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Ordered Binary-Decision Diagrams (OBDDS) represent Boolean functions as directed

acyclic graphs. They form a canonical representation, making testing of functional

properties such as satmfiability and equivalence straightforward. A number of

operations on Boolean functions can be implemented as graph algorithms on OBDD

data structures. Using OBDDs, a wide variety of problems can be solved through

symbolic analysis. First, the possible variations in system parameters and operating

conditions are encoded with Boolean variables. Then the system is evaluated for all

variations bya sequence of OBDD operations. Researchers have thus solved a number

ofproblems indigital-system design, finite-state system analysis, arhficialm telligence,

and mathematical logic. This paper describes the OBDD data structure and surveys a

number of applications that have been solved by OBDD-based symbolic analysis.

Categories and Subject Descriptors: B.6.2 [Logic Design]: Reliability and Testin~

B.6.3 [Logic Design]: Design Aids; F. 1.1 [Computation by Abstract Devices]:

Models of Computation—Automata; I. 1.1 [Algebraic Manipulation]: Expressions and

Their Representation; I. 1.2 [Algebraic Manipulation]: Algorithm; 1.2.3 [Artificial

Intelligence]: Deduction and Theorem Proving

General Terms: Algorithms, Verification
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INTRODUCTION

Many tasks in digital-system design,
combinatorial optimization, mathemati-
cal logic, and artificial intelligence can be
formulated in terms of operations over
small, finite domains. By introducing a
binary encoding of the elements in these
domains, these -problems can be further
reduced to operations over Boolean val-
ues. Using a symbolic representation of
Boolean functions, we can express a
problem in a very general form. Solving
this generalized problem via symbolic
Boolean function manipulation then pro-

vides the solutions for a large number of
specific problem instances. Thus, an effi-
cient method for representing and
manipulating Boolean functions sym-
bolically can lead to the solution of a
large class of complex problems.

Ordered Binary-Decision Diagrams
(OBDDS) [Bryant 1986] provide one such
representation. This representation is
defined by imposing restrictions on the
Binary-Decision Diagram (BDD) repre-
sentation introduced by Lee [1959] and
Akers [1978], such that the resulting form
is canonical.1 These restrictions and the
resulting canonicity were first recognized
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by Fortune et al. [1978]. Functions are
represented as directed acyclic graphs,
with internal vertices corresponding to
the variables over which the function is
defined and with terminal vertices
labeled by the function values O and 1.
Although the OBDD representation of a
function may have size exponen-
tial in the number of variables, many
useful functions have more compact
representations.

Operations on Boolean functions can
be implemented as graph algorithms
operating on OBDDS. Tasks in many
problem domains can be expressed
entirely in terms of operations on OBDDS,

1Lee [1959] represented Boolean functxons as
Binary-Decision Programs, a form of straight-line

program. Such a program can be viewed as a linear
ordering of the vertices in a directed acychc graph,
and hence the distinction between these two forms
is minor.

such that a full enumeration of the prob-
lem space (e.g., a truth table, state tran-
sition graph, or search tree) need
never be constructed. Using OBDDS,
researchers have solved problems that
would not be possible by more traditional
techniques such as case analysis or
combinatorial search.

To date, most applications of OBDDS
have been in the areas of digital-system
design, verification, and testing. More
recently, interest has spread into other
areas such as concurrent-system
design, mathematical logic, and artificial
intelligence.

This paper provides a combined tuto-
rial and survey on symbolic Boolean
manipulation with OBDDS. The next
three sections describe the OBDD repre-
sentation and the algorithms used to
construct and manipulate them. The
following section describes several basic
techniques for representing and operat-
ing on a number of mathematical struc-
tures, including functions, sets, and
relations, by symbolic Boolean manipu-
lation. We illustrate these techniques by
describing some of the applications for
which OBDDS have been used and con-
clude by describing further areas for
research. Although most of the applica-
tion examples involve problems in digi-
tal-system design, we believe that similar
methods can be applied to a variety of
application domains. For background, we
assume that the reader has a basic
knowledge of Boolean functions, logic de-
sign, and finite automata.

1. OBDD REPRESENTATION

Binary-decision diagrams have been rec-
ognized as abstract representations of
Boolean functions for many years. Under
the name “branching programs” they
have been studied extensively by com-
plexity theorists [Wegener 1988; Meinel
1990]. The key idea of OBDDS is that by
restricting the representation, Boolean
manipulation becomes much simpler
computationally. Consequently, they pro-
vide a suitable data structure for a sym-
bolic Boolean manipulator.
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Figure 1. Truth table and decision tree representations of a Boolean function. A dashed (solid) branch

denotes the case where the decision variable is O (l).

1.1 Binary-Decision Diagrams

A binary-decision diagram represents a
Boolean function as a rooted, directed
acyclic graph. As an example, Figure 1
illustrates a representation of the func-
tion f( x ~, Xz, X3) defined by the truth
table given on the left, for the special
case where the graph is actually a tree.
Each nonterminal vertex v is labeled by
a variable uar(u) and has arcs directed
toward two children: 1o(v) (shown as a
dashed line) corresponding to the case
where the variable is assigned Oand hi(v)
(shown as a solid line) corresponding to
the case where the variable is assigned
1. Each terminal vertex is labeled 0 or 1.
For a given assignment to the variables,
the value yielded by the function is
determined by tracing a path from the
root to a terminal vertex, following the
branches indicated by the values assigned
to the variables. The function value is
then given by the terminal vertex label.
Due to the way the branches are ordered
in this figure, the values of the terminal
vertices, read from left to right, match
those in the truth table, read from top to
bottom.

1.2 Ordering and Reducing

For an Ordered BDD (OBDD), we impose
a total ordering < over the set of vari-
ables and require that for any vertex u,
and either nonterminal child v, their re-
spective variables must be ordered
uar( u) < uar(v). In the decision tree of

Figure 1, for example, the variables are
ordered xl < Xz < x~. In principle, the
variable ordering can be selected
arbitrarily—the algorithms will operate
correctly for any ordering. In practice,
selecting a satisfactory ordering is criti-
cal for the efficient symbolic manipula-
tion. This issue is discussed in the next
section.

We define three transformation rules
over these graphs that do not alter the
function represented:

Remove Duplicate Terminals.
Eliminate all but one terminal vertex
with a given label and redirect all arcs
into the eliminated vertices to the
remaining one.

Remove Duplicate Nonterminals.
If nonterminal vertices u and v have
uar(u) = uar(v), lo(u) = lo(u), and
hi(u) = hi(v), then eliminate one of the
two vertices and redirect all incoming
arcs to the other vertex.

Remove Redundant Tests. If non-
terminal vertex v has 1o(u) = hi(u), then
eliminate u and redirect all incoming arcs
to lo(v).

Starting with any BDD satisfying the
ordering property, we can reduce its size
by repeatedly applying the transforma-
tion rules. We use the term “OBDD” to
refer to a maximally reduced graph that
obeys some ordering. For example, Figure
2 illustrates the reduction of the decision
tree shown in Figure 1 to an OBDD.
Applying the first transformation rule (A)
reduces the eight terminal vertices to two.
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Figure 2. Reduction of decision tree to OBDD. Applying the three reduction rules to the tree of Fgure 1
yields the canonical representation of the function as an OBDD.

Applying the second transformation rule
(B) eliminates two of the vertices having
variable x ~ and arcs to terminal vertices
with labels O (10) and 1 (hi). Applying
the third transformation rule (C) elimi-
nates two vertices: one with variable X3
and one with variable XZ. In general, the
transformation rules must be applied
repeatedly, since each transformation can
expose new possibilities for further ones.

The OBDD representation of a func-
tion is canonical—for a given ordering,
two OBDDS for a function are iso-
morphic. This property has several
important consequences. Functional
equivalence can be easily tested. A func-
tion is satisfiable iff its OBDD represen-
tation does not correspond to the single
terminal vertex labeled O. Any tautolog_i-
cal function must have the terminal ver-
tex labeled 1 as its OBDD representa-
tion. If a function is independent of vari-
able x, then its OBDD representation
cannot contain any vertices labeled by x.
Thus, once OBDD representations of
functions have been generated, many
functional properties become easily
testable.

As Figures 1 and 2 illustrate, we can
construct the OBDD representation of a
function given its truth table by con-
structing and reducing a decision tree.
This approach is practical, however, only
for functions of a small number of vari-
ables, since both the truth table and the
decision tree have size exponential in

the number of variables. Instead, OBDDS
are generally constructed by “symboli-
cally evaluating” a logic expression or
logic gate network using the APPLY oper-
ation described in Section 3.

1.3 Effect of Variable Ordering

The form and size of the OBDD repre-
senting a function depends on the vari-
able ordering. For example, Figure 3
shows two OBDD representations of the
function denoted by the Boolean expres-
sion al .61 + az .b2 + ct3 .b~, where .
denotes the AND operation and +
denotes the OR operation. For the case
on the left, the variables are ordered a ~
< bl < az < bz < as < b~, while for the
case on the right they are ordered al <

az<az<bl<bz<b3.
We can generalize this function to one

over variables al, . . ., an and bl, . . . . b.
given by the expression:

al. bl+az. bz+... +ab, ,,,

Generalizing the first variable ordering
to al < bl < . . . < a. < b. yields an
OBDD with 2 n nonterminal vertices—
one for each variable. Generalizing the
second variable ordering to al < “”” <
a. <bl < . . . < b,, on the other hand,
yields an OBDD with 2(2 n – 1) nonter-
minal vertices. For large values of n, the
difference between the linear growth of
the first ordering versus the exponential
growth of the second has a dramatic effect
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Figure 3. OBDD representations of a single function for two different variable orderings

on the storage requirements and the effi-
ciency of the manipulation algorithms.

Examining the structure of the two
graphs of Figure 3, we can see that in the
first case the variables are paired accord-
ing to their occurrences in the Boolean
expression al “ bl + a2 “ bz + as “ b.~.
Thus, from every second level in the
graph, only two branch destinations are
required: one to the terminal vertex
labeled 1 for the case where the cor-
responding product yields 1 and one to
the next level for the case where every
product up to this point yields O. On the
other hand, the first three levels in the
second case form a complete binary tree
encoding all possible assignments to the
a variables. In general, for each assign-
ment to the a variables, the function
value depends in a unique way on the
assignment to the b variables. As we
generalize this function and ordering to
one over 2 n variables, the first n levels
in the OBDD form a complete binary
tree.

Most applications using OBDDS choose
some ordering of the variables at the
outset and construct all graphs according
to this ordering. This ordering is chosen
manually or by a heuristic analysis of the
particular system to be represented. For
example, several heuristic methods have

been devised that, given a logic gate net-
work, generally derive a good ordering
for variables representing the primary
inputs [Fujita et al. 1988; Malik et al.
1!388]. Others have been developed for
sequential-system analysis [Jeong et al.
1991]. Note that these heuristics do
not need to find the best possible
ordering—the ordering chosen has no
effect on the correctness of the results.
As long as an ordering can be found that
avoids exponential growth, operations on
OBDDS remain reasonably efficient.

1.4 Complexity Characteristics

OBDDS provide a practical approach to
symbolic Boolean manipulation only
when the graph sizes remain well below
the worst case of being exponential in the
number of variables. As the previous
examples show, some functions are sensi-
tive to the variable ordering but remain
quite compact as long as a good ordering
is chosen. Furthermore, there has been
ample empirical evidence indicating that
many functions encountered in real
applications can be represented effi-
ciently as OBDDS. One way to under-
stand more fully the strengths and
limitations of OBDDS is to derive lower
and upper bounds for important classes
of Boolean functions.

ACM Computing Surveys, Vol. 24, No, 3 September 1992
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Table 1. OBDD Complexhy for Common Funchon Classes

Function Class Complexity

Best Worst

Symmernc linear quadratic

IntegerAddition (anybit) linear exponential

IntegerMultiplication (mddle bits) exponentd exponential

Table 1 summarizes the asymptotic
growth rate for several classes of Boolean
functions and their sensitivity to the
variable ordering. Symmetric functions,
where the function value depends only
on the number of argaments equal to 1,
are insensitive to the variable ordering.
Except for the trivial case of constant
functions, these functions have graphs
ranging between linear (e.g., parity) and
quadratic (e.g., at least half the inputs
equal 1).

We can consider each output of an n-bit
adder as a Boolean function over vari-
ables a., al, . . . . an_ ~, representing one
operand, and bo, bl, . . . . b._ ~, represent-
ing the other operand. The function for
any bit has OBDD representations of lin-
ear complexity for the ordering a” <

bO < al < bl < . . . <a~.l < b~.l and
exponential complexity for the ordering
a. < .. . < a~_l < bO < . . . < b~_l. In
fact, these functions have representa-
tions similar to those for the function
shown in Figure 3.

The Boolean functions representing
integer multiplication, on the other hand,
form a particularly difficult case for
OBDDS. Regardless of the ordering, the
Boolean function representing either of
the middle two outputs of an n-bit multi-
plier have exponential OBDD represen-
tations [Bryant 1991].

Upper bounds for other classes of
Boolean functions can be derived based
on the structural properties of their logic
network realizations. Berman [ 1989] and
more recently McMillan [1992] have
derived useful bounds for several classes

of “bounded-width” networks. Consider a
network with n primary inputs and one
primary output consisting of m “logic
blocks.” Each block may have multiple
inputs and outputs. Primary inputs are
represented by “source” blocks with no
input and one output. As an example,
Figure 4 shows a network having as out-
put the most significant sum bit of an
n-bit adder. This network consists of a
carry chain computing the carry input
cn–l into the final stage. Blocks labeled
“2]3” compute the MAJORITY function
having 1 as output when at least two
inputs are 1. The output is computed as
the EXCLUSIVE-OR of the most signifi-
cant bits of the inputs and c. ~.

Define a linear arrangement of the
network as a numbering of the blocks
from 1 to m such that the block produc-
ing the primary output is numbered last.
Define the forward cross section at block
i as the total number of wires from an
output of a block j such that j < i to an

input of a block k such that i s k. Define
the forward cross section Wf of the circuit
(with respect to an arrangement) as the
maximum forward cross section for all of
the blocks. As the dashed line in Figure 4
shows, our adder circuit has a forward
cross section of 3. Similarly, define the
reverse cross section at block i as the

total number of wires from an output of a
block j such that j > i to an input of a
block k such that i > k. In arrangements
where the blocks are ordered topologi-

cally (the only case considered by Berman
[ 1989], such as the one shown in Figure
4, the reverse cross section is O. Define
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the reverse cross section w, of the circuit
(with respect to an arrangement) as the
maximum reverse cross section for all of
the blocks. Given these measures, it can
be shown that there is an OBDD repre-
senting the circuit function with at most
ngu’fzw’ vertices. Furthermore, finding an
arrangement with a low cross section
leads to a good ordering of the function
variables—namely the reverse of the
ordering of the corresponding source
blocks in the arrangement.

This bound based on network realiza-
tions leads to useful bounds for a variety
of Boolean functions. For example, func-
tions having realizations with constant
forward cross section and zero reverse
cross section, such as the adder circuit of
Figure 4, have linear OBDD representa-
tions. A symmetric function of n vari-
ables can be realized by a circuit having
forward cross section 2 + log n and
reverse cross section O. This circuit con-
sists of a series of stages to compute the
total number of inputs having value 1,
encoding the total as a [log zn ] -bit binary
number. This realization implies the
quadratic upper bound in OBDD size
stated in Table 1.

outss?t2

L ~z L.n,
B*L

.% 1

by the dashed line, the cmcuit has

Figure 5 shows an application of this
result for a circuit with nonzero reverse
cross section. This circuit shows a gen-
eral realization of the Within-K function,
where K is some constant such that O <
K < n. For inputs Xo, xl, . . . . x.-l this
function yields 1 if there are two inputs
x, and x,, equal to 1 such that i‘ equals
i + j mod n for some value j such that
O < j < K. As Figure 5 illustrates, this
function can be computed by a series of
blocks arranged in a ring, where each
block B, has as outputs a l-bit value s,
and a k-bit integer value L,, where k =
[logz Kl:

(1, x,= land L,_l +0
s* =

s,—1> otherwise

[

K–1, X,=1

L,= Ll_l–l, x,= Oand L,_l>O.

o, otherwise

In this realization, each L, signal encodes
the number of remaining positions with
which the most recent input value of 1
can be paired, while each s, signal indi-
cates whether a pair of inputs having
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value 1 within distance K has occurred
so far. To realize the modular proximity
measure, output L._ ~ of the final stage
is routed back to the initial stage. Note
that although this circuit has a cyclic
structure, its output is uniquely defined
by the input values. As the dashed line
indicates, this ring structure can be
“flattened’ into a linear arrangement
having forward cross section k + 2 and
reverse cross section h. This construction
yields an upper bound of (8 K4~ )n on the
OBDD size. For constant values of K, the
OBDD is of linear size, although the con-
stant factor grows rapidly with K.

McMillan [1992] has generalized this
technique to tree arrangements in which
the network is organized as a tree of logic
blocks with branching factor b and with
the primary output produced by the block
at the root. In such an arrangement, for-
ward (respectively, reverse) cross section
refers to wires directed toward (respec-
tively, away from) the root. Such an
arrangement yields an up er bound on
the OBDD size of n[26n t!-~]zuJ2U The

upper bound for the linear arrangement
is given by this formula for b = 1. Ob-
serve that for constant values of b, wf,

and w, , the OBDD size is polynomial
in n.

These upper-bound results give some
insight into why many of the functions
encountered in logic design applications
have efficient OBDD representations.
They also suggest strategies for finding
good variable orderings by finding net-
work realizations with low cross section.
Results of this form for other representa-
tions of Boolean functions could prove
useful in characterizing the potential of
OBDDS for other application domains.

1.5 Refinements and Variations

In recent years many refinements to the
basic OBDD structure have been
reported. These include using a single,
multirooted graph to represent all of the
functions required [Brace et al. 1990;
Karplus 1989; Minato et al. 1990; Reeves
and Irwin 1987], adding labels to the
arcs to denote Boolean negation [Brace

et al. 1990; Karplus 1989; Minato et al.
1990; Madre and Billon 1988], and gen-
eralizing the concept to other finite
domains [Srinivasan et al. 1990]. These
refinements yield significant savings in
the memory requirement—generally the
most critical resource in determining
the complexity of the problems that can
be solved. Applications that require gen-
erating over 1 million OBD D vertices are
now routinely performed on workstation
computers.

2. OPERATIONS

Let us introduce some notation for
describing operations on Boolean func-
tions. We will use the standard opera-
tions of Boolean algebra: + for OR; for
AND, @ for EXCLUSIVE-OR, and an
overline for NOT. In addition, we will use
the symbol ~ to indicate the complement
of the EXCLUSIVE-OR operation (some-
times referred to as EXCLUSIVE-NOR).
We will also use summation (Z) and
product (H) notation in reference to
Boolean sums (OR) and products (AND).
Observe that these operations are defined
over functions as well as over the Boolean
values O and 1. For example, if f and g
are functions over some set of variables,
then f + g is itself a function h over
these variables. For some assignment d
of values to the variables, h(Z) yields 1
iff either f(d) or g(Z) yields 1. The con-
stant functions, yielding either 1 or O for
all variable assignments, are denoted 1
and O, respectively.

The function resulting when some
argument x to a function f is assigned a
constant value k (either O or 1) is called
a restriction of f (other references call
this a “cofactor” of f [Brayton et al.
1984] ) denoted f 1.- ~. Given the two re-
strictions of a function with respect to a
variable, the function can be recon-
structed as

f=~”flx+” +x” fl.ze”.

This identity is commonly referred to as
the Shannon expansion of f with respect
to x, although it was originally recog-
nized by Boole [Brown 1990].
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A variety of other useful operations
can be defined in terms of the algebraic
operations plus the restriction operation.
The composition operation, where a func-
tion g is substituted for variable x of
function f, is given by the identity

flx+g=F”fl. +o+g”flx+l.

The variable quantification operation,
where some variable x to function f is
existentially or universally quantified,
is given by the identities

axf-=f’l. -o+ fl, +l

Vxf=flx<-o”flr+o.

Some researchers prefer to call these
operations smoothing (existential) and
consensus (universal) to emphasize that
they are operations on Boolean functions,
rather than on truth values [Lin et al.
1990].

3. CONSTRUCTION AND MANIPULATION

A number of symbolic operations on
Boolean functions can be implemented as
graph algorithms applied to the OBDDS.
These algorithms obey an important clo-
sure property—given that the arguments
are OBDDS obeying some ordering, the
result will be an OBDD obeying the same
ordering. Thus we can implement a com-
plex manipulation with a sequence of
simpler manipulations, always operating
on OBDDS under a common ordering.
Users can view a library of BDD manipul-
ation routines as an implementation of a
Boolean function abstract data type,
Except for the selection of a variable
ordering, all of the operations are imple-
mented in a purely mechanical way. The
user needs not to be concerned with
the details of the representation or the
implement ation.

3.1 The APPLY Operation

The APPLY operation generates Boolean
functions by applying algebraic opera-
tions to other functions. Given argument
functions f and g, plus binary Boolean
operator ( op ), (e.g., AND or OR) APPLY

returns the function f ( op ) g. This oper-
ation is central to a symbolic Boolean
manipulator. With it we can complement
a function f by computing f @ 1. Given
functions ~ and g, and “don’t care” con-
ditions expressed by the function d (i.e.,
d(Z) yields 1 for those variable assign-
ments Z for which the function values
are unimportant), we can test whether ~
and g are equivalent for all “care” condi-
tions by computing ( ~ @g) + d and test
whether the result is the function 1. We
can also construct the OBDD represen-
tations of the output functions of a
combinational-logic gate network by
“symbolically interpreting” the network.
That is, we start by representing the
function at each -primary input as an
OBDD consisting of a test of a single
variable. Then, proceeding in order
through the network. we use the APPLY
operation to construct an OBDD repre-
sentation of each gate output according
to the gate operation and the OBDDS
computed for its inputs.

The APPLY algorithm operates by
traversing the argument graphs depth
first, while maintaining two hash tables:
one to improve the efficiency of the com-
putation and one to assist in producing a
maximally reduced graph. Note that
whereas earlier presentations treated the
reduction to canonical form as a separate
step [Bryant 1986], the following algo-
rithm produces a reduced form directly.
To illustrate this operation, we will use
the example of applying the + operation
to the functions ~(a, 6,c, d) = (a + 13)”c
+ d and g(a, b,c, d) = (a. Z) + d, hav-
ing the OBDD representations shown in
Fiagure 6.

The implementation of the APPLY
operation relies on the fact that algebraic
operations “commute” with the Shannon
expansion for any variable x:

f(oP)g= =”(flx+o(oP)gl. +o)

+X. (fl. +l(op)glx+l) (1)

Observe that for a function f repre-
sented by an OBDD with root vertex r~,

the restriction with respect to a variable
x such that x < uar( rf ) can be computed
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Figure 6. Example arguments to APPLY operation,
Vertices are labeled for identification during the
execution trace.

simply as:

[

rf, x < var(rf)

flx+b lo(rf), x = tmr(rf) and b = O

hi(rf), x = uar(rf) and b = 1

That is, the restriction is represented
by the same graph or one of the two
subgraphs of the root.

Equation 1 forms the basis of a recur-
sive procedure for computing the OBDD
representation of f ( op ) g. For our ex-
ample, the recursive evaluation structure
is illustrated in Figure 7. Note that each
evaluation step is identified by a vertex
from each of the argument graphs. Sup-
pose functions f and g are represented
by OBDDS with root vertices r~ and r~,
respectively. For the case where both rf
and r~ are terminal vertices, the recur-
sion terminates by returning an appro-
priately labeled terminal vertex. In our
example, this occurs for the evaluations
A ~, B~ and As, BL. Otherwise, let vari-
able x be the splitting variable, defined
as the minimum of variables var( rt )
and uar( r~). OBDDS for the functions
fl~-o(op)gl~+o and fl~+,(op)gl~+,
are computed by recursively evaluating
the restrictions of f and g for value O
(indicated in Figure 7 by the dashed lines)
and for value 1 (indicated by solid lines).
For our example, the initial evaluation
with vertices A ~, BI causes recursive
evaluations with vertices A ~, B ~ and
AG, B~.

//
AZ B;

;\ \

/’ ,~’B2 ‘+5. B5

11,/’ \/’\
A3, B7- A5, Bz A3,B4

i\
A4,B3 ‘45>B4

Figure 7. Execution trace for APPLY operation with
operation +, Each evaluation step has as operands
a vertex from each ar.~ment graph.

To implement the APPLY operation

efficiently, we add two more refinements
to the procedure described above. First, if
we ever reach a condition where one of
the arguments is a terminal vertex rep-
resenting the “dominant” value for oper-
ation (op ) (e.g., 1 for OR and O for AND),
then we can stop the recursion and return
an appropriately labeled terminal vertex.
This occurs in our example for the evalu-
ations As, Bz and AJ, Bi. Second, we
avoid ever making multiple recursive
calls on the same pair of arguments by
maintaining a hash table where each
entry has as key a pair of vertices from
the two arguments and as datum a ver-
tex in the generated graph. At the start
of an evaluation for arguments u and v,
we check for an entry with key (u, u ) in
this table. If such an entry is found, we
return the datum for this entry, thereby
avoiding any further recursion. If no
entry is found, then we follow the steps
described above, creating a new entry in
the table before returning the result. In
our example, this refinement avoids mul-
tiple evaluations of the arguments A ~, Bz
and As, Bz. Observe that with this
refinement, the evaluation structure is
represented by a directed acyclic graph,
rather than the more familiar tree struc-
ture for recursive routines.

Each evaluation step returns as result
a vertex in the generated graph. The
recursive evaluation structure naturally
defines an unreduced graph, where each
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Figure 8. Result generation for APPLY operation.

The recursive calling structure naturally yields an
unreduced graph (left). By applying reduction rules

at the end of each recursive call, the reduced graph
is generated directly (right).

evaluation step yields a vertex labeled by
the splitting variable and having as chil-
dren the results of the recursive calls.
For our example, this graph is illustrated
on the left-hand side of Figure 8. To gen-
erate a reduced graph directly, each eval-
uation step attempts to avoid creating a
new vertex by applying tests correspond-
ing to the transformation rules described
in Section 1.2. Suppose an evaluation step
has splitting variable x, and the recur-
sive evaluations return vertices V. and
VI. First we test whether UO= VI, and if
so we return this vertex as the procedure
result. Second, we test whether the gen-
erated graph already contains some ver-
tex v having uar(v) = x, lo(u) = Vo, and
hi(u) = -ul. This test is assisted by main-
taining a second hash table containing
an entry for each nonterminal vertex u
in the generated graph with key
( uar(v), hi(u), lo(v)). If the desired ver-
tex is found it is returned as the proce-
dure result. Otherwise a vertex is added
to the graph; its entry is added to the
hash table, and the vertex is returned as
the procedure result. Similarly, terminal
vertices are entered in the hash table
having their labels as keys. A new termi-
nal vertex is generated only if one with
the desired label is not already present.
For our example, this process avoids cre-
ating the shaded vertices shown on the
left-hand side of Figure 8. Instead
the graph on the right-hand side is gen-

erated directly. Observe that this graph
represents the function a + b . c + d,
which is indeed the result of applying
the OR operation to the two argument
functions.

The use of a table to avoid multiple
evaluations of a given pair of vertices
bounds the complexity of the APPLY oper-
ation and also yields a bound on the size
of the result. That is, suppose functions ~
and g are represented by OBDDS having
mf and m~ vertices, respectively. Then,
there can be at most mfmg unique eval-
uation arguments, and each evaluation
adds at most one vertex to the generated
result. Given a good implementation of
the hash tables, each evaluation step can
be performed, on average, in constant
time. Thus, both the complexity of the
algorithm and the size of the generated
result must be O(mfmg).

3.2 The RESTRICT Operation

Computing a restriction to a function
represented by any kind of BDD is
straightforward. To restrict variable x to
value k, we can simply redirect any arc
into a vertex v having rmr(v) = x to point
either to lo(v) for k = O or to hi(u) for
k = 1.Figure 9 illustrates the restricti~n
of variable b in the function b “ c + a “ b .
F to the value 1. With the original func-
tion given by the OBDD on the left,
redirecting the arcs has the effect of
bypassing any vertex labeled by b, as
illustrated in the center.

As this example shows, a direct imple-
mentation of this technique may yield an
unreduced graph. Instead, the operation
is implemented by traversing the origi-
nal graph depth first. Each recursive call
has as argument a vertex in the original
graph and returns as result a vertex in
the generated graph. To ensure that the
generated graph is reduced, the proce-
dure maintains a hash table with an
entry for each vertex in the generated
graph, applying the same reduction rules
as those described for the APPLY opera-
tion. For our example, the result would
be an OBDD representation of the func-
tion c as shown on the right-hand side of
Figure 9.
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Figure 9. Example of RESTRICT operation. Restrlctmg variable b of the argument (left) to value 1
involves bypassing vertices labeled by b (center) and reducing the graph (right).

Computing the restriction of a function
f having an OBDD representation of mf
vertices involves at most m ~ recursive
calls, each generating at most one vertex
in the result graph. Using a good hash
table implementation, each recursive step
requires constant time on average. Thus,
both the complexity of the algorithm and
the size of the generated result must be
O(mt ).

3.3 Derived Operations

As was described in Section 2, a variety
of operations on Boolean functions can be
expressed in terms of algebraic and
restriction operations. The APPLY and
RESTRICT algorithms therefore provide a
way to implement these other operations.
Furthermore, for each of these opera-
tions, both the complexity and the size of
the generated graph are bounded by some
polynomial function of the argument
functions. For function f let mt denote
the size of its OBI)D representation.
Given two functions f and g and “don’t
care” conditions expressed by a function
d, we can compute the equivalence of f

and g for the “care” conditions in time
0( m ~m ~ m ~ ). We can compute the com-
position of functions f and g with two
restrictions and three calls to APPLY. This
approach would have time complexity
O(m~m~). By implementing the entire
computation with one traversal, this
complexity can be reduced to 0( nl~ m: )

[Bryant 1986]. Finally, we can compute
the quantification of a variable in a func-
tion f in time O(mf ).

3.4 Performance Characteristics

A problem is solved using OBDDS by
expressing the task as a series of opera-
tions on Boolean functions such as those
discussed above. As we have seen, all of
these operations can be implemented by
algorithms having complexity polynomial
in the sizes of the OBDDS representing
the arguments. As a result, OBDD-based
symbolic Boolean manipulation has
two advantages over other common
approaches. First, as long as the graphs
remain of reasonable size, the total com-
putation remains tractable. Second,
although the graph sizes can grow with
each successive operation, any single
operation has reasonable worst-case per-
formance. In contrast, most other repre-
sentations of Boolean functions lack this
“graceful-degradation” property. For
example, even if a function has a
reasonably compact sum of products
representation, its complement may be of
exponential size [Brayton et al. 1984].

3.5 Implementation Techniques

From the standpoint of implementation,
OBDD-based symbolic manipulation has
very different characteristics from many
other computational tasks. During the
course of a computation, thousands of
graphs, each containing thousands of
vertices, are constructed and discarded.
Information is represented in an OBDD
more by its overall structure rather than
in the associated data values, and hence
very little computational effort is

ACM Computmg Surveys, Vol. 24, No. 3 September 199’2



Ordered Binary-Decision Diagrams ● 305

expended on any given vertex. Thus, the
computation has a highly dynamic char-
acter, with no predictable patterns of
memory access. To date, the most suc-
cessful implementations have been on
workstation computers with large physi-
cal memories, where careful attention has
been given to programming the memory
management routines [Brace et al. 1990].

To extract maximum performance, it
would be desirable to exploit the poten-
tial of pipelined and parallel computers.
In symbolic-analysis tasks, parallelism
could exist at the macro level where
many operations are performed simulta-
neously and at the micro level where
many vertices within a given OBDD are
operated on simultaneously. Compared
to other tasks that have been success-
fully mapped onto vector and parallel
computers, OBDD manipulation requires
considerably more communication and
synchronization among the computing
elements and considerably less local
computation. Thus, this task provides a
challenging problem for the design of
parallel-computer architectures, pro-
gramming models, and languages.
Nonetheless some of the early attempts
have proved promising. Researchers have
successfully exploited vector processing
[Ochi et al. 1991] and have shown good
results executing on shared-memory
multiprocessors [Kimura and Clarke
1990]. Both of these implementations
exploit micro parallelism by implement-
ing the APPLY operation by a breadth-
first traversal of the argument graphs, in
contrast to the depth-first traversal of
conventional implementations.

4. REPRESENTING MATHEMATICAL
SYSTEMS

Some applications, most notably in digi-
tal design, call for the direct representa-
tion and manipulation of Boolean func-
tions. In general, however, the power of
symbolic Boolean manipulation comes
more from the ability of binary values
and Boolean operations to represent and
implement a wide range of different
mathematical domains. This basic princi-

ple is so well ingrained that we seldom
even think about it. For example, few
people would define the ADD operation
of a computer as a set of 32 Boolean
functions over a set of 64 arguments.
Table 2 lists examples of several areas of
mathematics where objects can be repre-
sented, operated on, and analyzed using
symbolic Boolean manipulation, as long
as the underlying domains are finite. By
providing a unified framework for a
number of mathematical systems, sym-
bolic Boolean manipulation can solve not
just problems in the individual areas, but
also ones involving multiple areas simul-
taneously. For example, recent programs
to analyze the sequential behavior of dig-
ital circuits (see Section 6) involve oper-
ating in all of the areas listed in Table 2.
The desired properties of the system are
expressed as formulas in a logic, The
system behavior is given by the next-state
functions of the circuit. The analyzer
computes sets of states having some
particular properties. The transition
structure of the finite-state system is
represented as a relation. During exe-
cution, the analyzer can readily shift
between these representations, using
only OBDDS as the underlying data
structures. Furthermore, the canonical
property of OBDDS makes it easy to
detect conditions such as convergence, or
whether any solutions exist to a problem.

The key to exploiting the power of sym-
bolic Boolean manipulation is to express
a problem in a form where all of the
objects are represented as Boolean func-
tions. In the remainder of this section we
describe some standard techniques that
have been developed along this line. With
experience and practice a surprisingly
wide range of problems can be expressed
in this manner. The mathematical con-
cepts underlying these techniques have
long been understood. None of the tech-
niques rely specifically on the OBDD rep-
resentation—they could be implemented
using any of a number of representa-
tions. OBDDS have simply extended the
range of problems that can be solved
practically. In doing so, however, the
motivation to express problems in terms
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Table 2. Example Systems that can be Represented w!th Boolean Functions

class

Logic

Finite domains

Functions

Sets

Relations

Typical Operations

A, V, ~, V, ~

abnain dependent

application,composition

u, n, –

composition,closure

Typical Tests

satisfiability,implicanon

equivalence

equivalence

subset

symmetry,tmnsitivity

of symbolic Boolean operations has symbolic simulation, the node states must
increased.

4.1 Encoding of Finite Domains

Consider a finite set of elements A where
IAl = N. We can encode an element of A

as a vector of n binary values, where
n = [logz iV 1. This encoding is denoted by
a function a: A ~ {O, 1}’ mapping each
element of A to a distinct n-bit binary
vector. Let CT,(a) denote the ith bit in
this encoding. A function mapping ele-
ments in A to elements in A, f A ~ A
is represented as a vector of n Boolean
functions ~ where each fi: {O, 1}’ + {O, 1}
is defined as:

f,(cr(a)) = CTl(f(a)).

In many applications, the domains have
a “natural” encoding, e.g., the binary
encoding of finite integers, while in others
it is constructed artificially.

As an example, the COSMOS symbolic
simulator [Gho and Bryant 1989] uses
OBDDS to compute the behavior of a
transistor circuit symbolically. Such
a simulator can be used to automatically
generate tests for faults in a circuit and
to formally verify that the circuit has
some desired behavior. The circuit model
represents node voltages with a three-
valued signal set, where values O and 1
represent low and high voltages, and the
third value X indicates an unknown or
potentially nondigital voltage. During

b-e computed as three-valued functions
over a set of Boolean variables intro-
duced by the user to represent values of
the primary inputs or initial state.
COSMOS represents the state of a node
by a pair of OBDDS. That is, it encodes
each of the iV = 3 elements of the signal
set as a vector of n = 2 binary values
according to the encoding a(0) = [0, 1],
a(l) = [1,0], and CT(X) = [1, 11.

The next-state functions computed by
the simulator are defined entirely accord-
ing to this Boolean encoding, allowing
Boolean functions to accurately describe
the three-valued circuit behavior. For
example, Table 3 shows the three-valued
extensions of the logic operations AND,
OR, and NOT. Observe that the opera-
tions yield X in every case where an
unknown argument would cause an
uncertainty in the function value. Letting
[al, a. 1 denote the encoding of a three-
valued signal a, the three-valued oper-
ation can be expressed entirely in terms
of Boolean operations:

[al, ao],[bl, bo] = [albl, aO+ 60]

[CZl,aol +t[~l,~ol = [~l+~l,ao~ol

[alj~ol’=[ao, f-q]

During operation, the simulator operates
much like a conventional event-driven
logic simulator. It begins with each inter-
nal node initialized to state [1, 1] indicat-
ing the node value is unknown under all
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Table 3. Ternary Extensions of AND, OR, and NOT.
The third value X Indicates an unknown or

potenhally nondlgltal voltage.

r

tolx +, Olx

t

a Et

0000 0 Olx 01

101X 1 111 10
Xoxx x Xlx xx

conditions. During simulation, node
states are updated by evaluating the
Boolean representation of the next-state
function with the APPLY operation. Each
time the state of a node is recomputed,
the old state is compared with the new
state, and if it is not equivalent, an event
is created for each fan-out of the node.
This process continues until the event
list becomes empty, indicating that the
network is in a stable state. This method
of processing events relies heavily on
having an efficient test for equivalence.

4.2 Sets

Given an encoding of a set A, we can
represent and manipulate its subsets
using “characteristic functions” [Cerny
and Marin 1977]. A set S G A is denoted
by the Boolean function X~: {0, 1}” s
{0, 1}, where

where @ represents the complement of
the EXCLUSIVE-OR operation. Opera-
tions on sets can then be implemented by
Boolean operations on their characteris-
tic functions, e.g.,

,y@=o
XSIJT=XS+XT

XS. T= XS” XT

XS-T=XS” XT

Set S is a subset of T iff XS . XT= O. In
many applications of OBDDS, sets are
constructed and manipulated in this
manner without ever explicitly ermmer-
ating their elements. Alternatively, a
(nonempty) set can be represented as the

set of possible outputs of a function vec-
tor [Coud~rt et al. 1990]. That is, we
consider f to denote the set

{da(a) =fi~),forsome~~ {011}’).

This representation can be convenient in
applications where the system being ana-
lyzed is represented as a function vector.
By modifying these functions we can also
represent subsets of the system states.

4.3 Relations

A k-ary relation can be defined as a set
of ordered k-tuples. Thus, we can also
represent and manipulate relations using
characteristic functions. For example,
consider a binary relation R G A X A.
This relation is denoted by the Boolean
function X~ defined as:

With this representation, we can perform
operations such as intersection, union,
and difference on relations by applying
Boolean operations to their characteristic
functions.

Using a combination of functional com-
position and variable quantification we
can also compose relations. That is:
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where R o S denotes the composition of
relations R and S. Quantification over a
variable vector involves quantifying over
each of the vector elements in any order.

Taking this further, we can compute
the transitive closure of a relation using
fixed-point techniques [Burch et al.
1990a]. The function XR, is computed as
the limit of a sequence of functions x~,,
each defining a relation:

RO=I

R 1+1 =Iu RoR,

where I denotes the identity relation.
The computation converges when it
reaches an iteration i such that XR =
XR,_,, again making use of efficient equiv-
alence testing. If we think of R as repre-
senting a graph, with a vertex for each
element in A and an edge for each ele-
ment in R, then the relation R, denotes
those pairs reachable by a path with at
most i edges. Thus, the computation
must converge in at most N – 1 itera-
tions, where N = IAl. A technique known
as “iterative squaring” [Burch et al.
1990a] reduces the maximum number of
iterations to n = [logz iV 1. Each iteration
computes a relation R(,) denoting those
pairs reachable by a path with at most 2 [
edges:

R(0)=Iu R

R 1+1
=R(, )OR[l,

Many applications of OBDDS involve
manipulating relations over very large
sets, and hence the reduction from N
iterations (e.g., 109) down to n (e.g., 30)
can be dramatic.

5. DIGITAL-SYSTEM DESIGN
APPLICATIONS

The use of OBDDS in digital-system
design, verification, and testing has
gained widespread acceptance. In this
section we describe a few of the areas
and methods of application.

5.1 Verification

OBDDS can be applied directly to the
task of testing the equivalence of two

combinational-logic circuits. This prob-
lem arises when comparing a circuit to a
network derived from the system specifi-
cation [Bryant 1986] or when verifying
that a logic optimizer has not altered the
circuit functionality. Using the APPLY

operation, functional representations for
both networks are derived and tested for
equivalence. By this method, two sequen-
tial systems can also be compared, as
long as they use the same state encoding
[Madre and Billon 1988]. That is, the two
systems must have identical output and
next-state functions.

5.2 Design Error Correction

Not content to simply detect the exis-
tence of errors in a logic design,
researchers have developed techniques to
automatically correct a defective design.
This involves considering some relatively
small class of potential design errors,
such as a single incorrect logic gate, and
determining if any variant of the given
network could meet the required
functionality (Madre et al. 1989]. This
analysis demonstrates the power of the
quantification operations for computing
projections, in this case projecting out
the primary input values by universal
quantification.

Such an analysis can be performed
symbolically by encoding the possible
gate functions with Boolean variables, as
illustrated in Figure 10. As this example
shows, an arbitrary k-input gate can be
emulated by a 2 k-input multiplexer,
where the gate operation is determined
by the multiplexer data inputs d [Mead
and Conway 1980]. Consider a single-
output circuit N, where one of the gates
is replaced by such a block, giving a
resulting network functionality of
N( .7, d), where Z represents the set
of primary inputs. Suppose that the
desired functionality is S(F). Our task is
to determine whether (and if so, how) the
two functions can be made identical for
all primary input values by “program-
ming” the gate appropriately. This
involves computing the function C(7),
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Figure 10. Universal function block. By assigning
different values to the variables a’, an arbitrary
2-input operation can be realized.

defined as

c(d) = V.2[N(2’,d) @ S(2)].

Any assignment to ii for which C yields 1
is then a satisfactory solution.

Although major design errors cannot
be corrected in this manner, it eliminates
the tedious task of debugging circuits
with common errors such as misplaced
inverters or the use of an incorrect gate
type. This task is also useful in logic
synthesis, where designers want to alter
a circuit to meet a revised specification
[F’ujita et al. 1991].

5.3 Sensitivity Analysis

A second class of applications involves
characterizing the effects of altering the
signal values on different lines within a
combinational circuit. That is, for each
signal value s, we want to compute the
Boolean difference for every primary out-
put with respect to s [Sellers et al. 1968].
This analysis can be performed symboli-
cally by introducing “signal line modi-
fiers” into the network, as illustrated in
Figure 11. That is, for each line that
would normally carry a signal value s,
we selectively alter the value to be s‘
under the control of a Boolean value P~
by computing s‘ = s @ P~. We can deter-
mine the conditions under which some
output of the circuit is sensitive to the
value on a signal line by comparing the
outputs of the original and altered cir-
cuits, as illustrated in Figure 12. As this
figure illustrates, we can even compute
the effect of every single-line modifica-

P.

-J-J-y
Figure 11. Signal line modifier. A nonzero value of

P, alters the value carried by the line.

Figure 12. Computing sensitivities to single-line
modifications. Each assignment to the variables F’
causes the value on just one line to be modified.

tion in a circuit in one symbolic evalua-
tion [Cho and Bryant 1989]. That is,
number every signal line from O to m – 1
and introduce a set of [log m ] “permuta-
tion variables” 7. Each permutation sig-
nal P, is then defined to be the function
that yields 1 when the permutation vari-
ables are the binary representation of
the number assigned signal s. In logic
design terms, this is equivalent to gener-
ating the permutation signals with a de-
coder having F as input. The resulting
function 7’( 7, 7’) yields 1 if the original
network and the network permuted by F
produce the same output values for input
z.

One application of this sensitivity
analysis is to automatic test generation.
The sensitivity function describes the set
of all tests for each single fault. Suppos~
a signal line numbered in binary as b
has function S( .7) in the normal circuit.
Then an input pattern Z will detect a

stuck-at- 11fault on the line iff T ( d, ~’) .

s(d) = 1. Similarly, Z will detect a stuck-
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at-O fault iff T(&, ~) . s(d) = 1. This
method can also be generalized to
sequential circuits and to circuits
represented at the switch level [Cho and
Bryant 1989].

A second application is in the area of
combinational-logic optimization. For a
signal line num+bered in binary as ~, the
function T( 2’, b) represents the “don’t
care set” for each line of the circuit, i.e.,
those cases where the circuit outputs are
independent of the signal value on this
line. Using this information as guidance,
the circuit optimizer can apply transfor-
mations such as eliminating a signal line
or moving a line to a different gate out-
put. One drawback of this approach,
however, is that the sensitivity function
must be recomputed every time the opti-
mizer modifies the circuit. An alternative
approach yields a more restricted, but
“compatible,” set of “don’t care” func-
tions, where the “don’t care” sets remain
valid even as the circuit structure is
altered [Sato et al. 1990].

5.4 Probabilistic Analysis

Recently, researchers have devised a
method for statistically analyzing the
effects of varying circuit delays in a
digital circuit [Deguchi et al. 1991]. This
application of OBDDS is particularly
intriguing, since conventional wisdom
would hold that such an analysis re-
quires evaluation of real-valued para-
metric variations and hence could not be
encoded with Boolean variables.

Consider a logic gate network in which
each gate has a delay given by some
probability distribution. This circuit may
exhibit a range of behaviors, some of
which are classified as undesirable. The
“yield” is then defined as the probability
that these behaviors do not occur. As an
example, Figure 13 shows a simple cir-
cuit where two of the logic gates have a
variable distribution of delays, and we
wish to evaluate the probability of a glitch
occurring on node Out as the input signal
A makes a transition from O to 1. Figure
14 shows an analysis when signal A
changes to 1 at time O. Signals C and D

‘* >

out
00

Figure 13. Circuit with uncertain delays. Gates
labeled by mm\max delays, Inverters have
distribution of delays.

will make transitions, where the transi-
tion times have probability distributions
shown. One simple analysis would be to
treat the waveform probabilities for all
signals as if they were independently dis-
tributed, Then we can easily compute the
behavior of each gate output according to
the gate function and input waveforms.
For example, if we treat signals C and D
as independent, then we could compute
the probability of a rising transition on
node Out at time t as the product of the
probability that C makes a transition at
t and the probability that no transition
on D occurs at time < t.This would lead
to the transition probability distribution
labeled as “Out (Independent,).” The net
probability of a transition occurring (i.e.,
a glitch) would then be computed as 307c.
In reality, of course, the transition
times of signals C and D are highly
correlated—both are affected by the de-
lay through the initial buffer gate. Hence,
a more careful analysis would yield the
transition time probability distribution
labeled as “Out (Actual),” having a net
probability of occurrence of 12.570. Thus,
the simplified analysis underestimates
the circuit yield. In other cases a simpli-
fied analysis will overestimate the yield
[Deguchi et al. 1991].

To solve this problem through symbolic
Boolean analysis we must make two
restrictions. First, all circuit delays must
be integer valued (for an appropriately
chosen time unit), and hence transitions
occur only at discrete time points. Sec-
ond, the delay probabilities for a gate
must be multiples of a value I/k, where
k is a power of 2. For example both
variable gates in Figure 13 have delays
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Figure 14. Effect of uncertain delays. Signal A switches from O to 1 at time O. Ignoring signal correlations
causes overestimate of transition probability.
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Figure 15. Modeling uncertain delays. Boolean variables control delay selection. Signals are replicated
according to delay distribution.

ranging from 1 to 4. One has uniformly
distributed delays [1/4, 1/4, 1/4, 1/4],
while the other has delays that more
nearly approximate a normal distribu-
tion [1/8, 3/8, 3/8, 1/8]. The delay value
for a gate can be encoded then by a set of
log k Boolean variables,, as shown in
Figure 15. That is, we model the circuit
element with a k-input multiplexer,
where a delay value having probability
c/k is fed to c of the inputs. The circuit
is then evaluated using a symbolic exten-
sion of a conventional logic gate simula-
tion algorithm. The signal value on a
node N at each time t is then a Boolean
function N(t) of the delay variables.

For the example of Figure 15 suppose
that variables [ el, e.] encode the delay
between A and B, while variables
[ dz, dl, do] encode the delay between B
and C, as shown in Table 4. For times
t <0, the node functions are given as:
A(t) = B(t) = D(t) = Out(t) = O and
C(t) = 1. For times t >0, node A has
function A(t) = 1, while the others would
be computed as:

B(t) =el. eo. A(t – 1)

+<. eO. A(t–2)

+el. Zo .A(t –3)

+el”eO” A(t–4)
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Table 4. Delay Condkions for Example C!rcu!t

A+B

rDelay Condition

1
——
el,eo

2 ~.efl

3 el.~

4 el. q

C(t) =~”dld O. B(t-l)

+d2. (dl+do).13(t -2)

+d2. (dl +do). B(t – 3)

+dz. dldO. B(t-4)

D(t) =B(t–3)

out(t) = c(t) “D(t)

From these equations, the output signal
would be computed as Out(t) = O for t <
3 and t >8, and for other times as:

Out(4) = dz”dl”dO”el “eO

Out(5) =dz. dl. dO”el. eO

Out(6) =dz. dl” doeleo

Out(7) =dz. dl. dO. el. eO

We can compute a Boolean function indi-
cating the delay conditions under which
some undesirable behavior arises. For
example, we could compute the probabil-
ity of a glitch occurring on node Out as
G = ZOzut(t). In this case we would com-
pute G = dz . d, . ctO, i.e., a glitch occurs
iff the delay between B and C equals 4.

Given a Boolean function representing
the conditions under which some event
occurs, we can compute the event proba-
bility by computing the density of the
function, i.e., the fraction of variable
assignments for which the function yields
1. With the aid of the Shannon expan-
sion, the density P(f) of a function f can
be shown to satisfy the recursive

B-c

Delay Condition

1 d2.&&

2 ~(d, + do)

3 d2.(~+~)

4 dz.dl do

dz 71’32

/“’
/“

?3

3f16 dl dl
\

‘\

h% do do 1/4 ~
\

\ \
,1

1/4 el ‘I el 1/4 el

\“,” \ /

meo’,1
/J

eo
‘-+ ‘ --/5

11--00

U4

1/4

1/’2

Figure 16. Computation of function density Each
vertex is labeled by tbe fraction of variable
assignments yielding I

formulation:

p(l) = 1

p(o) = o

~(f) =;[P(flx -o)+ P(fl. Ll)]

Thus, given an OBDD representation of
f, we can compute the density in linear
time by traversing the graph depth first,
labeling each vertex by the density of the
function denoted by its subgraph. This
computation is shown in Figure 16 for
the OBDD representing the conditions
under which node C in Figure 15 has a
rising transition at time 6, indicating that
this event has probability 7/32.
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As this application shows, OBDD-based
symbolic analysis can be applied to sys-
tems with complex parametric varia-
tions. Although this requires simplifying
the problem to consider only discrete
variations, useful results can still be
obtained. The key advantage this
approach has over other simplified
methods of probabilistic analysis (e.g.,
controllability/ observability measures
[Brglez et al. 1984]) is that it accurately
considers the effects of correlations
among stochastic values.

6. FINITE-STATE SYSTEM ANALYSIS

Many problems in digital-system
verification, protocol validation, and
sequential-system optimization require a
detailed characterization of a finite-state
system over a sequence of state transi-
tions. Classic algorithms for this task
construct an explicit representation of the
state graph and then analyze its path
and cycle structure [Clarke et al. 1986].
These techniques become impractical,
however, as the number of states grows
large. Unfortunately, even relatively
small digital systems can have very large
state spaces. For example, a single 32-bit
register can have over 4 x 109 states.

More recently, researchers have devel-
oped “symbolic” state gralph methods, in
which the state transition structure is
represented as a Boolean function [Burch
et al. 1990a; Coudert et al. 1990].2 This
involves first selecting binary encodings
of the system states and input alphabet.
The next-state behavior is described as a
relation given by a characteristic func-
tion 8( Z, 5, R) yielding 1 when input 7
can cause a transition from state F to
state Z. As an example, Figure 18 illus-
trates an OBDD representation of the
nondeterministic automaton having the
state graph illustrated in Figure 17. This
example represents the three possible
states using two binary values by the

‘Apparently, McMillan [ 1992] implemented the first
symbolic model checker in 1987, but did not publish
this work.

1

Figure 17. Explicit representation of nondeter-
ministic finite-state machine. The size of the repre-
sentation grows linearly with the number of states.

Figure 18. Symbolic representation of nondeter-
ministic finite-state machine. The number of vari-
ables grows logarithmically with the number of
states.

encoding cr(A) = [0, O], u(B) = [1, O], and
v(C) = [0, 1]. Observe that the unused
code value [1, 1] can be treated as a “don’t
care” value for the arguments d and Z’ in
the function 8. In the OBDD of Figure
18, this combination is treated as an
alternate code for state C to simplify the
OBDD representation.

For such a small automaton, the OBDD
representation does not improve on the
explicit representation. For more com-
plex systems, on the other hand, the
OBDD representation can be consider-
ably smaller. Based on the upper bounds
derived for bounded-width networks dis-
cussed in Section 1.4, McMillan [1992]
has characterized some conditions under
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which the OBDD representing the tran-
sition relation for a system grows only
linearly with the number of system com-
ponents, whereas the number of states
grows exponentially. In particular, this
property holds when both (1) the system
components are connected in a linear or
tree-structure and 2) each component
maintains only a bounded amount of
information about the state of the other
components. As the example of Figare 5
illustrated, this bound holds for ring-
connected systems, as well, since a ring
can be “flattened” into a linear chain of
bidirectional links. McMillan [1992] has
identified a variety of systems satisfying
these conditions, including a hierarchical
distributed cache in a shared-memory
multiprocessor and a ring-based, dis-
tributed, mutual-exclusion circuit.

Given the OBDD representation, prop-
erties of a finite-state system can be
expressed then by fixed-point equations
over the transition function, and these
equations can be solved using iterative
methods, similar to those described to
compute the transitive closure of a rela-
tion. For example, consider the task of
determining the set of states reachable
from an initial state having binary cod-
ing ~ by some sequence of transitions.
Define the relation S to indicate the con-
ditions under which for some input 7,
there can be a transition from state d to
state Z. This relation has a characteristic
function

Xs(d, z) = 32[8(2,6, i?)].

Then set of states reachable from state @
has characteristic function:

XR(O = Xsf(z>q.

Systems with over 1020 states have
been analyzed by this method [Burch
et al. 1990b], far larger than could ever
be analyzed using explicit state graph
methods. A number of refinements have
been proposed to speed convergence
[Burch et al. 1990a; Filkorn 1991] and to
reduce the size of the intermediate
OBDDS [Coudert et al. 1990].

Unfortunately, the system characteris-
tics that guarantee an efficient OBDD
representation of the transition relation
do not provide useful upper bounds on
the results generated by symbolic state
machine analysis. For example, we can
devise a system having a linear intercon-
nection structure for which the charac-
teristic function of the set of reachable
states requires an exponentially sized
OBDD [McMillan 1992]. On the other
hand, researchers have shown that a
number of real-life systems can be ana-
lyzed by these methods.

One application of finite-state system
analysis is in veriffing the correctness of
a sequential digital circuit. For example,
we can prove that a state machine
derived from the system specification is
equivalent to one derived from the circuit
even though it uses different state encod-
ings. For this application, more special-
ized techniques have also been developed
that exploit characteristics of the system
to be verified, e.g., that the circuit is
synchronous and deterministic and that
the specification requires analyzing only
a bounded number of clock cycles [Bose
and Fisher 1989; Beatty et al. 1991]. For
example, we have verified pipelined data
paths containing over 1000 bits of regis-
ter state. Such a system, having over
10300 states, exceeds the capacity of cur-
rent symbolic state graph methods.

7. OTHER APPLICATION AREAS

Historically, OBDDS have been applied
mostly to tasks in digital-system design,
verification, and testing. More recently,
however, their use has spread into other
application domains. For example, the
fixed-point techniques used in symbolic-
state machine analysis can be used to
solve a number of problems in mathe-
matical logic and formal languages, as
long as the domains are finite [Burch
et al. 1990a; Enders et al. 1991].
Researchers have also shown that prob-
lems from many application areas can be
formulated as a set of equations over
Boolean algebras that are solved by a
form of unification [Buttner and Simonis
1987].

ACM Computmg Surveys, Vol. 24, No. 3 September 1992



Ordered Binary-Decision Diagrams 9 315

In the area of artificial intelligence,
researchers have developed a truth
maintenance system based on OBDDS
[Madre and Coudert 1991]. They use an
OBDD to represent the “database,” i.e.,
the known relations among the elements.
They have found that by encoding the
database in this form, the system can
make inferences more readily than with
the traditional approach of simply main-
taining an unorganized list of “known
facts.” For example, determining whether
a new fact is consistent with or follows
from the set of existing facts involves a
simple test for implication.

8. AREAS FOR IMPROVEMENT

Although a variety of problems have been
solved successfully using OBDD-based
symbolic manipulation, there are many
cases where improved methods are
required. Of course, most of the problems
to be solved are NP-hard and in some
cases even PSPACE-hard [Garey and
Johnson 1979]. Hence, it is unlikely that
any method with polynomial worst-case
behavior can be found. At best, we can
develop methods that yield acceptable
performance for most tasks of interest.

One possibility is to improve on the
representation itself. For working with
digital systems containing multipliers
and other functions involving a complex
relation between the control and data
signals, OBDDS quickly become impracti-
cally large. Several methods have been
proposed that follow the same general
principles of OBDD-based symbolic
manipulation, but with fewer restrictions
on the data structure. For example,
Karplus [1989] has proposed a variant
termed “If-Then-Else DAGs,” where the
test condition for each vertex can be a
more complex function than a simple
variable test. Researchers at CMU have
experimented with “Free BDDs,” in
which the variable-ordering restriction of
OBDDS is relaxed to the extent that the
variables can appear in any order, but no
path from the root to a terminal vertex
can test a variable more than once (per-
sonal communication, K. S. Brace 1988).

Such graphs, known as “l-time branch-
ing programs” in the theoretical commu-
nity [Wegener 1988], have many of the
desirable properties of OBDDS, including
an efficient (although probabilistic)
method for testing equivalence [Blum and
Chandra 1980]. Recently, techniques
based on this representation have been
developed that maintain several of the
desirable characteristics of OBDDS, in-
cluding a canonical form and a
polynomial-time APPLY operation
[Gergov and Meinel 1992]. Other
researchers have removed all restrictions
on variable occurrence, allowing paths
with multiple tests of a single variable
[Ashar et al. 1991; Burch 1991]. In each
of these extensions, we see a trade-off
between the compactness of the
representation and the difficulty
of constructing them or testing their
properties.

In many combinatorial optimization
problems, symbolic methods using
OBDDS have not performed as well as
more traditional methods. In these prob-
lems, we are typically interested in find-
ing only one solution that satisfies some
optimality criterion. Most approaches
using OBDDS, on the other hand, derive
all possible solutions and then select the
best from among these. Unfortunately,
many problems have too many solutions
to encode symbolically. More traditional
search methods such as branch-and-
bound techniques often prove more
efficient and are able to solve larger
problems. For example, our test genera-
tion program determines all possible tests
for each fault [Cho and Bryant 1989],
whereas more traditional methods stop
their search as soon as a single test is
found. One possibility would be to apply
the idea of “lazy” or “delayed” evaluation

[Abelson et al. T~a~51 ~~ OBDD-based
manipulation. rather than
eagerly creating a full representation of
every function during a sequence of oper-
ations, the program would attempt to
construct only as much of the OBDDS as
is required to derive the final informa-
tion desired. Recent test generation pro-
grams have some of this characteristic
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using a hybrid of combinatorial search
and functional evaluation [Giraldi and
Bushnell 1990].

9. SUMMARY

As researchers explore new application

areas and formulate problems symboli-

cally, they find they can exploit several

key features of Boolean functions and

OBDDS:

By encoding the elements of a finite
domain in binary, operations over these
domains can be represented by vectors
of Boolean functions.
Symbolic Boolean manipulation
provides a unified framework for

representing a number of different

mathematical systems.

For many problems, a variable order-

ing can be found such that the OBDD

sizes remain reasonable.

The ability to quickly test equivalence

and satisfiability makes techniques

such as iterative methods and sensitiv-

ity analysis feasible.

The APPLY and RESTRICT operations
provide a powerful basis for many more

complex operations.

Discovering new application areas and

improving the performance of symbolic

methods (OBDD or otherwise) for exist-

ing areas will provide a fruitful area of

research for many years to come.
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