Fourth European Workshop on Case-Based Reasoning, Dublin, Ireland, September 23-25, 1998.

Structured Cases, Trees and Efficient Retrieval

Francesco Ricci and Luca Senter

Istituto per la Ricerca Scientifica e Tecnologica
via Sommarive
38050 Povo (TN)
Italy
email: {ricci,senter}@itc.it

Abstract. A set of efficient algorithms for case retrieval from a case
base of trees labeled on both nodes and edges is proposed. They extend
the best known algorithm for solving the subtree-isomorphism problem.
A branch and bound technique and a general definition of similarity be-
tween trees is considered. Both the case structure, i.e. the graph struc-
ture, and his semantic part, the labels, is taken into account when evalu-
ating similarity. The comparison with a conventional state-space search
algorithm on randomly generated case bases, shows that significant speed
up can be obtained.

1 Introduction

Given a problem in the form of a partially defined query case, a case-based
reasoning system (CBR) starts the solution process retrieving from the memory
a case that is both similar to the query and reusable to solve the given problem.
Similarity 1s usually provided by a distance metric.

Therefore, designing efficient retrieval algorithms is a key issue in CBR. In
rather simple application domains a case can be represented by a vector of
attributes. This representation originates from pattern recognition and is widely
used in CBR systems mainly because retrieval becomes simple and fast.

In more complex domains, e.g. planning [9], vision [14], software engineering
[8] and design [6], the vector representation is not enough expressive for describ-
ing real cases. In these domains, structured representations are more appropriate
[3,9, 12, 2]. Cases are therefore modeled by semantic networks, a particular type
of labeled graphs in which every node is associated to a concept and the edges
represent relations between concepts. In this framework retrieval algorithms es-
sentially search the case base for a graph that contains a subgraph isomorph, or
partially isomorph (maximal common subgraph), to the query case [4, 2, 6].

Unfortunately the graph isomorphism problem for generic graphs is NP-Hard
(exponential in the number of graph’s nodes). Many attempts were made to cope
with that, but there are some positive results only with case bases of small size.
It still seems very hard to scale up on case bases with hundreds of cases. Borner
et al. [2] reduce the maximal common subgraph problem to the problem of

searching for the maximal clique in a combination graph. Infact both the sub-
graph isomorphism problem and the maximal common subgraphs problem can
be addressed in two way: by searching for maximal clique [13] or by constraints
satisfaction [18, 11, 13]. But this does not modify the complexity of the problem.

A group of approaches extract from a case library similarities between cases
and use these similarities to build a hierarchy of graphs. Bunke and Messmer [4]
call this hierarchy “network of model graphs” (NMG). In a NMG the common
subgraphs of a graph library are organized in a lattice, where the relation is the
usual subgraph relation. That structure (exponential in space) can be exploited
when a query is made. They show encouraging results when the library of graphs
is large and when the stored cases are very similar to each other.

Another approach in this direction has been proposed by Borner et al. [2].
They exploit similarities among cases by clustering cases according to a struc-
tural similarity metric, so that matching is performed in a two stages process.
First a good cluster is found and then a good set of graphs is retrieved. They
also use a hierarchical structure similar to that presented in [4] but restricted to
trees.

In this paper we follow a different approach, i.e., trading expressive power
with efficiency. The subgraph isomorphism problem becomes polynomial when
both the query case and the cases in the case base are trees [19], and this result
generalizes also to a class of planar graphs. For that reason, we propose to
focus on tree structured cases. We believe that notwithstanding this limitation
a large class of real situations can still be managed. For instance, Jones et al. [7]
represent cases with trees in a CBR system for intelligent retrieval of historical
meteorological data, and Surma describes aggregation taxonomies with trees
[16]. Moreover labeled trees are at the base of object oriented representation
languages and document representation in information retrieval.

We have designed and implemented a set of efficient algorithms for case
retrieval from a case base of trees labeled on both nodes and edges. These al-
gorithms are not based on state-space search and backtracking and they use a
general definition of similarity between trees that consider both the case struc-
ture, i.e. the graph structure, and his semantic part, the labels. The complexity
of the retrieval resides on the fact that trees here considered are general trees,
i.e. they are not ordered® as other approaches assume [17]. This feature is impor-
tant in many applications; e.g. planning, and enables one to apply the proposed
algorithms to trees that partially represent a graph, for instance a spanning
tree. The proposed algorithms take the move from the best known algorithm for
solving the subtree 1somorphism problem on unlabeled trees, proposed by D.W.
Matula [10] and M. Chung [5]. We have added a user definable similarity metric
and exploited a branch and bound technique. The proposed retrieval algorithms
solve three different problems:

1. the first searches, in the case base, among all the subtrees isomorph to the
query case the most semantically similar to the query tree (best complete

! The children of a given node are not linearly ordered and this order must not re-
spected in the matching nodes.

similarity morphism);

2. the second searches the subtree simultaneously most semantically and struc-
turally similar (best incomplete similarity morphism) with the constraint
that the root of the query tree is matched;

3. the third searches the most semantically and structurally common subtree
between the query tree and the trees in the case base.

All the above algorithms are polynomial. We conducted an empirical eval-
uation on randomly generated case bases. We compared our algorithms with
a classical state-space search algorithm. The results show significant speed-up
with respect to the classical approach.

2 Graphs and Structured Cases

This Section contains the definitions needed for the retrieval algorithms (Sec-
tion 3). A directed graph is a structure ¢ =< Vg, E¢ > in which Vg is a fi-
nite set of nodes and Fg C Vg x Vi is a set of edges. If G =< Vg, Fg > and
H =< Vg, Ey > are two graphs, H is a subgraph of G if Vg C Vg and Ey C Eg.
If G =< V&, E¢ > is a graph and V' C V then H =< V' FE’ > is the subgraph
induced by V' it B' = {(u,v) € Eg s.t. u,v € V'}.

We are interested in, given a query graph H and a family of graphs {G;},
identifying the subgraphs of some element G; that are isomorphic to the given
query graph. We now precisely define the terms we are using [13, 19].

Let G =< Vg, Eg > and H =< Vg, Eg > be two graphs.

— [Vg = Vg is a morphism iff (u,v) € Eg = (f(u), f(v)) € Eq.

— G and H are isomorphic iff there exists a morphism f : Vg — Vg s.t. f
bijection and the inverse of f is also a morphism.

— H is isomorphic to a subgraph of G iff there exists an injective morphism
f Vg = Vg, s.t. H is isomorphic to the subgraph induced by f(V) in G.

A morphism f : Vg — Vi is said incomplete if it 18 not defined on all the
nodes of H, otherwise is called complete.

In the rest of the paper we shall be concerned only with trees, i.e., connected
acyclic graphs. Let G =< Vg, E¢ > be a (directed) tree and « € Vi, the father
of &, F(x), is the unique node s.t. (F (), z) € Eg; the children of x, C(z), are
the nodes y s.t. (#,y) € Fg; the root node r is the unique node that has no
father.

In Figure 1 are shown three trees. From H to Gy there are six injective com-
plete morphism. {(a, 4), (b, B), (¢, D), (d, F), (e, E), (f,I), (g, L)} and {(a, D),
(b, F), (¢, E),(d, 1), (e, L), (f, N), (9, M)} are two injective complete morphisms.
These trees are not ordered, this means that if in the first morphism we switch 1
with L we still have a (different) morphism. From H to G5 there are no complete
morphisms but many incomplete ones. {(a, 4), (b, B), (¢, C), (e, F),(g9,1)} is a
morphism that does not match both d and f. {(¢, 4), (d, C), (e, B), (f, D), (g,)}

1s a morphism that does not match the root node a.

Fig. 1. Examples of trees.

A tree is labeled on nodes and edges if two functions A, : V. — L and
Ae 1V x V. = L are defined, where L is the label set. To extend the definition
of morphism to labeled trees we need a measure of similarity between labels
s: Lx L —[0,1].If z,y, w, z are nodes we shall more compactly write s(z,y)
instead of s(A, (%), An(y)), and s((x, y), (w.z)) instead of s(Ac(z,y), Ae(w, 2)).

Let H and G be two labeled trees, f : Vg — Vi is an simearity morphism
(tsm) iff it is an incomplete injective morphism and ¥(z,y) € Eg s.t. f(z) and
f(y) are defined, the following conditions hold:

= s(a, f(2)) >0, 5(y, f(y)) >0 and s((2,y), (f(2), [(y))) >0,
— the set {# € Vir s.t. f(x) is defined} is a subtree of H.

We say that H is similar isomorphic to a subtree of G iff exists an tsm f
from H to G.If f(x) is not defined we shall also write f(z) = $, in this case we
shall also assume that s(z,$) = 0 and s((=,y), (f(x), f(y))) = 0.

A distance between trees (tsd) is a function d : T'x T'— [0, 00), where T is
the space of all trees, s.t.

di(H,G) = Y will = sz, f(@)) + wria) o (1= s(F(2),2), (F(F(2)), £(2)))) (1)

A(H,G) = min; {d; (H,)} (2)

where f: Vg — Vi is a tsm between H and G, w, and wp(,), are positive
real numbers. We note that this distance function between labeled trees has the
property that if a node * € Vg is not mapped by f to a node of G then the
contribution of this mismatch to the sum in Equation 1 is given by w; , wp(z) »
and all wy , wr(y),y s.t. y is a descendant of .

3 Retrieval Algorithms

3.1 Tree Isomorphism Algorithm

In this Section we present the basic algorithm for solving the subtree isomor-
phism problem. Let us assume that 7, = (Vi, Fg) and G, = (Vg, Eg) are two

SubTreelso(Hy, G,r) ComputeS(H, G, p)

input: two rooted trees H, and G,/ input: two rooted trees H,, G
output: Boolean and a node p of H,

1 notvoid < T output: a subset S”(p) of Vg

2 for each node p € Vg 1 ST (p)«0

3 if p is a leal 2 for each g € Vs

4 S"(p) « Vo 3 Build(By,4)

5 mark(p) =T 4 m + ComputeMatching(B, 4)
6 else S"(p) « 0 5 if |m| = |C(p)|

7 mark(p) < L 6 S7(p) < S"(p) U{g}

8 while notvoid 7 return S"(p)

and exists p s.t. mark(p) = L
and (Ve € C(p) mark(cy) = T)

9 S"(p) « ComputeS(H,,p,G,)
10 mark(p) « T

11 ifS"(p)=10

12 notvord + L

13 return notvoid

Fig. 2. The algorithm for solving the subtree isomorphism problem.

trees with root r and »’ respectively. For every node p € Vg we define the set

S”(p) as follow:
S"(p) = {9 € Vg : 3 an injective morphism m : H,(p) — Gy (g) with m(p) = g}

where M, (p) is the subgraph induced by the set made of p and all the descendants
of p. If S”(r) is not void then H, is isomorphic to a subtree of G,.. If ¥’ € S”(r)
then H, is 1somorphic to a subtree rooted in the same root of G,... If p € Vi and
g € Vi then we can build the bipartite graph B, , = (C(p) U C(g), E), where
C(p) and C(g) are the children of p and g and (cp,cq) € E iff ¢; € S"(¢p). The
following proposition holds [5]:

Proposition 1 g € S"(p) iff there exists a matching in B, 4 that cover C(p).

A matching of G =< V, E > is asubset M C F such that if (z,y), (z,w) € M
then £ z, ¢ # w, y # z and y # w [19]. A matching M C E coveraset V! CV
if for all € V' there exists y € V s.t. (z,y) € M or (y,#) € M. Proposition 1
yields immediately a recursive algorithm for testing if H, is isomorphic to a
subtree of G,s. The algorithm in Figure 2 shows an iterative version that is
equivalent to that presented in [13].

In SubTreelso there is a first initialization block (lines 2 + 7) of the sets S”;
the second block (lines 8 + 12) computes the S”(p) Vp € Vi starting from the
leaves and ending to the root of the tree. Note that SubTreelso stops and exits
with false when one tree H,(p) is not isomorph to any subtree of G,.

The function C'ompute M atching applies a maximal bipartite matching al-
gorithm [19] to find (lines 5 + 6 of function ComputeS) if a node g € Vi is

in S”(p), according to proposition 1. This algorithm can be implemented quite
easily with an O(ne) worst case complexity, where n and e are the number of
vertices and edges in B, ,.

The algorithm in Figure 2 does not explicitly list all the injective morphisms
of H, in G,. To attain that goal an additional procedure must be used [15]. Tt
is simple to show that when all the S”(p) have been computed a backtrack-free
search can output all the isomorphisms. Therefore the time complexity of this
phase is linear in the number of the subtree isomorphisms.

3.2 Complete Similarity Tree Isomorphism Algorithm

The algorithm depicted in Figure 2 can be modified to find the complete iso-
morphism that minimizes the distance function (Equation 2) among all the iso-
morphisms.

First, SubTreelso has to be modified in order to compute the new sets
S (h), h € Vg, which are defined as S”(h), except that now the morphism is
substituted with a complete similarity morphism. We need only two changes:

1. at the line 2 of the function ComputeS we repeat the search for all ¢ € V5
s.t. s(h,g) > 0;

2. Bpy =< C(h)UC(g), E >, and (cp,¢4) € E if and only if ¢, € S7(¢c;) and
5((]7" Ch)’ (g, Cg)) > 0.

Having done this, to find the best complete 1somorphism, we use a branch
and bound search in the space of all isomorphisms. This algorithm is very fast
because it is restricted to the space of all the complete similarity isomorphisms
which is normally smaller than the space of all the possible maps between two
trees.

3.3 Imncomplete Similarity Tree Isomorphism Algorithm

The algorithm presented in this Section further generalizes the idea presented
in the previous one allowing an incomplete match of the tree structure not only
a partial match of the labels. Moreover we want that the root of the query be
matched. To obtain this goal we must again slightly change the definition of S”.

Let H, and G,/ be two rooted trees and f : Vg — Vi, be a (incomplete)
tree similarity morphism ¢sm, then for all v € Vg, S7(v) is the set of triples

(9, dug, flu, (v)) Where:

1. ¢ € Vg and f(v) = g;

2. dyg is the matching distance between H,(v) and G,:(g) computed with re-
spect to f (Equation 1);

3. flu, () is the tsm f restricted to the subtree of H, rooted at v that gives
minimal matching distance between H,(v) and G, (g);

4. the similarity between the labels of the nodes v and ¢ and of his incident
edges is greater than 0.

SubTreeSimMatching(H,, G,) ComputeS(H,, h, G,1)

input: two rooted trees H, and G,/ input: two rooted trees H,, G,
output: The best incomplete similarity anode h € H,

isomorphism between H, and a output: S (h)

subtree of G,.. 1 Si(h)« 0
1 for each node h € Vg 2 for each g € Vg
2 if h is a leaf 3 if ss(h,g) > 0
3 ST(h)« 0 4 Build(Bh,g)
4 for each node g € Vi 5 m <+ ComputeMatching(Bp,4)
5 if ss(h,g) >0 6 dng + ComputeDist(h, g, m)
6 ST (W57 () U (g, T ST(h) ST U (g, dno, flargn)

[1—s(h,g)]+[1— 8 return ST (h)

e
7 mark(h) =T
8 else mark(h) + L
9 while(3h€ Vg | mark(h) = 1) and
(Ven € C(h) mark(cp) =T)
10 ST (h) +ComputeS(H,, h,G 1)
11 mark(h) « T

12 return Best(S7(r))

Fig. 3. The algorithm for solving the incomplete similarity isomorphism problem of H,

with a subtree of G,. ss(h,g) > 0 means (s(h,g) > 0 and s((F(h),h), (F(g),9)) > 0).

SI(v) is said the match set of v. SI(r) is the set of all incomplete similarity
isomorphisms of H, with subtrees of GG,/ together with the distance evaluated
on the corresponding tsm. The best incomplete similarity isomorphism is the
element, in S7(r), which have minimal distance (as shown in Equation 2).

In [15] is proved that ST (v) can be computed from the sets S¥(z), Vo € C(v).
This property allows a fast search of the best incomplete similarity isomorphism.
Figure 3 shows the algorithm for computing the best incomplete similarity iso-
morphism. There are two blocks:

— in the first block (lines 1 + 8) is computed the set ST (k) for each leaf node
h of H,;
— the second block (lines 9 + 11) computes SI(h) for each internal node A.

In the procedure ComputeS given two nodes h € Vg and g € Vi, if the
similarity between the labels of the two nodes and of their incident edges is
greater than 0 then the matching distance dp4 is computed solving a marimum
weight bipartite matching problem [19]. The matching distance dj,4, computed in
ComputeDist, has two parts: the first 1s determined by the labels of A and g
and the labels of the incident edges, the second depends on the matching of the
children nodes of h with the children nodes of g. The maximum weight bipartite
matching algorithm computes this second component. The nodes of By, are

(a-0.2) (A-0.1)

(b,-0.3)

©01) (d-07) (e04) (E-02) (F06)

(L02 (M01) (1-03)

Fig. 4. Two labeled trees (H is the query). Only the nodes are labeled with numbers.
Each node is associated with a pair (z,n) where z is the name of the node and n his

label.

the children of h and ¢ and there is an edge between two nodes # € C'(h) and
y € C(g) if and only if (y,dsy, flu,(2)) € 57 (x); the weight of the edge (z,y)
in Bpg is (ZveVHr(I) Wy + Wp(y)v) — dey. The last term is called the (maximal)
matching similarity between x and y.

Let us consider an example to show the behavior of SubTreeSimM atching
(see Figure 4). The two trees shown are labeled only on the nodes. The similarity
function is 0 if two labels have opposite sign and 1s one minus the module of the
difference otherwise. For example s(b, B) = 0 and s(b, A) = 0.2.

The initialization phase (lines 1-8 in SubTreeSimMatching) generates the
sets S%(x) ¥ x leaf node of H:

53 {(B,0.3,{(c, B)}), (£,0.5,{(c,)}), (L, 0.1, {(c, L)}), (M, 0, { (¢, M) })}
S{(d) = {(4,06,{(d, 4)}), (C,0.1,{(d, ©)}), (D, 0.2,{(d, D)}), (1, 0.4,{(d, N}), (F,0.5,{(d, E)})}
Eh {(B,0,{(e,; B)}), (F,0.2,{(e, M)}), (£,0.2,{(e, L)}), (M, 0.3, {(e, M) })}

After that the father of ¢ is considered (lines 9-11), and the set S#(b) is
computed. Figure b shows the bipartite graphs used to match b with D, C' and A
respectively. Note that each edge (x,y) is weighted with the matching similarity
of the two nodes x and y.

8§(0) = {(D,08,{(b, D), (¢, M), (d, 1), (e, L)}), (I, 3,{(b, N)}), (E,3.1,{(b, E)}),
(€, 1.9,{(b,C), (d, D), (e, F)}), (4, 2.1,{(b, A), (d, C) D)}

The matching distance between b and D is calculated (see Equation 1) as the
sum of one minus the similarity between b and D (1 — s(b, D) = 0.2) and the
matching distance of their children (= depsr + dar + der, = 04+ 0.2+ 0.4 = 0.6).

This match 1s found by the maximum weight bipartite matching algorithm.
SubTreeSimMatching terminates after generating the set S%(a) (Figure 6
shows the bipartite graphs generated).

§7(a) ={(I,4.1,{(e, D}), (P, 3.3,{(a, D), (b,)}), (C, 1.4,{(a, C), (b, D), (¢, M), (d, I), (¢, L)}),
(E,4,{(a, B)}), (4, 2,{(a, 4), (b, C), (d, D), (e,))}

F(b) F(D) F(b) F(C) F(b) F(A)
¢ 109 L ¢ 05 .
S —_—
dg0% . E
08/
eq 08 . D e.fl”

Fig.5. The bipartite graphs generated during the first phase of the algorithm. The
edges showed in dashed lines represent the maximal match.

Fa) F(D) F(a) F(C) F(a) F(A)
ba ol b ba. . B
N 21
.M e
u | a F

Fig. 6. The bipartite graphs generated during the second phase of the algorithm. The
edges showed in dashed lines represent the maximal match.

The best complete similarity morphism is {(a,C), (b, D), (e, M), (d,I), (e, L)})
with matching distance 1.4.

To apply SubTreeSimM atching to a real retrieval algorithm we have to con-
sider not only a tree (G,s, but a collection of trees {G%,}. We then search the
subtree in {(G*,} that has minimal distance with the query tree H,. We call NN-
TSDr the Nearest Neighbor algorithm that uses the ¢sd distance as defined in
Equation 2 and computed by the procedure SubTreeSimM atching. Our imple-
mentation of NN-TSDr exploits a branch and bound technique that discards a
partial match (g, dng, flm, (n)) in the SubTreeSimM atching computation when
dpg 1s greater than a previously found ¢sd distance. NN-TSD differs from NN-
TSDr in relaxing the condition that the root r of the query tree is matched.

If CB = {G; =< Vg,,Eqg, >,i = 1...m} is a collection of labeled trees
(case-base) and H =< Vg, Epg > is a query tree, then the worst case complexity
of NN-TSDr and NN-TSD is ([15]):

O(m * |Vi| x |Vag,

* (V| + Ve,

))-

We shall show experimentally in the next Section that in the average case the
proposed algorithms are linear with respect to |Vg| and |Vg,|.

Varying the number of query tree nodes

SSSr +—
N-TSDr_-4---
50 SSs -
NN-TSD
40 /
o
ko) e
(7] :
g ;
) 30 ‘
£
(]
[}
o
2
S 20 X
J e
, e
10 *
jRay 5
¥
//}(‘//j‘
)*/ﬁrff,u
0 P
0 5 10 15 20 25 30 35 40

nodes in the query trees

Fig.7. Average retrieval times on 20 retrievals varying the number of nodes in the
query tree. The number of nodes in the case base trees is 50, the number of trees is
100, the maximum number of child nodes is 5 and the maximum number of child nodes
in the query trees is 3.

4 Empirical Evaluation

In this Section we experimentally compare NN-TSD and NN-TSDr with a classi-
cal state-space search algorithm (SSS solves the same problem of NN-TSD, SSSr
the same of NN-TSDr) that also uses the branch and bound technique men-
tioned above. NN-TSD and SSS (equivalently NN-TSDr and SSSr) solve exactly
the same problem and the results are equal. The experiments here illustrated are
executed on randomly generated case bases. The trees contain both numerical
and nominal labels on the nodes and only nominal labels on the edges. There are
only two labels on edges, “numerical” and “nominal”. The edge (,y) is labeled
“nominal” (“numeric”) if y has a nominal (“numeric”) label. On the nominal
nodes there are b possible labels and the similarity 1s 1 between two equal labels
and 0 otherwise. On the numeric nodes the similarity is taken as one minus the
Euclidean distance. This 1s only an example, a different similarity metric can be
used on both nodes and edges.

Figure 7 shows the average time of one retrieval varying the number of nodes
in the query tree. Note that NN-TSD and NN-TSDr have linear behavior, while
SSS has, as expected, an exponential one. Figure 8 shows the retrieval time
varying the number of nodes in the case base trees. All the compared algorithms
seem linear but NN-TSD is more efficient than SSS. The SSS curve stops at 30

Varying the number of case base tree nodes

80
SSSr o—
NN-TSDr -
SSS o
70 p NNCTSD %
60 /
= 50
(7]
k)
£ /
= 40 /
(]
[}
©
g /
E 30
20 S p——— T
g
.
10 d i
e =¥
0
0 20 40 60 80 100

nodes in the case base trees

Fig.8. Average retrieval times on 20 retrievals varying the number of nodes in the
case base trees. The maximum number of child nodes in the case base trees is 15, the
number of trees is 100, the number of nodes in the query trees is 20 and the maximum
number of child nodes is 10.

nodes, in fact on trees with 40 nodes SSS requires more than 100 Mega byte of
memory making impractical any further computation. It is worth noting that
these curves show an ideal situation without any memory limit (swap time is not
included). In a real situation SSS is much slower because of disk swapping. On
the contrary our algorithms show a poor use of memory, in all the experiments
done NN-TSD never passed 15 Mega bytes of memory.

5 Conclusions

In this paper we propose a set of efficient algorithms for case retrieval from a
case base of trees labeled on both nodes and edges. These algorithms are not
based on state-space search and backtracking, they use a branch and bound
technique and a general definition of similarity between trees that consider both
the case structure, 1.e. the graph structure, and his semantic part, the labels.
The comparison with a conventional state-space search algorithm on randomly
generated case bases, shows that significant speed up can be obtained. This
algorithms have been integrated in a C+4+4 library for case-based reasoning and
data mining called CBET [1].

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

P. Avesani, A. Perini, and F. Ricci. Cbet: a case base exploration tool. In Springer-
Verlag, editor, Fifth Congress of the Italian Association for Artificial Intelligence
(AT*IA 97), Roma (Italy), 1997, September 16-19 1997.

. K. Borner, E. Pippig, E.-C. Tammer, and K.-H. Coulon. Structural similarity and

adaptation. In Furopean Workshop on CBR, Lausanne, 1996.

L. K. Braiting. Building explanations from rules and structured cases. [Interna-
tional Journal of Man-Machine Studies, 34:797-837, 1991.

H. Bunke and B. Messmer. Similarity measures for structured representations. In
S. Wess, K.-D. Althoff, and M. M. Richter, editors, Topics in Case-Based Reason-
ing, Kaiserslautern, Germany, 1994. Springer-Verlag.

M. Chung. o(n*®) time algorithms for the subgraph homeomorphism problem in
trees. Journal of Algorithms, 8:106-122, 1987.

F. Gebhardt, A. Vo}, W. Grather, and B. Schmidt-Belz. Reasoning with complex
cases. Kluwer, 1997.

E. K. Jones and A. Roydhouse. Intelligent retrieval of historical meteorological
data. AT Applications, 8(3):43-54, 1994.

P. Katalagarianos and Y. Vassiliou. On the reuse of software: a case-based ap-
proach employing a repository. Automated Software Engineering, 2:55-86, 1995.
B. Kettler, J. Hendler, W. A. Anderson, and M. P. Evett. Massively parallel sup-
port for case-bases planning. [FEE Fzxpert, pages 8-14, 1994.

D. W. Matula. Subtree isomorphism in O(n5/2). Ann. Discrete Math., 2:91-106,
1978.

J. J. McGregor. Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms. Information Science, 19:229-250, 1979.

E. Plaza. Cases as terms: a feature term approach to the structured representa-
tion of cases. In International Conference on Case-Based Reasoning (ICCBR-95),
Sesimbra, Portugal, Oct. 23-26. Springer Verlag, 1995.

J.-C. Régin. Développment d’outils algorithmiques pour 'Intelligence Artificielle.
applicatin a la chimique organique. These de doctorat, Université Montpellier II,
1995.

R. J. Schalkoff. Pattern recognition: statistical, structural and neural approaches.
John Wiley, 1992.

L. Senter. Accoppiamento inesatto di alberi e ragionamento basato su casi. Mas-
ter’s thesis, Univerista di Padova, Facolta di Ingegneria, 1998.

J. Surma. A similarity measure for aggregation taxonomies. In FCML Workshop
Notes on Case-Based Learning: Beyond Classification of Feature Vectors, Prague,
1997.

E. Tanaka and K. Tanaka. The tree-to-tree editing problem. International Journal
of pattern recognition and artificial intelligence, 2(2):224-240, 1988.

J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM,
1(23):31-42, 1976.

J. van Leeuwen. Graphs algorithms. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, pages 525—631. Elsevier, 1990.

This article was processed using the ¥TEX macro package with LLNCS style

