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ABSTRACT. Subgraph isomorphism can be determined by means of a brute-force tree-search enu- 
meration procedure. In this paper a new algorithm is introduced that attains efficiency by inferentially 
eliminating successor nodes in the tree search. To assess the time actually taken by the new algomthm, 
subgraph isomorphism, chque detection, graph isomorphism, and directed graph isomorphism ex- 
periments have been carried out with random and with various nonrandom graphs. 

A parallel asynchronous logic-in-memory implementation of a vital part of the algorithm is also 
described, although this hardware has not actually been bmlt The hardware implementation would 
allow very rapid determination of isomorphism. 
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1. Introduction 

Corneil and Gotlieb [4] mention that  one of the possible applications of subgraph iso- 
morphism is for finding whether a given chemical compound is a subcompound of a 
further specified compound, given the structural formulas. Subgraph isomorphism may 
be useful in scene analysis [1, 10] for detecting a relationally descmbed object that  is 
embedded in a scene. Problems akin to subgraph isomorphism have also arisen in research 
on the recognition of distorted shapes, where any admissible distortion conserves posi- 
tional relationships within limits. There is some formal similarity between the problems 
of finding whether two graphs are related by a 1:1 correspondence that  conserves ad- 
jacency and finding whether two patterns are related by a distortion that  conserves 
spatial relationships within known limits. This idea is explored at an introductory level 
in [11, Sec. 7.3]; [11] also indicates the historical origin of the algorithm that  is described 
in the present paper. 

I t  is well known that  isomorphism can be determined by brute-force enumeration. As 
a first step toward introducing the original part of our algorithm, Section 2 of this paper 
describes a brute-force enumeration procedure that is actually a depth-first tree-search 
algorithm. Section 3 introduces the original part of the work, which consists of a proce- 
dure that  is entered after each node in the tree search. The result of this procedure is 
generally a reduction in the number of successor nodes that  must be searched, which 
yields a reduction in the total computer time required for determining isomorphism. 

In  Corneil and Gotlieb's algorithm [4], the two graphs that are to be tested for iso- 
morphism are separately subjected to a computation which produces representative 
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graphs. Like the tree-search algorithm of Berztiss [2], which we will discuss later,  our 
algorithm differs from tha t  of Corneil and Gotlieb in tha t  i t  does not  process the  two 
graphs separately:  the abi l i ty  to cope with subgraph isomorphism stems from the fact 
tha t  the computat ion always works on both graphs at  once. We have not  a t tempted  to 
find a graph proper ty  tha t  is possessed by  all graphs which are isomorphic to a given 
graph. 

In  this paper  we will use the terminology of Nllsson [7] for tree-search computations,  
and we will use the terminology of Hara ry  [5] for graphs other than  search trees. A graph 
G consists of a finite nonempty set V of p elements tha t  are called points, together with 
a set E of q distinct  unordered pairs of dist inct  points tha t  belong to V. A pair of points 
tha t  belongs to E is a line. A subgraph of G is a graph whose points and lines all belong 
to G. A graph G, is ~somorphw to a subgraph of a graph Ga if and only if there is a 1 : 1 
correspondence between the point sets of this subgraph and of G, tha t  preserves adja- 
cency. 

2. Szmple Enumeratwn Algomthm for Subgraph Isomorphism 

In  this section we formulate a simple tree-search algorithm; for introductory purposes 
we omit  the vi tal  procedure tha t  eliminates successor nodes in the search. This procedure 
is introduced in Section 3. 

TiLe enumeration algorithm is designed to find all of the isomorphisms between a given 
graph G, = ( V , ,  E , )  and subgraphs of a further given graph Ga = (V~, E~). The 
numbers of points and lines of G, and G~ are p , ,  q, and p~, q~, respectively. The adja- 
cency matrices of G~ and G# are A = [a,~] and B = [b,j], respectively. 

For  reasons tha t  will soon become apparent ,  we define an M'  matrix to be a p ,  (rows) X 
pa (columns) matrix whose elements are l ' s  and O's, such tha t  each row contains exactly 
one 1 and no column contains more than one 1. A matrix M' = [m~:] can be used to 
permute the rows and columns of B to produce a further matrix C. Specifically, we define 
C = [c,~] = M'(M'B) T, where T denotes transposition. If  i t  is true tha t  

(V iV j )  (a ,  = 1) ~ (c,~ = 1), (1) 
l<~<pa, 

then M ~ specifies an isomorphism between G, and a subgraph of G~. In this case, if 
m:j  = 1, then the 3th point in G~ corresponds to the ~th point in G, in this isomorphisffa. 

At, the s tar t  of the enumeration algorithm, we construct a p ,  X p~ element matrix 
M ° = ImPel in accordance with 

= 1 if the degree of the j t h  point of G~ is greater than or equal to the degree of 
0 m ~  the i th  point of G , ,  

= 0 otherwise. 

Indeed we would set m,~ = 0 if we had any a prior1 reason to be sure tha t  the 3th point 
of G~ could not  correspond to the zth point  of G, in any subgraph isomorphism. 

The enumeration algorithm works by generating all possible matrices M' such tha t  
for each and every element m~ of M J, (m~ = 1) ~ (m~ °, = 1). For  each such matr ix 
M'  the algorithm tests for Isomorphism by applying condition (1).  Matrices M'  are 
generated by systematically changing to 0 all but  one of the l ' s  in each of the rows of 

0 M ,  subject  to the definitory condition tha t  no column of a matrix M'  may contain more 
than one 1. In  the search tree, the terminal  nodes are at  depth d = p ,  and they corre- 
spond to distinct matrices M' .  Each nonterminal  node at  depth d < p~ corresponds to 
a dist inct  matrix M which differs from M ° in tha t  in d of the rows, all but  one of the l ' s  
has been changed to 0. 

The algorithm uses a p~-bit binary vector {F1, . . .  , F , ,  . . .  , Fpa I to record which 
columns have been used at  an intermediate state of the computat ion.  F,  = 1 if the zth 
column has been used. The algorithm also uses a vector {H~, - . .  , Ha ,  . .  , Hr.} to 
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record which column has been selected at  which depth .  H~ = k if the  kth co lumn has 
been selected at  dep th  d. 

We shall use the  symbol  :=  to denote  assignment.  Thus  d :=  d + 1 means  "se t  d 
equal  to d + 1." Fur ther ,  we shall wri te  M :=  M d ,  meaning "se t  the  entire matr ix  M 
equal to mat r ix  Md ." Mat r ix  M~ is a stored copy of matr ix  M at  dep th  d. We have  for- 
mula ted  the  a lgor i thm so tha t  i t  is as similar as possible to the a lgor i thm of Sect ion 3 
(for ins tance the  complete  ass ignment  Md : =  M is not  really necessary in the  present  
section).  

The  simple enumera t ion  a lgor i thm is as follows. 

Step 1 M = M °, d "= 1; H1 = 0; 
for allz = 1, .. , p, , set F, .= 0; 

Step2 If there is no value of 3 such that md~ = landF~ = 0 then go to step 7; 
Md = M, 
i fd  = 1 thent  .= Hi elsek .= 0, 

Step3 k '= k + 1, 
ff mdk = 0 or Fk = 1 then go to step 3; 
for all .7 # /~ set mdj := 0, 

Step 4. If d < p. then go to step 6 else use condition (1) and give output if an isomorphism is found; 
Step5 If there lsno3 >ksuchthatnmdj = l a n d F :  = 0 then go to step 7; 

M . = M a ,  
go to step 3; 

Step6 H~ = k, Fk = 1; d = d +  1; 
go to step 2, 

Step 7 If d = 1 then terminate algorithm, 
Fk = 0 ;  d . = d -  1, M =M,~, k .=H, t ,  
go to step 5, 

3. Algorzthm Employzng Refinement Procedure 

To reduce the amoun t  of computa t ion  required for finding subgraph isomorphisms we 
employ  a procedure,  which we call the refinement procedure, t ha t  el iminates some of the  
l ' s  f rom the  matr ices  M, thus el iminat ing successor nodes m the  t ree search. 

To  in t roduce  the  ref inement  procedure,  let us consider the  mat r ix  M tha t  is associated 
with  any given nonterminal  node in the  search tree. Any  subgraph isomorphism corre- 
sponds to a par t icular  matr ix  M' .  We  say tha t  an isomorphism is an isomorphism under 
M if its te rminal  node in the  search t ree is a successor of the  node with  which M is asso- 
ciated. The  O's in the  matr ix  M merely  preclude correspondences be tween points  of V .  

f 

and V~. I f  m, j  = 0 for all lsomorphlsms under  M, then  if m .  = 1 we can change m .  = 1 
to m .  = 0 wi thout  losing any of the  isomorphisms under  M :  all such isomorphisms will 
still be found by the  t ree search. In  the  next  paragraph  we work out  a condit ion tha t  is 
necessardy satisfied if m:~ = 1 for any isomorphisms under  M. I f  this necessary condi- 
t ion is not  satisfied and m .  = 1, then  the  ref inement  procedure changes m .  = 1 to 
m,j = O. 

Let  v~, be the  i th  point  in V~,  and let v~ be the  3th point  in V~. Let  
{v.1, - • • , v.~,  • • , v.~} be the  set of all points  of G.  tha t  are ad jacent  to v.~ in g . .  Let  
us consider the  mat r ix  M '  t h a t  is associated ~ i t h  any given isomorphism under  M. F r o m  
the definition of subgraph isomorphism it  is necessary tha t  if v.~ corresponds to vt~ in 
the  isomorphism, then  for each x = 1, . - .  , ~ there  mus t  exist a point  ray in V~ t h a t  is 
ad jacent  to v~j, such tha t  v~y corresponds to v.~ in the  isomorphism. I f  v~v corresponds 
to v.~ in the  isomorphism, then  the  e lement  of M '  t h a t  corresponds to Iv.~,  v~v} is 1. 
Therefore  if v.~ corresponds to v~j in any i somorphism under  M,  then  for each 
x = 1, . .  , ~ there  must  be a 1 in M corresponding to some {v.~, v~y} such tha t  va~ is 
ad jacent  to vt~ • In o ther  words, ff v.~ corresponds to v~j in any isomorphism under  M,  
then  

(Vx)  ( ( a , ,  = 1) ~ ( ~ y )  (m,~.b~, = 1)) .  (2) 
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The refinement procedure simply tests each 1 in M to find whether condition (2) is 
satisfied. For any m,j = 1 such that  (2) is not satisfied, m,~ = 1 is changed to m,j = 0. 
Such changes may cause condition (2) to be no longer satisfied for furtherA's in M, so 
that  further changes can be made, and so on. In  fact the refinement procedure applies 
condition (2) in turn to each i in M, and it then does this over and over again until  there 
is an iteration in which all the l ' s  in M are processed and none of them is changed to 0. 
Note that  there is no restriction on the order in which the l ' s  in M should be processed; 
this means that the refinement procedure can be implemented in asynchronous hardware 
(see Section 5). 

Generally the result of the refinement procedure is to change some of the l ' s  in M 
to O's. However, the refinement procedure may leave M unchanged, and this is particu- 
larly important when M is a matrix M'. A necessary and sufficient condition for sub- 
graph isomorphism is that  the refinement procedure leaves M '  unchanged. Tlus follows 
because if M' is unchanged by the refinement procedure, then (2) holds for each 1 in M'. 
Therefore M' specifies a 1:1 mapping of V, into V~ such that  if two points are adjacent 
m G, then the two corresponding points in G~ are adjacent. We can therefore use the 
refinement procedure as a test for subgraph isomorplnsm instead of using condition (1) : 
if the refinement procedure results in any 1 in M' being changed to 0, then M' does not  
specify an isomorphism. 

During the refinement procedure we continually check whether any row of M contains 
no 1. If any row of M contains no 1 then the procedure jumps to its FAIL exit, because 
there is no advantage in continuing the procedure. Otherwise the procedure terminates 
at its SUCCEED exit. 

In  the detailed program implementation, we do not use one computer word per ele- 
ment of A, B, and M. Instead we ensure that  each row of M is contained in a separate 
computer word and each column of B is contained m a separate computer word. To 
implement condition (2), we a n d  the word containing the xth row of M with the word 
containing the 3th column of B, and test whether the resulting word contains any l 's.  
This is, of course, much faster than bit-by-bit  computation, and it is important  that  the 
refinement procedure can in this way exploit the limited parallelism of an ordinary digital 
computer. The refinement procedure is formulated m Appendix 1. 

Using the refinement procedure, our algorithm for subgraph isomorplnsm is as follows: 

Step 1 M = M °, d = 1, HI = 0, 
for all~ = l, -.- ,p,  setF,  .= 0; 
refine M, if exit FAIL then terminate algorithm; 

Step 2. If there ls no value of 3 such that me~ ~- landf~ = 0 then go to step 7 , 
Me .= M; 
ifd = 1 tbenk -~ Hlelseb .= 0; 

Step3 b = k ~ 1, 
if mdk = 0 or fk = 1 then go to step 3; 
for all 3 ~ k set md~ = 0; 
refine M; if exit FAIL then go to step 5; 

Step .i If d ~ p~ then go to step 6 else give output to indicate that aa isomorphmm has been found ; 
Step5 I f t h e r e i s n o 3 > k s u c h t h a t m d ~ =  l a n d f j = O t h e n g o t o s t e p 7 ,  

M = M e ;  
go to step 3, 

Step6 ~He = k,  Fk = 1; d = d--~ 1; 
go to step 2, 

Step 7. If d = 1 then terminate algorithm, 
F~ =0 ;  d • d -  1; M . = M ~ ,  k : = H d ;  
go to step 5; 

For simplicity we have formulated the algorithm so that  d = 1, 2, .. • , p ,  correspond 
respectively to the 1st, 2 n d , . . , p , t h  rows of adjacency matrix A, but  we have not 
followed this in our experiments, Instead we have arranged that  d = 1, 2, -. , p ,  cor- 
respond respectively to the points of G, in order of decreasing degree. This is intended 
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to enhance the effect of the refinement procedure at  nodes near to the root node of the 
search tree, since a point  of high degree is adjacent  to more points than  a point  of low 
degree. An al ternative strategy might be more appropriate  in a specific application of 
the algorithm. 

The refinement procedure necessarily converges in a finite number of steps because i t  
never changes a 0 to a 1 in M and the number of l ' s  in M is finite. Our complete algorithm 
for subgraph isomorphism is t ruly an algorithm: it necessarily finds all subgraph isomor- 
phisms within a finite time. To assess the time actually taken by  the algorithm, we have 
resorted to experiment. 

4. Experzments 

Experiments were carried out with a K D F 9  computer,  which IS a somewhat unusual 
machine of approximately 1963 vintage. This machine does logic and ari thmetic on the 
last-in words of a last-in-first-out stack of words. To add together the two last-in words 
takes 1 usec, and to fetch a 48-bit word from the core store to the stack takes 9 ~sec. 
These figures are mentioned here in order to endow our computer-t ime results with 
a l i t t le (but  unfortunately not more than a little) meaning. The programs were writ ten 
in the assembly language of the KDF9.  

We used a pseudorandom number generator [91 to construct adjacency matrices. The 
program was writ ten so tha t  the probabil i ty of an off-diagonal element being 1 was 
approximately 0.25. Each adjacency matrix produced by  this program was tested for 
connectedness, and if the corresponding graph was found not to be connected, 1 then the 
adjacency matrix was rejected and a new one was constructed using further pseudo- 
random numbers. In  our experiments, all graphs were generated in this way, unless 
otherwise stated.  Figure 1 shows q versus p for such graphs. Each cross in Figure 1 de- 
notes an average value of q over 50 trials with different graphs. 

In  our s tatements of experimental results, s.d. always means the square root of 
( l / n )  ~ z ~ - ( ( l / n )  ~ z) 2 when there are n trials with variate  z. Although in this 
work the distributions are generally very skewed, we give s.d. values as a bet ter- than-  
nothing rough measure of the variabi l i ty  of the variate. In  Figures 1 and 2, the length 
of the vertical line through a cross is twice the s.d. value. Every  random-graph result 
tha t  is reported below was obtained over fifty trials with different graphs. 

The storage requirements of our algorithm are small except for the storage of p ,  
matrices M, which occupy p2p~ bits,  or p,~ words in our implementation.  

SUBGRAPH ISOMORPHISM. For  selected values of p ,  and p~ such tha t  p ,  < p~, adja- 
cency matrices A and B were generated as described above. Matr ix  A was or'ed into 
matr ix B by means of the  following procedure: For  each ~, j = 1 , - . -  , p ,  set 
b ,  :=  b ,  V a,~. Of course the resulting B matrices had higher values of qs than those 
indicated in Figure 1. For  each pair of matrices A and B, we applied the subgraph iso- 
morphism algorithm of Section 3; Table I summarizes the results. 

CLIQUE DETECTION. A clzque is a maximal complete subgraph [5]. As a further dem- 
onstration of the subgraph isomorphism algorithm we apphed it, after suitable modifica- 
tion, to the detection of cliques. We used the obvious method in which the subgraph iso- 
morphism algorithm is applied to G~ and complete graphs G, for successively smaller 
values of p ,  until a t  least one isomorphism is found. The modifications to the Section 3 
algorithm, and the reasons for them, are given in Appendix 2. Experimental  results with 
random graphs are summarized in Table II .  

In  the complete 3-parti te graph K(3 ,  3, 3) our program found 27 3-point cliques in 

If G= was a connected graph and if Ga was a dmconnected graph consmting of, for example, two con- 
nected subgraphs G~L and G~,  then we could test for isomorphmms between G= and subgraphs of Gat 
and G~ separately, thus reducing the amount of computation required. Although this would be help- 
ful in practice, it  would tend to complicate our experiments, and this is why we have experimented 
only with connected graphs. 
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FIG 1. Number  of ]iRes versus number of points  for pseudorandomly generated graphs 

TABLE I. RESULTS OF EXPERIMENTS WITH SUBGRAPH ISOMORPHISM 

P. Pt3 
Number of Tzme m seconds 

q~ isomorphisms 

av. s.d. av. s.d av s.d. 

6 12 21.1 3.1 960 8 140.4 14.5 13.11 
8 12 23.5 2 9 1223.0 142.8 44.5 55 4 

10 12 26.0 3.4 949 1 121 2 124.0 90 4 
7 14 28.3 4.0 4769 9 88.9 97.6 118 7 

TABLE I I .  RESULTS OF EXPERIMENTS WITH 
CLIQUE DETECTION 

Points per Number of Tzme m 
p~ clique cliques seconds 

av. s.d. av. s.d. av. s.d. 

12 3.1 0.3 2.9 1 8  0 3  0 5  
16 3.2 0 .4  5.3 3 5  0.7 0 .5  

3.5 0 .5  7.1 6.6 1.6 0 6  
24 3.8 0 .5  6 .4  8.3 3 1  0 .8  
28 3.9 0 .4  7.0 9.7 6.3 1.6 
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Fro. 2. Time in seconds versus number of points for determinatmn of isomorphism of pseudo- 
randomly generated graphs 

0.6 sec, and in the complete 4-parti te graph K(3,  3, 3, 3) our program found 81 4-point 
cliques in 3.2 sec. For  these graphs the tree-search clique detection procedure of Bron 
and Kerbosch [3] appears to be faster than ours, bearing in mind that  their procedure was 
writ ten m ALGOL, ours was writ ten in assembly language, and the K D F 9  and EL-X8 
are similar in speed. Osteen and Tou [8] have also reported tha t  their clique detection 
algorithm found these cliques in less t ime than ours, but  using an IBM 360/65, which 
is very roughly three times as fast as a KDF9.  

GRAPH ISOMORPHISM. Figure 2 shows computing t ime versus p~ for determining all 
isomorphisms between two identical graphs GA and G8 = G~. Here the matrices M ° were 
constructed according to '{ m,~ = '1 if the degree of the i th  point of GA is the same as the degree of the 

~th point of GB, (3) 
0 otherwise. 

For  p~ > 20 there was never more than one isomorphism between GA and G~. 
For  p ,  = 6, 8, 10 we also determined all isomorphisms between G~ and G~ = GA using 

the simple enumeration algorithm of Section 2, with M ° constructed according to (3).  
In  over 50 trials the average times for p ,  = 6, 8, 10 were 0.2 see, 1.1 see, and 13.74 see, 
respectively. Comparing these results with Figure 2, we see tha t  on the average the 
algorithm of Section 3 finds all lsomorphisms between a pair of 46-point 260-line graphs 
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more quickly than the algorithm of Section 2 finds all isomorphisms between a pair of 
10-point 13-line graphs. 

From Figure 2 we see tha t  for an average edge density equal to 0.25, the t iming of our 
algorithm depends roughly on p,~, whereas Corneil and Gotheb [4] have reported tha t  
the t iming of their algorithm on isomorphic random graphs depends on p2 .  They have 
specifically reported tha t  their algorithm took 0.00447 min on an IBM 7094-II for edge 
densi*y = 0.5 and p ,  = 20. Our algorithm took 0.0217 min = 1.3 sec on the average for 
these graphs, and i t  took 0.9 sec when we used the faster version of the refinement pro- 
cedure tha t  is mentioned at  the end of Appendix 1. For  isomorphic random graphs, the 
Cornefl and Gotlieb algorithm appears to be more efficient than  ours. 

A referee commented tha t  even a poor algorithm for isomorphism may work quite 
well with random graphs. To provide a more stringent test,  the referee kindly provided, 
with the permission of D. Cornefi, a collection of strongly regular graphs tha t  had been 
used by D. Corneil and others. The first seven of these graphs each had 25 points. Using 
the faster version of the refinement procedure, our algorithm took 1964, 1392, and 1652 
sec respectively on the first three of these graphs On the fourth and fifth i t  failed to find 
all isomorphisms within 3000 sec, and we did not consider i t  worthwhile to run the algo- 
r i thm with further graphs in this collection, since the first five took so long. The adja- 
cency matr ix for the first graph is 

0 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1 0  
1 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0  
1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1  o 0 
1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1  
1 1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1  
1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0  
0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1  
1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0  
0 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0  
0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1  
1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1 1 0 0 0  
0 1 0 0 1 0 4 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 0  
0 0 1 1 0 0 1 1 0 0 1 1  o 1 1 1 0 1 0  o 0 0 1  o 1 
0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0  
1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 1 1  
1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 0 1  
1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0  
0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0  
0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 0  
0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1  
1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1  
0 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1  
0 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1  
1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1  
0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0  

In the  case of graph (not  subgraph) isomorphism, in the refinement procedure we 
could use, as well as (2),  the inverse condition m,j = 1 only if 

(Vv) (b,, = 1 ) ~  (3x )  (a,~.~nx~ = 1). 

However, this condition is not mathematical ly  indispensible and we did not use it be- 
cause i t  would not  have allowed exploitation of the parallelism tha t  was mentioned in 
Section 3. 

Perhaps we should also mention tha t  in the ease of graph isomorphism, if a matrix 
M'  is unchanged by  the refinement procedure, then Ga is isomorphic to GB. To see this, 
we can reason as in Section 3 to establish tha t  if refinement leaves M' unchanged, then 
if two points are adjacent  in GA the corresponding points in G~ are adjacent.  When M ° 
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is constructed according to (3) the degrees of corresponding points are the same, so 
there can be no two adjacent points in Gs that correspond to nonadjacent points in 
GA, if M'  is unchanged by the refinement procedure. 

DIGRAPH ISOMORPHISM. Berztiss [2] has provided a graph and subgraph isomorphism 
procedure for directed graphs. A directed graph or digraph consists of a finite nonempty 
set V of points, tegether with a set of ordered pairs of points in V. The algorithm intro- 
duced in the present paper is similar to that of Berztiss in that  it works by tree searching 
instead of vertex classification, and it is an algorithm, not merely a heuristic procedure, 
and not based on an unproven conjecture. Berztiss represents digraphs by linear formu- 
las, and his algorithm constructs successively larger subformulas that  match in the two 
digraphs. Our algorithm differs in that at any stage of the search, we are not concerned 
only with a subset of the rows of M: every 1 in M is processed every time the refinement 
procedure is executed. In Berztlss' algorithm there is no obvious counterpart of the itera- 
tion of the refinement procedure. Since our algorithm works directly with adjacency 
matrices, we do not have to construct linear formulas. 

To compare the timing of our procedure with that  of Berztiss, we have experimented 
with the same family of digraphs that  Berztiss used. These are digraphs in which the in- 
degree and outdegree of every point is exactly p~/2. To test for digraph Isomorphism, 
we start by constructing M ° according to 

i if the indegree of the zth point in GA is the same as the indegree of the 3th 
0 point in GB and the outdegree of the ith point in GA is the same as the out- 

m , =  degree of t he j t h  point in GB, 
otherwise. 

We then apply the algorithm of Section 3 with the refinement procedure modified as 
follows: ~n,j = 1 is changed to m,j = 0 unless 

(Vx) ((a,~ -- 1) ~ (~y) (m~ b~ = 1) and (Vx) ((a~ -- 1) ~ (3y) (mxy.byj = 1)). 

For nonisomorphic and lsomorphm digraphs our experimental results are summarized 
in Table I I I .  There appears to be no significant difference between the timings on iso- 
morphic and nonisomorphic digraphs, and the timing increases with p~ less rapidly than 
that  of Berztiss' algorithm. 

5. Parallel Hardware Embodiment of Refinement Procedure 

We now describe a logic-in-memory array that  can execute the refinement procedure in 
less than one t~sec. This hardware is remarkably simple, but it requires a very large 
number of gates. 

I t  is convenient to regard A, B, and M as Boolean matrices in which 1 and 0 corre- 
spond to true and false respectively. Further, it is convenient to define a p~ X pa Boolean 
matrix R = [r,j] by 

r~ = (3~)(m~y.b~j). (4) 

T A B L E  I I I .  RESULTS OFF EXPERIMENTS WITH 
DIGRAPH ISOMORPHISM 

Time in seconds 

p,~ Nonisomorphic Isomorphic 

av. s d. av s d 

6 03 05  0.3 05  
8 0.8 0.6 10 09  

10 2.5 11 2.8 1.2 
12 65  24 6.4 2.4 
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Condition (2) can now be written as m .  = m,~ . (Vx) (d ,~  Y r~j), which can readily be 
manipulated into 

m,~ = m , .  ( 3 x ) ( a , ~ . ~ j ) .  (5) 

The hardware includes a separate bistable element (flip-flop) corresponding to each 
element of each of the matrices A, B, and M. For instance, as in [6], the bistable corre- 
sponding to a ,  is set to state 1 if a,: = 1 or to state 0 if a,~ = 0, we shall not discuss 
the means by which this is done. For each x = 1, • • • , p ,  and y, 2 = 1, • • • , p~ there is 
a separate and gate that derives its two inputs from the bistables that  correspond to m~ 
and b~ .  The network also includes one or gate for each x = 1, • • • , p ,  and2 = 1, - • • , p~. 
Any such or gate computes r~ = ( 3 x ) ( m ~ - b ~ )  and its p~ inputs are derived from the 
outputs of the and gates that  compute m~.by~ for y = 1, . . .  , p~. Corresponding to 
each or gate r~j there is an inverter whose output is ~ j .  For each x, z = 1, .. , p ,  and 
j = I, . . .  , p~ there is an and gate that  computes a , ~ . ~ .  Finally, the network includes 
p~ ~ pz or gates, each of which computes (3x ) (a ,~  ~ )  for different ~, 2- The inputs to 
the or gate that  computes (3x)(a,~.  ~ )  are the outputs of the p ,  and gates that  compute 
a,~.~j for • = 1, -. , p , .  Perhaps because the network is essentially four-dimensional 
(~, j ,  x, y), we have not been able to produce a really helpful diagram of it. 

The network operates as follows. At time to the matrix M is read into the p ,  X p~ 
bistables m ,  that  are provided for it. At a time tl that  is sufficiently delayed after to to 
allow operation of all of the or gates r~j, the external inputs to bistables m,: are removed. 
Thereafter the bistable m ,  is reset to state 0 if the or gate ( 3 x ) ( a , ~ - ~ )  produces output 
1, and otherwise the state of the bistable m,j remains unchanged. At a later time t~ the 
matrix M that  results from the refinement procedure can be read out from the bistables 
m , .  The refinement procedure is executed asynchronously, and time t2 must  be suffi- 
ciently delayed after h to allow completion of the asynchronous iterative computation. 

6. Boolean Matrix  Formulatwn of the Refinement Procedure 

For the purposes of the present section we regard (4) as the definition of a Boolean 
product R = [r~] = M X B, and we also use the notation M = [~,~] and M . M '  = 
[m,j m:j]. Using (5), this allows us to formulate the following refinement procedure: 

Step 1 R = M X B, 
Step2 M = M (A X R), 
Step 3. If any row of M contains no l's then go to FAIL emt; 
Step 4. If M was changed by step 2 then go to step 1 else go to SUCCEED emt, 

We have introduced this formulation because it is succinct, but  unfortunately it does 
not express the asynchronous nature of the refinement procedure. This formulation sug- 
gests that  step 2 is carried out only after completion of step 1. In  our software and hard- 
ware implementations, m,~ is changed to m,~ = 0 as soon as condition (2) is not satisfied: 
there would be no practical advantage in postponing such changes until  the end of an 
iteration. 

7. Conclusion 

For isomorphic random graphs our algorithm finds all isomorphisms in a time roughly 
proportional to p 3 ,  and this satisfies Corneil and Gotlieb's criterion that  an algorithm 
is efficient if the time is proportional to a power of p , .  However, for the very hmited 
classes of graphs that  we have used experimentally, our graph isomorphism algorithm 
appears to be less efficient than that  of Corneil and Gotheb [4] and our clique detection 
procedure is probably less efficient than that  of Bron and Kerbosch [3]. The principal 
advantage of our algorithm is that  it can cope with un&rected subgraph isomorphism, 
although this may be a slow process when p,  and p~ are large For mstance, we abandoned 
subgraph isomorphism experiments with p ,  = 10 and p~ = 15 because fifty trials would 
have been costly; and substantially less than fifty trials would not have given a worth- 
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while estimate of the average time per trial. The slowness of the algorithm in this case 
can be par t ly  a t t r ibuted to the large values of q~ tha t  result from or'ing adjacency matrix 
A into adjacency matrix B. The algorithm obviously works more quickly the sparser 
the matrix M °, and this is why the algorithm is more efficient for graph isomorphism 
and clique detection than for general subgraph isomorphism. 

I t  is perhaps unnecessary to discuss the obvmus elaboratmns of the algorithm for 
applicatmn to n-ary relational structures, where each such structure consists of a set of 
V points together with a set of n-tuples of points m V. 

Appendix 1. Statement of the Refinement Procedure 

In the following formulation, h, ,, .1, k, and x are integer pointers, ehm is an integer whose 
value is the number of l ' s  tha t  have been ehmmated so far m the present iteration, dogs is 
the degree of the , th  point in GA. 1st lS a list of all points that  are adjacent  to the , th  
point in GA . SC lS a word tha t  contains only one 1, which is used for scanning. At contains 
the , th  row of matrix A, B~ contains the ath column of matrix B, and M, contains the 
, th row of matrix M. In each case the rightmost or bot tommost  bit  in a matrix row or 
column is located at  the least significant bi t  of the computer word tha t  contains it. & 
means collation, e.g. 1100 & 1010 = 1000. NOT means negation of all bits, e.g. NOT 
1100 = 0011. We have programmed the refinement procedure as follows: 

Step 1 ehm .= 0, 
~ ' = 1 ;  

S t e p 2  k .= 1, 
SC .= 2(Pa-l); 
h ' = l ;  

Step 3. l f s c  & A, = 0 then  go to s tep  4; 
lst~ = h, 
k . = k + l ;  

Step 4. sc .= sc X 2 "1 , 
h ' = h + l ;  
if k # d e g ,  + 1 then go to s tep  3; 

Step 5. 3 = 1, 
SC = 2 (pa-l), 

Step 6. if M, &sc = 0 then go to step 9; 
h .= I, 

Step 7. x "= ]sth, 
if M, & Bs = 0 then go to step 8; 
h = h + l ;  
if h ~ d e g , +  1 then go to s tep  7 else go to s tep  9; 

Step 8. M, = M, & N O T s c ,  
ehm .= ehm + 1; 
h - = h + l ;  

Step 9. se .= se X 2-~; 
a = 2 + 1 ;  
if 3 # P~ + 1 then  go 1o s tep  6; 

S t e p l 0  if M, = 0 then go to FAIL  exi t ;  
= * + l ,  

If * # p= + 1 then go to s tep  2; 
if el im # 0 then  go to s tep  1; 
go to SUCCEED exi t ;  

At the expense of using more storage area, the array 1st can of course be set up once- 
and-for-all at  the s tar t  of the isomorphism program, so tha t  it  is unnecessary to repeat  
stops 2, 3, and 4 in each iteration of the refinement procedure; computer t ime is thereby 
saved. 

Appen&x 2. Mo&ficatwn of the Isomorphzsm Algorithm for Use in Clique Detectwn 

For use in clique detection we modified the algorithm of Section 3 by  changing "if d = 1 
then k :=  Hi  else k :=  0;" to "if d = 1 then k : =  H~ else k : =  H~_~ ;" in step 2. 
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A consequence of this modification is that in any generated matrix M', 3, < 3,+1 where 
! 

3, is the value of 3 such that m,j = 1. Dr. B. R. Heap pointed out that this fact can be 
used to speed up the program by removing l ' s  such that j ,  > j,+x from matrices M. In 
all our experiments with clique detection, whenever the refinement procedure was exe- 
cuted, it was immediately preceded by 

i f  d < p t h e n  
b e g i n  c . =  k; f o r  e := d @ l s t e p  1 u n t i l p ~ d o  

h e g i t l  f o r f  ffi 1 s t e p  l u n t i l c  d o m e !  "= O; 
c '=  c-t- 1; 

e n d  
e n d ;  

When this was used in step 1 of the algorithm of Section 3, we set k := 1. 
If the algorithm of Section 3 had been used without modification, then when a clique 

was found the algorithm would also have found all of the isomorphisms between G, and 
this clique, thus m effect enumerating the automorphisms of the clique. We were not 
interested in the number of automorphisms of a clique; we only wanted to know the 
number of distinct cliques m G~. The modificatmn works by ensuring that in any gener- 
ated raatrix M', 31 < j 2  < • • • < 3 p .  w h e r e 3 x  , 3 2 ,  • • • , 3 ~ .  are the values of 3 correspond- 
ing respectively to the p ,  l 's  in M':  the modification precludes all other permutations. 
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