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Abstract. Enhancements in data capturing technology have lead to exponential
growth in amounts of data being stored in information systems. This growth in
turn has motivated researchers to seek new techniques for extraction of
knowledge implicit or hidden in the data. In this paper, we motivate the need
for an incremental data mining approach based on data structure called the item-
set tree. The motivated approach is shown to be effective for solving problems
related to efficiency of handling data updates, accuracy of data mining results,
processing input transactions, and answering user queries. We present efficient
algorithms to insert transactions into the item-set tree and to count frequencies
of itemsets for queries about strength of association among items. We prove
that the expected complexity of inserting a transaction is ≈ O(1), and that of
frequency  counting is O(n), where n is the cardinality of the domain of items.   

1 Introduction

Association mining that discovers dependencies among values of an attribute was
introduced by Agrawal et al.[1] and has emerged as a prominent research area. The
association mining problem also referred to as the market basket problem can be
formally defined as follows.  Let I = {i 1,i2, . . . , in} be a set of items as  S = {s1, s2, . . .,
sm} be a set of transactions,  where each transaction si∈ S is a set of items that is  si ⊆
I. An association rule denoted by  X ⇒ Y, where  X,Y ⊂ I and X ∩ Y = Φ, describes
the existence of  a relationship between  the two itemsets X and Y.

Several measures have been introduced to define the strength of the relationship
between itemsets X and Y such as support, confidence, and interest. The definitions of
these measures, from a probabilistic model are given below.

I.  ),()X( YXPYSupport =⇒ , or the percentage of transactions in the

database that contain both X and Y.
II.  )(/),()X( XPYXPYConfidence =⇒ , or the percentage of transactions

containing Y in  transactions those contain  X.
III.  )()(/),()X YPXPYXPYInterest( =⇒   represents a test of statistical

independence.
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Many algorithms [1,2,3,4,5,6,7,8], have been proposed to generate association rules
that satisfy certain measures. A close examination of those algorithms reveals that the
spectrum of techniques that generate association rules, has two extremes:
• A transaction data file is repeatedly scanned to generate large itemsets. The

scanning process stops when there are no more itemsets to be generated.
• A transaction data file is scanned only once to build a complete transaction lattice.

Each node on the lattice represents a possible large itemset. A count is attached to
each node  to reflect the frequency of  itemsets  represented by nodes.

In the first case, since the transaction data file is traversed many times, the cost of
generating large itemsets is high. In the later case, while the transaction data file is
traversed only once, the maximum number of nodes in the transaction lattice is 2n , n
is the cardinality of I, the set of items. Maintaining such a structure is expensive.

Many knowledge discovery applications, such as on-line services and world wide
web, require accurate mining information from data that changes on a regular basis. In
world wide web, every day hundreds of  remote sites are created and removed. In
such an environment, frequent or occasional updates may change the status of some
rules discovered earlier. Also, many data mining applications deal with itemsets that
may not satisfy data mining rules. Users could be interested in finding correlation
between itemsets, not necessarily satisfying the measures of the data mining rules.

Discovering knowledge is an expensive operation. It requires extensive access of
secondary storage that can become a bottleneck for efficient processing. Running data
mining algorithms from scratch, each time there is a change in data, is obviously not
an efficient strategy. Building a structure to maintain knowledge discovered  could
solve many problems, that have faced data mining techniques for years, that is
database updates, accuracy of data mining results, performance, and ad-hoc queries.

In this paper, we propose a new approach, that represents a compromise between
the two extremes of  the association mining spectrum. In the context of the proposed
approach two algorithms are introduced. The first algorithm builds an item-set tree by
traversing the data file once, that is used to produce mining rules. While the second
algorithm allows users to apply on-line ad hoc queries on the item-set tree.

The item-set tree approach is introduced in section 2. In section 3, counting
frequencies of itemsets is given. The item-set tree approach is evaluated and the paper
is concluded in section 4.

2 The Item-Set Tree

The item-set tree T is a graphical representation of the transaction data file F. Each
node s ∈  T represents a transaction group s. All transactions that are having the same
itemset, belong to the same transaction group. Let  I={i 1, i2,...,in}  be an ordered set of
items. For two transactions si={a1, a2,...,al} and sj={b1, b2,...,bk}, let si≤ sj iff ap≤ bp for
all 1≤p≤min(l,k). We call l and k, the lengths of si and sj, respectively.

Each node in tree T represents either an encountered transaction, i.e., a
transaction in the transaction file, or a subset of an encountered transaction. Node si is
ancestor node of node sj, if si ⊂e sj that is si={a1, a2,...,al} and sj={a1, a2,...,ak}, for
some l<k . Moreover a node  si direct ancestor of node sj if  si  is an ancestor of sj and



there is no other node sk such that si⊂e sk⊂e sj. Frequency of a node s is denoted by  f(s)
representing the count of transactions that have the same transaction group s. The
item-set tree is constructed by transactions inserting process:  The root node r
represents the null itemset {}. A transaction s is inserted by examining (in order) the
children of the root node r. Each time a node is inserted ,  f(r) is incremented by 1.
The insertion process successfully ends with one of the following cases.

Case 1: All  nodes sj (children of r) are such that these do share no leading elements
in s. When a leaf node s is inserted as a son of  r,  f(s) is initiated to 1.
Case 2:  s=sj , the node already exists. f (sj ) is incremented by 1.
Case 3:  s ⊂e sj , s is an ordered subset of node sj. A node s, representing s, is inserted
as a child of  r and as a parent of sj. f(s) =f(sj) +1.
Case 4:  sj ⊂e s, node sj is an ordered subset of s. The subtree, that has sj as a root, is
examined and the procedure starts over again
Case 5:  s ∩e sj ≠ φ ,there exists an ordered intersection between s and sj. Two nodes
are inserted. A node si, si =s ∩e sj, is inserted between r and sj, and a node s is inserted
as a child of  si. f(si) = f(sj)+1, and f(s) is initiated to 1.

Algorithm Construct (s,T)
s is an input itemset
T is the itemset tree
begin

r=root(T)
increase f(r)
if s = items (r) then exit
choose Ts=subtree(r) such that s and  items(root(Ts)) are comparable
if Ts does not exist then

 create a new son x for r, items(x) =s and f(x) =1   
else  if  root(Ts) ⊂e  s then call Construct  (s, Ts)

else if s ⊂e root(Ts) then
create a new node x, as a son of  r and a father of  root(Ts),
items(x) =s and f(x) = f(root(Ts))+1

else create two nodes x and y, x as the father of root(Ts),s.t.items(x) = s ∩e

root(Ts), f(x) = f(root(Ts))+1, and y as a son of x, s.t., items(y) = s ,
f(y) = 1

end
Figure 1: Algorithm Construct

Example 1: Let I={1,2,3,4} and F={{1,2,3,4}, {1,2}, {1,3}, {2,3}} be a transaction
file that has 4 transactions. In this example, we assume that all transaction in the
transaction file F have occurred only once. The item-set tree T is fully constructed in
4 steps (for the 4 transactions). Various steps of the solution are shown in Figures 2.

Inserting all transaction of the transaction data file F, using algorithm
Construct(s,T), requires scanning file F only once. An important characteristic of the
Construct(s,T) algorithm, is that, no matter what the sequence of the inserted
transactions is, the item-set tree T is always the same.

In sections 4.1 and 4.2, we study the performance of algorithm Construct(S,T).



Step1: s={1,2,3,4}, s is added as a
child of {}  (case 1).

Step2: s={1,2}, s is added as a child of
{}  and as a father of {1,2,3,4} (case 3).

{} f=1

{1,2,3,4} f=1

{} f=2

{1,2} f=2

{1,2,3,4} f=1

Step3: s={1,3}, s1={1}  (s1={1,2}∩e {1,3})
is added as a child of {} and as a father of
{1,2}, s is added as a child of s1 (case 5).

Step4: s={2,3}, s is added as a child of
{} (case 1).

{} f=3

{1,2} f=2

{1,2,3,4} f=1

{1} f=3

{1,3} f=1

{1,2} f=2

{1,2,3,4} f=1

{1} f=3

{1,3} f=1

{2,3} f=1

{} f=4

Figure 2: Steps 1 and 4 of example 1.

3 Frequency Counting

In order to answer ad hoc queries, we introduce algorithm Count. Algorithm Count
calculates the frequency of an itemset s by adding up frequencies of those
encountered itemsets, that contain s. In the example 2, we demonstrate how to count
frequencies of itemsets. Algorithm Count is given in Figure 3.

Algorithm Count(s,T)
input: An item set  s, and an item-set tree T.
Output:Frequency f of item set s.
begin

r=root(T)
if s⊆r then f(s)=f(s)+f(r) ; end
while r<s and last-item(r)<last-item(s) do

traverse subtrees; T' ,of r
call Count(s,T')

enddo
end

Figure 3: Algorithm Count

Example 2: Let T be the item-set tree constructed in example 1, and s={2,3} be the
itemset to be counted. To count the frequency of itemset s, the item-set tree T is
traversed in order as shown in the following steps,
• Start from the smallest subtree with root node {1}. In this case, s>{1}& s⊄{1}.



• The subtree of {1} is orderly traversed; starting with node {1,2}. S>{1,2}&s ⊄ {1,2}
• The subtree of {1,2} is orderly traversed; starting with node {1,2,3,4}. s ⊂{1,2,3,4},

f=1.
• Go back to next-subtree of {1}, node {1,3}. s ⊄ {1,3}, and the last element in

{1,2,4} equals the last element in s. No further traversing through this subtree.
• Go back to next-subtree of {}, node {2,3}. s equals {2,3}. f=1+1, and no further

traversing through this subtree. The procedure ends with  f({2,3})= 2.

4 Performance Results

In this section, we study the performance of algorithms Construct and Count. We
assume that, items are uniformly distributed over all transactions. In section 4.1, we
give the expected number of nodes in the item-set tree T after inserting N
transactions. In sections 4.2 and 4.3, the expected number of iterations to insert a
transaction, and the expected number of iterations to count the frequency of an
itemset, respectively, are given. In section 4.4, we discuss the results of our analytical
study.

4.1 Number of Nodes in The Item-set tree

Lemma 1. Given an ordered set I={i1,i2, . . . , in}, of  n  items, and a set of
transaction nodes Vk ∈ T, 1≤ k ≤ K, 1≤ K ≤ 2n-1, Vk ={a1,a2, . . . , al}, a1<a2< . . . < al

, and items ai∈I, 1≤ i ≤ l, 1≤ l ≤ n which are uniformly distributed over itemset
domain I, and an itemset sj={b1,b2, . . . , br} with items b1<b2< . . . < br , bi∈I, 1≤ i ≤
r, 1≤ r ≤ n which are uniformly distributed over itemset domain I Algorithm
Construct,  produces an item-set tree T, with expected number of nodes K such that
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where N is number of inserted transaction.

Proof. Before proving lemma 1, we first state and prove the following lemma. The
following lemma makes the proof easier to describe.

Lemma 2. Given an ordered set I={i1,i2, . . . , in}, of n  items, and a set of transaction
nodes Vk ∈ T, 1≤ k ≤ K, 1≤ K ≤ 2n-1, Vk ={a1,a2, . . . , al}, a1<a2< . . . < al , and items
ai∈I, 1≤ i ≤ l, 1≤ l ≤ n  are uniformly distributed over itemset domain I. Let sj={b1,b2, .
. . , br} be an itemset with items b1<b2< . . . < br , bi∈I, 1≤ i ≤ r, 1≤ r ≤ n which are
uniformly distributed over items domain I. Given that sj is not an empty itemset,  the
probability that there exist a node Vk∈T such that the order intersection of sj and Vk

equals an item set Z, where  Z≠Φ, Z≠sj, and Z≠Vk, is
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Proof. First we state the assumptions:
• A transaction group (node) Vk is in T with probability
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−
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K
k TVP , where K is the number of nodes in T.



• A transaction sj and a transaction group Vk are each represented as a set of 1’s and
0’s, where 0 in position i means item ai∈I does not exist, and 1 in position i
means item ai∈I does exist.

• Both Vk and sj are not empty itemsets, i.e., the probability is conditioned, the
probability of both Vk and sj are not empty itemsets, is
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• The item-set tree T has already K nodes, and each node either represents a

transactions group or an ordered intersection of two transactions groups.
• All K nodes in T are distinct, i.e., Vk≠Vl for all nodes k,l in T.
• both Vk and sj are not empty itemsets,

We use the  following table to demonstrate all the requirements needed ,

Shared items X OR
sj At least 1 1 0’s or 1’s 0 At least 1
Vk At least 1 0 At least 1 1 0’s or 1’s

The following formula  gives the required probability,
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Since we assume that both Vk and sj are not empty itemsets, the above formula should
be divided by the probability of both Vk and sj are not empty itemsets. Also, it should

multiplied by 
1212
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the complete formula could be written as
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Proof of Lemma 1. We use the same assumptions given in the proof of Lemma 2. For
each new encountered transaction group, algorithm Construct inserts either 1 node or

2 nodes. So, the cost function should equal to  )]2(1[
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To insert two nodes in T, the following conditions must be satisfied; TVk ∈∃ node
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In the above formula, the following inequality, is always true for 1≥n ,
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Also, since values of k could have any number between 1 and 2n-1, which means the
following inequality always hold
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Using the above two inequalities, the upper bound of the expected number of nodes K
in an item-set tree with N transactions is
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4.2 Number of Iterations to Insert a Transaction

Lemma 3: Given an ordered set I={i1,i2, . . . , in}, of n items, and a set of transaction
nodes Vk ∈ T, 1≤ k ≤ K, 1≤ K ≤ 2n-1, Vk ={a1,a2, . . . , al}, a1<a2< . . . < al , and items
ai∈I, 1≤ i ≤ l, 1≤ l ≤ n are uniformly distributed over itemset domain I. Let  sj={b1,b2, .
. . , br} be an itemset with items b1<b2< . . . < br , bi∈I, 1≤ i ≤ r, 1≤ r ≤ n which are
uniformly distributed over items domain I. Given that all  Vk∈T and sj are not empty
itemsets, the expected number of iterations algorithm Construct takes to enter a
transaction into the  item-set tree T  is less than
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where K is the number of nodes in T.

Proof. In order to insert a transaction sj, with length l,  in exactly one iteration, i.e.,
first level in the item-set tree T, there are two cases. First case, there exits a node

TV k ∈ in first level of  T, such that 
jk SV = , while the second case, where neither

sj nor all ordered subset nodes of sj, are in T. In other words, TV k ∉ for all

j
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inserting such transaction is less than
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Now to insert  a transaction sj, with length l, in exactly two iterations, i.e., second level
in the item-set tree T, there are two cases. First case,  exactly one order subset of sj,

does exist  in T , and there exits a node TVk ∈ in second level of  T, such that 
jk SV = ,

while the second case, there exists exactly one order subset of sj, and neither  sj nor all
other ordered subset nodes of sj, are in T. Let  ),( j

e
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inserting such transaction is less than
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By following the same assumptions given in the proof of lemma 2, the

expected value of sP is )(*)(
12))(1((

)())(2(
2

2
1

2
2
11

2
1

−−

+− +

nn

nn
Kn

and, the expected value of se PisPP −+Φ 1)( . Formula (1) could be written as

))1()1(**(*)1( 1 l
s

l
sss PPlPP +++− − (2)

Since  ....)1(1)1( 2 +−++=+ ss
l

s PlllPP ,

Formula (2) could be written as
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By ignoring higher terms, the above formula could be
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4.3 Number of iterations to Count The Frequency of an Itemset

Lemma 4. Given an ordered set I={i1,i2, . . . , in}, of n  items, and a set of transaction
nodes Vk ∈ T, 1≤ k ≤ K, 1≤ K ≤ 2n-1, Vk ={a1,a2, . . . , al}, a1<a2< . . . < al , and items
ai∈I, 1≤ i ≤ l, 1≤ l ≤ n are uniformly distributed over itemset domain I. Let  sj={b1,b2, .
. . , br} be an itemset with items b1<b2< . . . < br , bi∈I, 1≤ i ≤ r, 1≤ r ≤ n which are
uniformly distributed over items domain I. Given that all  Vk∈T and sj are not empty
itemsets, the expected number of iterations algorithm Count takes to count an itemset
frequency in the  item-set tree T, with K nodes is
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Proof. In order to count the frequency of an itemset  sj, with length l, where O1 and Ol

are orders of first element and last elements  in sj,  i1, il ∈ sj, , respectively, all itemsets
p
jS with first element has order O1 , and last element has order Ok , which could

have sj as part of them should be checked. The number of such checks (or iterations)

is 12 OOl −
. The count stops when we reach the full set of sj , we will call it f

jS .

So, to count the frequency of itemset sj in exactly one iteration, there should be a
node Vk∈T  such that k

ef
j VS ⊆ , or, with unsuccessful count, when the first visited
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Generally speaking, to count the frequency of an itemset  sj with length l, where O1

and Ol are orders of first element and last elements  in sj,  i1, il ∈ sj, , respectively in
exactly i iteration, The cost of counting is
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Since the maximum number of iterations is 12 OOl − , the expected cost of counting
frequency of  itemset sj is
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Algorithm Count, applies the search for all other itemsets,  start with lower order
items, i.e., items with order less than O1 , one at a time. Number of such itemsets,
including sj, is O1 .By neglecting higher terms, and sum over all possible itemsets, our
formula could be written as
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Taking  an average over Ol, which ranges from O1 to n, the above formula is
converted to

)(*)(*)(
12))(1(

)()(

11 2
2
1

12
2
121

2
1

1

1

−−

−
+−

−−+

+ nn

nOn
K

On
OO

For simplification reason, since the minimum number of  O1  is 1, we will divide the
second term by 1. Average value over O1 , which ranges from 1 to n, the above
formula , will be
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4.4 Conclusions and Discussion

In this paper, we have introduced a new approach for association mining, called the
item-set tree approach. The new approach solves some of the problems inherent in
traditional data mining techniques, such as, data  updates, accuracy of data mining
results, performance, and user queries. The spectrum of techniques that generate
association rules, has been studied, and two extreme cases have been analyzed. The
main assumption in our study is that all items are equally likely to appear in an
itemset.  Although this assumption does not reflect the real life, but it gives a good
indication about the performance of the item-set tree approach.

We have discussed the item-set tree approach  in details. In our approach, the
transaction file is read only once. The item-set tree approach maintains a structure to
handle frequency counting of transaction data, that allows future updates. Two
algorithms; first, to insert transactions into the item-set tree, and second, to count
frequencies of itemsets are investigated. Our investigations of the two algorithms
show that the costs of insertion and counting do not depend on the number of
transactions. The expected cost of inserting a transaction is ≈ O(1), and the expected
cost of counting the frequency of an itemset is O(n), where n is the cardinality of the
domain of items. We conclude that those items that are queried most by users should
have low order values, while those items which rarely queried by users should have
high order values.  This can be accomplished by using prior knowledge of the pattern
of user queries.
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