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Abstract: Relational representation of objects using graphs reveals much 
information that cannot be obtained by attribute value representations alone. 
There are already many databases that incorporate graph expressions. We focus 
on two types of database, one for syntactic trees in language sentences and one 
for chemical compound structures. We attempt to mine characteristic subgraph 
patterns from these databases using a common framework. This mining process 
employs two methods: relative indexing of graph vertices and the cascade 
model. The former extracts many linear subgraphs from the database. An 
instance is then represented by a set of items, each of which indicates whether a 
specific linear subgraph is contained within the graph of the instance. The 
cascade model is a rule induction method that uses levelwise expansion of a 
lattice. If the distribution of the attribute values along a link in the lattice shows 
a sudden change, then that link is represented as a rule, whose strength is 
measured by the BSS value of the link. The basic assumption of this mining 
process is that characteristic subgraphs may be well represented by the 
concurrent appearance of linear subgraphs. The resulting rules are shown to be 
a good tool for obtaining valuable knowledge in linguistics and toxicology. 



1 Introduction 

Structured objects  can be represented very effectively by using graphs. Graphs can 
express general relationships in data that cannot be obtained by the usual attribute 
value expressions, and many databases  therefore incorporate graph representations. 
For example, the structural formulae in chemistry, syntactic trees in natural language, 
and circuits in engineering all use graphs. We put our focus on the mining method 
applicable to all of these graph-structured objects.  

In chemistry, a graph is the most fundamental language of representation to explain 
the structure of compounds. Studies of SAR (structure activity relationship) and SPR 
(structure property relationship) have been among the core research subjects  in the 
field of chemical information research. Though the main stream of these studies has 
concerned itself with statistical methods treating a relatively narrow range of 
compound classes, there have also been several attempts to mine knowledge from 
graph databases with diverse structures [1-4].  

Recently, interest in graphing structured objects has  increased in the fields of 
machine learning and data mining; there has been work on GBI (graph based 
induction) [5], ILP (inductive logic programming) [6], and the association rule for 
graphs [7, 8]. ILP has been applied to SAR problems and shown useful [9]. However, 
these methods have not sufficiently considered all respects of universal validity, 
applicability to a variety of problems , and required computational resources, and there 
is a need for a new, efficient method. 

The principal aim of this paper is to propose a mining scheme that is generally 
applicable to different kinds of graph-structured objects.  We demonstrate that it is 
applicable to investigation of both syntactic trees and chemical structures. Section 2 
explains the new mining process, which consists of item generation and application of 
the cascade model. In Section 3, the procedure is applied to the analysis of syntactic 
parse trees . Section 4 discusses the results obtained from an SAR study of the 
mutagenicity data of aromatic nitro compounds.  

2 Mining Methods  

2.1 General scheme 

We propose a mining scheme that consists of two steps. In the first, we generate 
thousands of attributes from a set of instance graphs; each attribute denotes whether a 
specific subgraph is contained within the graph. The method of relative indexing of 
vertices restricts the subgraphs to linear types, and provides an affordable number of 
attributes. Each graph can then be described as a tuple in a table with thousands of 
columns. The whole graph object property is also included as an attribute of the table.  

The second step is to find dependencies among attributes. There are many possible 
methods; we employ a decision tree to derive classification rules for some attributes. 
Alternatively, the subgraph patterns of a graph could  be regarded as items in a basket 



and the association rules method could be applied. In this paper, we employ the 
cascade model to derive rule expressions. We chose this model because it is able to 
derive characteristic, and/or classification, rules in a single unified framework, with a 
pruning method that can suppress combinatorial explosion of lattice size, even with 
high item density.  

The resulting rules can act as a guide in extracting valuable knowledge from a 
database. The rules are expressed not by the target subgraph, but by the concurrent 
appearance of plural linear subgraphs that are interpreted to provide knowledge. 

2.2 Relative Indexing of Graph Vertices 

Our method can be explained as follows, using a syntactic tree as an example.  
Suppose that we wish to find characteristic patterns in the syntactic tree associated 
with the verb “think”.  An example of the tree is shown in Figure 1; it contains 8 leaf 
vertices and 6 non-leaf vertices.  

If we extract all possible subgraphs from this tree, the number of attributes will be 
too large for most mining methods to handle, and we therefore need to impose some 
restrictions on the subgraph pattern. To do so, we introduce a new scheme: the 
relative indexing of graph vertices. This scheme assumes that a subgraph is linear and 
consists of two parts.  

• Two meaningful vertices. 
• The relationship between the two vertices. 

We can fix one of the two meaningful vertices to the leaf vertex, [VT: think], as our 
aim is to analyze the syntactic pattern based on its usage. As the non-leaf vertices in 
this tree possess no valuable information except topology, we can restrict the source 
of the other meaningful vertex to the leaf vertices. Therefore, the attributes employed 
are the 7 subgraphs between "think" and 7 leaf nodes, as shown in Table 1. 

The next problem is the expression of the relationship between the selected leaf 
vertices. As the resulting rules are depicted using these expressions, we expect the 
original graph structure to recover as much as possible from the attributes’ expression. 
The syntactic tree is an ordered tree and the edges branching from a vertex can be 
numbered. Therefore, we assign a relative index to each leaf node, as shown in the 

Word Part of 
speech 

Index 

I PRON 1.2./.1 
she PRON 1./.2.1 
is  BE 1./.2.2.1 
an ART 1./.2.2.2.1 

intelligent ADJ 1./.2.2.2.2 
woman NOUN 1./.2.2.2.3 

. (period) PUNC 1.2.1./.2 

PRON  VT   PRON BE ART   ADJ         NOUN  PUNC
    I   think  she   is  an intelligent woman  .

Fig. 1. Sample syntactic tree. 

Table 1. Leaf vertices and relative indices. 



last column of Table 1. The relative index of the 
word "I" is given by "1.2./.1", where "/" indicates 
the root vertex of the minimum subtree containing 
the two words, as shown in Figure 2. Starting from 
the position of "/", the numbers on the left (right) 
side, delimited by periods, indicate the sequence of 
edge indices to the word "think" ("I"). Here, we 

have assigned the edge index 1 to the leftmost edge. 
The resulting relative index is given by 
concatenating the two indices to "think" and "I". 

We can define a unique relative index for any 
vertex. Consequently, we can recover the relative positions of the words from the 
index unambiguously. However, this indexing scheme may require modification, 
depending on the problem considered. For example, when treating chemical 
compounds, the edges in a graph are not ordered, and therefore we cannot give an 
unambiguous index between a pair of vertices.  

The characteristic subgraph that is to be mined may very well be a general graph 
that cannot be represented as a linear graph. There is then the question as to whether a 
set of generated linear subgraphs can stand in for a general subgraph in the 
representation of a rule, and this is the core point by which to judge the current 
method. We anticipate that in most cases the concurrent appearance of linear 
subgraphs in a rule can substitute for a general subgraph. We inspect this hypothesis 
using two kinds of problems later in this paper.  

2.3 The cascade model 

The cascade model was originally proposed by Okada [10]. It can be considered as an 
extension of association rule mining. The method creates an itemset lattice, where 
[attribute: value] pairs are employed as items that constitute itemsets. Links in the 
lattice are selected and expressed as rules, by examining the distribution of the RHS 
attribute values along all the links. A sudden change of distribution along a link will 
bring the two terminal nodes of that link into focus. Suppose that the itemset at the 
upper end of a link is [A: y], and that an item [B: n] is added along the link. If a sharp 
increase in [C: y] is then found along this link, we can write a rule with the following 
expression:  

IF [B: n] added on [A: y] THEN [C: y]. 

where the added item [B: n] is the main condition of the rule, and the items on the 
upper end of the link ( [A: y] ) are considered as the preconditions. Any number of 
items can be put into the RHS of a rule if its distribution shows a strong interaction 
with the main condition. 

Subsequently, the sum of squares criterion for categorical data was introduced to 
improve the definition of rule strength [11, 12]. The formulation of the model was 
also extended to cover the mining of classification rules and characteristic rules in a 
unified framework [13]. The problem of combinatorial explosion in the number of 

PRON          VT  
    I         think

2./

1.2./

/

/1.
2

2

1

1

Fig. 2. Relative indexing 
between "think" and "I". 



lattice nodes was also resolved by a new pruning methodology [14]. The cascade 
model is implemented as DISCAS software using lisp, and it is used in this work. 

3. Application to Syntactic Trees 

3.1 Problem Definition and Computation 

Mining from corpus data may lead to new knowledge in linguistics, which may be 
reflected in  improvements in  natural language processing. We used the Electronic 
Dictionary Research (EDR) English corpus, which contains 160,000 sentences, with 
syntactic tree data for each [15]. As an example, we extracted sentences containing 
the verb "think" and tried to find characteristic patterns that were associated with this 
word. Among the 1,001 sentences retrieved, there were 134 and 867 sentences that 
contained VI and VT verbs, respectively.  

The corpus treats all blanks between words in a sentence as a special kind of word; 
we omitted these blanks to simplify the trees. There is a linguistic tag on every non-
leaf vertex in the tree of this corpus, but it proved too difficult to interpret these tags 
and we were forced to omit them. After preprocessing, the resulting tree had the 
structure shown in Figure 1. The details of the corpus data, including definition of 
parts of speech, can be accessed over the Internet [15].  

Generating an attribute using the scheme in Section 2.2 provides the option of 
using another indexing scheme through numbering the edges from right to left. As 
there is no reason to prefer one indexing scheme to the other, we employed both 
schemes to generate relative indices. The attribute format was set to the concatenation 
of the index and the part of speech columns in Table 1.  

Using the two indexing schemes, every word except "think" generates two attribute 
records. The number of records created from 1001 sentences was 28010, of which 
10469 were recognized as different. The verb class, VI or VT, was also added as an 
attribute.  

The cascade model was used to mine for characteristic rules, using the parameter 
values (minsup: 0.05, thres: 0.05, thr-BSS: 0.05) [14]. The pruning condition defined 
by the thres value can eliminate most attributes from the actual computation, and in 
this case left only 29 attributes for construction of the lattice. That is, if the two values 
y and n of an attribute have a very unbalanced distribution they do not contribute to 
forming the characteristic subgraph patterns. 

The lattice construction took 7 seconds, giving 359 nodes, using a 266MHz 
Pentium II computer. The first rule set gave us 5 rules, which explained about half of 
the total sum of squares in the problem. 

3.2 Interpretation scheme 

The strongest rule is the first rule of the first rule set and has the expression shown in 
Figure 3. The main condition of this rule indicates the existence of AUX (auxiliary 
verb) at the position [1-/-2-2], where hyphens are delimiters among edge indices 



numbered from the right. Six RHS clauses are shown in decreasing order of BSS 
values. The underlined row is included to show the information of the main condition 
item. The last line shows that among 1,001 sentences , 117 satisfy the main condition, 
and the sum of BSS values for all attributes is 640 along this link. 

The position of AUX indicated by the main condition is illustrated as I in Figure 4, 
where dashed lines denote the possibility of edges at the indicated locations. The first 
line of the RHS part indicates the existence of the subgraph II. The percentage of 
subgraph II increases from 11.7% to 100% along this rule link, and the associated 
BSS value is 91.2. We can therefore say that the appearance of subgraph I is always 
accompanied by that of II. As the frequencies of these two subgraphs are the same, 
they will always appear together, so the actual main condition of the rule can be 
expressed by subgraph III in Figure 4.  

The lines 3-4 and 5-6 indicate the high confidence for concurrent appearance of 
subgraphs IV and V when the main condition is satisfied. In conclusion, the overall 
rule interpretation is shown by VI where the subgraph pattern, depicted by the solid 
lines, appears very frequently when the auxiliary verb is located at the position shown 
by the bold lines. Also indicated in VI, by the dotted lines, is the punctuation symbol 
that appears with the confidence of 61.5%.  

AUX                      think

              I

/-2-

/-2-2-

/

-1-/

AUX                      think

              II

/.1

/.1.1

/

2./

AUX                         think

              III

IF [1-/-2-2AUX: y] added on [] 
THEN [2./.1.1AUX: y]     11.7%->100.0%; BSS: 91.2  
THEN [1-/-2-2AUX: y]     11.7%->100.0%; BSS: 91.2  
THEN [1-/-2-1ADV: y]     11.6%-> 98.3%; BSS: 88.0  
THEN [2./.1.2ADV: y]     11.6%-> 98.3%; BSS: 88.0  
THEN [1-2-1-/-2PRON: y]  14.3%-> 84.6%; BSS: 57.9 
THEN [2.1.2./.1PRON: y]  14.3%-> 84.6%; BSS: 57.9 
    Cases: 1001 -> 117              Sum_BSS:640.   

Fig. 3. A rule expression for the verb “think” by the cascade model 

Fig. 4. Subtree expression of the main condition of a rule 

Fig. 5. Characteristic subgraph patterns found in a rule. 

PRON     AUX        ADV         think                PUNC

                                    VI

 ADV         think

    IV

PRON                    think 

                  V



Another example of a RHS clause with a large BSS value is shown below, 

THEN [1.2./.1 PRON: n]  57.6% -> 100.0%; BSS:21.0  

The item of this RHS clause indicates the nonexistence of the specified pattern. Two 
interpretations are possible for this description. One suggests the existence of words 
other than PRON at this location; the other leads to the nonexistence of the location 
itself in the tree, since either no words exist, but rather a subtree, or the existence of 
the location is incompatible with the main condition. We can see that the location and 
subgraph VI are contradictory in this rule, and therefore this clause does not add 
useful information.  

3.3 Characteristic patterns 

The first rule set contained 5 characteristic rules, from which we constructed 3 
characteristic patterns, VI – VIII, shown in Figure 6, following the procedure given 

    PRON      AUX          ADV         think                PUNC
14%->85%  12%->98%  12%->98%                                         12%->62%

No precondition

Cases: 1001 ==> 117
   BSS = 640

 PRON    think                   PUNC
42%->91%                                   29%->100%

No precondition

Cases: 1001 ==> 288
   BSS = 532

PRON     think    PRON                  PUNC
22%->100%               13%->52%                        18%->57%

Precondition:
pattern VII not applicable

Cases: 710 ==> 159
   BSS = 360

 VI

 VII

VIII

For the purpose, I don't think we can
avoid certain expenditures.

He thought it unlikely that the named 
chemicals were actually exported.

But I thought I would be able to
 beat him to it.

Fig. 6. Characteristic subgraph patterns for the verb “think”. 



in the previous section. One rule has few supporting sentences and the other only 
dis criminates a group of sentences from those characterized by the three patterns. 
Therefore, we can conclude that these are the major patterns associated with the usage 
of “think”. These patterns are exclusive to each other, and cover 56% of all sentences.  

The patterns in Figure 6 are shown with an example sentence, the precondition 
description, the number of cases, and a BSS value. The sub-pattern shown by bold 
lines indicates the main condition, while solid lines are concurrent ones. No 
significant changes in the VI/VT ratio were observed in these patterns. 

In fact, we can see these patterns frequently in various media. How are we to 
understand the absence of nouns at the locations of pronouns in these patterns? We 
have to be careful in the interpretation of the patterns. Actually, we can expect proper 
nouns and noun phrases at the same locations, but proper nouns are less frequent than 
pronouns and the noun phrase is not recognized in the corpus. Incorporating these 
kinds of items  should result in more impressive patterns.   

The results obtained here can be regarded as a type of statistic on syntactic pattern. 
Extensive application of this method is expected to lead to new knowledge in the field 
of linguistics.  

4. Application to Mutagenicity of Chemical Compounds 

4.1 Problem Definition and Computation 

The objective in this section is to discover valuable SAR rules for the mutagenicity of 
chemical compounds. Debnath et al. compiled the mutagenicity data of 230 nitro 
aromatic compounds [16]. An ILP study examined this data [9]. The SDF dataset of 
these compounds, prepared for the KDD challenge 2000 at PAKDD-2000, was used 
for this SAR study.  

The method of relative indexing of vertices is  applied to chemical structural 
formulae. Here, we cannot restrict one of the meaningful vertices to a particular atom, 
but rather have to employ all pairs of non-hydrogen atoms as meaningful vertices. 
However, if both atom pairs are alkyl carbon then it can be  excluded from the 
attribute set by chemical knowledge. We employ the sequence of elements and the 
bond types in the shortest connecting path between two vertices as the relationship 
between a pair of atoms,.  

Figure 7 shows an example of a structural formula and the set of linear subgraph 
patterns derived from it. For example, the pattern of the bottom left column employs 

HO

CH

C
H2

NH2

CH
H2C

<1>
<2>

<4>

<3>

<5>

<6>

C3H=C3H 
C3H=C-C4H 

C3H=C-C-O2H 
C3H=C-C-C4H 

C3H=C-C-C-N3H 

C3H-C4H 
C3H-C-O2H 
C3H-C-C4H 

C3H-C-C-N3H 

C4H-N3H 
C4H-C-N3H 

N3H-C-C-O2H 
C4H-O2H 

C4H-C-O2H 

Fig. 7. A structural formula and its linear subgraph patterns. 



the atoms <1> and <6> as meaningful vertices, and the relationship is described by 
"=C-C-C-", showing the sequence of the bond types and element symbols along the 
path, <1>=<2>-<3>-<5>-<6>. An aromatic bond is denoted as “r”. Description of an 
atom includes the coordination number (number of adjacent atoms) and the existence 
of attached hydrogen atoms. Atom types like C3H and O2H have also been added to 
members of subgraph patterns.  

We note that the scheme employed generates a unique index, but the interpretation 
of the index is ambiguous. However, as the patterns are written in the language of 
chemistry they should still prove useful. Items based on these patterns can be 
regarded as constituting a kind of molecular fingerprint, similar to the descriptor set 
employed in Klopman’s CASE system [1]. 

The mutagenic activity (y) was categorized into 4 classes (inactive, low: y < 0.0, 
medium: 0.0 ≤ y < 3.0, high: y ≥ 3.0), and the BSS value of the categorized activity 
was calculated on the assumption that each category is nominal.  

The item generation process generated 17995 linear subgraph patterns from 230 
graphs, in which we found 2044 different patterns. Item datasets were analyzed by 
DISCAS software; the mutagenic activity was employed as the only attribute to be 
placed in the RHS. The pruning conditions were set to minsup = 0.05 and thres = 0.1, 
which excluded most of the 2044 attributes from the mining process, as they did not 
have sufficient discrimination power. The lattice was constructed using 77 subgraph 
attributes. DISCAS generated a lattice containing 1, 91, 1910, and 4937 nodes at the 
lattice level with 0 to 3 items. It took 109 seconds to create all 6939 nodes, using a 
266MHz Pentium II computer.  

A link was selected and expressed as a rule if its BSS value for the activity was 
larger than 2.3 (1% of cases). This resulted in 209 rules, which were then grouped 
into 10 rule sets to facilitate inspection. The rules in a rule set were selected so that 
their supporting instances did not overlap and the rules were mutually independent. 
The first rule set contained ten rules. The interpretation of the strongest rule will be 
given in the next section, while the overall results will be reviewed from a chemis try 
standpoint and submitted to a suitable scientific journal. 

4.2 Interpretation of Rules 

The strongest rule, which is the first rule o f the first rule set, has the following 
expression: 

IF [C3HrCrC-CrCrCrC-N3: y] added on [C3rCrCrCrC3: n]  
THEN Activity = low 

    40.8% -> 14.0%; BSS: 3.25; Cases: 157 -> 43   
    0.10 0.41 0.41 0.08 ==> 0.00 0.14 0.58 0.28 

The precondition states that there are no 4 consecutive aromatic bonds like IX in 
Figure 8, while the main condition reveals the importance of substructure X. The RHS 
denotes that a large decrease is observed in the percentage of compounds with 
[Activity: low]. The third line of this rule shows that only 43 compounds satisfy the 
main condition, among the 157 compounds selected by the precondition. The 
percentage of [activity = low] decreases from 40.8% to 14.0%, and the BSS value of 



this rule is 3.25. The bottom line 
shows the detailed distribution of 
the activity levels (inactive, low, 
medium, high) among the 
compounds, before and after the 
application of the main condition. 
We can see that the main condition 
has shifted the distribution to 
higher activity levels.  

DISCAS can write an optional 
RHS by request. That is, an 
attribute-value pair and its change 
in percentage are depicted as 

shown below, if it has high 
correlation with the main 
condition.  

THEN C3rCrCrC-N-O1 = y    68.2% -> 100.0%; BSS: 4.36  

This substructure pattern is shown as XI. Since its percentage becomes 100% after 
application of the main condition, the superposition of X and XI should be the real 
main condition. Retrieval of the dataset has shown that these patterns can be unified 
to give a larger pattern, XII. Consideration of other optional RHS's has led us to the 
conclusion that XIII should be the substructure pattern for the main condition.  

Retrieval of substructure XIII shows that all 43 compounds supporting this rule 
share substructure XIV, while none of the 114 compounds excluded contain it. 
Therefore, this rule can be stated as "After we exclude highly polycyclic aromatic 
compounds like IX, IF a 4-nitrobiphenyl (XIV) substructure exists in a compound, 
THEN the compound is expected to be more mutagenic than otherwise." 

5. Concluding Remarks 

Combination of the relative indexing of graph vertices and the cascade model has led 
to successful data mining in two entirely different fields, linguistics and chemistry. 
The ordered directed tree of sentence syntactic structure presents a clear contrast to 
the unordered undirected graph of chemical structure formulae. Both applications 
generate thousands of subgraph patterns as attributes, from which the efficient 
pruning strategy of the cascade model is able to select less than one hundred attributes 
to construct a lattice. The whole computation process is  very efficient. Moreover, the 
search is exhaustive, using the given pruning parameters with the mining process. All 
of these points show the excellence of this mining method. 

The basic strategy, the representation of a characteristic subgraph by the 
superposition of linear subgraphs, seems to work well, at least in the two  applications 
examined. However, the rule interpretation process by individuals requires future 
development. Specifically, the negation item can be interpreted in several ways, and 

N
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X

N

O

XI

N

O

H

XII
H H

N+

O–ã

O

N+

O–ã

O

XIII XIV

Fig. 8. Subgraph patterns in the strongest rule. 



constant consultation with the database is required. Further work and research of this 
mining process should yield positive results in various applications. 
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