBORDEGREESUMS(G1)
(1) forall vi in V1 do
(2) DegreeSums[vi] = 0
(3) forall vi in V1 do
(4) forall x adjacent tovi do
(5) DegreeSums[vi] = DegreeSums[vi] + DEGREE(x)
(6) return DegreeSums

Algorithm 3.13: n-Region Density Calculation
Input: G1 = (V1; E1) a graph.
Output: an matrix RegionDensity containing the n-Region densities as de-
scribed.
COMPUTEREGIONDENSITY(G1)
(1) Paths = ALL PAIRSSHORTESTPATHS(G1)
(2) forall vi in V1 do
(3) for k from 0 to jV1j � 1 do
(4) RegionDensity[vi; k] = 0
(5) forall vi in V1 do
(6) forall vj in V1 do
(7) if vi 6= vj
(8) for k from Paths[vi; vj] to jV1j � 1 do
(9) RegionDensity[vi ; k] = RegionDensity[vi ; k] + 1
(10) return RegionDensity

53

Chapter 4

Experiments

In this chapter, I will report the results of experimental studies of the algorithms. In sec-

tion 4.1, I present the results of experiments on randomly generated graphs. These exper-

iments were for isomorphism. That is, only pairs of graphs of the same size were tested.

In section 4.2, I present experiments conducted on pairs of randomly generated graphs of

varying sizes. These experiments test each pair of graphs for a subgraph isomorphism. In

section 4.3, I present experiments on MDG graphs. The algorithms have been implemented

in C++ using the LEDA graph library. The MDG experiments were performed on a Sun

UltraSPARC 30 workstation running Sun Solaris 2.6. The isomorphism and subgraph iso-

morphism experiments were performed on a Sun UltraSPARC 10 workstation running Sun

Solaris 2.7.

The randomly generated graphs used for the experiments of section 4.1 and section 4.2

were generated for varying numbers of nodes and edge densities. The edge density of the

graph is the probability that an edge exists between any given pair of nodes. These random

graphs follow theGnp model.

54

4.1 Isomorphism Experiments

Figure 4.1 shows surface plots of the timing results for the ASIC algorithm, Ullmann’s

algorithm, and two variations for pairs of isomorphic graphs. Along thex-axis of each

are number of nodes. Along they-axis is the edge density. The edge density is a value

between 0 and 1. Edge density 1 is a complete graph. Edge density 0 is a completely

disconnected graph. CPU time is on thez-axis. As can be seen, Ullmann’s algorithm

performs terribly for isomorphic graphs, especially for very dense graphs. For example,

for 150 node graphs with edge density 0.8, Ullmann’s algorithm takes over 600 seconds.

ASIC performs much better. The plot for ASIC does not go up as steep as Ullmann’s.

The timing results are more uniform across edge densities as well, whereas with Ullmann’s

algorithm, denser graphs take an enormous amount of extra time. Ullmann’s algorithm

with the addition of ASIC’s initialization stage performs roughly the same as ASIC. ASIC

has a slight timing advantage not clearly visible in the plots. Both ASIC and Ullmann’s

plus ASIC’s initialization take approximately 30 seconds of CPU time for the 150 node 0.8

edge density case. One particularly interesting thing to note is the performance of ASIC

with relaxed initialization. The initialization was relaxed to only use node degrees, but the

algorithm still uses A* search. For this variation of ASIC, graphs of 300 nodes and edge

density 0.8 only require approximately 60 seconds of CPU time. The surface plot for ASIC

with relaxed initialization is far less steep, although like Ullmann’s denser graphs require

more time.

Figure 4.3 shows the ASIC algorithm, ASIC with relaxed initialization, Ullmann’s algo-

rithm, and Ullmann’s algorithm with the addition of ASIC’s initialization for three different

edge densities: 0.8, 0.5, and 0.2. The data presented is for pairs of isomorphic graphs. In

all cases, ASIC with relaxed initialization far out-performs the other three algorithms by a

large margin. Ullmann’s algorithm performs the worst in all cases for all edge densities.

55

’ASICIS2.DAT’

50

100

150

0.3
0.4

0.5
0.6

0.7
0.8

0
50

100
150
200
250
300
350
400

nodes

edge density

time (secs)

’AUISO2.DAT’

50

100

150

0.3
0.4

0.5
0.6

0.7
0.8

0
50

100
150
200
250
300
350
400

nodes

edge density

time (secs)

’DFSAIS2.DAT’

50

100

150

0.3
0.4

0.5
0.6

0.7
0.8

0
50

100
150
200
250
300
350
400

nodes

edge density

time (secs)

’ULLISO2.DAT’

50

100

150

0.3
0.4

0.5
0.6

0.7
0.8

0
50

100
150
200
250
300
350
400

nodes

edge density

time (secs)

ASIC

ASIC (relaxed)
Ullmann

Ullmann (ASIC init)

(a)

(b)

(c)

(d)

Figure 4.1: Surface plots of timing results of (a) ASIC; (b) ASIC with relaxed initialization;
(c) Ullmann’s with ASIC’s initialization; (d) Ullmann’s for pairs of isomorphic graphs.

So it appears that the true power of ASIC is from using A* search. The extra initialization

adds time to the comparison of isomorphic graphs.

Figure 4.2 shows surface plots of the timing results for the ASIC algorithm, Ullmann’s

algorithm, and two variations for pairs of non-isomorphic graphs. Along thex-axis of each

are number of nodes. Along they-axis is the edge density. CPU time is on thez-axis.

The ASIC algorithm and Ullmann’s algorithm with the additional initialization of ASIC

appear to behave roughly the same. These plots are roughly uniform across edge densi-

ties. Graphs of 150 nodes take approximately 25 seconds to compare. For non-isomorphic

graphs, however, Ullmann’s algorithm and ASIC with relaxed initialization are much faster.

Their surface plots increase at a very slow gradual rate with a few odd cases here and there

56

ASIC

ASIC (relaxed)
Ullmann

Ullmann (ASIC init)

(a)

(b)

(c)

(d)

’ASICN2.DAT’

50

100

150

0.3
0.4

0.5
0.6

0.7
0.8

0

5

10

15

20

25

nodes

edge density

time (secs)

’AULLN2.DAT’

50

100

150

0.3
0.4

0.5
0.6

0.7
0.8

0

5

10

15

20

25

nodes

edge density

time (secs)

’DFSAN2.DAT’

50

100

150

0.3
0.4

0.5
0.6

0.7
0.8

0

5

10

15

20

25

nodes

edge density

time (secs)

’ULLNON2.DAT’

50

100

150

0.3
0.4

0.5
0.6

0.7
0.8

0

5

10

15

20

25

nodes

edge density

time (secs)

Figure 4.2: Surface plots of timing results of (a) ASIC; (b) ASIC with relaxed initialization;
(c) Ullmann’s with ASIC’s initialization; (d) Ullmann’s for pairs of non-isomorphic graphs.

“jumping off the surface.” The odd cases take in the range of 8-10 seconds. Most cases

however, up to 400 node graphs of all densities, require far less time.

Figure 4.4 shows the ASIC algorithm, ASIC with relaxed initialization, Ullmann’s algo-

rithm, and Ullmann’s algorithm with the addition of ASIC’s initialization for three different

edge densities: 0.8, 0.5, and 0.2. The data presented is for pairs of non-isomorphic graphs.

In all cases, ASIC performs roughly the same as Ullmann’s with the addition of ASIC’s

initialization. Also in all cases, ASIC with relaxed initialization performs roughly the same

as Ullmann’s algorithm. These results are to be expected. Considering that the test graphs

in these cases are non-isomorphic and assuming that the neighborhood consistency check

effects both Ullmann’s and ASIC in the same way, both of these algorithms should ex-

57

amine the same number of search states regardless of using A* or depth-first search. The

initialization stage should be expected to be the sole cause of timing differences for the

algorithms for non-isomorphic graphs as we have seen.

From these experiments, we can see that ASIC with the relaxed initialization stage is

the best choice for graphs of the same number of nodes and edges. For isomorphic pairs, it

tends to find the isomorphism far faster than the other algorithms examined. This is due to

the guidance of the heuristic in the A* search. And for non-isomorphic pairs, ASIC with

relaxed initialization performs no worse than the other algorithms examined. So is there

any benefit to using the additional initialization stage? This question will be answered in

the next section.

58

Isomorphic Graphs (0.8)

0

50

100

150

200

250

300

350

400

5 20 35 50 65 80 95 11
0

12
5

14
0

nodes

tim
e

(s
ec

s)

ASIC

ASIC (relaxed)

Ullmann's

Ullmann's (ASIC init)

Isomorphic Graphs (0.5)

0
20
40
60
80

100
120
140
160
180

5 20 35 50 65 80 95 11
0

12
5

14
0

nodes

tim
e

(s
ec

s)

ASIC

ASIC (relaxed)

Ullmann's

Ullmann's (ASIC init)

Isomorphic Graphs (0.2)

0

10

20

30

40

50

60

5 20 35 50 65 80 95 11
0

12
5

14
0

nodes

tim
e

(s
ec

s)

ASIC

ASIC (relaxed)

Ullmann's

Ullmann's (ASIC init)

(a)

(b)

(c)

Figure 4.3: Timing results for pairs of isomorphic graphs of edge densities (a) 0.8; (b) 0.5;
(c) 0.2.

59

Non-isomorphic Graphs (0.8)

0

5

10

15

20

25

30

5 20 35 50 65 80 95 11
0

12
5

14
0

nodes

tim
e

(s
ec

s)

ASIC

ASIC (relaxed)

Ullmann's

Ullmann's (ASIC init)

Non-isomorphic Graphs (0.5)

0

5

10

15

20

25

30

5 20 35 50 65 80 95 11
0

12
5

14
0

nodes

tim
e

(s
ec

s)

ASIC

ASIC (relaxed)

Ullmann's

Ullmann's (ASIC init)

Non-isomorphic Graphs (0.2)

0

5

10

15

20

25

30

5 20 35 50 65 80 95 11
0

12
5

14
0

nodes

tim
e

(s
ec

s)

ASIC

ASIC (relaxed)

Ullmann's

Ullmann's (ASIC init)

(a)

(b)

(c)

Figure 4.4: Timing results for pairs of non-isomorphic graphs of edge densities (a) 0.8; (b)
0.5; (c) 0.2.

60

4.2 Subgraph Isomorphism Experiments

Figure 4.5 shows surface plots of the timing results for the ASIC algorithm, Ullmann’s algo-

rithm, and two variations for pairs of subgraph isomorphic graphs of differing sizes. These

experiments search for a subgraph of the larger graph that is isomorphic to the smaller

graph. Along thex-axis of each are the number of nodes of the larger graph. Along the

y-axis is the difference in the number of nodes of the graphs. The edge density of both

graphs is 0.5. CPU time is on thez-axis in seconds. These four plots appear to be very

similar to each other and do not appear to suggest any one algorithm having a large advan-

tage over the others. The plots are flat for the particularly small test cases and then as the

graphs increase in size, this flat area begins to have sharp peaks. For all four algorithms,

these peaks appear as the difference in size of the pair of graphs gets further apart. This is

to be expected as the nodes of the smaller graph have a larger number of nodes in the larger

that they may map to. One significant difference in the performance of the algorithms is

that for Ullmann’s algorithm these peaks in the surface begin appearing when the graphs

are closer in size to each other as compared to when they appear in the ASIC algorithm

and in the ASIC with relaxed initialization algorithm. Also note that ASIC appears to be

the best choice of algorithm as the graphs get further apart in size. The peaks in the plot

for ASIC are not as steep as they are for the other algorithm variations. This suggests that

for subgraph isomorphism testing, as the graphs get further apart in size, ASIC with full

initialization is the best choice of algorithm.

Figure 4.6 shows surface plots of the timing results for the ASIC algorithm, Ullmann’s

algorithm, and two variations for pairs of non-isomorphic graphs of differing sizes. These

experiments search for a subgraph of the larger graph that is isomorphic to the smaller

graph. Along thex-axis of each are the number of nodes of the larger graph. Along the

y-axis is the difference in the number of nodes of the graphs. The edge density of both

61

ASIC

ASIC (relaxed)
Ullmann

Ullmann (ASIC init)

(a)

(b)

(c)

(d)

’SUBISO~1.DAT’

10
15

20
25

30 -9
-8

-7
-6

-5
-4

-3
-2

-1
0

0

500

1000

1500

nodes

edge density

time (secs)

’SUBISO~2.DAT’

10
15

20
25

30 -9
-8

-7
-6

-5
-4

-3
-2

-1
0

0

500

1000

1500

nodes

edge density

time (secs)

’SUBISO~4.DAT’

10
15

20
25

30 -9
-8

-7
-6

-5
-4

-3
-2

-1
0

0

500

1000

1500

nodes

edge density

time (secs)

’SUBISO~3.DAT’

10
15

20
25

30 -9
-8

-7
-6

-5
-4

-3
-2

-1
0

0

500

1000

1500

nodes

edge density

time (secs)

Figure 4.5: Surface plots of timing results of (a) ASIC; (b) ASIC with relaxed initializa-
tion; (c) Ullmann’s with ASIC’s initialization; (d) Ullmann’s for pairs of random subgraph
isomorphic graphs of different sizes.

graphs is 0.5. CPU time is on thez-axis in seconds. Ullmann’s algorithm appears to be

the slowest for these experiments. Just as with pairs of subgraph isomorphic graphs, there

is significant improvement in the use of the ASIC algorithm for pairs of non-subgraph

isomorphic graphs.

Although we saw that for graphs of the same size, ASIC with relaxed initialization

performed the best, it has been shown here that the true power of the added initialization

lies in subgraph isomorphism testing. This is especially true as the size of the graphs

being tested become further apart. Subgraph isomorphism is a harder problem than graph

isomorphism in terms of complexity [13]. So the added initialization does not overwhelm

the complexity of the overall algorithm for subgraph isomorphism as it does for graph

62

ASIC

ASIC (relaxed)
Ullmann

Ullmann (ASIC init)

(a)

(b)

(c)

(d)

’SUBNON~1.DAT’

10
15

20
25

30 -9
-8

-7
-6

-5
-4

-3
-2

-1
0

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

nodes

edge density

time (secs)

’SUBNON~2.DAT’

10
15

20
25

30 -9
-8

-7
-6

-5
-4

-3
-2

-1
0

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

nodes

edge density

time (secs)

’SUBNON~4.DAT’

10
15

20
25

30 -9
-8

-7
-6

-5
-4

-3
-2

-1
0

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

nodes

edge density

time (secs)

’SUBNON~3.DAT’

10
15

20
25

30 -9
-8

-7
-6

-5
-4

-3
-2

-1
0

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

nodes

edge density

time (secs)

Figure 4.6: Surface plots of timing results of (a) ASIC; (b) ASIC with relaxed initialization;
(c) Ullmann’s with ASIC’s initialization; (d) Ullmann’s for pairs of random non-isomorphic
graphs of different sizes.

isomorphism. From examining these results and those of the previous section, we can

conclude that for graphs of the same size or close to the same size, the best choice of

algorithm is ASIC using relaxed initialization. And for graphs of drastically different sizes,

the best choice of algorithm is ASIC with the full initialization stage.

63

(a) TEAM (b) TEAM-2

Figure 4.7: Two of the test parts from the DOE TEAM Project. Both of these parts are
available from the National Design Repository at http://repos.mcs.drexel.edu.

4.3 MDG Experiments

A family of 10,002 solid models were generated using the ACIS 3D Toolkit running on

450MHz Pentium II running Microsoft Windows NT 4.0. These models were pseudo-

random variations on the US Department of Energy’s Technologies Enabling Agile Man-

ufacturing (TEAM) Project test parts pictured in Figure 4.7. These parts have a variety

of standard feature types, such as pockets, slots, holes, counterbore holes, and bosses; in

addition, many of the features interact and intersect, leading to a variety of different possi-

ble orderings for design feature histories and manufacturing process plans. The two parts

pictured have several subtle differences that make them a useful target domain for experi-

mentation.

The random “TEAM part” generator is based on the work of Alexei Elinson at the

University of Maryland at College Park [12]. It operates by varying the number of features,

the location features, and the number of different feature types over the part (depressions

and protrusions, pockets, holes). For each of the 10,002 models generated, the design

feature history of each model was stored. Using this feature information, the MDG for

64

BLOCK

 SLOT POCKET

 POCKET

HOLE

HOLE

HOLE

HOLE

HOLE

(a) Query Model 1

 POCKET

 POCKET

HOLE HOLE

HOLE HOLE

BLOCK EXTRUSION

(b) Query Model 2

Figure 4.8: The MDGs for the randomly generated Query Models.

each model was generated and converted to UMDG form.

Next, two arbitrary Query Models were selected from the set of 10,002 random models—

these are shown in Figure 4.9. The figure shows the design histories of these parts; their

MDG graphs are shown in Figures 4.8 (a) and 4.8 (b). Each of the query parts was com-

pared to each part from the set of randomly generated parts. To perform MDG comparison,

the random restart gradient descent algorithm was used with number of restarts fixed at

1000. These matching tests searched for a subgraph of the larger of the query UMDG and

the given UMDG from the set of 10,002 that was isomorphic to the smaller. The match-

ing algorithms are implemented in C++ using the LEDA graph library. The tests were

performed on a Sun UltraSPARC 30 workstation running Sun Solaris 2.6.

Figure 4.10 shows the results of these two queries. The histograms show that each query

model partitioned the set of 10,002 random parts into distinct subsets, based on the result of

the subgraph isomorphism test. For both query parts, there was a high percentage of parts

found to be “similar.” This is to be expected, since the set of parts consist of a family of

parts generated at random from a limited set of operations based on the TEAM parts. This

65

Figure 4.9: Two randomly generated query models with their design feature histories.

is also to be expected because the nodes of the UMDGs were attributed only with feature

type. If other attributes such as dimension, orientation, tolerances, and so forth had been

used then it could be expected that the models would have been distributed more uniformly

across similarity classes or possibly more heavily clustered toward the less similar range.

For both queries, the query models were successfully retrieved.

Results for Query Model 1. For Query Model 1, 3128 models were found such that

their SMDGs were subgraph isomorphic to that of the query model or that the SMDG of

the query model was subgraph isomorphic to it. Among this set was the query model itself.

66

Also among this set was model (a) in Figure 4.10. If you look at this model you will see

that, likeQuery Model 1, it consists of two pockets each cutting through two faces, one

with 2 holes and the other with 3 holes. Also common to bothQuery Model 1 and (a) is

a slot adjacent to one of the pockets. These two parts are very much alike. In fact, in this

case, the parts were not only subgraph isomorphic, but were actually isomorphic.

Next, notice model (b). This model was among 2406 models where the ratio of “mis-

matched” edges to total edges at the completion of the matching test was greater than 0 but

less than or equal to 0.125. The actual value of this particular case was 0.07. Aside from

the interaction between one of the pockets and the slot inQuery Model 1, the UMDG for

the query model would be isomorphic to that of model (b).

Models (c), (d), (e), and (f) were in the next four groups shown on the histogram for

query 1 respectively. Model (c) has an additive feature on one of its side faces while the

query model had no such feature. Model (d) has 5 pockets and holes in each and lacks the

slot that theQuery Model 1 has. Model (e) has two additive features on two of its side

faces while theQuery Model 1 has no such additive features. None of the edges of the

UMDG of model (f) matched any of that of the query model. This part has one additive

feature at one end and no other features. The query model does not have an additive feature

like this one.

Results for Query Model 2. For Query Model 2, 2440 models were found such that

they were subgraph isomorphic to the UMDG of the query model or that the UMDG of the

query model was subgraph isomorphic to it. Among this set was the query model itself.

Also among this set was model (g) in Figure 4.10. If you examine these two models, you

will see that each has an additive feature on one side face and each has two pockets each

cutting through two faces with holes in each. They are very much alike.

Model (h) is one of 3923 models with a ratio of mis-matched edges to total edges

67

greater than 0 and less than or equal to 0.125. This ratio for model (h) was actually 0.09.

The difference between these two models is that (h) has a slot whileQuery Model 2 has

an additive feature on on of its side faces.

Models (i), (j), (k), and (l) are in the next four groups on the histogram. Model (i) has

two slots not in the query model and the query model has the additive feature on one of

the side faces. Model (j) is the same model as (d). This model was about the same in

dissimilarity to both query models. The UMDG of model (k) is a 50 percent match to that

of the query. This model has a pocket cutting through two faces with one hole through the

pocket. Similarly the query model has a pocket like this. Model (k) also has two slots, but

the query model does not. Every edge in the UMDG for model (l) was mis-matched when

compared to that ofQuery Model 2. Model (l) has a slot in two of its side faces and no

other features. The query model has no slots.

Statistics. All 10002 models used in this experiment along with their design history are

available as ACIS.sat files at http://repos.mcs.drexel.edu/CICIRELLO-THESISDATA.

To compareQuery Model 1 against all 10002 models took a total of 23 hours, 17 min-

utes, and 23 seconds of CPU time on the Sun UltraSPARC 30 (an average of 8.38 seconds

per comparison). The fastest comparison took less than 0.01 seconds. The slowest compar-

ison took 183.35 seconds. There were a few cases where the random initial starting point

represented an isomorphism, but this was a rare occurrence. On average, the algorithm

made 3153 swaps of node mappings with a high of 7699 node mapping swaps.

To compareQuery Model 2 against all 10002 models took a total of 14 hours, 8 min-

utes, and 33 seconds of CPU time on the Sun UltraSPARC 30 (an average of 5.09 seconds

per comparison). The fastest comparison took less than 0.01 seconds. The slowest compar-

ison took 104.37 seconds. There again were a few cases where the random initial starting

point represented an isomorphism, but again this was a rare occurrence. On average, the

68

Table 4.1: Accuracy of the Gradient Descent Algorithm using 1000 random restarts.

Query Found Isomorphic Actual Isomorphic Percent Accurate

1 3128 3515 88.99

2 2440 2611 93.45

algorithm made 3026 swaps of node mappings with a high of 6493 node mapping swaps.

Table 4.1 shows how accurate the gradient descent algorithm is. For 88.99 percent of the

UMDGs subgraph isomorphic to the UMDG of Query model 1, the subgraph isomorphism

was found. For 93.45 percent of the UMDGs subgraph isomorphic to the UMDG of Query

Model 2, the subgraph isomorphism was found.

If you are willing to trade off accuracy for time, then fewer random restarts result in

faster runtimes. But, the gradient descent algorithm will find the isomorphism when it

exists less often. Table 4.2, table 4.3, and table 4.4 show the accuracy of the gradient

descent algorithm with 100, 10, and 0 restarts, respectively. If you reduce the number of

restarts to 100 then for query 1, 80.06 percent of the subgraph isomorphic pairs were found

to be subgraph isomorphic and for query 2, 90.46 percent of the subgraph isomorphic pairs

were found to be subgraph isomorphic. And for queries 1 and 2, respectively, with no

restarts, 74.82 percent and 88.85 percent of the subgraph isomorphic pairs were found to

be subgraph isomorphic. So in terms of similarity assessment, it is not really necessary to

have high numbers of restarts.

ASIC and the UMDG. Next, these same experiments were executed using the ASIC

algorithm, Ullmann’s subgraph isomorphism algorithm, and the two variations discussed

previously. The disadvantage of these algorithms is that they only detect whether or not

69

Table 4.2: Accuracy of the Gradient Descent Algorithm using 100 random restarts.

Query Found Isomorphic Actual Isomorphic Percent Accurate

1 2814 3515 80.06

2 2362 2611 90.46

Table 4.3: Accuracy of the Gradient Descent Algorithm using 10 random restarts.

Query Found Isomorphic Actual Isomorphic Percent Accurate

1 2616 3515 74.42

2 2317 2611 88.74

Table 4.4: Accuracy of the Gradient Descent Algorithm using 0 random restarts.

Query Found Isomorphic Actual Isomorphic Percent Accurate

1 2630 3515 74.82

2 2320 2611 88.85

70

Table 4.5: CPU performance of various algorithms on query 1 in seconds.

Algorithm Total Time Average Longest Shortest

ASIC 188.72 0.019 0.37 < 0.01

ASIC (relaxed) 41.61 0.004 0.11 < 0.01

Ullmann’s 61.11 0.006 0.4 < 0.01

Ullmann’s (ASIC init) 180.5 0.18 0.32 < 0.01

Gradient Descent (1000) 83843.82 8.38 183.35 < 0.01

Gradient Descent (100) 9396.74 0.94 18.55 < 0.01

Gradient Descent (10) 1011.42 0.101 2.07 < 0.01

Gradient Descent (0) 101.77 0.0102 0.22 < 0.01

a subgraph isomorphism exists and do not provide an easily quantifiable estimation of

“similar” the graphs are. However, these algorithms perform far faster than the gradient

descent approach. Timing results for both query 1 and query 2 can be seen in table 4.5

and table 4.6, respectively. For query 1, ASIC with relaxed initialization performed the

fastest. For query 2, Ullmann’s outperformed ASIC with relaxed initialization by a very

small margin. ASIC with complete initialization for query 1, the worst case was better than

Ullmann’s worst case, although on average it was slower.

Even with no restarts the gradient descent algorithm still does not compete with ASIC

in terms of time performance. However, the gradient descent algorithm provides a measure

of similarity based on the lowest value of the evaluation function. This is an advantage

71

Table 4.6: CPU performance of various algorithms on query 2 in seconds.

Algorithm Total Time Average Longest Shortest

ASIC 167.21 0.017 0.38 < 0.01

ASIC (relaxed) 36.74 0.004 0.11 < 0.01

Ullmann’s 25.63 0.003 0.06 < 0.01

Ullmann’s (ASIC init) 151.88 0.015 0.33 < 0.01

Gradient Descent (1000) 50913.13 5.09 104.37 < 0.01

Gradient Descent (100) 5467.47 0.55 11.48 < 0.01

Gradient Descent (10) 622.87 0.062 1.33 < 0.01

Gradient Descent (0) 70.59 0.007 0.14 < 0.01

72

over the ASIC algorithm. The ASIC algorithm determines isomorphism and subgraph iso-

morphism quickly but does not provide such a measure of similarity in the case when no

isomorphism exists. An attempt was made to use the minimum value of the heuristic func-

tion as a measure of similarity. However, it was not found to be useful. The result was that

all of the isomorphic or subgraph isomorphic graphs to the query graph were partitioned

into one set. And all but a few of the non-isomorphic graphs were in another set at the

highest possible value of the heuristic. The few remaining cases were scattered between.

These few cases accounted for less than 1 percent of the cases. This is good and bad news.

The good news is that it means that the ASIC algorithm for subgraph isomorphism testing

of UMDG graphs eliminates most non-isomorphic cases almost immediately, either with

the initialization stage or with the neighborhood consistency check. The bad news is that

the heuristic value cannot be used as a measure of similarity.

73

Query Model 1

Query Model 2

(a) (b) (c) (d) (e)

(g) (h) (i) (j)

Frequency

0

500

1000

1500

2000

2500

3000

3500

0 0.125 0.25 0.375 0.5 1.0

Frequency

Frequency

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.125 0.25 0.375 0.5 1.0

Frequency

(f)

(k) (l)

Figure 4.10: Example output data from examining subgraph isomorphism over the database
of 10,002 solid models for the two query models in Figure 4.9. The histogram shows the
number of models (from the 10,002 in the database) that fall into distance categories based
on the subgraph isomorphism test. Read from left-to-right, the returned models are in order
of decreasing similarity to the query model.

74

Chapter 5

Conclusions

5.1 Contributions

This thesis has presented an approach to the problem of retrieving solid models from

knowledge-bases of CAD data based on the similarity of the models’ structure. The idea

is to enable the intelligent retrieval of solid models along with other data related to the

parts that these models represent. The ultimate goal is to improve the techniques in which

knowledge-bases of CAD data are managed in a positive way.

The retrieval techniques presented are based on comparing solid models for feature-

based similarity. This thesis has defined similarity to mean similar in shape or structure.

More specifically, it has defined similarity to mean that two models have the same features

and feature interactions. To accomplish this feature-based similarity assessment, represen-

tations of features and feature interactions, termed theModel Dependency Graph(MDG)

and alternatively theUndirected Model Dependency Graph, have been developed. These

representations make use of a very general definition of a feature as a structural or vol-

umetric property of the solid model and are not specific to any one definition of feature.

The MDG and UMDG prove useful for representing manufacturing features and feature

interactions as well as design features. Constructive solid geometry (CSG) primitives may

also be seen as features under this definition of feature. The MDG and UMDG also par-

75

tially handle the problem of variation and non-uniqueness associated with design feature

histories.

Upon defining the MDG and UMDG, algorithms for the comparison of solid models

based on these representations were developed. These algorithms determine if two solid

models are similar in structure based on features by checking for a graph isomorphism or

a subgraph isomorphism between the UMDGs associated with the solid models in ques-

tion. One of the comparison algorithms that are described is an inexact method based on

a gradient descent approach to the problem. This algorithm is not guaranteed to find an

isomorphism if it exists but it allows for a measure of similarity. This measure of similarity

can be seen as a sort of “approximation” to the largest common subgraph problem. I put

approximation in quotes as the algorithm does not guarantee the solution to any degree of

certainty. If the size of the largest common subgraph found by the gradient descent al-

gorithm is some “large” percentage of the UMDGs in question then the associated solid

models are considered to be similar in structure based on features and feature interactions.

Another approach to the comparison problem that has been described is a fast subgraph

isomorphism algorithm named ASIC that uses the A* search technique. This algorithm has

proven to be fast in comparisons of UMDGs, but has a drawback: although it is guaranteed

to find an isomorphism or a subgraph isomorphism if it exists, if an isomorphism or a

subgraph isomorphism does not exist it does not allow for a measure of how “close” the

graphs are to being isomorphic.

The ASIC algorithm is not limited to the CAD model comparison problem and can be

used for comparing other types of graphs as well, other than the UMDG, for isomorphism

and subgraph isomorphism. ASIC has proven to be far faster than Ullmann’s subgraph

isomorphism algorithm [45] when comparing graphs of the same size for isomorphism.

For graph isomorphism testing, the relaxed initialization variant of the ASIC algorithm

has proven to be far faster than ASIC itself suggesting that the true power of the ASIC

76

algorithm lies in the A* search technique. But as the size of the target graphs diverge, the

added initialization of ASIC results in faster subgraph isomorphism comparisons. These

results suggest the use of ASIC with relaxed initialization if the graphs are close in size and

the use of ASIC with full initialization if the graphs vary greatly in size.

The data structure called aModel Dependency Graphand its variation, theUndirected

Model Dependency Graph, along with the subgraph isomorphism algorithms described,

can be used to manage knowledge-bases of CAD and Solid Modeling data. These data

structures and algorithms can be used as the basis for a search and retrieval mechanism

for a CAD knowledge-base. These algorithms may also prove useful in the development of

case-based design and variant design systems as well as case-based manufacturing systems.

It is my belief that this representation scheme and these comparison algorithms will have

an impact on the way CAD models are retrieved.

Based on the UMDG and the gradient descent algorithm, it has been shown that one

can create query artifacts that partition the database of solid models into different classes—

based on how similar in structure each model is to the query model. It is believed that

this approach can be refined to detect meaningful part classes and families in large sets of

engineering models. This can form the basis for more intelligent Product Data Management

(PDM) systems and tools for variational design and variant process planning.

5.2 Limitations

Non-unique Design Histories. The MDG and UMDG deal with the non-uniqueness of

design histories and of the CSG representation of solid models to some degree. But it does

not handle all cases of ambiguity. Any given CAD system may have its own set of design

features and operations. There is no standard set of design features and design operations

across all CAD systems. Individual designers may also design the same artifact in differ-

77

ent ways using different features even given the same CAD system. The representations

described will circumvent the problem of non-uniqueness given different orderings of the

same set of features or operations that produce the same artifact but is limited to this.

Consistent Feature Set. Regardless of whether design features or manufacturing features

are used, it is a requirement that this is a consistent set of features across the database of

solid models. If one model is represented using the feature set of one feature recognition

system and a second model from the feature set of another feature recognition system then it

would be essentially meaningless to compare the resulting UMDGs. The same is true with

design features from CAD systems. The models under comparison must be represented

using a consistent set of design features.

Strongly Regular Graphs. The UMDG does not tend to be strongly regular. So for

the comparison of solid models this is not a limitation. However, it was noted that the

ASIC algorithm could potentially be used for subgraph isomorphism tests of other forms

of graphs. One class of graphs for which ASIC should not be used is that of strongly

regular graphs. For these graphs, as with Ullmann’s algorithm, the worst case exponential

time complexity will be reached. In addition, the worst case exponential space complexity

will be encountered as well.

Space Complexity. Although the worst case exponential space complexity of ASIC does

not seem to appear in practice, constrained space may still potentially cause a problem.

One possible solution may be to investigate the use ofIterative Deepening A*(IDA*).

Scalability. The empirical results show that the ASIC algorithm is practical for graphs

of up to 200 nodes or so. Also, graphs of 1000 nodes have been tested for isomorphism

with the ASIC algorithm in under an hour on a Sun UltraSPARC 30. Relaxed initialization

78

saved some time in this case and took roughly 15 to 20 minutes. These 1000 node graphs

were unattributed. With the addition of node attributes this time can be reduced. But 20

minutes for one test case is too long in terms of retrieving from a database if several of

these comparisons must be performed. Perhaps simplifying the UMDG representation of a

large complex model by combining multiple features into a single node may be a solution.

For example, combining a group of holes in the model into a single node of the UMDG.

5.3 Future Work

Database Problem. In developing a CAD knowledge-base, it will be necessary to de-

velop techniques to reduce the number of CAD models to examine in performing the

search. Knowledge-bases of CAD data can potentially be gigabytes in size. It would be

infeasible to test a query UMDG against every UMDG in the knowledge-base for subgraph

isomorphism. Some possible solutions to this future problem may include using the depth-

pruned decision-tree technique of [30] as an index into the knowledge-base. Although this

technique generates a decision tree of exponential size, if the tree is pruned to some depth

then it may be of tractable size and may prove useful as an index. It can also provide a

starting point for ASIC more finer than obtained through its initialization procedure.

Another possible direction to pursue is the use of the determinant as an index. The

determinant of the adjacency matrix of a graph is equal to that of any graph to which it is

isomorphic [18]. This is a necessary but not a sufficient condition for isomorphism. It may

prove a useful indexing technique for the UMDGs of a CAD knowledge-base.

Other possible directions to pursue with regards to the database problem include pre-

computing then-Region density of the UMDGs and storing this information in the database.

This would greatly enhance the performance of the ASIC algorithm considering its biggest

bottle-neck appears to be the initialization stage.

79

Machining Features. All experiments involving the MDG and UMDG presented in this

work have been performed using design features. Future explorations will include the use

of manufacturing features obtained from the use of a feature recognition system (such as

FBMach from Allied Signal Inc. [7, 16]). It may also prove desirable to index the models of

a CAD knowledge-base using both design features and machining features for alternative

views of the data.

Node Attributes. It will be desirable to make use of more attributes on the nodes such

as position, dimensions, orientation, tolerances, and materials of the feature they represent.

The experiments presented in this work made use of the type of feature such as hole, slot,

pocket, and so forth but did not consider any of these other possible attributes. Using

more attributes on the nodes will reduce the search space of the problem resulting in faster

comparisons and will also require that two models be more “similar” in structure in order

for a match to occur.

Other CAD Data. The experiments presented and described in this work incorporated

mechanical engineering models. But the approach is not limited to solid models of this

type. Similar experiments can be performed on other forms of CAD data such as civil

engineering data like bridges, buildings, roads and so forth.

Assemblies. The techniques described are not limited to solid models of individual parts.

The ASIC algorithm for subgraph isomorphism as well as the gradient descent algorithm

for inexact comparisons can be applied to assembly contact graphs for electro-mechanical

assemblies. In this way, knowledge-bases of electro-mechanical assemblies may be devel-

oped with intelligent retrieval systems. An assembly planning system can also incorporate

these algorithms for the retrieval of assembly plans for similar assemblies.

80

National Design Repository. It will also be desirable to perform larger-scale experi-

ments on large knowledge-bases of real designs such as those contained in the National

Design Repository (http://repos.mcs.drexel.edu), whereas the experiments presented have

been performed on pseudo-randomly generated variations of a test part using design fea-

tures. The UMDGs of the parts of the National Design Repository can be generated using

machining features extracted using feature recognition techniques. The models may then

be indexed based on these UMDGs. A World Wide Web based search engine incorporating

the ASIC and gradient descent algorithms can then be developed to search the repository.

This could enable researchers from around the world to search the National Design Repos-

itory in a more efficient manner.

Bibliography

81

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman.The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[2] H. A. Almohamad and S. O. Duffuaa. A linear programming approach for the
weighted graph matching problem.IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 15(5):522–525, May 1993.

[3] W. A. Andersen, J. A. Hendler, M. P. Evett, and B. P. Kettler. Massively parallel
matching of knowledge structures. In H. Kitano and J. Hendler, editors,Massively
Parallel Artificial Intelligence, pages 52–73. AAAI Press/The MIT Press, Menlo Park,
California, 1994.

[4] L. Babai. Moderately exponential bound for graph isomorphism. InProceedings of
the International Conference on Fundamentals of Computation Theory, number 117
in Lecture Notes in Computer Science, pages 34–50. Springer-Verlag, 1981.

[5] A. T. Berztiss. A backtrack procedure for isomorphism of directed graphs.Journal
of the Association of Computing Machinery, 20(3):365–377, July 1973.

[6] W. F. Bronsvoort and F. W. Jansen. Feature modelling and conversion - Key concepts
to concurrent engineering.Computers in Industry, 21:61–86, 1993.

[7] S. L. Brooks and R. Bryan Greenway Jr. Using STEP to integrate design features with
manufacturing features. In A. A. Busnaina, editor,ASME Computers in Engineering
Conference, pages 579–586, New York, NY 10017, September 17-20, Boston, MA
1995. ASME.

[8] J. K. Cheng and T. S. Huang. A subgraph isomorphism algorithm using resolution.
Pattern Recognition, 13(5):371–379, 1981.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms.
McGraw-Hill, 1990.

[10] D. G. Corneil and C. C. Gotlieb. An efficient algorithm for graph isomorphism.Jour-
nal of the Association of Computing Machinery, 17(1):51–64, Jan 1970.

[11] T. De Martino, B. Falcidieno, F. Giannini, S. Hassinger, and J. Ovtcharova. Feature-
based modelling by integrating design and recognition approaches.Computer Aided
Design, 26(8):3–13, August 1993.

82

[12] Alexei Elinson, Dana S. Nau, and William C. Regli. Feature-based similarity assess-
ment of solid models. In Christoph Hoffman and Wim Bronsvoort, editors,Fourth
Symposium on Solid Modeling and Applications, pages 297–310, New York, NY,
USA, May 14-16 1995. ACM, ACM Press. Atlanta, GA.

[13] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[14] R. Geelink, O. W. Salomons, F. van Slooten, and F. J. A. M. van Houten. Unified
feature definition for feature-based design and feature-based modeling. In A. A. Bus-
naina, editor,ASME Computers in Engineering Conference, pages 517–534, New
York, NY 10017, September 17-20, Boston, MA 1995. ASME.

[15] D. E. Ghahraman, A. K. C. Wong, and T. Au. Graph monomorphism algorithms.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-10(4):189–196, April
1980.

[16] J. Han, W. C. Regli, and S. Brooks. Hint-based feature recognition. InASME Comput-
ers in Engineering Conference, New York, New York, September 14-17, Sacremento,
CA. 1997. ASME.

[17] J. Han and A. A. G. Requicha. Integration of feature-based design and feature recog-
nition. In A. A. Busnaina, editor,ASME Computers in Engineering Conference, pages
569–578, New York, NY 10017, September 17-20, Boston, MA 1995. ASME.

[18] F. Harary. The determinant of the adjacency matrix of a graph.SIAM Review,
4(3):202–210, July 1962.

[19] F. Harary.Graph Theory. Addison Wesley, 1969.

[20] C. M. Hoffmann. Geometric and Solid Modeling: An Introduction. Morgan Kauf-
mann Publishers, Inc., California, USA, 1989.

[21] J. E. Hopcroft and R. E. Tarjan. Isomorphism of planar graphs (working paper).
In R. E. Miller and J. W. Thatcher, editors,Complexity of Computer Computations,
pages 131–152. Plenum Press, New York, 1972.

[22] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar
graphs. InProceedings of the Sixth Annual ACM Symposium on Theory of Computing,
pages 172–184, 1974.

[23] Q. Ji and M. M. Marefat. Machine interpretation of CAD data for manufacturing
applications.Computing Surveys, 29(3):264–311, September 1997.

[24] S. Joshi and T. C. Chang. Graph-based heuristics for recognition of machined features
from a 3D solid model.Computer-Aided Design, 20(2):58–66, March 1988.

83

[25] B. Kolman. Introductory Linear Algebra. Prentice Hall, fifth edition, 1993.

[26] E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. Journal of Computer and System Sciences, 25:42–65, 1982.

[27] M. Marefat and R. L. Kashyap. Geometric reasoning for recognition of three-
dimensional object features.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(10):949–965, October 1990.

[28] M. Marefat and R. L. Kashyap. Automatic construction of process plans from
solid model representations.IEEE Transactions on Systems, Man, and Cybernetics,
22(5):1097–1115, September/October 1992.

[29] B. T. Messmer and H. Bunke. A network based approach to exact and inexact graph
matching. Technischer Bericht IAM 93-021, Institut f¨ur Informatik, Universität Bern,
Schweiz, September 1993.

[30] B.T. Messmer and H. Bunke. Subgraph isomorphism in polynomial time. Technischer
Bericht IAM 95-003, Institut für Informatik, Universität Bern, Schweiz, 1995.

[31] B.T. Messmer and H. Bunke. Fast error-correcting graph isomorphism based on
model precompilation. Technischer Bericht IAM-96-012, Institut f¨ur Informatik, Uni-
versität Bern, Schweiz, 1996.

[32] G. L. Miller. Isomorphism of graphs which are pairwise k-separable.Information
and Control, 56:21–33, 1983.

[33] G. L. Miller. Isomorphism of k-contractible graphs. a generalization of bounded va-
lence and bounded genus.Information and Control, 56:1–20, 1983.

[34] W. C. Regli, S. K. Gupta, and D. S. Nau. Extracting alternative machining features:
An algorithmic approach.Research in Engineering Design, 7(3):173–192, 1995.

[35] S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach. Prentice Hall,
Upper Saddle River, New Jersey 07458, 1995.

[36] O. W. Salomons, F. J. A. M. van Houten, and H. J. J. Kals. Review of research in
feature-based design.Journal of Manufacturing Systems, 12(2):113–132, 1993.

[37] K. E. Sanders, B. P. Kettler, and J. A. Hendler. The case for graph-structured rep-
resentations. InProceedings of the Second International Conference on Case-based
Reasoning (ICCBR), Berlin-Heidelberg-New York, 1997. Springer-Verlag.

[38] D. C. Schmidt and L. E. Druffel. A fast backtracking algorithm to test directed graphs
for isomorphism using distance matrices.Journal of the Association of Computing
Machinery, 23(3):433–445, July 1976.

84

[39] Y. J. Shah, G. I. Davida, and M. K. McCarthy. Optimum features and graph isomor-
phism. IEEE Transactions on Systems, Man, and Cybernetics, SMC-4(3):313–319,
May 1974.

[40] V. Shapiro and D. L. Vossler. Construction and optimization of CSG representations.
International Journal of Computer Aided Design, 23(1):1–20, January/February
1991.

[41] V. Shapiro and D. L. Vossler. Separation for boundary to CSG conversion.ACM
Transactions on Graphics, 12(1):35–55, January 1993.

[42] D. Spielman. Faster isomorphism testing of strongly regular graphs. InProceedings
of the 28th Annual ACM Symposium on Theory of Computing, pages 576–584, 1996.

[43] C. Thornton and B. du Boulay.Artificial Intelligence: Strategies, Applications, and
Models Through Search. Amacom, New York, New York, 1998.

[44] J. Turner. Generalized matrix functions and the graph isomorphism problem.SIAM
Journal of Applied Mathematics, 16(3):520–526, May 1968.

[45] J. R. Ullmann. An algorithm for subgraph isomorphism.Journal of the Association
of Computing Machinery, 23(1):31–42, Jan 1976.

[46] S. H. Unger. GIT - a heuristic program for testing pairs of directed line graphs for
isomorphism.Communications of the ACM, 7(1):26–34, Jan 1964.

[47] J. H. Vandenbrande and A. A. G. Requicha. Spatial reasoning for the automatic recog-
nition of machinable features in solid models.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(12):1269–1285, December 1993.

[48] A. K. C. Wong, M. You, and S. C. Chan. An algorithm for graph optimal monomor-
phism. IEEE Transactions on Systems, Man, and Cybernetics, 20(3):628–636, 1990.

[49] C. Yang. Structural preserving morphisms of finite automata and an application to
graph isomorphism.IEEE Transactions on Computers, 24(11):1133–1139, Nov 1975.

