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ABSTRACT. A procedure for determining whether two graphs are isomorphic is described.
During the procedure, from any given graph two graphs, the representative graph and the
reordered graph, are derived.

The representative graph is a homomorphic image of the original graph; the reordered
graph is constructed from the representative graph to be isomorphic to the given graph.
Unique labels are assigned to the vertices of both derived graphs. It follows that two repre-
sentative graphs or two reordered graphs are isomorphic if and only if they are identical. A
conjecture states that the representative graphs exhibit the automorphism partitioning of the
given graph. The representative graphs form a necessity condition for isomorphism; namely,
if the representative graphs are not identical, then the given graphs are not isomorphic. The
converse is true for trees and follows from the conjecture for other types of graphs. It is also
shown that the reordered graphs form a sufficiency condition for isomorphism; namely, if the
reordered graphs are identical, then the given graphs are isomorphic. The converse follows
from the conjecture.

The time required to determine both derived graphs depends on a power of n, the order of
the given graph. This power is a function of an adjacency property known as the strong regu-
larity of the given graph. For graphs that do not contain a strongly regular transitive sub-
graph, the power is, at worst, five.
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1. Introduction

No efficient deterministic algorithm is known for determining whether two given
finite graphs, Gy and G, , are isomorphic. An eflicient deterministic algorithm is one
which guarantees a solution in a time, 7T, where T is proportional to a constant
power of n, the order of the graph. A closely related but inherently more difficult
problem is the subgraph isomorphism problem; namely, given two finite graphs, Gy
and G, , determine whether @; is isomorphic to Gy or to a subgraph of G; . The graph
isomorphism problem and/or the subgraph isomorphism problem arise in such fields
as chemistry, information retrieval, linguistics, logistics, switching theory, and
network theory. For example, in a chemistry application a chemical compound is
represented by its atomic structure diagram (i.e. an undirected, labeled graph).
A given compound is matched with the compounds contained in a large file or
library [1]. A subgraph isomorphism indicates that the given compound is a sub-
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compound of the library compound under scrutiny; a graph isomorphism indicates
that the given compound is already in the library.

Since we are dealing exclusively with finite graphs, a deterministic isomorphism
algorithm based upon reordering the nodes is easily given. In this algorithm the
nodes of one of the graphs, say G, are systematically reordered, and each graph
determined by such a reordering is checked for identity with G1. Gy is isomorphic
to G, if and only if ¢y is identical to at least one of the graphs determined by a
reordering. The number of node reorderings of Gz that must be performed is bounded
by n!l. Unger has pointed out that, even using fast present-day computers, a more
practical procedure is necessary for dealing with graphs with more than 10 vertices
(2]

Since graph isomorphism has many applications, effective computer programs
are needed. The lack of an efficient deterministic algorithm has led to inefficient
computer procedures, known as heuristic procedures, which do not guarantee an
answer in a reasonable time (2, 3, 4]. Heuristic isomorphism procedures attempt
to reduce the number of reordering by employing conditions that are necessary
for the existence of an isomorphism. These conditions are properties that are in-
variant under graph isomorphism. For example, no isomorphism between two
undirected graphs, Gy and Gz, may map vertex x of Gy onto vertex y of Gy if the
degree of x does not equal the degree of y. Using such properties, the upper bound
on the number of reorderings of the nodes of G> may be reduced. A more detailed
description of heuristic procedures is presented in [5].

The graph isomorphism procedure presented in Section 5 of this paper is effi-
cient for all graphs that do not belong to a certain recognizable class. However,
since the method is based upon a conjecture, the procedure is not deterministic.
It terminates with one of the following three statements:

(ii) The graphs are not isomorphic.

(1ii) The graphs form a counterexample to the conjecture.

In the third case it would be necessary to use a deterministic nonefficient heuristic
procedure; however, no counterexamples have been discovered.

Only undirected, unlabeled graphs are considered; minor modifications are
necessary for other types of graphs (see [5]). In Sections 2 and 3, algorithms which
partition the set of vertices of a graph are presented. By using these algorithms,
the representative graph and the reordered graph are defined (Section 4). The
graph isomorphism algorithm is presented in Section 5; the timing considerations
are discussed in Section 6.

Before presenting this material, some definitions are given.

A subgraph,! H, of G is a transitive subgraph of G if for any two nodes, z, y, of H
there exists an automorphism of ¢ mapping z onto y.

A partitioning of the set, V, of vertices of a graph G(V, E) is* called the auto-
morphism partitioning when the following holds: vertices x and y belong to the
same cell if and only if there exists at least one automorphism of G mapping x
onto y. Note that the set of vertices in a cell of the automorphism partitioning
forms a transitive subgraph.

1 The set of edges in H is the restriction of the set of edges in G to the set of vertices in H.
2 F is the set of edges in G.
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A 2-strongly regular graph is an undirected graph G ( V E), whlch 18 not complete
and not void such that there exist constants pli, piz , psz, Pi1 , Piz , Ps2 Where:

(I) forally € V,for allz € V where (y,2) € E:
(1) [{zle eV —{y,d;(z,9) € E;(z,2) € E}| = pu,

i) l{ele €V = (9,4 ;(zy) € E;(z,2) ¢ B} | = pz,

(i) [zlz €V —{y,4d; (@ y) € B;(2,2) ¢ Bl | = pn;
(IT) forally € V,forallz € V where (y,2) ¢ E:

(i) Hzle eV =iy 4d;(xy) € B;(x,2) € B} | = p1a,

(i) |{zle€V —{y, 4 ;(x,y) € E;(z,2) ¢ B} | = pis,
(i) |{zlz €V —{y,2;(z9) ¢ E;(2,2) ¢ B} | = pa.

This definition is equivalent to Bose’s definition of strongly regular [6]. Condition
I indicates that for any two distinet adjacent vertices y and z, there exist exactly
pi vertices adjacent to both y and 2, exactly pi, vertices adjacent to y but not
adjacent to 2, and exactly pi. vertices not adjacent to either y or z. Condition 1I
is similar except that y and z are not adjacent.

The definition of 2-strongly regular may be extended to h-strongly regular (h > 2)
in an obvious way—by specifying, up to isomorphism, all graphs of order & (see
[5] for & = 3). For purposes of continuity, a regular graph may be called 1-strongly
regular.

2. Terminal Connection Partitioning Algorithm

In the determination of the representative graph, it is necessary to partition the
set of vertices of the given graph. In this section, an algorithm for refining a given
partitioning is given. It may be shown that if the given partitioning is invariant
under automorphism (and this is always the case for us), the partitioning resulting
from this algorithm is also invariant under automorphism. We assume that in the
given partitioning, V has been partitioned into ¢ (v > 1) cells,’ where the jth cell
is denoted V? (1 < j < 7).

ALGoriTHM 1

Step 1. To each node y € V, associate a list (a; , -+, a:) where a; equals the
exact number of nodes, z; € V’ such that (y, z:;) € E (1 < j < 7). Note that
Y 1a; = d(y), the degree of vertex y.

Step 2. We now define a refinement of the jth cell.

(i) Perform an ordering of the nodes in the cell by examining the lists associated
with the nodes of V”. Order the nodes by lexicographically ordering their lists.

(ii) If all the nodes have the same list, no refinement is done. _

(iii) If the lists are not identical, use the ordering of the nodes of V’ to refine
V7 as follows: Assume that node y precedes all other nodes of V7, then the first
subeell of V7 consists of node y and all other nodes of ¥V’ which have the same list
as y. Remove these nodes from V7, and from the remaining nodes choose the node
that precedes all other remaining nodes.

$1f ¢ equals 1, then V has not been partitioned.
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This node and all other nodes with the same list form the second subcell of V’.
Continue this process until all nodes of V7 belong to a subcell of V°.

Step 3. Apply step 2 to all 7 cells. If at least one of the cells is refined, then we
reindex all the cells and go to step 1. This reindexing is carried out as follows:
Assume that cells1 to j — 1 are not refined, but cell j is; cells 1 toj — 1 retain
their previous cell indices. Index the I subcellsof celljasj,j+ 1, ---,7+1—1
according to the ordering of subcells defined in step 2. The next cell to be indexed
(cell j + 1 or a subcell of it) is assigned the index j + [, and the process continues
until all cells have been indexed.

If no cell is refined, the algorithm is finished, and the terminal connection parti-
tioning of the set of nodes of G with respect to the given partitioning has been
obtained. Since the refinement requires at least one refinement in order to continue,
and the number of cells is bounded by the number of nodes of G (which is finite),
the algorithm terminates. If the given partitioning consists of V alone, then the
first iteration of Algorithm I merely performs a degree partitioning of V (i.e. two
vertices belong to the same cell if and only if their degrees are the same). If G is
regular and the given partitioning consists of V alone, then Algorithm I does not
refine the partitioning.

Ezample of Algorithm I. Consider the graph in Figure 1. Assume that we are given the follow-
ing degree partitioning of V:

Cell index Nodes
I 3,7,8, 10
11 6
II1 2,4
v 1,5,9

From step 1 of the algorithm, the lists are:

Cell index Node List
[ 3 (3,0,2,0)
I { 7 (3,1,1,0
8 2,0,1,2)
{10 2,0,1,2)
11 6 (1,0,1,92)
I {2 (3,0,0,0)
14 (2,1, 0, 0)
Jl 1,1, 0,0
v 5 1,1,0,0)
19 2,0,0,0

In step 2 the lists are lexicographically ordered, and the nodes are placed in the following order:

Cell index Node List
7 3,1,1,0)
. 3 (3,0,2, 0
8 2,0,1,2)
110 2,0,1,2)
I 6 1,0,1,2)
f2 (3, 0,0, 0)
1t 14 2,1,0,0)
Jg (2,0, 0,0)
v 1 (1,1,0,0)
|5 1,1,0,0
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Cells I, ITI, and IV are refined. In step 3 the subcells are reindexed, and in step 1 the new lists
are agsigned as follows:

Cell index Node List
1 7 0,1,2,1,0,1,0,0)
11 3 1,0,2,0,1,1,0,0)
- [ 8 (1,1,0,0,1,0,1, 1)
110 (1,1,0,0,1,0,1, 1)
v 6 1,0,0,0,0,1,0,2)
\% 2 0,1,2,0,0,0,0,0)
VI 4 1,1,0,1,0,0,0,0)
Vil 19 0,0,2,0,0,0,0,0)
1 (0,0,1,1,0,0,0,0)
VI 15 0,0,1,1,0,0,0,0)

Since the lists associated with nodes 8 and 10 are identical and the lists associated with nodes
1and 5 are identical, the algorithm is finished, and this is the terminal connection partitioning
for this graph with respect to the given partitioning.

To represent the refined partitioning of ¥, we now define @, the directed quotient
graph of a graph G. The terminal connection partitioning algorithm defines the
following equivalence relation on V: two nodes belong to the same equivalence
class if and only if they belonged to the same initial partition and their terminal
lists are identical [5). Thus we may define the directed quotient graph, @, such that

(i) the set of vertices is the set of integers from 1 to f (f is the number of cells
in the terminal connection partitioning); ‘

(ii) the set of directed edges is defined such that if a node, y € V", is adjacent
to exactly I nodes in ¥’ (I equals the a; in the terminal list associated with y), then
there is a directed edge of weight [ from node 7 of @ to node j of @.

Since the vertices are assigned unique integer labels, two quotient graphs are
isomorphic if and only if they are identical. The quotient graph, @, is a homo-
morphic image of G(V, E) (i.e. the nodes of G are mapped onto the nodes of @,
and the edges of G are mapped onto the edges of Q). Since the nodes in cell V’
form a regular subgraph, say of degree h, of G, there is a directed loop of weight h
on vertex j in @.

Note that the set of rows of B, the adjacency matrix of @, is the set of lists corre-
sponding to the terminal cells of the partitioning (i.e. the jth row of B is the terminal
list associated with each node, ¥y € V’). B has the properties:

(i) D 5_1b:; = d(z), for all 4, where f is the number of columns in the matrix,
and z; is a vertex in cell 7.

(ii) order of V' X bi; = order of ¥V’ X b, for all ¢ and ;.

Ezample of Quotient Graph. The quotient graph, @, for the graph given in Figure 1, when the
degree partitioning is the given partitioning, is given in Figure 2. The number of arrowheads
on the edges indicates the weight of the edge in each direction.

3. Terminal Quotient Graph

It was stated in Section 2 that since the partitioning presented to Algorithm I
is invariant under automorphism, the partitioning resulting from the algorithm
is also invariant under automorphism. Thus any two vertices that belong to a
transitive subgraph must belong to the same cell of the refined partitioning. An
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equivalent statement is the following: the automorphism partitioning is a refine-
ment (possibly trivial) of the partitioning resulting from Algorithm I.

We now present Algorithm I, which utilizes Algorithm I and attempts to deter-
mine the maximal transitive subgraphs of the given graph. The algorithm performs
a partitioning on the set of vertices and results in a graph which is defined as the
terminal quotient graph, @r .

AvGorrram II

Step 1. Perform Algorithm I on V, resulting in the quotient graph, Q. If the
given graph is not regular, then the degree partitioning is refined in Algorithm I.
If the graph is regular of degree k, then no partitioning of V is achieved, and @
consists of one vertex with a directed loop of weight & on it.

Step 2. Assume that there are < cells (¢ > 1). Set k equal to 1 and go to step 3.

Step 3. Examine cell V*. If there is only one vertex in cell V*, go to step 7.
Assume that there are [ (I > 1) vertices z;, -+, 2; in V*. Choose one of these
vertices, say z, , and go to step 4.

Step 4. Perform the following refinement of the existing partitioning (i.e. as
represented by Q). Remove z, from V* and place it in new cell 1. New indices are
assigned to all the old cells of @ as follows: old cell j is assigned the new index 7 + 1
for all j. Effectively, we have altered the given graph G by assigning vertex x, a
unique label and by placing it in a unique cell. The new partitioning is invariant
under automorphism for this altered graph. Apply Algorithm I to this new parti-
tioning and obtain the quotient graph Q., which will be called the vertex quotient
graph for z, with respect to the given partitioning. Go.to step 5.

Step 5. Perform step 4 for all ! nodes zy, -+, x; of cell VeIt Qe = Q2
for*all g (1 < g < 1), then go to step 7; otherwise go to step 6.

4 In this step we have assumed that the vertices in cell V* do not form an h-strongly regular
subgraph (h > 2). It is necessary to determine the largest i such that the subgraph is k-
strongly regular. To do this, Step 4 of Algorithm II is altered so that an h-vertex quotient
graph is calculated (i.e. the vertex quotient graph with respect to h given vertices). The k-
vertex connection partitioning algorithm, which calculates the h-vertex quotient graph, is de-
fined in the following way: Place each of the chosen h vertices (z:, -+ , z4) into an individual
cell such that x;isin cell ¢; then perform Algorithm I. The resulting quotient graph is called the
h-vertex quotient graph Qz, , - - - ,; . The following theorem is proved in [5]:
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Step 6. If for any two vertices, ¥, 2, in V*, @, # Q. , then there can be no auto-
morphism of G that maps y onto 2. We may therefore refine the partitioning repre-
sented by Q in the following way. The set of vertices in cell V* is partitioned such
that two vertices belong to the same subcell if and only if they possess identical
vertex quotient graphs. Now consider each adjacency matrix to be a vector where
the (¢ + 1)-th row of the matrix immediately succeeds the 7th row for all . The
subcells are then ordered by lexicographically ordering the vectors corresponding
to the adjacency matrices of the vertex quotient graphs. This refinement of V*
provides a refinement of the partitioning of ¥V represented by €. Perform Algorithm
I on this new partitioning and reenter Algorithm II at step 2 with the new Q.

Step 7. Replace & with k£ + 1. If £ does not equal ¢, go to step 3. If k equals <,
then the algorithm is finished. We now refer to the given quotient graph, @, as the
terminal quotient graph, @r .

An example of this algorithm will be given in Section 5, where the entire graph
isomorphism algorithm is presented.

We now make the following conjecture:

Conjecture. The partitioning resulting from Algorithm II is the automorphism
partitioning of V.

Note that the automorphism partitioning is a refinement ( we conjecture trivial)
of the partitioning from Algorithm II.°

In order to deal with the fact that two graphs which possess the same terminal
quotient graphs may be nonisomorphic (see Figure 3), we introduce the representa-
tive graph. s

4. Representative Graph and Reordered Graph

Having calculated the terminal quotient graph and the vertex quotient graphs
(Algorithm II) we now define the representative graph, Gz .

If all transitive subgraphs of a given graph G are not 2-strongly regular,’ then
G, the representative graph of G, is immediately derived from Qr, the terminal
quotient graph associated with G. Let Qx, denote the vertex quotient graph asso-
ciated with each vertex in the transitive subgraph H; of G, where the nodes of H;
are mapped onto node 7 of @ for all 7. Gy is defined to be the graph @r such that

TueoreM 1. A graph G(V, E) is h-strongly regular (2 < h < n) if and only if

() G is (h — 1)-strongly regular;

(#2) In all (h — 1)-vertex connection partitionings, two vertices belong to the same cell if and
only if their adjacencies to the (b — 1) chosen vertices are identical;

(©8) Quy,-evvopey = Quu, v ouney o and only if the following holds: (x:, x;) € E if and only if
(yi,yi) € E for all i and j.

Thus it is possible to determine m, the maximal strong regularity of a subgraph. If a sub-
graph is m-strongly regular, then the set of m vertex quotient graphs for all possible choices of
m vertices must be calculated. See [5] for further details.

5 Because of this conjecture, special treatment is required in Algorithm II for k-strongly regular
graphs (B > 2). This necessity is illustrated by ‘“‘the exceptional graph of order 26, given in
{7]. This graph is nontransitive and 2-strongly regular. Since it is nontransitive, the auto-
morphism partitioning consists of at least two cells; since it is 2-strongly regular, all vertex
quotient graphs are identical (Theorem I).

¢ If the transitive subgraph H; is h-strongly regular (k > 2) but aot (h + 1)-strongly regular,
then node j of Gz is labeled by the family of h-vertex quotient graphs associated with H; . See
(8] for further details.
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F16. 3. Nonisomorphie graphs which have identical terminal quotient graphs

node 7 of Gy is labeled by the vertex quotient graph @y, (recall that each vertex
in @r was labeled with a unique integer).

The representative graphs of the graphs of Figure 3 are shown in Figure 4.

We define two representative graphs to be identical (also isomorphic) if the
terminal quotient graphs are identical and if vertices in the representative graphs
with the same integer label also have identical vertex quotient graph labels.

TuroreM II. G122 G, = G:' = G’

Proor. This follows immediately from the fact that the partitionings resulting
from Algorithm I and Algorithm IT are invariant under automorphism, and there-
fore invariant under isomorphism.

It is seen that the representative graphs form a necessity condition for iso-
morphism; namely, if Gz' % G7, then Gy # G . Thus we conclude that the graphs
in Figure 3 are not isomorphie.

TreoreM III. If the conjecture is true, then Gx' = Gi' = G1 = G, . (Converse
of Theorem II.)

Proor. Consider graph G5 to be the union of Gy and Gy . Assume that G and
(; are connected; otherwise, set G3 to be the union of the complement of G; and
the complement of G, . Let H, (K;) denote the transitive (from the conjecture)
subgraph of Gy (G2) where the nodes of H; (K) are mapped onto note 7 of Q' (Q,°),
for all 4. Let Q%, denote the vertex quotient graph (or family of h-vertex quotient
graphs) associated with H; when H; is a subgraph of ;. Let D denote the quotient
graph of G (and hence G,) resulting from Algorithm I.

Now apply Algorithm IT to G; . Since Gi' = Gz’, Qn; = Qx, for all 7 and QrF =
Qr' = Q. Since Gy and G, are disjoint in G; , er,. =Qu, UD and Q%, = Qx, UD
for all 7. Thus @k, = Q%, , and in the partitioning of the set of vertices of Gy cell i
contains H; U K, for all . For some cell ¢ choose vertex € V; and vertex y € V..
Since the given partitioning is assumed to be the automorphism partitioning, we
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where node I is ossigned the odditional [obel
1 2()

and node T is ossigned the additionol label

where node I is assigned the odditional label
i 2 :

and node U is assigned the odditional label
2

5 4

Fic. 4. G;, and G; for the graphs in Figure 3

know that there exists an automorphism of G that maps x onto y. Since G; and G
are connected graphs, vertices in V; (V) may only be mapped onto vertices in
Ve (V1). Thus this automorphism of G is induced by an isomorphism of G onto
Gy, and Gy =2 G, ." It should be noted that the proof requires the validity of Con-
jecture V.3-1 for graphs of order 2n which consist of two disjoint subgraphs of
order n.

We now state Theorem IV which shows that the converse of Theorem II holds
for trees.

TueorEM IV. Consider two finite undirected trees Ty and Ty with quotient graphs
Q' and Q* (as calculated in step 1 of Algorithm II). Then (i) Q' (i = 1 or 2) is the
terminal quotient graph Q.', and (%) if Q' = Q* then Ty = T, .

Other efficient tree isomorphism algorithms not related to our method can be
given (e.g. [8, 91).

The representative graphs form a necessity condition for isomorphism. We now
introduce reordered graphs and develop a sufficiency condition. First we present
the algorithm for determining the reordered graph, G., from the representative
7 This theorem is not presented in the thesis. All conjectures in the thesis that are related to
the isomorphism algorithm have thus been compressed into one essential conjecture. Dr. J.

Turner has presented a counterexample to Conjecture V.4-1 of the thesis; however, since this
conjecture is not needed, our results are not affected.

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970



60 D. G. CORNEIL AND C. C. GOTLIEB

graph, Gx . The reordered graph is constructed to be isomorphic to the given graph
G. In this algorithm it is assumed that any subgraph whose nodes are mapped onto
a single vertex of @r is not an h-strongly regular graph (A > 2). For these types
of graphs see [5].

Avcoritam III

Step 1. Does the number of vertices in @r equal the number of nodes in G? If
not, go to step 2; otherwise, Qr represents a unique reordering of the nodes of G,
the adjacency matrix of G, is identical to the adjacency matrix of Q,, and the
algorithm is finished.

Step 2. Let V' denote the sth cell of the partitioning of V represented by Q7.
Choose the cell with the lowest index, say j, such that the order of V’ # 1. From
174 arbitrarily choose a vertex, say x. Perform step 4 of Algorithm II to construet
the vertex quotient graph Q. (this vertex quotient graph is formed with respect
to the current partitioning of V). Perform steps 2 to 7 of Algorithm II to refine
the partitioning represented by Q. , obtaining a new terminal quotient graph Q.
Go to step 1.

Ezxample of Algorithm III. In Figure 3, G, and QZT are given. The homomorphic mapping of V
onto Q2T is
1, (2,3,4,5,6,7)) = (I, 1I).
Since the order of QzT = 2 and the order of ¥V = 7, we perform step 2. Here we set j = II,
and choose a vertex, say 4. Qy is calculated (see the vertex quotient graph label assigned to

vertex I of Gz in Figure 4). This partitioning is not refined in step 2. The mapping of V onto
the new Qr is

4,1, 3,5), (2,6), ) = (I, II, II1, IV, V).

In step 1, since the order of @7 = 5 and the order of V = 7 we return to step 2, set j = III
and choose a vertex, say 5. Qs is calculated (see Figure 5), no refinement is achieved, and we
perform step 1. The mapping of V onto Qs is

(5,4,1,3,6,2,7) = (I, 11, III, IV, V, VI, VII).

Since the order of @ is 8, which is the order of V, the algorithm is finished and @, is given in,
Figure 6.

u

Fic. 5. The vertex quotient graph, Q; , for Fic. 6. G, the reordered graph, for G,
G of Figure 3 of Figure 3
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3
G
2 4
CALCULATE
Ga ond Go ! 5

G,
CALCULATE
1 2
G, ond G, 2 4
! \ 5
Giond G, form o 8 6
counter — example
to the conjecture
7
Fic. 7. Algorithm IV, the graph Fr¢. 8. G, and G, , two graphs to be
isomorphism algorithm tested for isomorphism

We now present a theorem regarding reordered graphs.

TaeorEM V. G/ ' =G’ = =G,.

Proor. This is obvious since G,' =2 Gy and G,” =~ G, .

It is seen that the reordered graphs form a sufficiency condition for isomorphism;
namely, if G,' = G,%, then Gy =2 G, . The converse of this theorem is true if the
Conjecture is true (see [5]). Thus if the Conjecture is true, then the reordered
graph is a canonical form for the equivalence class of graphs isomorphic to the
given graph.

5. Graph Isomorphism Algorithm

AvgoriTEM IV

This algorithm is presented in the form of a flowchart in Figure 7. It may be shown
that if the Conjecture is true, then Gx' = Gz’ = G,;' = G, In the isomorphism
algorithm, it is a violation of this statement that would indicate that a counter-
example had been found to the Conjecture.

Ezample of Algorithm IV. We are given the graphs, Gy and @, , presented in Figure 8. In block 1
of Algorithm IV, the representative graphs, Gk and G%, are derived. The execution of Algo-
rithm IY on Gy will be followed in detail.

After step 1 of Algorithm II, @ consists of one vertex with a directed loop of weight 3 on it.
Instep 2, k is set equal to 1. In steps 3, 4, and 5, the vertex quotient graphs @; (1 <7 < 8)
are calculated. In step 6 it is seen that @, = Q5 ; @ = Q. = Qs = Qs ; @3 = Q; . The set of
vertices is partitioned and the subcells are ordered such that cell {1, 5} precedes cell {3, 7}
which precedes cell {2, 4, 6, 8}. Algorithm I does not refine this partitioning so that we now
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additional {abei:

ond node I is
ossigned the 1 3
additionol label:

ond node OI s
assigned the
additional label:

F1a. 9. Gy, the representative graph for both @, and @,

3

7
F16.10. @, , the reordered graph for both G; and G,

have a new quotient graph Q. (Qis the same as @7 given in Figure 9.) Algorithm IT is reentered
at step 2. It is found that no further refinement is achieved.?

The representative graphs for both Gy and G, are given in Figure 9. Since G;, = G;, the yes
exit of block 2 is followed. In block 3, Gf and GF are determined (see Figure 10). Since G =
G7, the yes exit of block 4 is taken and we conclude that G, is isomorphic to G, . One possible

8 In fact, we know of no example in which a refinement is achieved at this point.
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isomorphism between Gy and Ghis¢ (4,2, 1, 8,7, 3, 5, 6) where node j of G is mapped onto node
o(j) of G; (e.g. node 4 of G is mapped onto node 8 of ;). Further examples of the algorithm
are presented in [5].

6. Timing Considerations

In this section we examine the timing requirement for Algorithms I and IV; the
other algorithms are examined in [5]. We determine the dependence of the processing
time, T, on 7 by examining each step of the algorithm and estimating the number
of machine cycles needed to perform this step. The following assumptions are
made: the binary adjacency matrices are packed into the machine words; §; machine
cycles are needed to interrogate an element of a packed binary matrix; 8 cycles
are needed to compare two words; 6; cyeles are needed for an integer addition; &
cycles are needed for a word replacement; the times for all other operations, par-
ticularly indexing operations for controlling loops and for modifying fetch instruc-
tions, are negligible. ¥For each step (and thus for the algorithm), the largest term
is found for each of &; , 6, 8; , and & . This analysis is similar to that in [10].

In the analysis of Algorithm I, the following terminology is used: ¢ denotes the
iteration that is being performed; in the ¢-th iteration, the set of nodes has been
previously partitioned into f(¢) cells; f is the order of the quotient graph;n;’ denotes
the number of nodes in cell V7 in the t-th iteration ( j=1,---,f(t)); there are
exactly &, different lists assigned to the nodes in V7 in the ¢-th iteration; N = doen’;
F = 3", f(t). The number of machine cycles required by the implemented version
of the algorithm is

T = N& + (N + 20 2 nj‘(s - hi» 8+ 2N +nF)ss + (f* 4+ N + nF)s,

+ terms which depend on lower powers of the parameters.
An upper bound on this expression is
n’(8 + $6: 4+ 38; + 38.) + terms which depend on lower powers of n.

(This bound is unreachable.)
For Algorithm IV, the maximum number of machine cycles required for graphs
that do not contain 2-strongly regular transitive subgraphs is [5]:

n’(8 + §8 + 365 + 28:) + terms which depend on lower powers of n.

As an example of the validity of these timing expressions, we used the IBM
7094-II to examine the predicted timings and the observed timings for random
graphs and polygons. For isomorphic random graphs the processing time depended
on n’. For density of edges = 0.5 and n = 20, the predicted time is 0.00363 min,
and the observed time is 0.00447 min; for n = 60, the predicted time is 0.0323 min,
and the observed time is 0.0330 min. The predicted time for isomorphic polygons
depends on n‘; this family of graphs seems to possess the worst dependence on 7
for graphs that do not contain 2-strongly regular transitive subgraphs. For n = 10,
the predicted time is 0.0346 min, and the observed time is 0.0453 min; for n = 40,
the predicted time is 7.77 min, and the observed time is 9.97 min; for n = 60, the
predicted time is 38.7 min.

For graphs that contain a transitive h-strongly regular subgraph [not (A + 1)-
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strongly regular (A > 2)], the upper bound on the timing for the graph isomorphism
algorithm depends on n°™*. Since the upper bound for 2 may be n, our isomorphism
algorithm is inefficient for families of graphs whose strong regularity is a function
of n.

For other graphs and in particular for graphs encountered in usual applications,
the algorithm is efficient and, subject to the Conjecture, highly effective.
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